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Lagrange form of the nonlinear Schrodinger equation for
low-vorticity waves in deep water
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The nonlinear Schrodinger (NLS) equation describing the propagation of weakly
rotational wave packets in an infinitely deep fluid in Lagrangian coordinates has
been derived. The vorticity is assumed to be an arbitrary function of Lagrangian
coordinates and quadratic in the small parameter proportional to the wave
steepness. The vorticity effects manifest themselves in a shift of the wavenumber
in the carrier wave as well as in variation of the coefficient multiplying the
nonlinear term. In the case of the dependence of vorticity on the vertical
Lagrangian coordinate only (the Gouyon waves), the shift of the wavenumber and
the respective coefficient are constant. When the vorticity is dependent on both
Lagrangian coordinates, the shift of the wavenumber is horizontally
inhomogeneous. There are special cases (e.g., Gerstner waves) when the vorticity
Is proportional to squared wave amplitude and non-linearity disappears, thus
making the equations for wave packet dynamics linear. It is shown that the NLS
solution for weakly rotational waves in the Eulerian variables may be obtained
from the Lagrangian solution by simply changing the horizontal coordinates.

Key words: nonlinear SchrOdinger equation, vorticity, water waves

1 Introduction

The nonlinear Schrédinger (NLS) equation was first derived by Benny and Newell
(1967) and then by Zakharov (1968), who used the Hamiltonian formalism for
description of wave propagation in deep water. Hashimoto and Ono (1972) and
Davey (1972) obtained the same result independently. Like Benney and Newell
(1967) they used the method of multiple scale expansions in Euler coordinates.
Yuen and Lake (1975), in turn, derived the NLS equation on the basis of the
averaged Lagrangian method. Benney and Roskes (1969) extended those two-
dimensional theories to the case of three-dimensional wave perturbations in a finite
depth fluid and obtained equations that are now known as the Davey-Stewartson
equations. In this particular case the equation proves the existence of transverse
instability of a plane wave which is much stronger than a longitudinal one. This
circumstance diminishes the role and meaning of the NLS equation for sea
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applications. Meanwhile, the 1-D NLS equation has been successfully tested many
times in laboratory wave tanks and natural observations were compared with
numerical calculations in the framework of this equation.

In all the cited papers wave motion was considered to be potential. However,
wave formation and propagation frequently occur against the background of a
shear flow possessing vorticity. Using the method of multiple scales, Johnson
(1976) examined slow modulation of a harmonic wave moving at the surface of an
arbitrary shear flow with velocity profile U(y), where y is vertical coordinate. He

derived the NLS equation with coefficients which depend in a complicated way on
a shear flow (Johnson, 1976). Oikawa et al. (1985) considered the properties of
instability of weakly nonlinear three-dimensional wave packets in the presence of a
shear flow. Their simultaneous equations reduce to the known NLS equation for
the case of purely two-dimensional wave evolution. Li et al. (1987) and Baumstein
(1998) studied the modulation instability of the Stokes wave-train and derived an
NLS equation for an uniform shear flow in deep water, when U(y):QOy and

Q, :QO Is constant vorticity (z is the horizontal coordinate normal to the X,y

plane of the flow; the wave propagates in the x direction).

Thomas et al. (2012) generalized their results for a finite-depth fluid and
confirmed that a linear shear flow may significantly modify the stability properties
of weakly nonlinear Stokes waves. In particular, for the waves propagating in the
direction of the flow, the Benjamin-Feir (modulational) instability can vanish in
the presence of positive vorticity (Q, <0) for any depth.

In the traditional Eulerian approach to the propagation of weakly nonlinear
waves against the background current, a shear flow determines vorticity in a zero
approximation. Depending on the flow profile U(y) it may be arbitrary and equal

to —U’(y). At the same time, the vorticity of wave perturbations Q,,n>1, i.e. the

vorticity in the first and subsequent approximations in the wave steepness
parameter & =kA, (k is wavenumber and A, is wave amplitude) depends on its

form. In Eulerian coordinates the vorticity of wave perturbations is a function not
only of y, but of x and t variables as well. Plane waves on a shear flow with a linear
vertical profile are regarded to be an exception (Li et al., 1987; Baumstein, 1998;
Thomas et al., 2012). For such waves the vorticity is constant in a zero
approximation, and all the vorticities in wave perturbations are equal to zero. For
an arbitrary vertical profile of the shear flow (Johnson, 1976), expressions for the
functions Q,, can be hardly predicted even qualitatively.

The Lagrangian method allows applying a different approach. In the plane
flow the vorticity of fluid particles is preserved and can be expressed via
Lagrangian coordinates only. Thus, not only the vertical profile of the shear flow
defining the vorticity in a zero approximation, but the expressions for the vorticity
of the following orders of smallness can also be arbitrary. The expression for the
vorticity is written in the form
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Qfa,b)=-U'(b)+ Ez;lg”Qn(a,b),

where a,b are the horizontal and vertical Lagrangian coordinates, respectively,
U(b) is the vertical profile of the shear flow, and particular conditions for defining
the Q, functions can be found. For the given shear flow this approach allows

studying wave perturbations under the most general law of distribution of
vorticities €,,. In the present paper we do not consider shear flow and vorticity in

the linear approximation (U =0;Q, =0), whereas vorticity in the quadratic

approximation is an arbitrary function. This corresponds to the rotational flow
proportional to £°. We can define both the shear flow and the localized vortex.

The dynamics of plane wave trains on the background flows with arbitrary
low vorticity has not been studied before. The idea to study wave trains with
quadratic (with respect to the wave steepness parameter) vorticity was realized
earlier for the spatial problems in the Euler variables. Hjelmervik and Trulsen
(2009) derived the NLS equation for vorticity distribution

Qy/a)=0(€2); (QX,QZ)/a):O(SS),

where @ is wave frequency. The vertical vorticity of wave perturbations exceeds
the other two vorticity components by a factor of ten. This vorticity distribution
corresponds to the low (of order &) velocity of the horizontally inhomogeneous
shear flow. Hjelmervik and Trulsen (2009) used the NLS equation to study the
statistics of rogue waves on narrow current jets, and Onorato et al. (2011) used that
equation to study the opposite flow rogue waves. The effect of low vorticity (¢’
order of magnitude) in the paper by Hjelmervik and Trulsen (2009) is reflected in
the NLS equation. This fact, like the NLS nonlinear term for plane potential waves,
may be attributed to the presence of an average current non-uniform over the fluid
depth.

Colin et al. (1995) considered the evolution of three-dimensional vortex
disturbances in a finite-depth fluid for a different type of vorticity distribution:

Q,=0; (QX,QZ)/a)zO(gZ)

and reduced the problem to a solution of the Davey-Stewartson equations by
means of the multiple scale expansion method in Eulerian variables. In this case,
vorticity components are calculated after the solution of the problem. Similarly to
the traditional Eulerian approach (Johnson, 1976) the form of the quadratic
vorticity distribution is very special and does not cover all of its numerous possible
distributions.

In this paper we consider the plane problem of nonlinear wave packet
propagating in an ideal incompressible fluid with the following form of vorticity
distribution
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Qz/a):O(gz).

In contrast to Hjelmervik and Trulsen (2009), Onorato et al. (2011) and Colin et al.
(1996), the flow is two-dimensional (Q2, =Q, =0). The propagation of a packet of

potential waves gives rise to a weak counterflow underneath the free water surface
with velocity proportional to the square of the wave steepness (Mcintyre, 1982). In
the considered problem this potential flow is superimposed with the rotational one
of the same order of magnitude. This results in appearance of an additional term in
the NLS equation and in change of the coefficient in the nonlinear term. So, the
difference from the NLS solutions derived for a strictly potential fluid motion was
revealed.

The examination is made in the Lagrangian variables. The Lagrangian
variables are rarely used in fluid mechanics because of a more complex type of
nonlinear equations in Lagrangian form. However, when considering the vortex-
induced oscillations of a free fluid surface, the Lagrangian approach has two major
advantages. First, unlike the Euler description method the shape of the free surface
Is known and is determined by the condition of the equality to zero (b=0) of the
vertical Lagrangian coordinate. Second, the vortical motion of liquid particles is
confined within the plane and is a function of Lagrangian variables Q, =Q,(a,b),
so the type of vorticity distribution in the fluid can be preset. The Eulerian
approach does not allow this. In this case, the second-order vorticity is defined as a
known function of Lagrangian variables.

Here, hydrodynamic equations are solved in Lagrangian form by the
multiple scale expansion method. A nonlinear Schrddinger equation with variable
coefficients is derived. Possible ways of reducing it to the NLS equation with
constant coefficients are studied.

The paper is organized as follows. Section 2 describes the Lagrangian
approach to studying wave oscillations at the free surface of a fluid. The zero of
the Lagrangian vertical coordinate corresponds to the free surface, thus simplifying
formulation of the pressure boundary conditions. The specific feature of the
proposed approach is introduction of a complex coordinate of a fluid particle
trajectory. In Section 3 a nonlinear evolution equation is derived on the basis of the
method of multiple scale expansion. Different solutions of the NLS equation
adequately describing various examples of vortex waves are considered in Section
4. The transform from the Lagrangian coordinates to the Euler description of
solutions of the NLS equation is shown in Section 5. Section 6 summarizes the
obtained results.

2 Basic equations in Lagrangian coordinates

Consider the propagation of a packet of gravity surface waves in a rotational
infinitely deep fluid. 2D hydrodynamic equations of an incompressible inviscid



172 fluid in Lagrangian coordinates have the following form (Lamb, 1932; Abrashkin
178 and Yakubovich, 2006; Bennett, 2006):

D(X,Y)_ _
175 Db =[X,Y]=1, 1)
1
176 X Xa +(Ytt + g)Ya = _; Pa; (2)
1
177 Xttxb+(\(tt+g)\(b =—; Py (3)
178

179 where X,Y are the horizontal and vertical Cartesian coordinates and a,b are the
180 horizontal and vertical Lagrangian coordinates of fluid particles, t is time, p is
181  fluid density, p is pressure, g is acceleration due to gravity, the subscripts mean

182  differentiation with respect to the corresponding variable. The square brackets
183  denote the Jacobian. The b axis is directed upwards, and b =0 corresponds to the
184  free surface. Equation (1) is a volume conservation equation. Equations (2) and (3)
185  are momentum equations. The geometry of the problem is presented in Fig. 1.

186
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rotv =0

v, = €W, (et, €a, £%a, b) X(a, b, t); Y(a,b,t)

187

188

189 Fig. 1. Problem geometry: vy is average current.

190

191 Making use of cross differentiation it is possible to exclude pressure and to

192  obtain the condition of conservation of vorticity along the trajectory (Lamb, 1932;
%83 Abrashkin and Yakubovich, 2006; Bennett, 2006):

195 Xia Xy, +YeaY, = X Xa =Yy Ya = Q(a,b). (4)
196
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This equation is equivalent to the momentum equations (2) and (3) but involves
explicit vorticity of liquid particles, Q, which in case of two-dimensional flows is
the function of Lagrangian coordinates only.

We introduce a complex coordinate of a fluid particle trajectory
W =X +iY (Wz X —iY), the overline means complex conjugation. In the new
variables Egs. (1) and (4) take on the form

W, W= -2i, (5)
RelW,.W |=©fa.b), (6)

After simple algebraic manipulations Egs. (2) and (3) reduce to the following
single equation

7
Wy =—ig +ip~ [pW] )

Equations (5) and (6) will be further used to find the coordinates of complex
trajectories of fluid particles, and Eq. (7) determines the pressure of the fluid. The
boundary conditions are the non-flowing condition at the bottom (Y, >0 at

b — —0) and constant pressure at the free surface (at b=0).
The Lagrangian coordinates mark the position of fluid particles. In the
Eulerian description the displacement of the free surface Y, (X,t) is calculated in

an explicit form, but in the Lagrangian description it is defined parametrically by
the following equalities: Y (a,t)=Y(a,b=0,t); Xs(a,t)=X(a,b=0,t), where the
Lagrangian horizontal coordinate a plays the role of parameter. Its value along the
free surface b=0 varies in the (—oo;00) range. In Lagrangian coordinates the

function Y, (a,t) defines the displacement of the free surface.

3 Derivation of evolution equation

Let us represent the function W using the multiple scales method in the following
form

W =a,+ib+wa bt ) a=¢a t =5t 1=012, (8)

where ¢ is the small parameter of wave steepness. All unknown functions and the
given vorticity can be represented as a series in this parameter:

. n,, . . n. . . n
W= 38w ; p_po—pgb+n§15 P ; Q—ngle Qn(a,b). (9)
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In the formula for the pressure, the term with hydrostatic pressure is selected, p,

IS the constant atmospheric pressure at the fluid surface. The representations (8)
and (9) are substituted into Egs. (5)-(7).

3.1 Linear approximation

In a first approximation in the small parameter we have the following system of
equations

Im (iwlao ¥ Wlb) -0, (10)
Re (iwla0 + Wy )to =-Q, (11)
W o + p_l( P, + iplb) =igw,, . (12)

The solution satisfying the continuity equation (10) and the equation of
conservation of vorticity (11) describes a monochromatic wave (for definiteness,
we consider the wave propagating to the left) and the average horizontal current

w; = Alay,a,,t,t, Jexplitkay + oty )+ kb, (ag,8,,b,t,t, ) @ =0, (13)

Here A is the complex amplitude of the wave, » is its frequency, and k is the
wave number. The function y, is real and will be found in the next

approximation.
The substitution of solution (13) into Eq. (12) yields the equation for the
pressure

p—l( P + iplb) - (wz - gijexp li(kay + @ty )+ kb, (14)
which is solved analytically
_ rell@ =0 ey lika, + @ t, )+ kb]+C (a a_,t,t ) (15)
Py = —Re =— —— PAEXP|I{ka, + @ |, 1% %)

where C1 Is an arbitrary function. The boundary condition at the free surface is

Pyl,_o =0, which leads to w® =gk and to C =0. Thus, in the first approximation
the pressure correction p, is equal to zero.

3.2 Quadratic approximation
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The equations of the second order of the perturbation theory can be written as
follows

Im (inaO +W,, + iw1 Wlalwlb) 0, (16)
Re [iWZthO T Worp * i(Wlthl Wi, ) Wyt oo Wi + Wap * Wb Wia, } Q,, (A7)
War g, + p—l( Poa, + iprj = ig(wz(,j10 + Walj — 2W1t1t0 : (18)

By substituting expression (13) for w, into Eq. (16) we obtain

Im[lwao s—ilkyyA-A, Jexplilka, + ot J+kb]-ik?APe 2kb+i1//1al}:0, (19)

which is integrated as follows

w, =ilkAy, —ba, Jexplilkay + @ty )+ kbl+y, +if,, (20)

where w,, f, are the functions of slow coordinates and Lagrangian vertical
coordinate b and

f, = k2|A|2exp2kb—¢//1a1, (21)

w, 1S an arbitrary real function. It will be determined in a solution in the cubic

approximation.

When (13) and (20) are substituted into (17), the sum of the terms containing
the exponential factor becomes equal to zero, and the remaining terms satisfy the
equation

Vigp = —2k2a>|A|2 exp(2kb)-Q,. (22)

The expression for the function y, can be found by a simple integration. It should

be emphasized that the vorticity in the second approximation, that is part of Eq.
(22), is an arbitrary function of slow horizontal and vertical Lagrange coordinates,
so that Q, =0, (a,,a,,b).

Taking into account the solutions in the first two approximations we can
write Eq. (18) as
Py, +i0gy )= ilo, — 208, explilkay + o to)+ K]+ igys, . (29)

Its solution determines the pressure correction

8
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P, _Re[ (gAal 2a)A jexp[(ka +ot )+kbﬂ+pgj1//1a1db+c (a a, t1 tz)(24)

The integration limits in the penultimate term are chosen so that this integral term
equals zero at the free surface. Due to the boundary condition for pressure
(p,(b=0)=0),C,=0, and

A g e 9 _1]g
Ay ~Cghe =0, CQ‘Z‘E\E (25)

where ¢4 is the group velocity of wave propagation in deep water, which in this

approximation is independent of fluid vorticity. As was expected, in this
approximation the wave moves with group velocity ¢, to the left (the “minus”

sign in Eq. (25)).
3.3 Cubic approximation

The equation of continuity and the condition of conservation of vorticity in the
third approximation are written in the form

Im W, + Wy, + |(w1a2 + WZa1 Wy ) - (Wla1 FWoq Wy, =W WZb} =0, (26)
Re| Wy o +W. 31,b ( 1tyag T Wi, T Waga, T Wora, T 2th1) Wit = Wap Wit ag ~

(27)

+Wo, , =W, | W +W W ++W W, +W +W (W +W -Q_.
2yb 1b( Itgay 1t1a0 + 2th0] ( 1yb 2tobj Itgb \" 13 aoﬂ 3

We substitute the solutions in the first and second approximations into the
simultaneous equations

Im{iw\%10 + Wy + i(‘//1a2 W ga, )+ 2k(kb+1)AEe2b +Gbe|(ka°+wt0}kkb} =0, (28)
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. -1 i(kaO +wt0)+ kb
Re |W3ao W, +(Gb + ZkV’ltlba’ Aje W o t Wi t

. (29)
: A a2kb|
+iok(4kb + 5)AA, e }_ Q,
. b2 . k? 2
G =ibA,, +7Aa1a1—(kb+1)x//lAai— iy, +kf, ==y |A. (30)
We seek a solution for the third approximation in the following form
W, = (Gl _G)ei(kao+a)t0)+kb +Gze—i(ka0+a)to)+kb by it (31)

where G,,G,,y;, f; are functions of slow coordinates and b. By substituting this
expression into (28) and (29) we immediately find

fap Voo, +V1a, + k(KD +1)(AE—KAa1}32"b -0, (32)

1 S —
Wap + Wi + 5 (KD + 5)a>k(AAal —AA, )eZkb =-Q,. (33)

The function y, according to Eq. (33) is determined by known solutions for A
and w,, and by the given distribution of Q,. The expression for the function f,

Is then derived from Eq. (32). These functions determine the horizontal and
vertical average motion, respectively. But in this approximation they are not
included in the evolution equation for the wave envelope. The function y, will be

found in the next approximation.
When solving (28) and (29) we have found

b : _
Glz—ka)‘lt//nlA; G, :ka)l[2ke2kb [ WltleZKbdb'—y/ltl JA. (34)

— o0

These relationships should be substituted into Eq. (7), which in this approximation
has the form

Watty ~ igw3a0 = ip_{i( P2a, * pSan_ Pap = PopWaa ) + pg(wlaz +Waa, ﬂ -

- 2W1t2t0 - W1tltl - 2W2t0t1.

(35)

Taking into account (13), (20), (24), (31) and (34) we rewrite it as follows

10
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1 N[5 OA . OA  O°A i( Kag +arty Jrkb
yo, (p3a0+|p3bj_[ 2|coat +|ga atf +2a)ky/1t1AJe + (36)

2~ Fai(kagrotyjrkb .
+20 GZAB _Hg(WZal _H'//laz}i_ g g( 23 '[V/laiaidb] Vi

By virtue of the relationships (21), (22) and (25) the derivative of | along the
vertical Lagrangian coordinate is zero (1, =0), so | is the only function of the

slow coordinates and time - a,t,,1>1. The contribution of the term I(aI ,tl);to to
the pressure is complex, so it demands | =0

The solution of Eq. (36) yields the expression for the pressure perturbation
in the third approximation:

Ps _ peik-1[ 2i OA g OA LOPA 2 g2k J v, 62 db (kagrotg+kb
o, ot, oa, 8’[2 ]
+ 9 E(l/lzal +1//1a2 )db'. (37)

In Eq. (37) the integration limits for the second integral term have been preset to
satisfy the boundary condition at the free surface (the pressure p, should turn to

zero). Then the factor before the exponent should be equal to zero:

oA oA 8A

2|a)at2 ig 8a2

—4ak? Aj [ v e? dh =0. (38)
1

By introducing the “running” coordinate ¢, =a, +cg4t, we can reduce Eq.
(38) to a compact form
oAk 92A  4kPAQ
[ +

_ 2kb 4y —
ba o [ vy "0 db=0, (39)

Further it will be shown that the variables in Egs. (38), (39) have been chosen so
that they should be easily reduced (under particular assumptions) to the classical
NLS equation.

The explicit form of the function Vi Is found by integrating Eq. (22):

Yy = _ka)|A|262kb - _iogz(az’b'hb'_u (az t’l) (40)

11
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This expression includes three terms. All of them describe a certain component of
the average current. The first one is proportional to the square of the amplitude
modulus and describes the classical potential drift of fluid particles (see
(Henderson et al. (1999) for example). The second one is caused by the presence of
low vorticity in the fluid. Finally, the third item, including U(a,,t, ), describes an

additional potential flow. It appears in the integration of Eq. (22) over the vertical
coordinate b and will evidently not disappear in case of A=0 either. This is a
certain external flow which is chosen depending on a specific problem. Note that a
term of that kind arises in the Eulerian description of potential wave oscillations of
the free surface as well. In the paper by Stocker and Peregrine (1999),
U =U,sin(kx—wt) was chosen and interpreted as a harmonically changing

surface current induced by an internal wave. We shall further take U =0.
After the substitution of Eq. (40), Eqg. (39) may be written in the final form

i O0A _ k aZA—k(kZ‘A‘Z'i'ﬂ(az)jA:O,

08, o? O 2 b (41)
k< o
ﬁ(a2)=%[c ZKb(_&Qz(aZ,b')dbjdb.

It is the nonlinear SchrOdinger equation for the packet of surface gravity waves
propagating in the fluid with vorticity distribution Q:ngz(az,b). The function
Q,(a,,b) determining flow vorticity may be an arbitrary function setting the initial
distribution of vorticity. On integrating it twice we find the vortex component of

the average current which is in no way related to the average current induced by
the potential wave.

4 Examples of the waves
Let us consider some special cases following from Eq. (41).

4.1 Potential waves

In this case Q,=0 and Eq. (41) becomes the classical nonlinear Schrodinger

equation for waves in deep water. Three kinds of analytical solutions of the NLS
equation are usually discussed regarding water waves. The first one is the
Peregrine breather propagated in space and time (Peregrine, 1983). This wave may
be considered as a long wave limit of a breather — a pulsating mode of infinite
wavelength (Grimshaw et al., 2010). Two other ones are the Akhmediev breather —
the solution periodic in space and localized in time (Akhmediev et al., 1985) and
the Kuznetsov-Ma breather — the solution periodic in time and localized in space
(Kuznetsov, 1977; Ma, 1979). Both latter solutions evolve against the background
of an unperturbed sine wave.

12
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4.2 Gerstner wave

The exact Gerstner solution in complex form is written as (Lamb, 1932; Abrashkin
and Yakubovich, 2006; Bennett, 2006):

W =a+ib+iAexpli(ka+ awt)+kb]. (42)

It describes a stationary traveling rotational wave with a trochoidal profile. Its
dispersion characteristic coincides with the dispersion of linear waves in deep

water w? =gk. The fluid particles are moving in circles and there is no drift
current.

Equation (42) is the exact solution of the problem. Following Egs. (8) and
(9) the Gerstner wave should be written as

W=a +ib+ ¥ &"-iAexplifka, +at )+ kb] (43)

n>1

All the functions w, in Egs. (8), (9) have the same form. To derive the vorticity of

the Gerstner wave, Eq. (43) should be substituted into Eq. (6). Then one can find
that in the linear approximation the Gerstner wave is potential (€, =0), but in the

quadratic approximation it possesses vorticity:

QZGerstner - _Zwkz‘NzeZKb' (44)
For this type of the vorticity distribution, the sum of the first two terms in the
parentheses in Eq. (41) is equal to zero. From the physical point of view this is due
to the fact that the average current induced by the vorticity compensates the
potential drift exactly. The packet of weakly nonlinear Gerstner waves in this
approximation is not affected by their non-linearity, and the effect of the
modulation instability for the Gerstner wave does not occur.

Generally speaking this result is quite obvious. As there is no particle drift
in the Gerstner wave, the function y, equals zero. So, the multiplier of the wave
amplitude in Egs. (38), (39) may be neglected without finding vorticity of the
Gerster wave.

Let us consider some particular consequences of the obtained result. For
the irrotational (Q, =0) stationary (A=|Al=const) wave, Eq. (40) for the velocity

of the drifting flow takes on the form

vy, =—0kA%e?®. (45)
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It coincides with the expression for the Stokes drift in Lagrangian coordinates (in
the Eulerian variables the profile of the Stokes current may be obtained by the
substitution of b for y). Thus, our result may be interpreted as a compensation of

the Stokes drift by the shear flow induced by the Gerstner wave in a quadratic
approximation. This conclusion is also fair in the "differential™ formulation for
vorticities. From Eq. (22) it follows that the vorticity of the Stokes drift equals the
vorticity of the Gerstner wave with the inverse sign.

The absence of a nonlinear term in the NLS equation for the Gerstner waves
obtained here in the Lagrangian formulation is a robust result and should appear in
the Euler description as well. This follows from the famous Lighthill criterion for
the modulation instability because the dispersion relation for the Gerstner wave is
linear and does not include terms proportional to the wave amplitude.

4.3 Gouyon waves

As was shown by Dubreil - Jacotin (1934), the Gerstner wave is a special case of a
wide class of stationary waves having vorticity Q=&Q,(w), where Q, is an

arbitrary function, and  is a stream function. Those results were later developed
by Gouyon (1958) who explicitly represented the vorticity in the form of a power
series Q = fg“Qn(z//) (see also the monograph by Sretensky (1977)).

n=1

When a plane steady flow is considered in the Lagrangian variables, the
stream lines  coincide with the isolines of the Lagrangian vertical coordinate b

(Abrashkin and Yakubovich, 2006; Bennett, 2006). We are going to consider a
steady-state wave at the surface of an indefinitely deep water. Assume that there is
no undisturbed shear current, but the wave disturbances have vorticity. Then, the

formula for the vorticity is written as Q= is”Qn(b). Here we will refer to the
n=1

steady-state waves propagating in such a low-vorticity fluid as to the Gouyon

waves. The properties of the Gouyon wave for the first two approximations were

studied by Abrashkin and Zen'kovich (1990) in the Lagrangian description.
In our case, Q, =0,Q, #0 and assuming the function Q, to be independent

of the coordinate a we can describe the Gouyon waves. The vorticity Q, depends
on the coordinate b only and has the following form

Q2Goyuon = wkZ‘A‘Z H (kb)' (46)

where H(kb) is an arbitrary function. In case of H(kb)=—2exp(2kb), the vorticities

of the Gerstner and Gouyon waves in the quadratic approximation coincide
(compare Egs. (44) and (46)). In the considered approximation the Gouyon wave
generalizes the Gerstner wave. From Eq. (22) it follows that the function v, IS

equal to zero only when the vorticity of the Gouyon wave is equal to the vorticity

14
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of the Gerstner wave. Except for this case, the average current vt will be always

present in the modulated Gouyon waves.
The substitution of the ratio (46) into Eq. (41) yields the NLS equation for
the modulated Gouyon wave:

i OA k 02A

_ _ 3IAI2 A — O
0a, 2 o2 PekIAA=O,

O (47)
B =1+4 jezb[ jH(b')db']db; b = kb,

where b is a dimensionless vertical coordinate. The coefficient of the nonlinear
term in the NLS equation varies when the wave vorticity is taken into account. For
the Gerstner wave it may be equal to zero like for the Gouyon wave when the
condition

—00 —0o0

(erB[ "5 ']dB :-%. (48)

Is satisfied. Obviously, an infinite number of distributions of the vorticity H(E)

meeting this condition are possible. However, realization of one of them seems to
be hardly probable. In the real ocean, distributions of the vorticity with a certain
sign of ﬁG are more likely to be implemented. Its negative values correspond to

the defocusing NLS equation and the positive ones are related to the focusing NLS
equation. In the latter case, the maximum value of the increment as well as the
width of the modulation instability zone of a uniform train of vortex waves vary
depending on the value of ,BG :

Equations (39) and (47) will be focusing for vy, <0, b <0and defocusing if
Wy, >0, b<0. The case of the sign-variable function Wi, requires an additional

research. From the physical viewpoint the sign of this function is defined by the
ratio of the velocity of the Stokes drift (45) to the velocity of the current induced
by the vorticity (the integral term in Eq. (40)). For vy, <0, the Stokes drift either

dominates over a vortex current or both of them have the same direction. When
Wy, >0, the vortex current dominates over the counter Stokes drift. In case of the

sign-variable y, , the ratio of these currents varies at different vertical levels,
thereby requiring direct calculation of ,BG :

4.4 Waves with inhomogeneous vorticity distribution along both coordinates
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Neither a vorticity expression nor methods of its definition were discussed when
deriving the NLS equation. In Sections 4.2 and 4.3 devoted to the problems of the
Gerstner and Gouyon waves the vorticity was set to be proportional to a square
modulus of the wave amplitude. Note that waves can propagate against the
background of some vortex current, for example, the localized vortex. In this case
the vorticity may be presented in the form

Q,(a, b)=0{ 0, [, b)+K*|AP g, fa, b))

where the function w¢,, defines the vorticity of the background vortex current and

the function cokz\A{Z(pW defines the vorticity of waves. In the most general case

both functions depend on the horizontal Lagrangian coordinate as well. Then,
Eq.(41) takes a form

. 0A  k 9%A
I&a Y ot2 _kﬂv(ag)A—k3£l+ﬂw(az))A|2A:O,
2 (0] 1
b (49)
9 J5(® ~.) ~ | =
ﬂv,w(a2)=4_[f _[D(ov,w(az,b db" [db.
The substitution
a
A*IAGXP(—”( J ,Bv(az)dazj (50)

reduces Eq. (49) to the NLS equation with a non-uniform multiplier for the
nonlinear term:

*

L

2

*

A" =0. (51)

Let us consider the propagation of the Gouyon wave, when g, =const = B -1

and Eq.(51) turns into the classical NLS equation (47). As shown in Sec. 4.3, it
describes the modulated Gouyon waves. Therefore, on the substitution of Eq. (50)
one can conclude that the propagation of the Gouyon waves against the
background of the non-uniform vortex current results in the variation of the wave
number of the carrier wave. For S, =0, Eq. (51) describes the propagation of a

packet of potential waves against the background of the non-uniform weakly
vortical current. The specific features of the wave propagation related to the
variable g, require special investigation.
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5 On equivalence of Lagrangian and Eulerian approaches

Consider the correlation between the Eulerian and the Lagrangian description of
wave packets. To obtain the value for elevation of the free surface we substitute the
expressions (8), (9), (13) and b=0 into the equation for Y = ImW written in the

following form
Y =¢ImA(@,,t, Jexpika, + @ t,),

where A(az,tl) Is the solution of Eq. (41). This expression defines the wave profile

in Lagrangian coordinates. To rewrite this equation in the Eulerian variables it is
necessary to define a via X . From the relation (8) follows

X =a+¢Re (W1+ Zgn_lwn]=a+0(5),
n=2
and the elevation of the free surface in the Eulerian variables Y. will be written as
Y, = £ ImA(X,,.t, Jexpi(kX,, +a)t0)+o(52j; X, =&'X.

The coordinate a plays the role of X, so the following substitutions are
valid for the Lagrangian approach:

a0—>XO; a1—>X1; a2—>X2.

This result may be called an “equivalence principle” between the Lagrange and the
Euler descriptions for solutions in the linear approximation. This principle is valid
for both the potential and rotational waves.

To express the solution of Eq. (41) in the Eulerian variables it is necessary to
use the equivalence principle and to replace the horizontal Lagrangian coordinate
a, by the X, coordinate. So, there are no discrepancies between the Eulerian and

the Lagrangian estimations of the NLS equation for the free surface elevation.
Taking this into account we can conclude that the result will be the same in
the Eulerian description, if the vorticity €, is a function of the x,y coordinates.

So, when studying the wave packets dynamics in the vortical liquid in the Eulerian
variables it is necessary to replace (ex. in Eqg. (41) or (51)) the horizontal
Lagrangian coordinate by the Eulerian one.

Equation (47) can also be derived in Eulerian variables. The key idea is to
take into consideration a weak shear flow. This approach is similar to the method
used in the paper by Trulsden and Hejervick (2009), where the wave propagates
along a weak horizontal shear current. Shrira and Slunyaev (2014) used this
technique to study trapped waves in an uniform jet stream. They derived the NLS
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equation for a single mode. Later, Slunyaev (2016) generalized the result to the
case of a vortex jet flow. Our result was obtained with a weak vertical shear flow
taking into account. In particular, to describe modulated Guyon waves, the Johnson
approach (1976) should be modified, assuming a shear flow of the order of epsilon.

The solutions of the considered problem in the Lagrange and the Euler forms
in the quadratic and cubic approximations differ from each other. To obtain a full
solution in the Lagrange form one should find functions v,y ,,w,, f,, f;. This

problem should be considered within a special study.

6 Conclusion

We have derived the vortex-modified nonlinear SchrOdinger equation using the
method of multiple scale expansions in the Lagrange variables. The fluid vorticity
Q is specified as an arbitrary function of the Lagrangian coordinates, which is
quadratic in the small parameter of the wave steepness. The calculations have been
performed introducing a complex coordinate of the fluid particle trajectory.

The nonlinear evolution equation for the wave packet in the form of the

nonlinear SchrOdinger equation has been derived as well. From the mathematical
viewpoint, the novelty of this equation is related to the emergence of a new term
proportional to the envelope amplitude and the variance of the coefficient of the
nonlinear term. If the vorticity depends on the vertical Lagrangian coordinate only
(the Gouyon waves), this coefficient is constant. There are special cases, when the
coefficient of the nonlinear term equals zero and the resulting non-linearity
disappears. The Gerstner wave belongs to the latter case. Another effect revealed
in the present study is the relation of the vorticity to the wave number shift in the
carrier wave. This shift is constant for the modulated Gouyon wave. If the vorticity
depends on both Lagrangian coordinates, the shift of the wave number is
horizontally inhomogeneous. It is shown that the solution of the NLS equation for
weakly rotational waves in the Eulerian variables may be obtained from the
Lagrangian solution by an ordinary change of the horizontal coordinates.
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