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The nonlinear Schrödinger (NLS) equation describing propagation of weakly 12 
rotational wave packets in an infinitely deep fluid in the Lagrangian coordinates 13 
was derived. The vorticity is assumed to be an arbitrary function of the Lagrangian 14 
coordinates and quadratic in the small parameter proportional to the wave’s 15 
steepness. The effects of vorticity are manifested in a shift of the wavenumber in 16 
the carrier wave as well as in variation of the coefficient multiplying the nonlinear 17 
term. In case of dependence of the vorticity on the vertical Lagrangian coordinate 18 
only (the Gouyon waves) the shift of the wavenumber and the respective 19 
coefficient are constant. When the vorticity is dependent on both Lagrangian 20 
coordinates the shift of the wavenumber is horizontally heterogeneous. There are 21 
special cases (the Gerstner wave is among them) when the vorticity is proportional 22 
to the square of the wave’s amplitude and the resulting non-linearity disappears, 23 
thus making the equations of dynamics of the wave packet to be linear. It is shown 24 
that the NLS solution for weakly rotational waves in the Eulerian variables could 25 
be obtained from the Lagrangian solution by an ordinary change of the horizontal 26 
coordinates. 27 
 28 
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1 Introduction 33 
 34 
The nonlinear Schrödinger (NLS) equation was first derived by Benny and Newell 35 
(1967) and then Zakharov (1968), who used the Hamiltonian formalism for a 36 
description of waves propagation in deep water. Hashimoto and Ono (1972) and 37 
Davey (1972) independently obtained the same result. Like Benney and Newell 38 
(1967) they use the method of multiple scale expansions in the Euler coordinates. 39 
In their turn, Yuen and Lake (1975) derived the NLS equation on the basis of the 40 
averaged Lagrangian method. Benney and Roskes (1969) extended these two-41 
dimensional theories in the case of three-dimensional wave perturbations in finite 42 
depth fluid and obtained the equations which are now called the Davey-Stewartson 43 
equations. In this particular case the equation proves the existence of transverse 44 
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instability of the plane wave which is much stronger than longitudinal one. This 45 
circumstance diminishes the role and meaning of the NLS equation for sea 46 
applications. Meanwhile, the 1-D NLS equation has been successfully tested many 47 
times in laboratory wave tanks and in comparison of the natural observations with 48 
the numerical calculations. 49 

In all of those works wave motion was considered to be potential. However, 50 
the formation and propagation of waves frequently occurs at the background of a 51 
shear flow possessing vorticity. Wave-train modulations at arbitrary vertically 52 
sheared currents were studied by Benney and his group. Using the method of 53 
multiple scales  Johnson (1976) examined a slow modulation of the harmonic wave 54 
moving at the surface of an arbitrary shear flow with the velocity profile ( )yU , 55 
where y  is the vertical coordinate. He derived the NLS equation with the 56 
coefficients, which in a complicated way depend on the shear flow (Johnson, 57 
1976). Oikawa et al. (1985) considered properties of instability of weakly 58 
nonlinear three-dimensional wave packets in the presence of a shear flow. Their 59 
simultaneous equations are reduced to the known NLS equation when requiring the 60 
wave’s evolution to be purely two-dimensional. Li et al. (1987) and Baumstein 61 
(1998) studied the modulation instability of the Stokes wave-train and derived the 62 
NLS equation for uniform shear flow in deep water, when ( ) yyU

0
Ω=  and 63 

0
Ω=Ω z  is constant vorticity ( z  is the horizontal coordinate normal to the plane of 64 

the flow yx, ; the wave propagates in x  direction).  65 
Thomas et al. (2012) generalized their results for the finite-depth fluid and 66 

confirmed that linear shear flow may significantly modify the stability properties 67 
of the weakly nonlinear Stokes waves. In particular, for the waves propagating in 68 
the direction of the flow the Benjamin-Feir (modulational) instability can vanish in 69 
the presence of positive vorticity ( 00 <Ω ) for any depth. 70 

In the traditional Eulerian approach to propagation of weakly nonlinear 71 
waves at the background current the shear flow determines the vorticity in a zero 72 
approximation. Depending on the flow profile ( )yU  it may be sufficiently arbitrary 73 
and equals to ( )yU ′− . At the same time the vorticity of wave’s perturbations 74 

1, ≥Ω nn , i.e. the vorticity in a first and subsequent approximations by the 75 
parameter of the wave steepness 0kA=ε ( k  is the wavenumber, 0A  is the wave 76 
amplitude) depends on its form. In the Eulerian coordinates the vorticity of wave 77 
perturbations are the functions not only of  y, but depend on variables x and t as 78 
well. Plane waves on a shear flow with the linear vertical profile represent an 79 
exception of this statement (Li et al., 1987; Baumstein, 1998; Thomas et al., 2012). 80 
For such waves the vorticity of a zero approximation is constant, and all of the 81 
vorticities in wave perturbations equal to zero. For the arbitrary vertical profile of 82 
the shear flow (Johnson, 1976) expressions for the functions nΩ  could be hardly 83 
predicted even quantitatively. 84 

The Lagrangian method allows one to apply a different approach. In the 85 
plane flow the vorticity of fluid particles is preserved and could be expressed via 86 
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the Lagrangian coordinates only. Thus not only the vertical profile of the shear 87 
flow defining the vorticity of a zero approximation, but the expressions for the 88 
vorticity of the following orders of smallness could be given as known initial 89 
conditions as well. The expression for the vorticity is presented in the following 90 
form: 91 

 92 
( ) ( ) ( )babUba n

n
n ,,

1
Ω∑+′−=Ω

≥
ε , 93 

 94 
here ba, - the horizontal and the vertical Lagrangian coordinates respectively, 95 
( )bU - the vertical profile of the shear flow, and the particular conditions for 96 

definition of the function nΩ  could be found while solving the problem. For the 97 
given shear flow this approach allows one to study wave perturbations with the 98 
most general law of distribution of the vorticities nΩ . In the present paper the 99 
shear flow and the vorticity are absent in the linear approximation ( 0;0 1 =Ω=U ), 100 
but the vorticity in the quadratic approximation is an arbitrary function. That 101 
corresponds to the rotational flow proportional to 2ε . We can define both the shear 102 
flow and the localized vortex.  103 
 The dynamics of plane wave-trains on the background flows with the 104 
arbitrary low vorticity was not studied earlier. An idea to study wave-trains with 105 
the quadratic (with respect to the parameter of the wave’s steepness) vorticity was 106 
realized earlier for the spatial problems in the Euler variables. Hjelmervik and 107 
Trulsen (2009) derived the NLS equation for the vorticity distribution: 108 

 109 
( ) ( ) ( )32 ,; εωεω OO zxy =ΩΩ=Ω , 110 

 111 
here ω is the wave frequency. The vertical vorticity of wave perturbations by a 112 
factor of ten exceeds the other two components of the vorticity. This vorticity 113 
distribution corresponds to the low (order of ε ) velocity of the horizontally 114 
inhomogeneous sheared flow. Hjelmervik and Trulsen (2009) used the NLS 115 
equation to study the statistics of rogue waves on narrow current jets, and Onorato 116 
et al. (2011) used this equation to study the opposite flow rogue waves. The effect 117 
of low vorticity (order of magnitude 2ε ) in the paper by Hjelmervik and Trulsen 118 
(2009) is reflected in the NLS equation. This fact in the same way as the NLS 119 
nonlinear term for plane potential waves should be explained by the presence of an 120 
average current non-uniformed over the fluid depth. 121 

Colin et al. (1995) have considered the evolution of three-dimensional 122 
vortex disturbances in the finite-depth fluid for a different type of vorticity 123 
distribution: 124 

 
125 

               
( ) ( )2,;0 εω Ozxy =ΩΩ=Ω

 
126 

 
127 
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and by means of the multiple scale expansion method in the Eulerian variables 128 
reduced the problem to a solution of the Davey-Stewartson equations. In this case 129 
vorticity components are calculated after the solution of the problem. As well as 130 
for the traditional Eulerian approach (Johnson, 1976) the form of distribution of the 131 
quadratic vorticity is very special and does not cover all of its numerous possible 132 
distributions. 133 

In this paper we consider the plane problem of propagation of the nonlinear 134 
wave packet in an ideal incompressible fluid with the following form of vorticity 135 
distribution: 136 

 137 
( )2εω Oz =Ω . 138 

 139 
In contrast to Hjelmervik and Trulsen (2009), Onorato et al. (2011) and Colin et al. 140 
(1996) the flow is two-dimensional (respectively 0=Ω=Ω yx ). Propagation of the 141 

packet of potential waves causes the weak counter flow underneath the free water 142 
surface with its velocity proportional to the square of the wave’s steepness 143 
(McIntyre, 1982). In the considered problem this potential flow is superimposed 144 
with the rotational one of the same order. It results in appearance of an additional 145 
term in the NLS equation and in changing of the coefficient in the nonlinear term. 146 
So a difference from the NLS solutions derived for strictly potential fluid motion 147 
was revealed. 148 

The examination is held in the Lagrangian variables. The Lagrangian 149 
variables are rarely used in fluid mechanics. This is due to a more complex type of 150 
nonlinear equations in the Lagrange form. However, when considering the vortex-151 
induced oscillations of the free fluid surface the Lagrangian approach has two 152 
major advantages. First, unlike the Euler description method the shape of the free 153 
surface is known and is determined by the condition of the vertical Lagrangian 154 
coordinate's being equal to zero ( 0=b ). Second, the vortical motion of liquid 155 
particles is confined within the plane and represents the function of the Lagrangian 156 
variables ( )bazz ,Ω=Ω , so the type of the vorticity distribution in the fluid can be 157 
set initially. The Eulerian approach does not allow one to do this. In this case the 158 
second-order vorticity is defined as a known function of the Lagrangian variables.  159 

Here hydrodynamic equations are solved in the Lagrange form by multiple 160 
scale expansion method. The nonlinear Schrödinger equation with the variable 161 
coefficients is derived. The ways to reduce it to the NLS equation with the constant 162 
coefficients are studied.  163 

The paper is organized as follows. Section 2 describes the Lagrangian 164 
approach to the study of wave oscillations at the free surface of the fluid. Zero of 165 
the Lagrangian vertical coordinate is placed at the free surface, thus facilitating 166 
formulation of the pressure boundary conditions. The peculiarity of the suggested 167 
approach is the introduction of a complex coordinate of a fluid particle’s trajectory. 168 
In Section 3 the nonlinear evolution equation on the basis of the method of 169 
multiple scale expansion is derived. In Section 4 different solutions of the NLS 170 
equation adequately describing various examples of vortex waves are considered. 171 
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In Section 5 the transform from the Lagrangian coordinates to the Euler description 172 
of the solutions of the NLS equation is shown. Section 6 summarizes the obtained 173 
results. 174 
 175 
2 Basic equations in the Lagrangian coordinates 176 

 177 
Consider the propagation of a packet of gravity surface wave in rotational 178 
infinitely deep fluid. The 2D hydrodynamic equations of an incompressible 179 
inviscid fluid in the Lagrangian coordinates have the following form (Lamb, 1932; 180 
Abrashkin and Yakubovich, 2006; Bennett, 2006): 181 

 
182 

      
( )
( ) [ ] ,1,

,
, == YX
baD
YXD      (1) 183 

( ) ,1
aattatt pYgYXX

ρ
−=+ +     (2) 184 

( ) ,1
bbttbtt pYgYXX

ρ
−=++     (3) 185 

 186 
where YX , are the horizontal and vertical Cartesian coordinates and ba,  are the 187 
horizontal and vertical Lagrangian coordinates of fluid particles, t  is time, ρ  is 188 
fluid density, p  is pressure, g  is acceleration due to gravity, the subscripts mean 189 
differentiation with respect to the corresponding variable. The square brackets 190 
denote the Jacobian. The axis b  is directed upwards, and 0=b  corresponds to the 191 
free surface. Eq. (1) is a volume conservation equation. Eq. (2) and (3) are 192 
momentum equations. The problem geometry is presented in Fig. 1. 193 

 194 

 195 
 196 
               Fig. 1. Problem geometry: xv is the average current. 197 

   198 
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By means of the cross differentiation it is possible to exclude the pressure 199 
and to obtain the condition of conservation of vorticity along the trajectory (Lamb, 200 
1932; Abrashkin and Yakubovich, 2006; Bennett, 2006): 201 

 202 

                                 ( )baYYXXYYXX atbatbbtabta ,Ω=−−+ .                             (4) 203 
 204 

This equation is equivalent to the momentum Eq. (2) and (3), but it involves an 205 
explicit vorticity of liquid particles Ω , which in case of two-dimensional flows is 206 
the function of the Lagrangian coordinates only. 207 

We introduce the complex coordinate of the trajectory of a fluid particle 208 
( )iYXWiYXW −=+= , the overline means complex conjugation. In the new 209 

variables the Eq. (1) and (4) take the following form: 210 
 211 
                                              [ ] iWW 2, −= ,                                        (5) 212 
                                                                 213 
                                                        [ ] ( )baWWt ,,Re Ω= ,                                               (6) 214 

 215 
Eqs. (2) and (3) after simple algebraic manipulations could be reduced to the 216 
following single equation: 217 

                                              [ ].,1 WpiigWtt
−+−= ρ

                                     (7)                           218 

 219 
Eqs. (5) and (6) will be used further to find the coordinates of complex trajectories 220 
of fluid particles, and Eq. (7) determines the fluid pressure. The boundary 221 
conditions are the non-flowing condition at the bottom ( 0→tY  at −∞→b ) and 222 
the constant pressure at the free surface (at 0=b ). 223 

The Lagrangian coordinates mark the position of fluid particles. In the 224 
Eulerian description the displacement of the free surface  ),( tXYs  is calculated in 225 
an explicit form, but in the Lagrangian description it is defined parametrically with 226 
the following equalities: ),0,(),();,0,(),( tbaXtaXtbaYtaY ss ==== , where the 227 
role of a parameter plays the Lagrangian horizontal coordinate a . Its value along 228 
the free surface 0=b varies in the range ( )∞∞− ; . In the Lagrangian coordinates 229 
the function ),( taYs defines the displacement of the free surface. 230 
 231 
3 Derivation of evolution equation 232 
 233 
Let us present the function W  using the multiple scales method in the following 234 
form: 235 

 236 
               ( ) 2,1,0;,,,,0 ===++= lttaatbawibaW l

l
l

lll εε ,                (8) 237 
 238 

where  ε  - the a small parameter of the wave’s steepness. All of unknown 239 
functions and the given vorticity can be represented as a series in this parameter: 240 
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 241 

            ( )∑ Ω=Ω+−=∑=
===

∑
1101

,;;
n n

n
n n

n

n n
n bapgbppww εερε .            (9) 242 

 243 
In the formula for the pressure a term with hydrostatic pressure is selected, 0p - 244 
constant atmospheric pressure at the fluid surface. Let us substitute the 245 
representations (8) and (9) in Eqs. (5)-(7). 246 

  247 
3.1 Linear approximation 248 
 249 
In a first approximation in the small parameter we have the following simultaneous 250 
equations: 251 

 252 

                                             0Im 101 =+ 







ba wiw ,                                      (10) 253 

                                           111
00

Re Ω+ −=






tba wiw ,                                 (11) 254 

                                            
0000 111

1
1 abatt igwippw =++ 





−ρ .                               (12)   255 

 256 
The solution satisfying the continuity Eq. (10) and the equation of conservation of 257 
vorticity (11) describes a monochromatic wave (for definiteness, we consider the 258 
wave propagating to the left) and the average horizontal current 259 

 260 
( ) ( )[ ] ( ) 0;,,,,exp,,,

1212110021211 =Ω+++= ttbaakbtkaittaaAw ψω ,        (13) 261 

 262 
here  A is the complex amplitude of the wave,  ω  is its frequency, and k  is the 263 
wave number. The function 1ψ  is real and it will be determined under 264 
consideration of the following approximation. 265 

 Substitution of solution (13) in Eq. (12) yields the equation for the pressure 266 
 267 

                  ( )[ ]kbtkaiAgkipp ba ++−=+ 











−

00
2

11
1 exp

0
ωωρ ,                 (14)             268 

  269 
which is solved analytically  270 

 271 

           ( ) ( )[ ] ( )
2121100 ,,,exp

2

1 Re ttaaCkbtkaiA
k

gkip +++−
−= ωρω ,          (15) 272 

 273 
where  

1
C  is an arbitrary function. The boundary condition at the free surface is 274 

001 ==bp , which leads to gk=2ω  as well as 0
1
=C . Thus, in the first 275 

approximation the pressure correction 1p  is equal to zero. 276 

 277 
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3.2 Quadratic approximation 278 
 279 
The equations of the second order of the perturbation theory can be written as 280 
follows: 281 

 282 

                              0Im 11111202 =−++ 







baaba wwiwwiw ,                         (16) 283 

      ( ) 2010111100101110102002Re Ω−=++−+++ 





abtbtbatatatbtat wwwwwwwiwiw ,  (17) 284 

                  
01000 110222

1
2 2 ttaabatt wwwigippw −+=++ 












−ρ .                  (18) 285 

 286 
Substituting expression (13) for 1w  to Eq. (16) we have: 287 

 288 

 
( ) ( )[ ] 0expIm

11
222

0011202 =+−++−−+ 





a
kb

abba ieAikkbtkaiAAkiwiw ψωψ ,    (19) 289 

 290 
which is integrated as follows: 291 

 292 
                    ( ) ( )[ ] 2200112 exp ifkbtkaibkAiw aA ++++−= ψωψ ,              (20) 293 

 294 
here 22 , fψ  are functions of slow coordinates and the Lagrange vertical coordinate 295 
b and: 296 

                                  
11

22
2 2exp ab kbAkf ψ−= ,                                       (21) 297 

 298 
the function 2ψ  is an arbitrary real function. It will be determined by solving the 299 
following cubic approximation. 300 

When substituting (13), (20) in (17) all of the terms containing the 301 
exponential factor neglect each other, and the remaining terms satisfy the equation: 302 

 303 
                                 ( ) 2

22
11 2exp2 Ω−−= kbAkbt ωψ .                                 (22) 304 

 305 
The expression for the function 1ψ  can be determined by a simple integration. It 306 
should be emphasized that the vorticity of the second approximation, being a part 307 
of Eq. (22), is an arbitrary function of the slow horizontal and vertical Lagrange 308 
coordinates, so that ( )baa ,, 2122 Ω=Ω . 309 

Taking into account the solutions of the first two approximations we can 310 
write Eq. (18) as: 311 

 312 

      
( ) ( )[ ]

110011202
1 exp2 ataba igkbtkaiAgAiipp ψωωρ +++−=+ 





− .        (23)      313 

 314 
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Its solution determines the pressure correction: 315 
 316 

( )[ ] ( ) )24(.,,,exp21Re
212120 1100112 ttaaCdbgkbtkaiAgA

k
p

b
ata +∫+++






 −= 








ψρωω  317 

 318 
The limits of integration in the penultimate term are chosen so that this integral 319 
term equals to zero at the free surface. Due to the boundary condition for pressure 320 
( ( ) 002 ==bp ), 02 =C , and 321 

 322 

                                 
k
ggcAgcA gat 2

1
2

;0
11

===−
ω

,                           (25) 323 

 324 
here gc  is the group velocity of wave propagation in deep water, which in this 325 

approximation is independent of the fluid vorticity. As expected, the wave of this 326 
approximation moves with the group velocity gc  to the left (the “minus” sign in 327 

the Eq. (25)). 328 
  329 

3.3 Cubic approximation 330 
 331 
The equation of continuity and the condition of conservation of vorticity in the 332 
third approximation have the form 333 

 334 
 335 

( ) 0Im 2011221102
1221302 =−+−






 ++++ 








babaaaaaba wwwwwwwwiwiw ,          (26)  336 

( ) .

)27(

Re

3021101021101002
011101112

001221102012201111021
03003

Ω−=+++++++

−−+++++++




















−+













aabtbtbtaatatatbbt

atbbtatatatatattat

wwwwwwwwwww

wwwwwwwwibwiw

337 

 338 
We substitute the solutions of the first and second approximations in the 339 
simultaneous equations: 340 

 341 
 342 

( ) ( ) 0)1(2Im 002
11221303 =

++
++++++











 kbtkai
eGeAAkbkiwiw

b
b

aaaba
ω

ψψ ,     (28) 343 

 344 
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( )

( ) ,
3

2
1

2112
0

00
11303

54

12Re

Ω−=++

+++












 −+++











 ++

kb
a

btbt
t

kbtkai

btbba

eAAkbki

eAkGwiw

ω

ψψωψ
ω

        (29) 345 

 346 

         ( ) AkkfikAkbAbibAG aaaa 









−+−+−+= 2

1

2

221111

2

2 2
1

2
ψψψ .              (30)  347 

 348 
We sought the solution for the third approximation in the following form: 349 

 350 

            ( ) 33
00

2
00

13 ifeGeGGw
kbtkaikbtkai

+++−=
++−++ 












ψ
ωω ,                 (31) 351 

 352 
here 3321 ,,, fGG ψ  are functions of slow coordinates and b . Substituting this 353 
expression in (28) and (29) we immediately find that: 354 

 355 
                    ( ) 0)1( 2

1121123 =−++++ kb
aaaab eAAAAkbkf ψψ ,                 (32) 356 

 357 

                  ( ) ( )
3

2
112112 54

2
1 Ω−=−+++ kb

aabtbt eAAAAkkb ωψψ .              (33) 358 

 359 
The function  2ψ  according to Eq. (33) is determined by a known solution for A 360 

and 1ψ , and by the given distribution 3Ω . The expression for the function 3f  is 361 
derived then from Eq. (32). These functions determine the horizontal and vertical 362 
average movements respectively. But in this approximation they are not included 363 
in the evolution equation for the wave envelope. The function 3ψ  should be 364 
determined in the next approximation.  365 

 When solving (28) and (29) we found: 366 
 367 

      AdbekekGAkG
b

t
kb

t
kb

t 












∫ −=−=
∞−

−−−

1
1

'2

1
1

21
211

1
1 '2; ψψωψω .        (34) 368 

 369 
These relationships should be substituted in the Eq. (7), which in this 370 
approximation has the following form: 371 

 372 

    
.22

102111021

122101230312
1

03003

tttttt

aaabbaaatt

www

wwgwppppiiigww

−−−

−++−−+=− 


















− ρρ

     (35) 373 

 374 
Taking into account (13), (20), (24), (31) and (34) we rewrite it as follows: 375 
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 376 

.;2

)36(22

1111112
2

1
1

2
00

2
2

00
112

1

2

22
303

1

0

tt
b aaaaa

kbtkai

kbtkai
tba

dbfgIIigeAG

eAk
t
A

a
Aig

t
Aiipp

ψψψψω

ψωωρ

ω

ω

−∫−−=++++

++
∂
∂−

∂
∂+

∂
∂−=+









































++−

++−















377 

Due to relationships (21), (22) and (25) the derivative of I  by the vertical 378 
Lagrangian coordinate is zero ( 0=bI ), so I  is the only function of the slow 379 

coordinates and time - 1,, ≥lta ll . The contribution to the pressure of that term 380 

( ) 0, ≠
ll

taI will be complex, so it requires 0=I . 381 

 The solution of Eq. (36) yields the expression for the pressure perturbation 382 
in the third approximation: 383 

 384 

)37(

'42Re

'.
0 2112

00'2
11

22
2
1

2

22

13

dbg

kb
edbeAek

t
A

a
Aig

t
Aiik

p

b
aa

tkaib kb
t

kb

∫ ++

+
+

∫−
∂
∂+

∂
∂−

∂
∂=




















 




 +

∞−

−−

ψψρ

ψωω
ρ

ω

385 

 386 
In Eq. (37) the limits of integration for the second integral term have been pre-387 
selected to satisfy the boundary condition at the free surface (the pressure 3p  388 
should turn to zero). Then the factor before the exponent should be equal to zero: 389 

 390 

                   042
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 392 
Introducing the “running” coordinate 222 tca g+=ζ  we may reduce Eq. (38) 393 

in a compact form: 394 
 395 

                             04 0 2
11
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2
1

2

22
=∫+

∂
∂−

∂
∂

∞−
dbeAk

t
Ak

a
Ai kb

tψ
ωω

.                    (39) 396 

 397 
Further it will be shown that variables in Eqs. (38), (39) were chosen in the easiest 398 
form for their reduction (under the particular assumptions) to the classical NLS 399 
equation. 400 

The explicit form of the function 
11tψ  is found by integration of Eq. (22): 401 

                                    ( ) ( )1222
22

11 ,'', taUdbbaeAk
bkb

t −∫Ω−−=
∞−

ωψ ,                   (40) 402 

 403 
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This expression includes three terms. All of them describe a certain component of 404 
the average current. The first one is proportional to square of the amplitude 405 
modulus and describes the classical potential drift of fluid particles (see 406 
(Henderson et al. (1999) for example). The second one is caused by the presence of 407 
low vorticity in the fluid. And, finally, the third item, including ( )1,2 taU  term, 408 
describes an additional potential flow. It appears while integrating Eq. (22) over 409 
the vertical coordinate b  and will evidently not disappear in case of 0=A as well. 410 
This is a certain external flow which must be attributed with the definite physical 411 
sense in each specific problem. Note that a term of that kind arises in the Eulerian 412 
description of potential wave oscillations of the free surface as well. In the paper 413 
by Stocker and Peregrine (1999) it was chosen ( )tkxUU ω−= sin*  and was 414 
interpreted as a harmonically changing surface current induced by the internal 415 
wave. We shall consider further 0=U . 416 

 Eq. (39) may be written in the final form after substitution of Eq. (40): 417 
 418 
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ω                      (41) 419 

 420 
This is the nonlinear Schrödinger equation for the packet of surface gravity waves 421 
propagating in the fluid with vorticity distribution ( )ba ,22

2Ω=Ω ε . The function 422 

( )ba ,22Ω  determining flow vorticity may be an arbitrary function setting the initial 423 
distribution of vorticity. When integrating it twice we find the vortex component of 424 
the average current which is in no way related to the average current induced by 425 
the potential wave.  426 

  427 
4 Examples of the waves 428 

 429 
Let us consider some special cases arising from Eq. (41). 430 
 431 
4.1 Potential waves 432 
 433 
In this case 02 =Ω  and Eq. (41) becomes the classical nonlinear Schrödinger 434 
equation for waves in deep water. Three kinds of analytical solutions of the NLS 435 
equation are usually discussed regarding to water waves. The first is the Peregrine 436 
breather propagated in space and time (Peregrine, 1983). This wave may be 437 
considered as a long wave limit of a breather - a pulsating mode of an infinite 438 
wavelength (Grimshaw et al., 2010). Two another ones are the Akhmediev 439 
breather - the solution periodic in space and localized in time (Akhmediev et al., 440 
1985) and the Kuznetsov-Ma breather - the solution periodic in time and localized 441 
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in space (Kuznetsov, 1977; Ma, 1979). Both latter solutions evolve at the  442 
background of the unperturbed sine wave. 443 
 444 
4.2 Gerstner wave 445 
 446 
The exact Gerstner solution in the complex form is written as (Lamb, 1932; 447 
Abrashkin and Yakubovich, 2006; Bennett, 2006): 448 

 449 
                                 ( )[ ]kbtkaiiAibaW ++++= ωexp .                           (42) 450 
 451 

It describes a stationary traveling rotational wave with a trochoidal profile. Their 452 
dispersion characteristic coincides with the dispersion of linear waves in the deep 453 
water gk=2ω . Fluid particles are moving in circles and the drift current is absent.  454 

Eq. (42) represents the exact solution of the problem. Following Eqs. (8), (9) 455 
the Gerstner wave should be written as follows 456 

 457 

                    ( )[ ]∑
≥

++⋅++=
1

000
exp

n

n kbtkaiiAibaW ωε .                        (43) 458 

 459 
All of the functions nw  in Eqs. (8), (9) have the same form. To derive the vorticity 460 
of the Gerstner wave Eq. (43) should be substituted in Eq. (6). Then in could be 461 
found that in the linear approximation the Gerstner wave is potential ( 01 =Ω ), but 462 
in the quadratic approximation it possesses vorticity  463 

 464 

             .2 222
2

kb
Gerstner eAkω−=Ω                 (44)  465 

 466 
For this type of the vorticity distribution the first two terms in the parentheses in 467 
Eq. (41) neglect each other. From the physical point of view this is due to the fact 468 
that the average current induced by the vorticity compensates the potential drift 469 
exactly. The packet of weakly nonlinear Gerstner waves in this approximation is 470 
not affected by their non-linearity, and the effect of the modulation instability for 471 
the Gerstner wave is absent.  472 
 Generally speaking this result is quite obvious. As there are no particle’s 473 
drift in the Gerstner wave the function 1ψ  equals to zero. So the multiplier of the 474 
wave’s amplitude in Eqs. (38), (39) may be neglected initially without derivation 475 
of the vorticity of the Gerster wave. 476 
 Let’s consider some particular consequences of the obtained result. For the 477 
irrotaional ( 02 =Ω ) stationary ( constAA == ) wave Eq. (40) for the velocity of the 478 
drifting flow takes the form 479 

  480 
                                         kbekAt

22
11 ωψ −= .                                              (45) 481 

 482 
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It coincides with the expression for the Stokes drift in the Lagrangian coordinates 483 
(in the Eulerian variables the profile of the Stokes current could be obtained by the 484 
substitution of b  to y ). Thus, our result may be interpreted as a compensation of 485 
the Stokes's drift by the shear flow induced by the Gerstner wave in a square 486 
approximation. This conclusion is also fair in the "differential" formulation for 487 
vorticities.  From Eq. (22) it follows that the vorticity of the Stokes drift equals to 488 
the vorticity of the Gerstner wave with the inverse sign. 489 

The absence of a nonlinear term in the NLS equation for the Gerstner waves 490 
obtained here in the Lagrangian formulation is a robust result and should appear in 491 
the Euler description as well. This follows from the famous Lighthill criterion for 492 
the modulation instability because the dispersion relation for the Gerstner wave is 493 
linear and do not include terms proportional to the wave’s amplitude. 494 
 495 
4.3 Gouyon waves 496 
 497 
As it has been shown by Dubreil - Jacotin (1934) the Gerstner wave is a special 498 
case of a wide class of stationary waves with the vorticity ( )ψε *Ω=Ω , where *Ω  499 

is an arbitrary function, and ψ  is the stream function. These results have been 500 
obtained and then developed by Gouyon (1958) who explicitly represented the 501 

vorticity in the form of a power series ( )ψε∑ Ω=Ω
∞

=1n
n

n  (see also the monograph by 502 

Sretensky (1977)). 503 
When considering the plane steady flow in the Lagrange variables the stream 504 

lines ψ  coincide with the isolines of the Lagrangian vertical coordinate b  505 
(Abashkin and Yakubovich, 2006; Bennett, 2006). We are going to consider a 506 
steady-state wave at the surface of an indefinitely deep water. Let us assume that 507 
there is no undisturbed shear current, but the wave’s disturbances have the 508 

vorticity. Then, the formula for the vorticity has the form ( ).
1

b
n

n
n∑ Ω=Ω

∞

=
ε  Now we 509 

name the steady-state waves propagating in such low-vorticity fluid the Gouyon 510 
waves. In the Lagrangian description properties of the Gouyon wave for the first 511 
two approximations were studied by Abrashkin and Zen'kovich (1990). 512 

In our case 0,0 21 ≠Ω=Ω  and assuming the function 2Ω  to be independent 513 
of the coordinate a  a description of the Gouyon waves could be obtained. The 514 
vorticity 2Ω depends on the coordinate b  only and has the following form 515 

 516 

                             ( )kbHAkGoyuon
22

2 ω=Ω ,                                         (46) 517 

 518 
here ( )kbH  is an arbitrary function. In case of ( ) ( )kbkbH 2exp2−=  the vorticity of 519 
the square-law Gerstner waves and the Gouyon waves coincide (compare Eqs. (44) 520 
and (46)). In the considered approximation the Gouyon wave generalize the 521 
Gerstner wave. From Eq. (22) it follows that the function 

1tψ  is equal to zero only 522 
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when the vorticity of the Gouyon waves is equal to the vorticity of the Gerstner 523 
wave. Except of this case the average current 

1tψ  will be always present in the 524 

modulated Gouyon waves. 525 
Substitution of ratio (46) in Eq. (41) yields the NLS equation for the 526 

modulated Gouyon wave possessing the square-law in amplitude vorticity: 527 
 528 
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                          (47) 529 

 530 
here b~ is a dimensionless vertical coordinate. The coefficient at the nonlinear term 531 
in the NLS equation varies when taking into account the wave’s vorticity. For the 532 
Gerstner wave it could be equal to zero as well as for the Gouyon waves when 533 
satisfying the condition 534 
 535 

 536 

                                   ( )
4
1~'~'~~0 ~2 −=∫∫ 
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
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 538 
Obviously an infinite number of distributions of the vorticity )~(bH meeting this 539 
condition are possible. And such distributions represent just a small part of all 540 
possible ones. Therefore a realization of one of them seems to be improbable. Most 541 
likely that in the natural conditions distributions of the vorticity with a certain sign 542 
of 

G
β  are implemented. Its negative values correspond to the defocusing NLS 543 

equation and positive ones relate to the focusing NLS equation. In the latter case 544 
the maximal value of the increment as well as the width of the modulation 545 
instability zone of a uniform train of vortex waves vary depending on the value of 546 

G
β . 547 

Eqs. (39) and (47) will be focusing for 0,0
11 ≤< btψ and defocusing if 548 

0,0
11 ≤> btψ . The case of the sign-variable function 

11tψ requires an additional 549 

research. From the physical viewpoint the sign of this function is defined by a ratio 550 
of the velocity of the Stokes drift (45) to the velocity of the current induced by the 551 
vorticity (the integral term in Eq. (40)). For 0

11 <tψ  the Stokes drift either 552 

dominates over a vortex current or both of them have the same direction. When 553 
0

11 >tψ  the vortex current dominates over the counter Stokes drift. In case of the 554 

sign-variable 
11tψ a ratio between these currents varies at different vertical levels, 555 

so requiring a direct calculation of 
G

β . 556 

 557 
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4.4 Waves with heterogeneous vorticity distribution in both coordinates 558 
 559 
An expression for the vorticity as well as any methods of its definition were not 560 
discussed while deriving the NLS equation. In Sections 4.2 and 4.3 for the 561 
problems on the Gerstner and the Gouyon waves the vorticity was set proportional 562 
to a square modulus of the wave’s amplitude. Note that waves can propagate at the 563 
background of some vortex current, for example, at the localized vortex. In that 564 
case the vorticity could be presented in the form 565 

 566 

( ) ( ) ( )
 +=Ω baAkbaba

wv
,,,

2
22

222 ϕϕω , 567 

 568 
where the function vωϕ  defines the vorticity of the background vortex current and 569 

the function wAk ϕω 22  defines the vorticity of waves. In the most general case 570 
both functions depend on the horizontal Lagrangian coordinate as well. Then 571 
Eq.(41) takes a form 572 
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 575 
By the following substitution 576 

 577 
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 579 
Eq. (49) is reduced to the NLS equation with the non-uniform multiplier for the 580 
nonlinear term: 581 
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 584 
Let's consider propagation of the Gouyon wave when 1−==

Gw const ββ  and 585 

Eq.(51) turns into the classical NLS equation Eq. (47). As it is shown in Sec. 4.3 it 586 
describes the modulated Gouyon waves. Therefore in view of substitution Eq. (50) 587 
one can conclude that the propagation of the Gouyon waves at the background of 588 
the non-uniform vortex current yields variation of the wave number of the carrier 589 
wave. For 0=wβ  Eq. (51) describes propagation of a packet of potential waves at 590 
the background of the non-uniform weakly vortical current. Peculiarities of 591 
propagation of waves related to the variable wβ  require a special investigation. 592 
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 593 
5 On correlation of Lagrangian and Eulerian approaches 594 

  595 
Let us consider correlation between the Eulerian and the Lagrangian description of 596 
wave’s packets. To obtain the value for elevation of the free surface we substitute 597 
expressions (8), (9), (13) and  0=b  to the equation for WY Im= written in the 598 
following form 599 

 600 
( ) ( )0012 exp,Im tkaitaAYL ωε += , 601 

 602 
here ( )12 ,taA is the solution of Eq. (41). This expression defines the wave’s profile 603 
in the Lagrangian coordinates (refer to subscript “L” for Y ). To rewrite this 604 
equation in the Eulerian variables it is necessary to define  a  via X . From relation 605 
(8) it follows 606 

( )εεε OawwaX
n

n
n +=∑++= 








=

−

2
1

1Re , 607 

 608 
and the elevation of the free surface in the Eulerian variables EY  will be written as: 609 

 610 

( ) ( ) XXOtkXitXAY l
lE εεωε =++= 






 ;exp,Im 2

0012 . 611 

 612 
The coordinate a  plays the role of X , so the following substitutions are 613 

valid for the Lagrangian approach 614 
 615 

221100 ;; XaXaXa →→→ . 616 
 617 

This result could be named an “accordance principle” between the Lagrange and 618 
the Euler descriptions for solutions in the linear approximation. This principle is 619 
valid both for the potential and rotational waves.  620 

To express the solution of Eq. (41) in the Eulerian variables it is necessary to 621 
use the accordance principle and to replace the horizontal Lagrangian coordinate 622 

2a  by the coordinate 2X . So the discrepancies between the Eulerian and the 623 
Lagrangian estimations of the NLS equation for elevation of the free surface are 624 
absent.  625 

Taking this into account one could conclude that the result will be the same 626 
in the Eulerian description if the vorticity 2Ω  will be set as a function of the 627 

coordinates yx, . Respectively when studying dynamics of wave packets in the 628 
vortical  liquid in the Eulerian variables it is necessary to replace (ex. in Eq. (41) or 629 
(51)) the horizontal Lagrangian coordinate by the Eulerian one. 630 

The solutions of the considered problem in the Lagrange and the Euler forms 631 
in the quadratic and cubic approximations differ from each other. To obtain the full 632 
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solution in the Lagrange form we should obtain the functions 3221 ,,,, 3 ffψψψ . 633 
This problem should be considered within a special study. 634 

 635 
  636 

6 Conclusion 637 
  638 

In this paper we derived the vortex-modified nonlinear Schrödinger equation. To 639 
obtain it the method of multiple scale expansions in the Lagrange variables was 640 
applied. The fluid vorticity Ω  was set as an arbitrary function of the Lagrangian 641 
coordinates, which is quadratic in the small parameter of the wave’s steepness 642 

( )ba,2
2Ω=Ω ε . The calculations were carried out by introduction of the complex 643 

coordinate of trajectory of a fluid particle. 644 
 The nonlinear evolution equation for the wave packet in the form of the 645 

nonlinear Schrödinger equation was derived as well. From the mathematical 646 
viewpoint the novelty of this equation relates to the emergence of a new term 647 
proportional to the amplitude of the envelope and the variance of the coefficient of 648 
the nonlinear term. In case of the vorticity’s dependence on the vertical Lagrangian 649 
coordinate only (the Gouyon waves) this coefficient will be constant.  There are 650 
special cases when the coefficient of the nonlinear term equals to zero and the 651 
resulting non-linearity disappears. The Gerstner wave belongs to the latter case. 652 
Another effect revealed in the present study is the vorticity’s relation to the shift of 653 
the wave number in the carrier wave. This shift is constant for the modulated 654 
Gouyon wave. In case of the vorticity’s dependence on both Lagrangian 655 
coordinates the shift of the wave number is horizontally heterogeneous. It is shown 656 
that the solution of the NLS equation for weakly rotational waves in the Eulerian 657 
variables could be obtained from the Lagrangian solution by an ordinary change of 658 
the horizontal coordinates. 659 
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