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The nonlinear Schrödinger (NLS) equation describing the propagation of weakly 11 
rotational wave packets in an infinitely deep fluid in Lagrangian coordinates has 12 
been derived. The vorticity is assumed to be an arbitrary function of Lagrangian 13 
coordinates and quadratic in the small parameter proportional to the wave 14 
steepness. The vorticity effects manifest themselves in a shift of the wavenumber 15 
in the carrier wave as well as in variation of the coefficient multiplying the 16 
nonlinear term. In the case of the dependence of vorticity on the vertical 17 
Lagrangian coordinate only (the Gouyon waves), the shift of the wavenumber and 18 
the respective coefficient are constant. When the vorticity is dependent on both 19 
Lagrangian coordinates, the shift of the wavenumber is horizontally 20 
inhomogeneous. There are special cases (e.g., Gerstner waves) when the vorticity 21 
is proportional to squared wave amplitude and non-linearity disappears, thus 22 
making the equations for wave packet dynamics linear. It is shown that the NLS 23 
solution for weakly rotational waves in the Eulerian variables may be obtained 24 
from the Lagrangian solution by simply changing the horizontal coordinates. 25 
 26 
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1 Introduction 31 
 32 
The nonlinear Schrödinger (NLS) equation was first derived by Zakharov in 1967 33 
(English edition, Zakharov, 1968) who used the Hamiltonian formalism for 34 
description of wave propagation in deep water; see also Benney and Newell 35 
(1967). Hashimoto and Ono (1972) and Davey (1972) obtained the same result 36 
independently. Like Benney and Newell (1967) they used the method of multiple 37 
scale expansions in Euler coordinates. Yuen and Lake (1975), in turn, derived the 38 
NLS equation on the basis of the averaged Lagrangian method. Benney and Roskes 39 
(1969) extended those two-dimensional theories to the case of three-dimensional 40 
wave perturbations in a finite depth fluid and obtained equations that are now 41 
known as the Davey-Stewartson equations. In this particular case the equation 42 
proves the existence of transverse instability of a plane wave which is much 43 
stronger than a longitudinal one. This circumstance diminishes the role and 44 
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meaning of the NLS equation for sea applications. Meanwhile, the 1-D NLS 45 
equation has been successfully tested many times in laboratory wave tanks and 46 
natural observations were compared with numerical calculations in the framework 47 
of this equation. 48 

In all the cited papers wave motion was considered to be potential. However, 49 
wave formation and propagation frequently occur against the background of a 50 
shear flow possessing vorticity. Wave train modulations upon arbitrary vertically 51 
sheared currents were studied by Benney and Maslowe (1975). Using the method 52 
of multiple scales, Johnson (1976) examined slow modulation of a harmonic wave 53 
moving at the surface of an arbitrary shear flow with velocity profile ( )yU , where 54 
y  is vertical coordinate. He derived the NLS equation with coefficients which 55 
depend in a complicated way on a shear flow (Johnson, 1976). Oikawa et al. 56 
(1985) considered the properties of instability of weakly nonlinear three-57 
dimensional wave packets in the presence of a shear flow. Their simultaneous 58 
equations reduce to the known NLS equation for the case of purely two-59 
dimensional wave evolution. Li et al. (1987) and Baumstein (1998) studied the 60 
modulation instability of the Stokes wave-train and derived an NLS equation for an 61 
uniform shear flow in deep water, when ( ) yyU

0
Ω=  and 

0
Ω=Ω z  is constant 62 

vorticity ( z  is the horizontal coordinate normal to the yx,  plane of the flow; the 63 
wave propagates in the x  direction).  64 

Thomas et al. (2012) generalized their results for a finite-depth fluid and 65 
confirmed that a linear shear flow may significantly modify the stability properties 66 
of weakly nonlinear Stokes waves. In particular, for the waves propagating in the 67 
direction of the flow, the Benjamin-Feir (modulational) instability can vanish in 68 
the presence of positive vorticity ( 00 <Ω ) for any depth. 69 

In the traditional Eulerian approach to the propagation of weakly nonlinear 70 
waves against the background current, a shear flow determines vorticity in a zero 71 
approximation. Depending on the flow profile ( )yU  it may be arbitrary and equal 72 
to ( )yU ′− . At the same time, the vorticity of wave perturbations 1, ≥Ω nn , i.e. the 73 
vorticity in the first and subsequent approximations in the wave steepness 74 
parameter 0kA=ε ( k  is wavenumber and 0A  is wave amplitude) depends on its 75 
form. In Eulerian coordinates the vorticity of wave perturbations is a function not 76 
only of y, but of x and t variables as well. Plane waves on a shear flow with a linear 77 
vertical profile are regarded to be an exception (Li et al., 1987; Baumstein, 1998; 78 
Thomas et al., 2012). For such waves the vorticity is constant in a zero 79 
approximation, and all the vorticities in wave perturbations are equal to zero. For 80 
an arbitrary vertical profile of the shear flow (Johnson, 1976), expressions for the 81 
functions nΩ  can be hardly predicted even qualitatively. 82 

The Lagrangian method allows applying a different approach. In the plane 83 
flow the vorticity of fluid particles is preserved and can be expressed via 84 
Lagrangian coordinates only. Thus, not only the vertical profile of the shear flow 85 
defining the vorticity in a zero approximation, but the expressions for the vorticity 86 
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of the following orders of smallness can also be arbitrary. The expression for the 87 
vorticity is written in the form 88 

 89 
( ) ( ) ( )babUba n

n
n ,,

1
Ω∑+′−=Ω

≥
ε , 90 

 91 
where ba,  are the horizontal and vertical Lagrangian coordinates, respectively, 92 
( )bU  is the vertical profile of the shear flow, and particular conditions for defining 93 

the nΩ  functions can be found. For the given shear flow this approach allows 94 
studying wave perturbations under the most general law of distribution of 95 
vorticities nΩ . In the present paper we do not consider shear flow and vorticity in 96 
the linear approximation ( 0;0 1 =Ω=U ), whereas vorticity in the quadratic 97 
approximation is an arbitrary function. This corresponds to the rotational flow 98 
proportional to 2ε . We can define both the shear flow and the localized vortex.  99 
 The dynamics of plane wave trains on the background flows with arbitrary 100 
low vorticity has not been studied before. The idea to study wave trains with 101 
quadratic (with respect to the wave steepness parameter) vorticity was realized 102 
earlier for the spatial problems in the Euler variables. Hjelmervik and Trulsen 103 
(2009) derived the NLS equation for vorticity distribution 104 

 105 
( ) ( ) ( )32 ,; εωεω OO zxy =ΩΩ=Ω , 106 

 107 
where ω is wave frequency. The vertical vorticity of wave perturbations exceeds 108 
the other two vorticity components by a factor of ten. This vorticity distribution 109 
corresponds to the low (of order ε ) velocity of the horizontally inhomogeneous 110 
shear flow. Hjelmervik and Trulsen (2009) used the NLS equation to study the 111 
statistics of rogue waves on narrow current jets, and Onorato et al. (2011) used that 112 
equation to study the opposite flow rogue waves. The effect of low vorticity ( 2ε  113 
order of magnitude) in the paper by Hjelmervik and Trulsen (2009) is reflected in 114 
the NLS equation. This fact, like the NLS nonlinear term for plane potential waves, 115 
may be attributed to the presence of an average current non-uniform over the fluid 116 
depth. 117 

Colin et al. (1995) considered the evolution of three-dimensional vortex 118 
disturbances in a finite-depth fluid for a different type of vorticity distribution: 119 

 
120 

               
( ) ( )2,;0 εω Ozxy =ΩΩ=Ω

 
121 

 
122 

and reduced the problem to a solution of the Davey-Stewartson equations by 123 
means of the multiple scale expansion method in Eulerian variables. In this case, 124 
vorticity components are calculated after the solution of the problem. Similarly to 125 
the traditional Eulerian approach (Johnson, 1976) the form of the quadratic 126 
vorticity distribution is very special and does not cover all of its numerous possible 127 
distributions. 128 
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In this paper we consider the plane problem of nonlinear wave packet 129 
propagating in an ideal incompressible fluid with the following form of vorticity 130 
distribution 131 

 132 
( )2εω Oz =Ω . 133 

 134 
In contrast to Hjelmervik and Trulsen (2009), Onorato et al. (2011) and Colin et al. 135 
(1996), the flow is two-dimensional ( 0=Ω=Ω yx ). The propagation of a packet of 136 

potential waves gives rise to a weak counterflow underneath the free water surface 137 
with velocity proportional to the square of the wave steepness (McIntyre, 1982). In 138 
the considered problem this potential flow is superimposed with the rotational one 139 
of the same order of magnitude. This results in appearance of an additional term in 140 
the NLS equation and in change of the coefficient in the nonlinear term. So, the 141 
difference from the NLS solutions derived for a strictly potential fluid motion was 142 
revealed. 143 

The examination is made in the Lagrangian variables. The Lagrangian 144 
variables are rarely used in fluid mechanics because of a more complex type of 145 
nonlinear equations in Lagrangian form. However, when considering the vortex-146 
induced oscillations of a free fluid surface, the Lagrangian approach has two major 147 
advantages. First, unlike the Euler description method the shape of the free surface 148 
is known and is determined by the condition of the equality to zero ( 0=b ) of the 149 
vertical Lagrangian coordinate. Second, the vortical motion of liquid particles is 150 
confined within the plane and is a function of Lagrangian variables ( )bazz ,Ω=Ω , 151 
so the type of vorticity distribution in the fluid can be preset. The Eulerian 152 
approach does not allow this. In this case, the second-order vorticity is defined as a 153 
known function of Lagrangian variables.  154 

Here, hydrodynamic equations are solved in Lagrangian form by the 155 
multiple scale expansion method. A nonlinear Schrödinger equation with variable 156 
coefficients is derived. Possible ways of reducing it to the NLS equation with 157 
constant coefficients are studied.  158 

The paper is organized as follows. Section 2 describes the Lagrangian 159 
approach to studying wave oscillations at the free surface of a fluid. The zero of 160 
the Lagrangian vertical coordinate corresponds to the free surface, thus simplifying 161 
formulation of the pressure boundary conditions. The specific feature of the 162 
proposed approach is introduction of a complex coordinate of a fluid particle 163 
trajectory. In Section 3 a nonlinear evolution equation is derived on the basis of the 164 
method of multiple scale expansion. Different solutions of the NLS equation 165 
adequately describing various examples of vortex waves are considered in Section 166 
4. The transform from the Lagrangian coordinates to the Euler description of 167 
solutions of the NLS equation is shown in Section 5. Section 6 summarizes the 168 
obtained results. 169 
 170 
2 Basic equations in Lagrangian coordinates 171 

 172 

 4 



Consider the propagation of a packet of gravity surface waves in a rotational 173 
infinitely deep fluid. 2D hydrodynamic equations of an incompressible inviscid 174 
fluid in Lagrangian coordinates have the following form (Lamb, 1932; Abrashkin 175 
and Yakubovich, 2006; Bennett, 2006): 176 

 
177 

      
( )
( ) [ ] ,1,

,
, == YX
baD
YXD      (1) 178 

( ) ,1
aattatt pYgYXX

ρ
−=+ +     (2) 179 

( ) ,1
bbttbtt pYgYXX

ρ
−=++     (3) 180 

 181 
where YX , are the horizontal and vertical Cartesian coordinates and ba,  are the 182 
horizontal and vertical Lagrangian coordinates of fluid particles, t  is time, ρ  is 183 
fluid density, p  is pressure, g  is acceleration due to gravity, the subscripts mean 184 
differentiation with respect to the corresponding variable. The square brackets 185 
denote the Jacobian. The b  axis is directed upwards, and 0=b  corresponds to the 186 
free surface. Equation (1) is a volume conservation equation. Equations (2) and (3) 187 
are momentum equations. The geometry of the problem is presented in Fig. 1. 188 

 189 

 190 
 191 
               Fig. 1. Problem geometry: xv is average current. 192 

   193 
Making use of cross differentiation it is possible to exclude pressure and to 194 

obtain the condition of conservation of vorticity along the trajectory (Lamb, 1932; 195 
Abrashkin and Yakubovich, 2006; Bennett, 2006): 196 

 197 

                                 ( )baYYXXYYXX atbatbbtabta ,Ω=−−+ .                             (4) 198 
 199 
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This equation is equivalent to the momentum equations (2) and (3) but involves 200 
explicit vorticity of liquid particles, Ω , which in case of two-dimensional flows is 201 
the function of Lagrangian coordinates only. 202 

We introduce a complex coordinate of a fluid particle trajectory 203 
( )iYXWiYXW −=+= , the overline means complex conjugation. In the new 204 

variables Eqs. (1) and (4) take on the form 205 
 206 
                                              [ ] iWW 2, −= ,                                        (5) 207 
                                                                 208 
                                                        [ ] ( )baWWt ,,Re W= ,                                               (6) 209 

 210 
After simple algebraic manipulations Eqs. (2) and (3) reduce to the following 211 
single equation 212 

                                              [ ].,1 WpiigWtt
−+−= ρ

                                     (7)                           213 

 214 
Equations (5) and (6) will be further used to find the coordinates of complex 215 
trajectories of fluid particles, and Eq. (7) determines the pressure of the fluid. The 216 
boundary conditions are the non-flowing condition at the bottom ( 0→tY  at 217 

−∞→b ) and constant pressure at the free surface (at 0=b ). 218 
The Lagrangian coordinates mark the position of fluid particles. In the 219 

Eulerian description the displacement of the free surface ),( tXYs  is calculated in 220 
an explicit form, but in the Lagrangian description it is defined parametrically by 221 
the following equalities: ),0,(),();,0,(),( tbaXtaXtbaYtaY ss ==== , where the 222 
Lagrangian horizontal coordinate a  plays the role of parameter. Its value along the 223 
free surface 0=b  varies in the ( )∞∞− ;  range. In Lagrangian coordinates the 224 
function ),( taYs defines the displacement of the free surface. 225 
 226 
3 Derivation of evolution equation 227 
 228 
Let us represent the function W  using the multiple scales method in the following 229 
form 230 

 231 
               ( ) 2,1,0;,,,,0 ===++= lttaatbawibaW l

l
l

lll εε ,                (8) 232 
 233 

where ε  is the small parameter of wave steepness. All unknown functions and the 234 
given vorticity can be represented as a series in this parameter: 235 

 236 

            ( )∑ Ω=Ω+−=∑=
===

∑
1101

,;;
n n

n
n n

n

n n
n bapgbppww εερε .            (9) 237 

 238 
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In the formula for the pressure, the term with hydrostatic pressure is selected, 0p  239 
is the constant atmospheric pressure at the fluid surface. The representations (8) 240 
and (9) are substituted into Eqs. (5)-(7). 241 

  242 
3.1 Linear approximation 243 
 244 
In a first approximation in the small parameter we have the following system of 245 
equations 246 

 247 

                                             0Im 101 =+ 







ba wiw ,                                      (10) 248 

                                           111
00

Re Ω+ −=






tba wiw ,                                 (11) 249 

                                            
0000 111

1
1 abatt igwippw =++ 





−ρ .                               (12)   250 

 251 
The solution satisfying the continuity equation (10) and the equation of 252 
conservation of vorticity (11) describes a monochromatic wave (for definiteness, 253 
we consider the wave propagating to the left) and the average horizontal current 254 

 255 
( ) ( )[ ] ( ) 0;,,,,exp,,,

1212110021211 =Ω+++= ttbaakbtkaittaaAw ψw .        (13) 256 

 257 
Here A is the complex amplitude of the wave, ω  is its frequency, and k  is the 258 
wave number. The function 1ψ  is real and will be found in the next 259 
approximation. 260 

 The substitution of solution (13) into Eq. (12) yields the equation for the 261 
pressure 262 

 263 

                  ( )[ ]kbtkaiAgkipp ba ++−=+ 











−

00
2

11
1 exp

0
ωωρ ,                 (14)             264 

  265 
which is solved analytically  266 

 267 

           ( ) ( )[ ] ( )
2121100 ,,,exp

2

1 Re ttaaCkbtkaiA
k

gkip +++−
−= ωρω ,          (15) 268 

 269 
where 

1
C  is an arbitrary function. The boundary condition at the free surface is 270 

001 ==bp , which leads to gk=2ω  and to 0
1
=C . Thus, in the first approximation 271 

the pressure correction 1p  is equal to zero. 272 

 273 
3.2 Quadratic approximation 274 
 275 
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The equations of the second order of the perturbation theory can be written as 276 
follows 277 

 278 

                              0Im 11111202 =−++ 







baaba wwiwwiw ,                         (16) 279 

      ( ) 2010111100101110102002Re Ω−=++−+++ 





abtbtbatatatbtat wwwwwwwiwiw ,  (17) 280 

                  
01000 110222

1
2 2 ttaabatt wwwigippw −+=++ 












−ρ .                  (18) 281 

 282 
By substituting expression (13) for 1w  into Eq. (16) we obtain 283 

 284 

 
( ) ( )[ ] 0expIm

11
222

0011202 =+−++−−+ 





a
kb

abba ieAikkbtkaiAAkiwiw ψwψ ,    (19) 285 

 286 
which is integrated as follows 287 

 288 
                    ( ) ( )[ ] 2200112 exp ifkbtkaibkAiw aA ++++−= ψwψ ,              (20) 289 

 290 
where 22 , fψ  are the functions of slow coordinates and Lagrangian vertical 291 
coordinate b and 292 

                                  
11

22
2 2exp ab kbAkf ψ−= ,                                       (21) 293 

 294 
2ψ  is an arbitrary real function. It will be determined in a solution in the cubic 295 

approximation. 296 
When (13) and (20) are substituted into (17), the sum of the terms containing 297 

the exponential factor becomes equal to zero, and the remaining terms satisfy the 298 
equation 299 

 300 
                                 ( ) 2

22
11 2exp2 Ω−−= kbAkbt ωψ .                                 (22) 301 

 302 
The expression for the function 1ψ  can be found by a simple integration. It should 303 
be emphasized that the vorticity in the second approximation, that is part of Eq. 304 
(22), is an arbitrary function of slow horizontal and vertical Lagrange coordinates, 305 
so that ( )baa ,, 2122 Ω=Ω . 306 

Taking into account the solutions in the first two approximations we can 307 
write Eq. (18) as 308 

 309 

      
( ) ( )[ ]

110011202
1 exp2 ataba igkbtkaiAgAiipp ψωωρ +++−=+ 





− .        (23)      310 

 311 
Its solution determines the pressure correction 312 

 8 



 313 

( )[ ] ( ) )24(.,,,exp21Re
212120 1100112 ttaaCdbgkbtkaiAgA

k
p

b
ata +∫+++






 −= 








ψρωω  314 

 315 
The integration limits in the penultimate term are chosen so that this integral term 316 
equals zero at the free surface. Due to the boundary condition for pressure 317 
( ( ) 002 ==bp ), 02 =C , and 318 

 319 

                                 
k
ggcAgcA gat 2

1
2

;0
11

===−
ω

,                           (25) 320 

 321 
where gc  is the group velocity of wave propagation in deep water, which in this 322 

approximation is independent of fluid vorticity. As was expected, in this 323 
approximation the wave moves with group velocity gc  to the left (the “minus” 324 

sign in Eq. (25)). 325 
  326 

3.3 Cubic approximation 327 
 328 
The equation of continuity and the condition of conservation of vorticity in the 329 
third approximation are written in the form 330 

 331 
 332 

( ) 0Im 2011221102
1221302 =−+−






 ++++ 








babaaaaaba wwwwwwwwiwiw ,          (26)  333 

( ) .

)27(

Re

3021101021101002
011101112

001221102012201111021
03003

Ω−=+++++++

−−+++++++




















−+













aabtbtbtaatatatbbt

atbbtatatatatattat

wwwwwwwwwww

wwwwwwwwibwiw

334 

 335 
We substitute the solutions in the first and second approximations into the 336 
simultaneous equations 337 

 338 
 339 

( ) ( ) 0)1(2Im 002
11221303 =

++
++++++











 kbtkai
eGeAAkbkiwiw

b
b

aaaba
w

ψψ ,     (28) 340 

 341 
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( )

( ) ,
3

2
1

2112
0

00
11303

54

12Re

Ω−=++

+++












 −+++











 ++

kb
a

btbt
t

kbtkai

btbba

eAAkbki

eAkGwiw

w

ψψwψ
w

        (29) 342 

 343 

         ( ) AkkfikAkbAbibAG aaaa 









−+−+−+= 2

1

2

221111

2

2 2
1

2
ψψψ .              (30)  344 

 345 
We seek a solution for the third approximation in the following form 346 

 347 

            ( ) 33
00

2
00

13 ifeGeGGw
kbtkaikbtkai

+++−=
++−++ 












ψ
ww ,                 (31) 348 

 349 
where 3321 ,,, fGG ψ  are functions of slow coordinates and b . By substituting this 350 
expression into (28) and (29) we immediately find 351 

 352 
                    ( ) 0)1( 2

1121123 =−++++ kb
aaaab eAAAAkbkf ψψ ,                 (32) 353 

 354 

                  ( ) ( )
3

2
112112 54

2
1 Ω−=−+++ kb

aabtbt eAAAAkkb ωψψ .              (33) 355 

 356 
The function 2ψ  according to Eq. (33) is determined by known solutions for A 357 

and 1ψ , and by the given distribution of 3Ω . The expression for the function 3f  358 
is then derived from Eq. (32). These functions determine the horizontal and 359 
vertical average motion, respectively. But in this approximation they are not 360 
included in the evolution equation for the wave envelope. The function 3ψ  will be 361 
found in the next approximation.  362 

 When solving (28) and (29) we have found 363 
 364 

      AdbekekGAkG
b

t
kb

t
kb

t 












∫ −=−=
∞−

−−−

1
1

'2

1
1

21
211

1
1 '2; ψψωψω .        (34) 365 

 366 
These relationships should be substituted into Eq. (7), which in this approximation 367 
has the form 368 

 369 

    
.22

102111021

122101230312
1

03003

tttttt

aaabbaaatt

www

wwgwppppiiigww

−−−

−++−−+=− 


















− ρρ

     (35) 370 

 371 
Taking into account (13), (20), (24), (31) and (34) we rewrite it as follows 372 
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 373 

.;2

)36(22

1111112
2

1
1

2
00

2
2

00
112

1

2

22
303

1

0

tt
b aaaaa

kbtkai

kbtkai
tba

dbfgIIigeAG

eAk
t
A

a
Aig

t
Aiipp

ψψψψω

ψωωρ

ω

ω

−∫−−=++++

++
∂
∂−

∂
∂+

∂
∂−=+









































++−

++−















374 

By virtue of the relationships (21), (22) and (25) the derivative of I  along the 375 
vertical Lagrangian coordinate is zero ( 0=bI ), so I  is the only function of the 376 

slow coordinates and time - 1,, ≥lta ll . The contribution of the term ( ) 0, ≠
ll

taI  to 377 

the pressure is complex, so it demands 0=I . 378 
 The solution of Eq. (36) yields the expression for the pressure perturbation 379 

in the third approximation: 380 
 381 

)37(

'42Re

'.
0 2112

00'2
11

22
2
1

2

22

13

dbg

kb
edbeAek

t
A

a
Aig

t
Aiik

p

b
aa

tkaib kb
t

kb

∫ ++

+
+

∫−
∂
∂+

∂
∂−

∂
∂=




















 




 +

∞−

−−

ψψρ

ψωω
ρ

ω

382 

 383 
In Eq. (37) the integration limits for the second integral term have been preset to 384 
satisfy the boundary condition at the free surface (the pressure 3p  should turn to 385 
zero). Then the factor before the exponent should be equal to zero: 386 

 387 

                   042
0 2

11
2

2
1

2

22
=∫−

∂
∂+

∂
∂−

∂
∂

∞−
dbeAk

t
A

a
Aig

t
Ai kb

tψωω .                  (38) 388 

 389 
By introducing the “running” coordinate 222 tca g+=ζ  we can reduce Eq. 390 

(38) to a compact form 391 
 392 

                             04 0 2
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1
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∂
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∞−
dbeAk

t
Ak
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Ai kb
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ωω

.                    (39) 393 

 394 
Further it will be shown that the variables in Eqs. (38), (39) have been chosen so 395 
that they should be easily reduced (under particular assumptions) to the classical 396 
NLS equation. 397 

The explicit form of the function 
11tψ  is found by integrating Eq. (22): 398 

                                    ( ) ( )1222
22

11 ,'', taUdbbaeAk
bkb

t −∫Ω−−=
∞−

ωψ ,                   (40) 399 

 400 
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This expression includes three terms. All of them describe a certain component of 401 
the average current. The first one is proportional to the square of the amplitude 402 
modulus and describes the classical potential drift of fluid particles (see 403 
(Henderson et al. (1999) for example). The second one is caused by the presence of 404 
low vorticity in the fluid. Finally, the third item, including ( )1,2 taU , describes an 405 
additional potential flow. It appears in the integration of Eq. (22) over the vertical 406 
coordinate b  and will evidently not disappear in case of 0=A  either. This is a 407 
certain external flow which is chosen depending on a specific problem. Note that a 408 
term of that kind arises in the Eulerian description of potential wave oscillations of 409 
the free surface as well. In the paper by Stocker and Peregrine (1999), 410 

( )tkxUU ω−= sin*  was chosen and interpreted as a harmonically changing 411 
surface current induced by an internal wave. We shall further take 0=U . 412 

 After the substitution of Eq. (40), Eq. (39) may be written in the final form 413 
 414 
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ω                      (41) 415 

 416 
It is the nonlinear Schrödinger equation for the packet of surface gravity waves 417 
propagating in the fluid with vorticity distribution ( )ba ,22

2Ω=Ω ε . The function 418 

( )ba ,22Ω  determining flow vorticity may be an arbitrary function setting the initial 419 
distribution of vorticity. On integrating it twice we find the vortex component of 420 
the average current which is in no way related to the average current induced by 421 
the potential wave.  422 

  423 
4 Examples of the waves 424 

 425 
Let us consider some special cases following from Eq. (41). 426 
 427 
4.1 Potential waves 428 
 429 
In this case 02 =Ω  and Eq. (41) becomes the classical nonlinear Schrödinger 430 
equation for waves in deep water. Three kinds of analytical solutions of the NLS 431 
equation are usually discussed regarding water waves. The first one is the 432 
Peregrine breather propagated in space and time (Peregrine, 1983). This wave may 433 
be considered as a long wave limit of a breather – a pulsating mode of infinite 434 
wavelength (Grimshaw et al., 2010). Two other ones are the Akhmediev breather – 435 
the solution periodic in space and localized in time (Akhmediev et al., 1985) and 436 
the Kuznetsov-Ma breather – the solution periodic in time and localized in space 437 
(Kuznetsov, 1977; Ma, 1979). Both latter solutions evolve against the background 438 
of an unperturbed sine wave. 439 
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 440 
4.2 Gerstner wave 441 
 442 
The exact Gerstner solution in complex form is written as (Lamb, 1932; Abrashkin 443 
and Yakubovich, 2006; Bennett, 2006): 444 

 445 
                                 ( )[ ]kbtkaiiAibaW ++++= ωexp .                           (42) 446 
 447 

It describes a stationary traveling rotational wave with a trochoidal profile. Its 448 
dispersion characteristic coincides with the dispersion of linear waves in deep 449 
water gk=2ω . The fluid particles are moving in circles and there is no drift 450 
current.  451 

Equation (42) is the exact solution of the problem. Following Eqs. (8) and 452 
(9) the Gerstner wave should be written as 453 

 454 

                    ( )[ ]∑
≥

++⋅++=
1

000
exp

n

n kbtkaiiAibaW ωe .                        (43) 455 

 456 
All the functions nw  in Eqs. (8), (9) have the same form. To derive the vorticity of 457 
the Gerstner wave, Eq. (43) should be substituted into Eq. (6). Then one can find 458 
that in the linear approximation the Gerstner wave is potential ( 01 =Ω ), but in the 459 
quadratic approximation it possesses vorticity: 460 

 461 

             .2 222
2

kb
Gerstner eAkω−=Ω                 (44)  462 

 463 
For this type of the vorticity distribution, the sum of the first two terms in the 464 
parentheses in Eq. (41) is equal to zero. From the physical point of view this is due 465 
to the fact that the average current induced by the vorticity compensates the 466 
potential drift exactly. The packet of weakly nonlinear Gerstner waves in this 467 
approximation is not affected by their non-linearity, and the effect of the 468 
modulation instability for the Gerstner wave does not occur.  469 
 Generally speaking this result is quite obvious. As there is no particle drift 470 
in the Gerstner wave, the function 1ψ  equals zero. So, the multiplier of the wave 471 
amplitude in Eqs. (38), (39) may be neglected without finding vorticity of the 472 
Gerster wave. 473 
 Let us consider some particular consequences of the obtained result. For 474 
the irrotational ( 02 =Ω ) stationary ( constAA == ) wave, Eq. (40) for the velocity 475 
of the drifting flow takes on the form 476 

  477 
                                         kbekAt

22
11 ωψ −= .                                              (45) 478 

 479 
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It coincides with the expression for the Stokes drift in Lagrangian coordinates (in 480 
the Eulerian variables the profile of the Stokes current may be obtained by the 481 
substitution of b  for y ). Thus, our result may be interpreted as a compensation of 482 
the Stokes drift by the shear flow induced by the Gerstner wave in a quadratic 483 
approximation. This conclusion is also fair in the "differential" formulation for 484 
vorticities. From Eq. (22) it follows that the vorticity of the Stokes drift equals the 485 
vorticity of the Gerstner wave with the inverse sign. 486 

The absence of a nonlinear term in the NLS equation for the Gerstner waves 487 
obtained here in the Lagrangian formulation is a robust result and should appear in 488 
the Euler description as well. This follows from the famous Lighthill criterion for 489 
the modulation instability because the dispersion relation for the Gerstner wave is 490 
linear and does not include terms proportional to the wave amplitude. 491 
 492 
4.3 Gouyon waves 493 
 494 
As was shown by Dubreil - Jacotin (1934), the Gerstner wave is a special case of a 495 
wide class of stationary waves having vorticity ( )ψε *Ω=Ω , where *Ω  is an 496 

arbitrary function, and ψ  is a stream function. Those results were later developed 497 
by Gouyon (1958) who explicitly represented the vorticity in the form of a power 498 

series ( )ψε∑ Ω=Ω
∞

=1n
n

n  (see also the monograph by Sretensky (1977)). 499 

When a plane steady flow is considered in the Lagrangian variables, the 500 
stream lines ψ  coincide with the isolines of the Lagrangian vertical coordinate b  501 
(Abrashkin and Yakubovich, 2006; Bennett, 2006). We are going to consider a 502 
steady-state wave at the surface of an indefinitely deep water. Assume that there is 503 
no undisturbed shear current, but the wave disturbances have vorticity. Then, the 504 

formula for the vorticity is written as ( ).
1

b
n

n
n∑ Ω=Ω

∞

=
ε  Here we will refer to the 505 

steady-state waves propagating in such a low-vorticity fluid as to the Gouyon 506 
waves. The properties of the Gouyon wave for the first two approximations were 507 
studied by Abrashkin and Zen'kovich (1990) in the Lagrangian description. 508 

In our case, 0,0 21 ≠Ω=Ω  and assuming the function 2Ω  to be independent 509 

of the coordinate a  we can describe the Gouyon waves. The vorticity 2Ω  depends 510 
on the coordinate b  only and has the following form 511 

 512 

                             ( )kbHAkGoyuon
22

2 ω=Ω ,                                         (46) 513 

 514 
where ( )kbH  is an arbitrary function. In case of ( ) ( )kbkbH 2exp2−= , the vorticities 515 
of the Gerstner and Gouyon waves in the quadratic approximation coincide 516 
(compare Eqs. (44) and (46)). In the considered approximation the Gouyon wave 517 
generalizes the Gerstner wave. From Eq. (22) it follows that the function 

1tψ  is 518 

equal to zero only when the vorticity of the Gouyon wave is equal to the vorticity 519 
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of the Gerstner wave. Except for this case, the average current 
1tψ  will be always 520 

present in the modulated Gouyon waves. 521 
The substitution of the ratio (46) into Eq. (41) yields the NLS equation for 522 

the modulated Gouyon wave: 523 
 524 

                              

( ) ,~;~'~'~41

;0

~0 ~2

23
2
1

2

22

kbbbdbdbHe

AAk
t
Ak

a
Ai

bb
G

G

=∫∫+=

=−
∂
∂−

∂
∂















∞−∞−
b

b
ω

                          (47) 525 

 526 
where b~ is a dimensionless vertical coordinate. The coefficient of the nonlinear 527 
term in the NLS equation varies when the wave vorticity is taken into account. For 528 
the Gerstner wave it may be equal to zero like for the Gouyon wave when the 529 
condition 530 
 531 

 532 

                                   ( )
4
1~'~'~~0 ~2 −=∫∫ 














∞−∞−
bdbdbHe

bb .                                     (48)  533 

 534 
 535 
is satisfied. Obviously, an infinite number of distributions of the vorticity )~(bH  536 
meeting this condition are possible. However, realization of one of them seems to 537 
be hardly probable. In the real ocean, distributions of the vorticity with a certain 538 
sign of 

G
β  are more likely to be implemented. Its negative values correspond to 539 

the defocusing NLS equation and the positive ones are related to the focusing NLS 540 
equation. In the latter case, the maximum value of the increment as well as the 541 
width of the modulation instability zone of a uniform train of vortex waves vary 542 
depending on the value of 

G
β . 543 

Equations (39) and (47) will be focusing for 0,0
11 ≤< btψ and defocusing if 544 

0,0
11 ≤> btψ . The case of the sign-variable function 

11tψ requires an additional 545 

research. From the physical viewpoint the sign of this function is defined by the 546 
ratio of the velocity of the Stokes drift (45) to the velocity of the current induced 547 
by the vorticity (the integral term in Eq. (40)). For 0

11 <tψ , the Stokes drift either 548 

dominates over a vortex current or both of them have the same direction. When 549 
0

11 >tψ , the vortex current dominates over the counter Stokes drift. In case of the 550 

sign-variable 
11tψ , the ratio of these currents varies at different vertical levels, 551 

thereby requiring direct calculation of 
G

β . 552 

 553 
4.4 Waves with inhomogeneous vorticity distribution along both coordinates 554 
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 555 
Neither a vorticity expression nor methods of its definition were discussed when 556 
deriving the NLS equation. In Sections 4.2 and 4.3 devoted to the problems of the 557 
Gerstner and Gouyon waves the vorticity was set to be proportional to a square 558 
modulus of the wave amplitude. Note that waves can propagate against the 559 
background of some vortex current, for example, the localized vortex. In this case 560 
the vorticity may be presented in the form 561 

 562 

( ) ( ) ( )
 +=Ω baAkbaba

wv
,,,

2
22

222 ϕϕw , 563 

 564 
where the function vωϕ  defines the vorticity of the background vortex current and 565 

the function wAk ϕw 22  defines the vorticity of waves. In the most general case 566 
both functions depend on the horizontal Lagrangian coordinate as well. Then, 567 
Eq.(41) takes a form 568 

 569 
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 571 
The substitution 572 

 573 
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2
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 575 
reduces Eq. (49) to the NLS equation with a non-uniform multiplier for the 576 
nonlinear term: 577 

 578 

                   ( )( ) 01 *
2

*
2

3
2
1

*2

22

*
=+−

∂
∂−

∂
∂ AAak

t
Ak

a
Ai

w
β

w
.                          (51)  579 

 580 
Let us consider the propagation of the Gouyon wave, when 1−==

Gw const ββ  581 

and Eq.(51) turns into the classical NLS equation (47). As shown in Sec. 4.3, it 582 
describes the modulated Gouyon waves. Therefore, on the substitution of Eq. (50) 583 
one can conclude that the propagation of the Gouyon waves against the 584 
background of the non-uniform vortex current results in the variation of the wave 585 
number of the carrier wave. For 0=wβ , Eq. (51) describes the propagation of a 586 
packet of potential waves against the background of the non-uniform weakly 587 
vortical current. The specific features of the wave propagation related to the 588 
variable wβ  require special investigation. 589 
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 590 
5 On equivalence of Lagrangian and Eulerian approaches 591 

  592 
Consider the correlation between the Eulerian and the Lagrangian description of 593 
wave packets. To obtain the value for elevation of the free surface we substitute the 594 
expressions (8), (9), (13) and 0=b  into the equation for WY Im= written in the 595 
following form 596 

 597 
( ) ( )0012 exp,Im tkaitaAYL ωe += , 598 

 599 
where ( )12 ,taA  is the solution of Eq. (41). This expression defines the wave profile 600 
in Lagrangian coordinates. To rewrite this equation in the Eulerian variables it is 601 
necessary to define a  via X . From the relation (8) follows 602 

( )εεε OawwaX
n

n
n +=∑++= 








=

−

2
1

1Rε , 603 

 604 
and the elevation of the free surface in the Eulerian variables EY  will be written as 605 

 606 

( ) ( ) XXOtkXitXAY l
lE εεωε =++= 






 ;εxp,Im 2

0012 . 607 

 608 
The coordinate a  plays the role of X , so the following substitutions are 609 

valid for the Lagrangian approach: 610 
 611 

221100 ;; XaXaXa →→→ . 612 
 613 

This result may be called an “equivalence principle” between the Lagrange and the 614 
Euler descriptions for solutions in the linear approximation. This principle is valid 615 
for both the potential and rotational waves.  616 

To express the solution of Eq. (41) in the Eulerian variables it is necessary to 617 
use the equivalence principle and to replace the horizontal Lagrangian coordinate 618 

2a  by the 2X  coordinate. So, there are no discrepancies between the Eulerian and 619 
the Lagrangian estimations of the NLS equation for the free surface elevation.  620 

Taking this into account we can conclude that the result will be the same in 621 
the Eulerian description, if the vorticity 2Ω  is a function of the yx,  coordinates. 622 
So, when studying the wave packets dynamics in the vortical liquid in the Eulerian 623 
variables it is necessary to replace (ex. in Eq. (41) or (51)) the horizontal 624 
Lagrangian coordinate by the Eulerian one. 625 

Equation (47) can also be derived in Eulerian variables. The key idea is to 626 
take into consideration a weak shear flow. This approach is similar to the method 627 
used in the paper by Trulsden and Hejervick (2009), where the wave propagates 628 
along a weak horizontal shear current. Shrira and Slunyaev (2014) used this 629 
technique to study trapped waves in an uniform jet stream. They derived the NLS 630 
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equation for a single mode. Later, Slunyaev (2016) generalized the result to the 631 
case of a vortex jet flow. Our result was obtained with a weak vertical shear flow 632 
taking into account. In particular, to describe modulated Guyon waves, the Johnson 633 
approach (1976) should be modified, assuming a shear flow of the order of epsilon. 634 

The solutions of the considered problem in the Lagrange and the Euler forms 635 
in the quadratic and cubic approximations differ from each other. To obtain a full 636 
solution in the Lagrange form one should find functions 3221 ,,,, 3 ffψψψ . This 637 
problem should be considered within a special study. 638 

 639 
  640 

6 Conclusion 641 
  642 

We have derived the vortex-modified nonlinear Schrödinger equation using the 643 
method of multiple scale expansions in the Lagrange variables. The fluid vorticity 644 
Ω  is specified as an arbitrary function of the Lagrangian coordinates, which is 645 
quadratic in the small parameter of the wave steepness. The calculations have been 646 
performed introducing a complex coordinate of the fluid particle trajectory. 647 

 The nonlinear evolution equation for the wave packet in the form of the 648 
nonlinear Schrödinger equation has been derived as well. From the mathematical 649 
viewpoint, the novelty of this equation is related to the emergence of a new term 650 
proportional to the envelope amplitude and the variance of the coefficient of the 651 
nonlinear term. If the vorticity depends on the vertical Lagrangian coordinate only 652 
(the Gouyon waves), this coefficient is constant. There are special cases, when the 653 
coefficient of the nonlinear term equals zero and the resulting non-linearity 654 
disappears. The Gerstner wave belongs to the latter case. Another effect revealed 655 
in the present study is the relation of the vorticity to the wave number shift in the 656 
carrier wave. This shift is constant for the modulated Gouyon wave. If the vorticity 657 
depends on both Lagrangian coordinates, the shift of the wave number is 658 
horizontally inhomogeneous. It is shown that the solution of the NLS equation for 659 
weakly rotational waves in the Eulerian variables may be obtained from the 660 
Lagrangian solution by an ordinary change of the horizontal coordinates. 661 
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