

1 **Lagrange form of the nonlinear Schrödinger equation for**
2 **low-vorticity waves in deep water**

4 Anatoly Abrashkin¹ and Efim Pelinovsky^{2,3}

6 ¹ National Research University Higher School of Economics (HSE),
7 25/12 Bol'shaya Pecherskaya str., Nizhny Novgorod, 603155, Russia

8 ² Institute of Applied Physics RAS, 46 Ulyanov str., Nizhny Novgorod, 603950, Russia

9 ³ Nizhny Novgorod State Technical University, 24 Minina str., Nizhny Novgorod, 603950,
10 Russia

12 The nonlinear Schrödinger (NLS) equation describing propagation of weakly
13 rotational wave packets in an infinitely deep fluid in the Lagrangian coordinates
14 was derived. The vorticity is assumed to be an arbitrary function of the Lagrangian
15 coordinates and quadratic in the small parameter proportional to the wave's
16 steepness. The effects of vorticity are manifested in a shift of the wavenumber in
17 the carrier wave **as well as in variation of the coefficient multiplying the nonlinear**
18 **term. In case of dependence of the vorticity on the vertical Lagrangian coordinate**
19 **only (the Gouyon waves) the shift of the wavenumber and the respective**
20 **coefficient are constant.** When the vorticity is dependent on both Lagrangian
21 coordinates the shift of the wavenumber is horizontally heterogeneous. **There are**
22 **special cases (the Gerstner wave is among them) when the vorticity is proportional**
23 **to the square of the wave's amplitude and the resulting non-linearity disappears,**
24 **thus making the equations of dynamics of the wave packet to be linear.** It is shown
25 that the NLS solution for weakly rotational waves in the Eulerian variables could
26 be obtained from the Lagrangian solution by an ordinary change of the horizontal
27 coordinates.

30 Key words: nonlinear Schrödinger equation, vorticity, water waves

33 **1 Introduction**

35 The nonlinear Schrödinger (NLS) equation was first derived by Benney and Newell
36 (1967) and then Zakharov (1968), who used the Hamiltonian formalism for a
37 description of waves propagation in deep water. Hashimoto and Ono (1972) and
38 Davey (1972) independently obtained the same result. Like Benney and Newell
39 (1967) they use the method of multiple scale expansions in the Euler coordinates.
40 In their turn, Yuen and Lake (1975) derived the NLS equation on the basis of the
41 averaged Lagrangian method. Benney and Roskes (1969) extended these two-
42 dimensional theories in the case of three-dimensional wave perturbations in finite
43 depth fluid and obtained the equations which are now called the Davey-Stewartson
44 equations. In this particular case the equation proves the existence of transverse

45 instability of the plane wave which is much stronger than longitudinal one. This
46 circumstance diminishes the role and meaning of the NLS equation for sea
47 applications. Meanwhile, the 1-D NLS equation has been successfully tested many
48 times in laboratory wave tanks and in comparison of the natural observations with
49 the numerical calculations.

50 In all of those works wave motion was considered to be potential. However,
51 the formation and propagation of waves frequently occurs at the background of a
52 shear flow possessing vorticity. Wave-train modulations at arbitrary vertically
53 sheared currents were studied by Benney and his group. Using the method of
54 multiple scales Johnson (1976) examined a slow modulation of the harmonic wave
55 moving at the surface of an arbitrary shear flow with the velocity profile $U(y)$,
56 where y is the vertical coordinate. He derived the NLS equation with the
57 coefficients, which in a complicated way depend on the shear flow (Johnson,
58 1976). Oikawa et al. (1985) considered properties of instability of weakly
59 nonlinear three-dimensional wave packets in the presence of a shear flow. Their
60 simultaneous equations are reduced to the known NLS equation when requiring the
61 wave's evolution to be purely two-dimensional. Li et al. (1987) and Baumstein
62 (1998) studied the modulation instability of the Stokes wave-train and derived the
63 NLS equation for uniform shear flow in deep water, when $U(y) = \Omega_0 y$ and
64 $\Omega_z = \Omega_0$ is constant vorticity (z is the horizontal coordinate normal to the plane of
65 the flow x, y ; the wave propagates in x direction).

66 Thomas et al. (2012) generalized their results for the finite-depth fluid and
67 confirmed that linear shear flow may significantly modify the stability properties
68 of the weakly nonlinear Stokes waves. In particular, for the waves propagating in
69 the direction of the flow the Benjamin-Feir (modulational) instability can vanish in
70 the presence of positive vorticity ($\Omega_0 < 0$) for any depth.

71 In the traditional Eulerian approach to propagation of weakly nonlinear
72 waves at the background current the shear flow determines the vorticity in a zero
73 approximation. Depending on the flow profile $U(y)$ it may be sufficiently arbitrary
74 and equals to $-U'(y)$. At the same time the vorticity of wave's perturbations
75 $\Omega_n, n \geq 1$, i.e. the vorticity in a first and subsequent approximations by the
76 parameter of the wave steepness $\varepsilon = kA_0$ (k is the wavenumber, A_0 is the wave
77 amplitude) depends on its form. In the Eulerian coordinates the vorticity of wave
78 perturbations are the functions not only of y , but depend on variables x and t as
79 well. Plane waves on a shear flow with the linear vertical profile represent an
80 exception of this statement (Li et al., 1987; Baumstein, 1998; Thomas et al., 2012).
81 For such waves the vorticity of a zero approximation is constant, and all of the
82 vorticities in wave perturbations equal to zero. For the arbitrary vertical profile of
83 the shear flow (Johnson, 1976) expressions for the functions Ω_n could be hardly
84 predicted even quantitatively.

85 The Lagrangian method allows one to apply a different approach. In the
86 plane flow the vorticity of fluid particles is preserved and could be expressed via

87 the Lagrangian coordinates only. Thus not only the vertical profile of the shear
 88 flow defining the vorticity of a zero approximation, but the expressions for the
 89 vorticity of the following orders of smallness could be given as known initial
 90 conditions as well. The expression for the vorticity is presented in the following
 91 form:

$$92 \quad 93 \quad \Omega(a,b) = -U'(b) + \sum_{n \geq 1} \varepsilon^n \Omega_n(a,b),$$

94 here a, b - the horizontal and the vertical Lagrangian coordinates respectively,
 95 $U(b)$ - the vertical profile of the shear flow, and the particular conditions for
 96 definition of the function Ω_n could be found while solving the problem. For the
 97 given shear flow this approach allows one to study wave perturbations with the
 98 most general law of distribution of the vorticities Ω_n . In the present paper the
 99 shear flow and the vorticity are absent in the linear approximation ($U = 0; \Omega_1 = 0$),
 100 but the vorticity in the quadratic approximation is an arbitrary function. That
 101 corresponds to the rotational flow proportional to ε^2 . We can define both the shear
 102 flow and the localized vortex.

103 The dynamics of plane wave-trains on the background flows with the
 104 arbitrary low vorticity was not studied earlier. An idea to study wave-trains with
 105 the quadratic (with respect to the parameter of the wave's steepness) vorticity was
 106 realized earlier for the spatial problems in the Euler variables. Hjelmervik and
 107 Trulsen (2009) derived the NLS equation for the vorticity distribution:

$$108 \quad 109 \quad \Omega_y/\omega = O(\varepsilon^2); \quad (\Omega_x, \Omega_z)/\omega = O(\varepsilon^3),$$

110 here ω is the wave frequency. The vertical vorticity of wave perturbations by a
 111 factor of ten exceeds the other two components of the vorticity. This vorticity
 112 distribution corresponds to the low (order of ε) velocity of the horizontally
 113 inhomogeneous sheared flow. Hjelmervik and Trulsen (2009) used the NLS
 114 equation to study the statistics of rogue waves on narrow current jets, and Onorato
 115 et al. (2011) used this equation to study the opposite flow rogue waves. The effect
 116 of low vorticity (order of magnitude ε^2) in the paper by Hjelmervik and Trulsen
 117 (2009) is reflected in the NLS equation. This fact in the same way as the NLS
 118 nonlinear term for plane potential waves should be explained by the presence of an
 119 average current non-uniformed over the fluid depth.

120 Colin et al. (1995) have considered the evolution of three-dimensional
 121 vortex disturbances in the finite-depth fluid for a different type of vorticity
 122 distribution:

$$123 \quad 124 \quad 125 \quad \Omega_y = 0; \quad (\Omega_x, \Omega_z)/\omega = O(\varepsilon^2)$$

128 and by means of the multiple scale expansion method in the Eulerian variables
129 reduced the problem to a solution of the Davey-Stewartson equations. In this case
130 vorticity components are calculated after the solution of the problem. As well as
131 for the traditional Eulerian approach (Johnson, 1976) the form of distribution of the
132 quadratic vorticity is very special and does not cover all of its numerous possible
133 distributions.

134 In this paper we consider the plane problem of propagation of the nonlinear
135 wave packet in an ideal incompressible fluid with the following form of vorticity
136 distribution:

$$137 \quad 138 \quad \Omega_z/\omega = O(\varepsilon^2).$$

140 In contrast to Hjelmervik and Trulsen (2009), Onorato et al. (2011) and Colin et al.
141 (1996) the flow is two-dimensional (respectively $\Omega_x = \Omega_y = 0$). Propagation of the
142 packet of potential waves causes the weak counter flow underneath the free water
143 surface with its velocity proportional to the square of the wave's steepness
144 (McIntyre, 1982). In the considered problem this potential flow is superimposed
145 with the rotational one of the same order. It results in appearance of an additional
146 term in the NLS equation **and in changing of the coefficient in the nonlinear term**.
147 So a difference from the NLS solutions derived for strictly potential fluid motion
148 was revealed.

149 The examination is held in the Lagrangian variables. The Lagrangian
150 variables are rarely used in fluid mechanics. This is due to a more complex type of
151 nonlinear equations in the Lagrange form. However, when considering the vortex-
152 induced oscillations of the free fluid surface the Lagrangian approach has two
153 major advantages. First, unlike the Euler description method the shape of the free
154 surface is known and is determined by the condition of the vertical Lagrangian
155 coordinate's being equal to zero ($b = 0$). Second, the vortical motion of liquid
156 particles is confined within the plane and represents the function of the Lagrangian
157 variables $\Omega_z = \Omega_z(a, b)$, so the type of the vorticity distribution in the fluid can be
158 set initially. The Eulerian approach does not allow one to do this. In this case the
159 second-order vorticity is defined as a known function of the Lagrangian variables.

160 Here hydrodynamic equations are solved in the Lagrange form by multiple
161 scale expansion method. The nonlinear Schrödinger equation with the variable
162 coefficients is derived. The ways to reduce it to the NLS equation with the constant
163 coefficients are studied.

164 The paper is organized as follows. Section 2 describes the Lagrangian
165 approach to the study of wave oscillations at the free surface of the fluid. Zero of
166 the Lagrangian vertical coordinate is placed at the free surface, thus facilitating
167 formulation of the pressure boundary conditions. The peculiarity of the suggested
168 approach is the introduction of a complex coordinate of a fluid particle's trajectory.
169 In Section 3 the nonlinear evolution equation on the basis of the method of
170 multiple scale expansion is derived. **In Section 4 different solutions of the NLS**
171 **equation adequately describing various examples of vortex waves are considered.**

172 In Section 5 the transform from the Lagrangian coordinates to the Euler description
 173 of the solutions of the NLS equation is shown. Section 6 summarizes the obtained
 174 results.

175

176 2 Basic equations in the Lagrangian coordinates

177

178 Consider the propagation of a packet of gravity surface wave in rotational
 179 infinitely deep fluid. The 2D hydrodynamic equations of an incompressible
 180 inviscid fluid in the Lagrangian coordinates have the following form (Lamb, 1932;
 181 Abrashkin and Yakubovich, 2006; Bennett, 2006):

183
$$\frac{D(X, Y)}{D(a, b)} = [X, Y] = 1, \quad (1)$$

184
$$X_{tt} X_a + (Y_{tt} + g) Y_a = -\frac{1}{\rho} p_a, \quad (2)$$

185
$$X_{tt} X_b + (Y_{tt} + g) Y_b = -\frac{1}{\rho} p_b, \quad (3)$$

186 where X, Y are the horizontal and vertical Cartesian coordinates and a, b are the
 187 horizontal and vertical Lagrangian coordinates of fluid particles, t is time, ρ is
 188 fluid density, p is pressure, g is acceleration due to gravity, the subscripts mean
 189 differentiation with respect to the corresponding variable. The square brackets
 190 denote the Jacobian. The axis b is directed upwards, and $b=0$ corresponds to the
 191 free surface. Eq. (1) is a volume conservation equation. Eq. (2) and (3) are
 192 momentum equations. The problem geometry is presented in Fig. 1.

195
 196
 197 **Fig. 1. Problem geometry: v_x is the average current.**

198

199 By means of the cross differentiation it is possible to exclude the pressure
 200 and to obtain the condition of conservation of vorticity along the trajectory (Lamb,
 201 1932; Abrashkin and Yakubovich, 2006; Bennett, 2006):
 202

$$203 \quad X_{ta}X_b + Y_{ta}Y_b - X_{tb}X_a - Y_{tb}Y_a = \Omega(a,b). \quad (4)$$

205 This equation is equivalent to the momentum Eq. (2) and (3), but it involves an
 206 explicit vorticity of liquid particles Ω , which in case of two-dimensional flows is
 207 the function of the Lagrangian coordinates only.

208 We introduce the complex coordinate of the trajectory of a fluid particle
 209 $W = X + iY$ ($\bar{W} = X - iY$), the overline means complex conjugation. In the new
 210 variables the Eq. (1) and (4) take the following form:

$$212 \quad [W, \bar{W}] = -2i, \quad (5)$$

$$214 \quad \operatorname{Re}[W_t, \bar{W}] = \Omega(a,b), \quad (6)$$

216 Eqs. (2) and (3) after simple algebraic manipulations could be reduced to the
 217 following single equation:

$$218 \quad W_{tt} = -ig + i\rho^{-1}[p, W]. \quad (7)$$

220 Eqs. (5) and (6) will be used further to find the coordinates of complex trajectories
 221 of fluid particles, and Eq. (7) determines the fluid pressure. The boundary
 222 conditions are the non-flowing condition at the bottom ($Y_t \rightarrow 0$ at $b \rightarrow -\infty$) and
 223 the constant pressure at the free surface (at $b = 0$).

224 The Lagrangian coordinates mark the position of fluid particles. In the
 225 Eulerian description the displacement of the free surface $Y_s(X, t)$ is calculated in
 226 an explicit form, but in the Lagrangian description it is defined parametrically with
 227 the following equalities: $Y_s(a, t) = Y(a, b = 0, t)$; $X_s(a, t) = X(a, b = 0, t)$, where the
 228 role of a parameter plays the Lagrangian horizontal coordinate a . Its value along
 229 the free surface $b = 0$ varies in the range $(-\infty; \infty)$. In the Lagrangian coordinates
 230 the function $Y_s(a, t)$ defines the displacement of the free surface.

232 **3 Derivation of evolution equation**

234 Let us present the function W using the multiple scales method in the following
 235 form:

$$237 \quad W = a_0 + ib + w(a_l, b, t_l), \quad a_l = \varepsilon^l a, \quad t_l = \varepsilon^l t; \quad l = 0, 1, 2, \quad (8)$$

239 where ε - the a small parameter of the wave's steepness. All of unknown
 240 functions and the given vorticity can be represented as a series in this parameter:

$$w = \sum_{n=1} \varepsilon^n w_n; \quad p = p_0 - \rho g b + \sum_{n=1} \varepsilon^n p_n; \quad \Omega = \sum_{n=1} \varepsilon^n \Omega_n(a, b). \quad (9)$$

In the formula for the pressure a term with hydrostatic pressure is selected, p_0 – constant atmospheric pressure at the fluid surface. Let us substitute the representations (8) and (9) in Eqs. (5)-(7).

3.1 Linear approximation

In a first approximation in the small parameter we have the following simultaneous equations:

$$\text{Im} \left(i w_{1a_0} + w_{1b} \right) = 0, \quad (10)$$

$$\text{Re} \left(i w_{1a_0} + w_{1b} \right)_{t_0} = -\Omega_1, \quad (11)$$

$$w_{1t_0 t_0} + \rho^{-1} \left(p_{1a_0} + i p_{1b} \right) = i g w_{1a_0}. \quad (12)$$

The solution satisfying the continuity Eq. (10) and the equation of conservation of vorticity (11) describes a monochromatic wave (for definiteness, we consider the wave propagating to the left) and the average horizontal current

$$w_1 = A(a_1, a_2, t_1, t_2) \exp[i(ka_0 + \omega t_0) + kb] + \psi_1(a_1, a_2, b, t_1, t_2), \quad \Omega_1 = 0, \quad (13)$$

here A is the complex amplitude of the wave, ω is its frequency, and k is the wave number. The function ψ_1 is real and it will be determined under consideration of the following approximation.

Substitution of solution (13) in Eq. (12) yields the equation for the pressure

$$\rho^{-1} \left(p_{1a_0} + i p_{1b} \right) = \left(\omega^2 - gk \right) A \exp[i(ka_0 + \omega t_0) + kb], \quad (14)$$

which is solved analytically

$$p_1 = -\text{Re} \frac{i(\omega^2 - gk)}{k} \rho A \exp[i(ka_0 + \omega t_0) + kb] + C_1(a_1, a_2, t_1, t_2), \quad (15)$$

where C_1 is an arbitrary function. The boundary condition at the free surface is $p_1|_{b=0} = 0$, which leads to $\omega^2 = gk$ as well as $C_1 = 0$. Thus, in the first approximation the pressure correction p_1 is equal to zero.

278 **3.2 Quadratic approximation**

279
280 The equations of the second order of the perturbation theory can be written as
281 follows:

282
283 $\text{Im} \left(iw_{2a_0} + w_{2b} + iw_{1a_1} - w_{1a_1} \overline{w_{1b}} \right) = 0, \quad (16)$

284 $\text{Re} \left[iw_{2t_0 a_0} + w_{2t_0 b} + i \left(w_{1t_0 a_1} + w_{1t_1 a_0} \right) - w_{1t_0 a_0} \overline{w_{1b}} + w_{1t_1 b} + w_{1t_0 b} \overline{w_{1a_0}} \right] = -\Omega_2, \quad (17)$

285 $w_{2t_0 t_0} + \rho^{-1} \left(p_{2a_0} + ip_{2b} \right) = ig \left(w_{2a_0} + w_{a_1} \right) - 2w_{1t_1 t_0}. \quad (18)$

286
287 Substituting expression (13) for w_1 to Eq. (16) we have:

288
289 $\text{Im} \left[iw_{2a_0} + w_{2b} - i \left(k\psi_{1b} A - A_{a_1} \right) \exp \left[i \left(ka_0 + \omega t_0 \right) + kb \right] - ik^2 |A|^2 e^{2kb} + i\psi_{1a_1} \right] = 0, \quad (19)$

290
291 which is integrated as follows:

292
293 $w_2 = i \left[kA\psi_1 - bA_{a_1} \right] \exp \left[i \left(ka_0 + \omega t_0 \right) + kb \right] + \psi_2 + if_2, \quad (20)$

294
295 here ψ_2, f_2 are functions of slow coordinates and the Lagrange vertical coordinate
296 b and:

297 $f_{2b} = k^2 |A|^2 \exp 2kb - \psi_{1a_1}, \quad (21)$

298
299 the function ψ_2 is an arbitrary real function. It will be determined by solving the
300 following cubic approximation.

301 When substituting (13), (20) in (17) all of the terms containing the
302 exponential factor neglect each other, and the remaining terms satisfy the equation:

303
304 $\psi_{1t_1 b} = -2k^2 \omega |A|^2 \exp(2kb) - \Omega_2. \quad (22)$

305
306 The expression for the function ψ_1 can be determined by a simple integration. It
307 should be emphasized that the vorticity of the second approximation, being a part
308 of Eq. (22), is an arbitrary function of the slow horizontal and vertical Lagrange
309 coordinates, so that $\Omega_2 = \Omega_2(a_1, a_2, b)$.

310 Taking into account the solutions of the first two approximations we can
311 write Eq. (18) as:

312
313 $\rho^{-1} \left(p_{2a_0} + ip_{2b} \right) = i \left(gA_{a_1} - 2\omega A_{t_1} \right) \exp \left[i \left(ka_0 + \omega t_0 \right) + kb \right] + ig\psi_{1a_1}. \quad (23)$

315 Its solution determines the pressure correction:

$$317 \quad p_2 = \operatorname{Re} \left[\frac{1}{k} \left(g A_{a_1} - 2\omega A_{t_1} \right) \exp \left[i \left(k a_0 + \omega t_0 \right) + kb \right] \right] + \rho g \int_0^b \psi_{1a_1} db + C_2(a_1, a_2, t_1, t_2) \quad (24)$$

318
319 The limits of integration in the penultimate term are chosen so that this integral
320 term equals to zero at the free surface. Due to the boundary condition for pressure
321 ($p_2(b=0)=0$), $C_2 = 0$, and

$$323 \quad A_{t_1} - c_g A_{a_1} = 0; \quad c_g = \frac{g}{2\omega} = \frac{1}{2} \sqrt{\frac{g}{k}}, \quad (25)$$

324
325 here c_g is the group velocity of wave propagation in deep water, which in this
326 approximation is independent of the fluid vorticity. As expected, the wave of this
327 approximation moves with the group velocity c_g to the left (the “minus” sign in
328 the Eq. (25)).

330 3.3 Cubic approximation

332 The equation of continuity and the condition of conservation of vorticity in the
333 third approximation have the form

$$336 \quad \operatorname{Im} \left[i w_{2a_0} + w_{3b} + i \left(w_{1a_2} + w_{2a_1} + w_{2a_0} \right) - \left(w_{1a_1} + w_{2a_2} \right) \overline{w_{1b}} - w_{1a_0} \overline{w_{2b}} \right] = 0, \quad (26)$$

$$337 \quad \operatorname{Re} \left[i w_{3t_0 a_0} + w_{3t_0 b} + i \left(w_{1t_2 a_0} + w_{1t_1 a_1} + w_{1t_0 a_2} + w_{2t_1 a_0} + w_{2t_0 a_1} \right) + w_{1t_2 b} - \overline{w_{2b}} w_{1t_0 a_0} - \right. \\ \left. + w_{2t_1 b} - w_{1b} \left(w_{1t_0 a_1} + w_{1t_1 a_0} + w_{2t_0 a_0} \right) + \overline{w_{1a_0}} \left(w_{1t_1 b} + w_{2t_0 b} \right) + w_{1t_0 b} \left(\overline{w_{1a_1}} + \overline{w_{2a_0}} \right) \right] = -\Omega_3. \quad (27)$$

338
339 We substitute the solutions of the first and second approximations in the
340 simultaneous equations:

$$343 \quad \operatorname{Im} \left[i w_{3a_0} + w_{3b} + i \left(\psi_{1a_2} + \psi_{2a_1} \right) + 2k(kb+1) A \overline{A_{a_1}} e^{2b} + G_b e^{i(k a_0 + \omega t_0) + kb} \right] = 0, \quad (28)$$

345
$$\text{Re} \left\{ \left[iw_{3a_0} + w_{3b} + \left(G_b + 2k\psi_{1t_1} \omega^{-1} A \right) e^{i(k a_0 + \omega t_0) + kb} \right]_{t_0} + \psi_{2t_1} + \psi_{1t_2} + \right. \\ \left. + i\omega k (4kb + 5) A \overline{A}_{a_1} e^{2kb} \right\} = -\Omega_3, \quad (29)$$

346
$$347 G = ibA_{a_2} + \frac{b^2}{2} A_{a_1 a_1} - (kb + 1)\psi_1 A_{a_1} - \left(ik\psi_2 + kf_2 - \frac{k^2}{2} \psi_1^2 \right) A. \quad (30)$$

348
349 We sought the solution for the third approximation in the following form:
350

$$351 w_3 = (G_1 - G) e^{i(k a_0 + \omega t_0) + kb} + G_2 e^{-i(k a_0 + \omega t_0) + kb} + \psi_3 + i f_3, \quad (31)$$

352
353 here G_1, G_2, ψ_3, f_3 are functions of slow coordinates and b . Substituting this
354 expression in (28) and (29) we immediately find that:

355
356
$$f_{3b} + \psi_{2a_1} + \psi_{1a_2} + k(kb + 1) (A \overline{A}_{a_1} - \overline{A} A_{a_1}) e^{2kb} = 0, \quad (32)$$

357
358
$$\psi_{2t_1} + \psi_{1t_2} + \frac{1}{2} (4kb + 5) \omega k (A \overline{A}_{a_1} - \overline{A} A_{a_1}) e^{2kb} = -\Omega_3. \quad (33)$$

360 The function ψ_2 according to Eq. (33) is determined by a known solution for A
361 and ψ_1 , and by the given distribution Ω_3 . The expression for the function f_3 is
362 derived then from Eq. (32). These functions determine the horizontal and vertical
363 average movements respectively. But in this approximation they are not included
364 in the evolution equation for the wave envelope. The function ψ_3 should be
365 determined in the next approximation.

366 When solving (28) and (29) we found:
367

$$368 G_1 = -k\omega^{-1} \psi_{1t_1} A; \quad G_2 = k\omega^{-1} \left(2k e^{-2kb} \int_{-\infty}^b \psi_{1t_1} e^{2kb'} db' - \psi_{1t_1} \right) \overline{A}. \quad (34)$$

369
370 These relationships should be substituted in the Eq. (7), which in this
371 approximation has the following form:
372

$$373 w_{3t_0} - ig w_{3a_0} = i\rho^{-1} \left[i \left(p_{2a_1} + p_{3a_0} \right) - p_{3b} - p_{2b} w_{1a_0} + \rho g \left(w_{1a_2} + w_{2a_1} \right) \right] - \\ - 2w_{1t_2 t_0} - w_{1t_1 t_1} - 2w_{2t_0 t_1}. \quad (35)$$

374
375 Taking into account (13), (20), (24), (31) and (34) we rewrite it as follows:

$$\rho^{-1} \left(p_{3a_0} + ip_{3b} \right) = \left(-2i\omega \frac{\partial A}{\partial t_2} + ig \frac{\partial A}{\partial a_2} - \frac{\partial^2 A}{\partial t_1^2} + 2\omega k \psi_{1t_1} A \right) e^{i(ka_0 + \omega t_0) + kb} + \quad (36)$$

$$377 \quad + 2\omega^2 G_2 \bar{A} e^{-i(ka_0 + \omega t_0) + kb} + ig \left(\psi_{2a_1} + \psi_{1a_2} \right) + I; \quad I = -g \left(f_{2a_1} - \int_b^0 \psi_{1a_1 a_1} db \right) - \psi_{t_1 t_1}.$$

378 Due to relationships (21), (22) and (25) the derivative of I by the vertical
 379 Lagrangian coordinate is zero ($I_b = 0$), so I is the only function of the slow
 380 coordinates and time - $a_l, t_l, l \geq 1$. The contribution to the pressure of that term
 381 $I(a_l, t_l) \neq 0$ will be complex, so it requires $I = 0$.

382 The solution of Eq. (36) yields the expression for the pressure perturbation
 383 in the third approximation:

$$384 \quad \frac{p_3}{\rho} = \text{Re} ik^{-1} \left(2i\omega \frac{\partial A}{\partial t_2} - ig \frac{\partial A}{\partial a_2} + \frac{\partial^2 A}{\partial t_1^2} - 4\omega k^2 A e^{-2kb} \int_{-\infty}^b \psi_{1t_1} e^{2kb'} db' \right) e^{i(ka_0 + \omega t_0) + kb} + \\ 385 \quad + \rho g \int_0^b \left(\psi_{2a_1} + \psi_{1a_2} \right) db'. \quad (37)$$

386
 387 In Eq. (37) the limits of integration for the second integral term have been pre-
 388 selected to satisfy the boundary condition at the free surface (the pressure p_3
 389 should turn to zero). Then the factor before the exponent should be equal to zero:

$$391 \quad 2i\omega \frac{\partial A}{\partial t_2} - ig \frac{\partial A}{\partial a_2} + \frac{\partial^2 A}{\partial t_1^2} - 4\omega k^2 A \int_{-\infty}^0 \psi_{1t_1} e^{2kb} db = 0. \quad (38)$$

392
 393 Introducing the “running” coordinate $\zeta_2 = a_2 + c_g t_2$ we may reduce Eq. (38)
 394 in a compact form:

$$396 \quad i \frac{\partial A}{\partial a_2} - \frac{k}{\omega^2} \frac{\partial^2 A}{\partial t_1^2} + \frac{4k^3 A}{\omega} \int_{-\infty}^0 \psi_{1t_1} e^{2kb} db = 0. \quad (39)$$

397
 398 Further it will be shown that variables in Eqs. (38), (39) were chosen in the easiest
 399 form for their reduction (under the particular assumptions) to the classical NLS
 400 equation.

401 The explicit form of the function ψ_{1t_1} is found by integration of Eq. (22):

$$402 \quad \psi_{1t_1} = -k\omega |A|^2 e^{2kb} - \int_{-\infty}^b \Omega_2(a_2, b') db' - U(a_2, t_1), \quad (40)$$

This expression includes three terms. All of them describe a certain component of the average current. The first one is proportional to square of the amplitude modulus and describes the classical potential drift of fluid particles (see (Henderson et al. (1999) for example). The second one is caused by the presence of low vorticity in the fluid. And, finally, the third item, including $U(a_2, t_1)$ term, describes an additional potential flow. It appears while integrating Eq. (22) over the vertical coordinate b and will evidently not disappear in case of $A=0$ as well. This is a certain external flow which must be attributed with the definite physical sense in each specific problem. Note that a term of that kind arises in the Eulerian description of potential wave oscillations of the free surface as well. In the paper by Stocker and Peregrine (1999) it was chosen $U=U_* \sin(kx - \omega t)$ and was interpreted as a harmonically changing surface current induced by the internal wave. **We shall consider further $U=0$.**

Eq. (39) may be written in the final form after substitution of Eq. (40):

$$i \frac{\partial A}{\partial a_2} - \frac{k}{\omega^2} \frac{\partial^2 A}{\partial t_1^2} - k \left(k^2 |A|^2 + \beta(a_2) \right) A = 0, \quad (41)$$

$$\beta(a_2) = \frac{4k^2}{\omega} \int_{-\infty}^0 e^{2kb} \left(\int_{-\infty}^b \Omega_2(a_2, b') db' \right) db.$$

This is the nonlinear Schrödinger equation for the packet of surface gravity waves propagating in the fluid with vorticity distribution $\Omega = \varepsilon^2 \Omega_2(a_2, b)$. The function $\Omega_2(a_2, b)$ determining flow vorticity may be an arbitrary function setting the initial distribution of vorticity. When integrating it twice we find the vortex component of the average current which is in no way related to the average current induced by the potential wave.

4 Examples of the waves

Let us consider some special cases arising from Eq. (41).

4.1 Potential waves

In this case $\Omega_2=0$ and Eq. (41) becomes the classical nonlinear Schrödinger equation for waves in deep water. Three kinds of analytical solutions of the NLS equation are usually discussed regarding to water waves. The first is the Peregrine breather propagated in space and time (Peregrine, 1983). This wave may be considered as a long wave limit of a breather - a pulsating mode of an infinite wavelength (Grimshaw et al., 2010). Two another ones are the Akhmediev breather - the solution periodic in space and localized in time (Akhmediev et al., 1985) and the Kuznetsov-Ma breather - the solution periodic in time and localized

442 in space (Kuznetsov, 1977; Ma, 1979). Both latter solutions evolve at the
 443 background of the unperturbed sine wave.

445 **4.2 Gerstner wave**

447 The exact Gerstner solution in the complex form is written as (Lamb, 1932;
 448 Abrashkin and Yakubovich, 2006; Bennett, 2006):

$$450 \quad W = a + ib + iA \exp[i(ka + \omega t) + kb]. \quad (42)$$

452 It describes a stationary traveling rotational wave with a trochoidal profile. Their
 453 dispersion characteristic coincides with the dispersion of linear waves in the deep
 454 water $\omega^2 = gk$. Fluid particles are moving in circles and the drift current is absent.

455 Eq. (42) represents the exact solution of the problem. Following Eqs. (8), (9)
 456 the Gerstner wave should be written as follows

$$458 \quad W = a_0 + ib + \sum_{n \geq 1} \varepsilon^n \cdot iA \exp[i(ka_0 + \omega t_0) + kb]. \quad (43)$$

460 All of the functions w_n in Eqs. (8), (9) have the same form. To derive the vorticity
 461 of the Gerstner wave Eq. (43) should be substituted in Eq. (6). Then it could be
 462 found that in the linear approximation the Gerstner wave is potential ($\Omega_1 = 0$), but
 463 in the quadratic approximation it possesses vorticity

$$465 \quad \Omega_{2\text{Gerstner}} = -2\omega k^2 |A|^2 e^{2kb}. \quad (44)$$

466 For this type of the vorticity distribution the first two terms in the parentheses in
 467 Eq. (41) neglect each other. From the physical point of view this is due to the fact
 468 that the average current induced by the vorticity compensates the potential drift
 469 exactly. The packet of weakly nonlinear Gerstner waves in this approximation is
 470 not affected by their non-linearity, and the effect of the modulation instability for
 471 the Gerstner wave is absent.

473 Generally speaking this result is quite obvious. As there are no particle's
 474 drift in the Gerstner wave the function ψ_1 equals to zero. So the multiplier of the
 475 wave's amplitude in Eqs. (38), (39) may be neglected initially without derivation
 476 of the vorticity of the Gerster wave.

477 Let's consider some particular consequences of the obtained result. For the
 478 irrotational ($\Omega_2 = 0$) stationary ($A = |A| = \text{const}$) wave Eq. (40) for the velocity of the
 479 drifting flow takes the form

$$481 \quad \psi_{1t_1} = -\omega k A^2 e^{2kb}. \quad (45)$$

483 It coincides with the expression for the Stokes drift in the Lagrangian coordinates
 484 (in the Eulerian variables the profile of the Stokes current could be obtained by the
 485 substitution of b to y). Thus, our result may be interpreted as a compensation of
 486 the Stokes's drift by the shear flow induced by the Gerstner wave in a square
 487 approximation. This conclusion is also fair in the "differential" formulation for
 488 vorticities. From Eq. (22) it follows that the vorticity of the Stokes drift equals to
 489 the vorticity of the Gerstner wave with the inverse sign.

490 The absence of a nonlinear term in the NLS equation for the Gerstner waves
 491 obtained here in the Lagrangian formulation is a robust result and should appear in
 492 the Euler description as well. This follows from the famous Lighthill criterion for
 493 the modulation instability because the dispersion relation for the Gerstner wave is
 494 linear and do not include terms proportional to the wave's amplitude.

496 4.3 Gouyon waves

497 As it has been shown by Dubreil - Jacotin (1934) the Gerstner wave is a special
 498 case of a wide class of stationary waves with the vorticity $\Omega = \varepsilon \Omega_*(\psi)$, where Ω_*
 500 is an arbitrary function, and ψ is the stream function. These results have been
 501 obtained and then developed by Gouyon (1958) who explicitly represented the
 502 vorticity in the form of a power series $\Omega = \sum_{n=1}^{\infty} \varepsilon^n \Omega_n(\psi)$ (see also the monograph by
 503 Sretensky (1977)).

504 When considering the plane steady flow in the Lagrange variables the stream
 505 lines ψ coincide with the isolines of the Lagrangian vertical coordinate b
 506 (Abashkin and Yakubovich, 2006; Bennett, 2006). We are going to consider a
 507 steady-state wave at the surface of an indefinitely deep water. Let us assume that
 508 there is no undisturbed shear current, but the wave's disturbances have the
 509 vorticity. Then, the formula for the vorticity has the form $\Omega = \sum_{n=1}^{\infty} \varepsilon^n \Omega_n(b)$. Now we
 510 name the steady-state waves propagating in such low-vorticity fluid the Gouyon
 511 waves. In the Lagrangian description properties of the Gouyon wave for the first
 512 two approximations were studied by Abrashkin and Zen'kovich (1990).

513 In our case $\Omega_1 = 0, \Omega_2 \neq 0$ and assuming the function Ω_2 to be independent
 514 of the coordinate a a description of the Gouyon waves could be obtained. The
 515 vorticity Ω_2 depends on the coordinate b only and has the following form

$$517 \Omega_{2Gouyon} = \omega k^2 |A|^2 H(kb), \quad (46)$$

518 here $H(kb)$ is an arbitrary function. In case of $H(kb) = -2 \exp(2kb)$ the vorticity of
 519 the square-law Gerstner waves and the Gouyon waves coincide (compare Eqs. (44)
 520 and (46)). In the considered approximation the Gouyon wave generalize the
 521 Gerstner wave. From Eq. (22) it follows that the function ψ_{t_1} is equal to zero only

523 when the vorticity of the Gouyon waves is equal to the vorticity of the Gerstner
 524 wave. Except of this case the average current ψ_{t_1} will be always present in the
 525 modulated Gouyon waves.

526 Substitution of ratio (46) in Eq. (41) yields the NLS equation for the
 527 modulated Gouyon wave possessing the square-law in amplitude vorticity:
 528

$$529 \quad i \frac{\partial A}{\partial a_2} - \frac{k}{\omega^2} \frac{\partial^2 A}{\partial t_1^2} - \beta_G k^3 |A|^2 A = 0; \\ \beta_G = 1 + 4 \int_{-\infty}^0 e^{2\tilde{b}} \left(\int_{-\infty}^{\tilde{b}} H(\tilde{b}') d\tilde{b}' \right) d\tilde{b}; \quad \tilde{b} = kb, \quad (47)$$

530
 531 here \tilde{b} is a dimensionless vertical coordinate. The coefficient at the nonlinear term
 532 in the NLS equation varies when taking into account the wave's vorticity. For the
 533 Gerstner wave it could be equal to zero as well as for the Gouyon waves when
 534 satisfying the condition

$$537 \quad \int_{-\infty}^0 e^{2\tilde{b}} \left(\int_{-\infty}^{\tilde{b}} H(\tilde{b}') d\tilde{b}' \right) d\tilde{b} = -\frac{1}{4}. \quad (48)$$

538
 539 Obviously an infinite number of distributions of the vorticity $H(\tilde{b})$ meeting this
 540 condition are possible. And such distributions represent just a small part of all
 541 possible ones. Therefore a realization of one of them seems to be improbable. Most
 542 likely that in the natural conditions distributions of the vorticity with a certain sign
 543 of β_G are implemented. Its negative values correspond to the defocusing NLS
 544 equation and positive ones relate to the focusing NLS equation. In the latter case
 545 the maximal value of the increment as well as the width of the modulation
 546 instability zone of a uniform train of vortex waves vary depending on the value of
 547 β_G .

548 Eqs. (39) and (47) will be focusing for $\psi_{t_1} < 0$, $b \leq 0$ and defocusing if
 549 $\psi_{t_1} > 0$, $b \leq 0$. The case of the sign-variable function ψ_{t_1} requires an additional
 550 research. From the physical viewpoint the sign of this function is defined by a ratio
 551 of the velocity of the Stokes drift (45) to the velocity of the current induced by the
 552 vorticity (the integral term in Eq. (40)). For $\psi_{t_1} < 0$ the Stokes drift either
 553 dominates over a vortex current or both of them have the same direction. When
 554 $\psi_{t_1} > 0$ the vortex current dominates over the counter Stokes drift. In case of the
 555 sign-variable ψ_{t_1} a ratio between these currents varies at different vertical levels,
 556 so requiring a direct calculation of β_G .

558 **4.4 Waves with heterogeneous vorticity distribution in both coordinates**

559
560 An expression for the vorticity as well as any methods of its definition were not
561 discussed while deriving the NLS equation. In Sections 4.2 and 4.3 for the
562 problems on the Gerstner and the Gouyon waves the vorticity was set proportional
563 to a square modulus of the wave's amplitude. Note that waves can propagate at the
564 background of some vortex current, for example, at the localized vortex. In that
565 case the vorticity could be presented in the form

566

$$567 \Omega_2(a_2, b) = \omega [\varphi_v(a_2, b) + k^2 |A|^2 \varphi_w(a_2, b)],$$

568
569 where the function $\omega \varphi_v$ defines the vorticity of the background vortex current and
570 the function $\omega k^2 |A|^2 \varphi_w$ defines the vorticity of waves. In the most general case
571 both functions depend on the horizontal Lagrangian coordinate as well. Then
572 Eq.(41) takes a form

573

$$574 i \frac{\partial A}{\partial a_2} - \frac{k}{\omega^2} \frac{\partial^2 A}{\partial t_1^2} - k \beta_v(a_2) A - k^3 (1 + \beta_w(a_2)) |A|^2 A = 0, \quad (49)$$

$$\beta_{v,w}(a_2) = 4 \int_{-\infty}^0 e^{2\tilde{b}} \left(\int_{-\infty}^{\tilde{b}} \varphi_{v,w}(a_2, \tilde{b}') d\tilde{b}' \right) d\tilde{b}.$$

575 By the following substitution

576

$$577 A^* = A \exp \left(-ik \int_{-\infty}^{a_2} \beta_v(a_2) da_2 \right) \quad (50)$$

578 Eq. (49) is reduced to the NLS equation with the non-uniform multiplier for the
579 nonlinear term:

580

$$583 i \frac{\partial A^*}{\partial a_2} - \frac{k}{\omega^2} \frac{\partial^2 A^*}{\partial t_1^2} - k^3 (1 + \beta_w(a_2)) |A^*|^2 A^* = 0. \quad (51)$$

584 Let's consider propagation of the Gouyon wave when $\beta_w = \text{const} = \beta_G - 1$ and
585 Eq.(51) turns into the classical NLS equation Eq. (47). As it is shown in Sec. 4.3 it
586 describes the modulated Gouyon waves. Therefore in view of substitution Eq. (50)
587 one can conclude that the propagation of the Gouyon waves at the background of
588 the non-uniform vortex current yields variation of the wave number of the carrier
589 wave. For $\beta_w = 0$ Eq. (51) describes propagation of a packet of potential waves at
590 the background of the non-uniform weakly vortical current. Peculiarities of
591 propagation of waves related to the variable β_w require a special investigation.

593

594 **5 On correlation of Lagrangian and Eulerian approaches**

595

596 Let us consider correlation between the Eulerian and the Lagrangian description of
 597 wave's packets. To obtain the value for elevation of the free surface we substitute
 598 expressions (8), (9), (13) and $b = 0$ to the equation for $Y = \text{Im } W$ written in the
 599 following form

600

601
$$Y_L = \varepsilon \text{Im } A(a_2, t_1) \exp i(ka_0 + \omega t_0),$$

602

603 here $A(a_2, t_1)$ is the solution of Eq. (41). This expression defines the wave's profile
 604 in the Lagrangian coordinates (refer to subscript "L" for Y). To rewrite this
 605 equation in the Eulerian variables it is necessary to define a via X . From relation
 606 (8) it follows

607
$$X = a + \varepsilon \text{Re} \left(w_1 + \sum_{n=2} \varepsilon^{n-1} w_n \right) = a + O(\varepsilon),$$

608

609 and the elevation of the free surface in the Eulerian variables Y_E will be written as:

610

611
$$Y_E = \varepsilon \text{Im } A(X_2, t_1) \exp i(kX_0 + \omega t_0) + O(\varepsilon^2); \quad X_1 = \varepsilon^l X.$$

612

613 The coordinate a plays the role of X , so the following substitutions are
 614 valid for the Lagrangian approach

615

616
$$a_0 \rightarrow X_0; \quad a_1 \rightarrow X_1; \quad a_2 \rightarrow X_2.$$

617

618 This result could be named an "accordance principle" between the Lagrange and
 619 the Euler descriptions for solutions in the linear approximation. This principle is
 620 valid both for the potential and rotational waves.

621 To express the solution of Eq. (41) in the Eulerian variables it is necessary to
 622 use the accordance principle and to replace the horizontal Lagrangian coordinate
 623 a_2 by the coordinate X_2 . So the discrepancies between the Eulerian and the
 624 Lagrangian estimations of the NLS equation for elevation of the free surface are
 625 absent.

626 **Taking this into account one could conclude that the result will be the same
 627 in the Eulerian description if the vorticity Ω_2 will be set as a function of the
 628 coordinates x, y . Respectively when studying dynamics of wave packets in the
 629 vortical liquid in the Eulerian variables it is necessary to replace (ex. in Eq. (41) or
 630 (51)) the horizontal Lagrangian coordinate by the Eulerian one.**

631 The solutions of the considered problem in the Lagrange and the Euler forms
 632 in the quadratic and cubic approximations differ from each other. To obtain the full

633 solution in the Lagrange form we should obtain the functions $\psi_1, \psi_2, \psi_3, f_2, f_3$.
634 This problem should be considered within a special study.

635

636

637 **6 Conclusion**

638

639 In this paper we derived the vortex-modified nonlinear Schrödinger equation. To
640 obtain it the method of multiple scale expansions in the Lagrange variables was
641 applied. The fluid vorticity Ω was set as an arbitrary function of the Lagrangian
642 coordinates, which is quadratic in the small parameter of the wave's steepness
643 $\Omega = \varepsilon^2 \Omega_2(a, b)$. The calculations were carried out by introduction of the complex
644 coordinate of trajectory of a fluid particle.

645 The nonlinear evolution equation for the wave packet in the form of the
646 nonlinear Schrödinger equation was derived as well. From the mathematical
647 viewpoint the novelty of this equation relates to the emergence of a new term
648 proportional to the amplitude of the envelope **and the variance of the coefficient of**
649 **the nonlinear term. In case of the vorticity's dependence on the vertical Lagrangian**
650 **coordinate only (the Gouyon waves) this coefficient will be constant. There are**
651 **special cases when the coefficient of the nonlinear term equals to zero and the**
652 **resulting non-linearity disappears. The Gerstner wave belongs to the latter case.**
653 **Another effect revealed in the present study is the vorticity's relation to the shift of**
654 **the wave number in the carrier wave.** This shift is constant for the modulated
655 Gouyon wave. In case of the vorticity's dependence on both Lagrangian
656 coordinates the shift of the wave number is horizontally heterogeneous. It is shown
657 that the solution of the NLS equation for weakly rotational waves in the Eulerian
658 variables could be obtained from the Lagrangian solution by an ordinary change of
659 the horizontal coordinates.

660

661

662 *Acknowledgments.* EP thanks RNF grant 16-17-00041 for support.

663

664

665 **References**

666

667 Abrashkin, A. A. and Zen'kovich, D. A.: Vortical stationary waves on shear flow,
668 Izvestiya, Atmospheric and Oceanic Phys., 26, 35-45, 1990.

669 Abrashkin, A. A. and Yakubovich, E. I.: Vortex Dynamics in the Lagrangian
670 Description, Fizmatlit, Moscow, 2006. (In Russian).

671 Akhmediev, N. N., Eleonskii V. M., and Kulagin N. E.: Generation of periodic
672 trains of picosecond pulses in an optical fiber: exact solutions, Zh. Eksp. Teor. Fiz.
673 89, 1542-1551, 1985. Transl. Sov. Phys. JETP 62, 894-899, 1985.

674 Baumstein, A. I.: Modulation of gravity waves with shear in water, Stud. Appl.
675 Math., 100, 365-390, 1998.

676 Bennett, A.: *Lagrangian Fluid Dynamics*, Cambridge University Press, Cambridge,
677 2006.

678 Benney, D.J. and Newell, A.C.: The propagation of nonlinear wave envelopes, *J.*
679 *Math. Phys.* 46(2), 133-139, 1967.

680 Benney, D.J. and Roskes, G.J.: Wave instabilities, *Stud. Appl. Math.*, 48, 377-385,
681 1969.

682 Colin, T., Dias, F., and Ghidaglia, J.M.: On rotational effects in the modulations of
683 weakly nonlinear water waves over finite depth, *Eur. J. Mech., B/Fluids*, 14(6),
684 775-793, 1995.

685 Davey, A.: The propagation of a weak nonlinear wave, *J. Fluid Mech.* 53, 769-781,
686 1972.

687 Dubreil-Jacotin, M. L.: Sur la détermination rigoureuse des ondes permanentes
688 périodiques d'ampleur finie, *J. Math. Pures Appl.*, 13, 217-291, 1934.

689 Gouyon, R., Contribution a la théorie des houles, *Annales de la Faculté des*
690 *Sciences de l'Université de Toulouse*, 22, 1-55, 1958.

691 Grimshaw, R., Slunyaev, A., and Pelinovsky E.: Generation of solitons and
692 breathers in the extended Kortevég-de-Vries equation with positive cubic
693 nonlinearity, *Chaos*, 20, 013102, 2010.

694 Hasimoto, H. and Ono, H.: Nonlinear modulation of gravity waves, *J. Phys. Soc.*
695 *Jpn.*, 33, 805-811, 1972.

696 Henderson K.L., Peregrine, D.H., and Dold, J.W.: Unsteady water wave
697 modulations: fully nonlinear solutions and comparison with the nonlinear
698 Shrödinger equation, *Wave motion*, 29, 341-361, 1999.

699 Hjelmervik, K. B. and Trulsen K.: Freak wave statistics on collinear currents, *J.*
700 *Fluid Mech.*, 637, 267-284, 2009.

701 Johnson, R. S.: On the modulation of water waves on shear flows, *Proc. R. Soc.*
702 *Lond. A*, 347, 537-546, 1976.

703 Kuznetsov E. A.: Solitons in a parametrically unstable plasma, *Sov. Phys. Dokl.*
704 22, 507-509, 1977.

705 Lamb, H.: *Hydrodynamics*, 6th ed., Cambridge University Press, 1932.

706 Li, J. C., Hui, W. H., and Donelan, M.A.: Effects of velocity shear on the stability
707 of surface deep water wave trains, in *Nonlinear Water Waves*, eds K. Horikawa
708 and H. Maruo, Springer, Berlin 213-220, 1987.

709 Ma, Y.-C.: The perturbed plane-wave solutions of the cubic Schrödinger equation,
710 *Stud. Appl. Math.*, 60, 43-58, 1979.

711 McIntyre, M.E.: On the ‘wave momentum’ myth, *J. Fluid Mech.*, 106, 331-347,
712 1981.

713 Oikawa, M., Chow, K., and Benney, D. J.: The propagation of nonlinear wave
714 packets in a shear flow with a free surface, *Stud. Appl. Math.*, 76, 69-92, 1987.

715 Onorato, M., Proment, D., and Toffoli A.: Triggering rogue waves in opposing
716 currents, *Phys. Rev. Lett.*, 107, 184502, 2011.

717 Peregrine, D. H.: Water waves, nonlinear Schrödinger equations and their
718 solutions, *J. Australian Math. Soc., Ser. B*, 25, 16-43, 1983.

719 Sretensky, L. N.: Theory of wave motion in the fluid, Nauka, Moscow, 1977. (In
720 Russian).

721 Stocker, J.R. and Peregrine, D.N.: The current-modified nonlinear Schrödinger
722 equation, *J. Fluid Mech.*, 399, 335-353, 1999.

723 Thomas, R., Kharif C., and Manna, M.: A nonlinear Shrödinger equation for water
724 waves on finite depth with constant vorticity, *Phys. Fluids* 24, 127102, 2012.

725 Zakharov, V. E.: Stability of periodic waves of finite amplitude on the surface of a
726 deep fluid, *J. Appl. Mech. Tech. Phys.*, 9, 190-194, 1968.

727 Yuen, H. C. and Lake, B. M.: Nonlinear deep water waves: Theory and
728 experiment, *Phys. Fluids*, 18, 956-960, 1975.

729

730