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Lagrange form of the nonlinear Schrodinger equation for
low-vorticity waves in deep water
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The nonlinear Schrddinger (NLS) equation describing propagation of weakly
rotational wave packets in an infinitely deep fluid in the Lagrangian coordinates
was derived. The vorticity is assumed to be an arbitrary function of the Lagrangian
coordinates and quadratic in the small parameter proportional to the wave’s
steepness. The effects of vorticity are manifested in a shift of the wavenumber in
the carrier wave as well as in variation of the coefficient multiplying the nonlinear
term. In case of dependence of the vorticity on the vertical Lagrangian coordinate
only (the Gouyon waves) the shift of the wavenumber and the respective
coefficient are constant. When the vorticity is dependent on both Lagrangian
coordinates the shift of the wavenumber is horizontally heterogeneous. There are
special cases (the Gerstner wave is among them) when the vorticity is proportional
to the square of the wave’s amplitude and the resulting non-linearity disappears,
thus making the equations of dynamics of the wave packet to be linear. It is shown
that the NLS solution for weakly rotational waves in the Eulerian variables could
be obtained from the Lagrangian solution by an ordinary change of the horizontal
coordinates.

Key words: nonlinear SchrOdinger equation, vorticity, water waves

1 Introduction

The nonlinear Schrédinger (NLS) equation was first derived by Benny and Newell
(1967) and then Zakharov (1968), who used the Hamiltonian formalism for a
description of waves propagation in deep water. Hashimoto and Ono (1972) and
Davey (1972) independently obtained the same result. Like Benney and Newell
(1967) they use the method of multiple scale expansions in the Euler coordinates.
In their turn, Yuen and Lake (1975) derived the NLS equation on the basis of the
averaged Lagrangian method. Benney and Roskes (1969) extended these two-
dimensional theories in the case of three-dimensional wave perturbations in finite
depth fluid and obtained the equations which are now called the Davey-Stewartson
equations. In this particular case the equation proves the existence of transverse
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instability of the plane wave which is much stronger than longitudinal one. This
circumstance diminishes the role and meaning of the NLS equation for sea
applications. Meanwhile, the 1-D NLS equation has been successfully tested many
times in laboratory wave tanks and in comparison of the natural observations with
the numerical calculations.

In all of those works wave motion was considered to be potential. However,
the formation and propagation of waves frequently occurs at the background of a
shear flow possessing vorticity. Wave-train modulations at arbitrary vertically
sheared currents were studied by Benney and his group. Using the method of
multiple scales Johnson (1976) examined a slow modulation of the harmonic wave
moving at the surface of an arbitrary shear flow with the velocity profile U(y),

where y is the vertical coordinate. He derived the NLS equation with the

coefficients, which in a complicated way depend on the shear flow (Johnson,
1976). Oikawa et al. (1985) considered properties of instability of weakly
nonlinear three-dimensional wave packets in the presence of a shear flow. Their
simultaneous equations are reduced to the known NLS equation when requiring the
wave’s evolution to be purely two-dimensional. Li et al. (1987) and Baumstein
(1998) studied the modulation instability of the Stokes wave-train and derived the
NLS equation for uniform shear flow in deep water, when U(y)=QOy and

Q, = QO Is constant vorticity (z is the horizontal coordinate normal to the plane of

the flow x,y; the wave propagates in x direction).

Thomas et al. (2012) generalized their results for the finite-depth fluid and
confirmed that linear shear flow may significantly modify the stability properties
of the weakly nonlinear Stokes waves. In particular, for the waves propagating in
the direction of the flow the Benjamin-Feir (modulational) instability can vanish in
the presence of positive vorticity (Q, <0) for any depth.

In the traditional Eulerian approach to propagation of weakly nonlinear
waves at the background current the shear flow determines the vorticity in a zero
approximation. Depending on the flow profile U(y) it may be sufficiently arbitrary

and equals to —U'(y). At the same time the vorticity of wave’s perturbations
Q,,n>1, i.e. the vorticity in a first and subsequent approximations by the
parameter of the wave steepness ¢ = kA, (k is the wavenumber, A, is the wave

amplitude) depends on its form. In the Eulerian coordinates the vorticity of wave
perturbations are the functions not only of vy, but depend on variables x and t as
well. Plane waves on a shear flow with the linear vertical profile represent an
exception of this statement (Li et al., 1987; Baumstein, 1998; Thomas et al., 2012).
For such waves the vorticity of a zero approximation is constant, and all of the
vorticities in wave perturbations equal to zero. For the arbitrary vertical profile of
the shear flow (Johnson, 1976) expressions for the functions Q, could be hardly

predicted even quantitatively.
The Lagrangian method allows one to apply a different approach. In the
plane flow the vorticity of fluid particles is preserved and could be expressed via

2
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the Lagrangian coordinates only. Thus not only the vertical profile of the shear
flow defining the vorticity of a zero approximation, but the expressions for the
vorticity of the following orders of smallness could be given as known initial
conditions as well. The expression for the vorticity is presented in the following
form:

Q(a,b)=-U'(b)+ %an“(a’b)’

here a,b- the horizontal and the vertical Lagrangian coordinates respectively,
U(b)- the vertical profile of the shear flow, and the particular conditions for
definition of the function Q, could be found while solving the problem. For the

given shear flow this approach allows one to study wave perturbations with the
most general law of distribution of the vorticities Q,. In the present paper the

shear flow and the vorticity are absent in the linear approximation (U =0; 2, =0),

but the vorticity in the quadratic approximation is an arbitrary function. That
corresponds to the rotational flow proportional to ¢*. We can define both the shear
flow and the localized vortex.

The dynamics of plane wave-trains on the background flows with the
arbitrary low vorticity was not studied earlier. An idea to study wave-trains with
the quadratic (with respect to the parameter of the wave’s steepness) vorticity was
realized earlier for the spatial problems in the Euler variables. Hjelmervik and
Trulsen (2009) derived the NLS equation for the vorticity distribution:

Qy/a):O(gZ); (QX’QZ)/w:O(83)’

here @ is the wave frequency. The vertical vorticity of wave perturbations by a
factor of ten exceeds the other two components of the vorticity. This vorticity
distribution corresponds to the low (order of ¢) velocity of the horizontally
inhomogeneous sheared flow. Hjelmervik and Trulsen (2009) used the NLS
equation to study the statistics of rogue waves on narrow current jets, and Onorato
et al. (2011) used this equation to study the opposite flow rogue waves. The effect
of low vorticity (order of magnitudes?) in the paper by Hjelmervik and Trulsen
(2009) is reflected in the NLS equation. This fact in the same way as the NLS
nonlinear term for plane potential waves should be explained by the presence of an
average current non-uniformed over the fluid depth.

Colin et al. (1995) have considered the evolution of three-dimensional
vortex disturbances in the finite-depth fluid for a different type of vorticity
distribution:

Q,=0; (QX,QZ)/a)zO(gZ)
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and by means of the multiple scale expansion method in the Eulerian variables
reduced the problem to a solution of the Davey-Stewartson equations. In this case
vorticity components are calculated after the solution of the problem. As well as
for the traditional Eulerian approach (Johnson, 1976) the form of distribution of the
quadratic vorticity is very special and does not cover all of its numerous possible
distributions.

In this paper we consider the plane problem of propagation of the nonlinear
wave packet in an ideal incompressible fluid with the following form of vorticity
distribution:

Qz/a):O(gz).

In contrast to Hjelmervik and Trulsen (2009), Onorato et al. (2011) and Colin et al.
(1996) the flow is two-dimensional (respectively Q, =Q, =0). Propagation of the

packet of potential waves causes the weak counter flow underneath the free water
surface with its velocity proportional to the square of the wave’s steepness
(Mclintyre, 1982). In the considered problem this potential flow is superimposed
with the rotational one of the same order. It results in appearance of an additional
term in the NLS equation and in changing of the coefficient in the nonlinear term.
So a difference from the NLS solutions derived for strictly potential fluid motion
was revealed.

The examination is held in the Lagrangian variables. The Lagrangian
variables are rarely used in fluid mechanics. This is due to a more complex type of
nonlinear equations in the Lagrange form. However, when considering the vortex-
induced oscillations of the free fluid surface the Lagrangian approach has two
major advantages. First, unlike the Euler description method the shape of the free
surface is known and is determined by the condition of the vertical Lagrangian
coordinate's being equal to zero (b=0). Second, the vortical motion of liquid
particles is confined within the plane and represents the function of the Lagrangian
variables Q, =Q,(a,b), so the type of the vorticity distribution in the fluid can be
set initially. The Eulerian approach does not allow one to do this. In this case the
second-order vorticity is defined as a known function of the Lagrangian variables.

Here hydrodynamic equations are solved in the Lagrange form by multiple
scale expansion method. The nonlinear Schrddinger equation with the variable
coefficients is derived. The ways to reduce it to the NLS equation with the constant
coefficients are studied.

The paper is organized as follows. Section 2 describes the Lagrangian
approach to the study of wave oscillations at the free surface of the fluid. Zero of
the Lagrangian vertical coordinate is placed at the free surface, thus facilitating
formulation of the pressure boundary conditions. The peculiarity of the suggested
approach is the introduction of a complex coordinate of a fluid particle’s trajectory.
In Section 3 the nonlinear evolution equation on the basis of the method of
multiple scale expansion is derived. In Section 4 different solutions of the NLS
equation adequately describing various examples of vortex waves are considered.

4
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In Section 5 the transform from the Lagrangian coordinates to the Euler description
of the solutions of the NLS equation is shown. Section 6 summarizes the obtained
results.

2 Basic equations in the Lagrangian coordinates

Consider the propagation of a packet of gravity surface wave in rotational
infinitely deep fluid. The 2D hydrodynamic equations of an incompressible
inviscid fluid in the Lagrangian coordinates have the following form (Lamb, 1932;
Abrashkin and Yakubovich, 2006; Bennett, 2006):

D(X,Y)_ _
Da,b —[X,Y]—l, (1)
1
Xttxa+Ytt+g)Ya:_;pa’ (2)
1
Xttxb+(Ytt+g)Yb:__ Py (3)

P

where X,Y are the horizontal and vertical Cartesian coordinates and a,b are the
horizontal and vertical Lagrangian coordinates of fluid particles, t is time, p is
fluid density, p is pressure, g is acceleration due to gravity, the subscripts mean

differentiation with respect to the corresponding variable. The square brackets
denote the Jacobian. The axis b is directed upwards, and b=0 corresponds to the
free surface. Eq. (1) is a volume conservation equation. Eqg. (2) and (3) are
momentum equations. The problem geometry is presented in Fig. 1.

Yi

-

a A A Ao,
Ao | | \ /

\/ \/rotﬁ # 0

‘_\_‘_‘_\_“_‘_‘_‘—‘—-_;

rotv =0

v, = €W, (et, €a, £%a, b) X(a, b, t); Y(a,b,t)

Fig. 1. Problem geometry: vy is the average current.
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By means of the cross differentiation it is possible to exclude the pressure
and to obtain the condition of conservation of vorticity along the trajectory (Lamb,
1932; Abrashkin and Yakubovich, 2006; Bennett, 2006):

XXy +YaY, — X Xa =Yy, Ya = Qa,h). (4)

This equation is equivalent to the momentum Eqg. (2) and (3), but it involves an
explicit vorticity of liquid particles Q, which in case of two-dimensional flows is
the function of the Lagrangian coordinates only.

We introduce the complex coordinate of the trajectory of a fluid particle
W =X +iY (Wz X —iY), the overline means complex conjugation. In the new
variables the Eq. (1) and (4) take the following form:

W, W= -2i, (5)
RelW,,.W |=©fa.b), (6)

Egs. (2) and (3) after simple algebraic manipulations could be reduced to the
following single equation:

7
Wy =—ig +ip~[p,W] )

Eqgs. (5) and (6) will be used further to find the coordinates of complex trajectories
of fluid particles, and Eqg. (7) determines the fluid pressure. The boundary
conditions are the non-flowing condition at the bottom (Y; >0 at b—-«) and

the constant pressure at the free surface (atb=0).
The Lagrangian coordinates mark the position of fluid particles. In the
Eulerian description the displacement of the free surface Y (X,t) is calculated in

an explicit form, but in the Lagrangian description it is defined parametrically with
the following equalities: Y (a,t)=Y(a,b=0,t); Xs(a,t)=X(a,b=0,t), where the
role of a parameter plays the Lagrangian horizontal coordinate a. Its value along
the free surface b =0varies in the range (—oo;00). In the Lagrangian coordinates

the function Y, (a,t) defines the displacement of the free surface.
3 Derivation of evolution equation

Let us present the function W using the multiple scales method in the following
form:

W =a,+ib+wa bt ) a=¢a t=¢t 1=012, (8)

where ¢ - the a small parameter of the wave’s steepness. All of unknown
functions and the given vorticity can be represented as a series in this parameter:

6
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_ N, . _ _ n. . _ n
w_nglg W p=p, pgb+n§15 p; Q nglg Qn(a,b). (9)

In the formula for the pressure a term with hydrostatic pressure is selected, p, -

constant atmospheric pressure at the fluid surface. Let us substitute the
representations (8) and (9) in Eqgs. (5)-(7).

3.1 Linear approximation

In a first approximation in the small parameter we have the following simultaneous
equations:

Im (iwlao ¥ Wlb) -0, (10)
Re (iwla0 + Wy )to =-Q, (11)
Wy o + ,0_1( Pra, + iplb) =igw,, . (12)

The solution satisfying the continuity Eq. (10) and the equation of conservation of
vorticity (11) describes a monochromatic wave (for definiteness, we consider the
wave propagating to the left) and the average horizontal current

w; = Alay,a,,t,t, Jexplitkay + oty )+ kb, (ag,8,,b, k) Q@ =0, (13)

here A is the complex amplitude of the wave, o s its frequency, and k is the
wave number. The function y, is real and it will be determined under

consideration of the following approximation.
Substitution of solution (13) in Eq. (12) yields the equation for the pressure

p—l( P + iplb) - (wz - gijexp li(kay +a 1, )+ kb, (14)
which is solved analytically
_ rell@ =0 ey lika, + @ t, )+ kb]+C (a a_,t,t ) (15)
Py = —Re =— —— PAEXP|I{ka, + @ |, 1% %)

where C1 Is an arbitrary function. The boundary condition at the free surface is

Pilyo =0, which leads to @”=gk as well as C =0. Thus, in the first
approximation the pressure correction p, is equal to zero.
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3.2 Quadratic approximation

The equations of the second order of the perturbation theory can be written as
follows:

Im (iw2610 +W,, + iwla11 Wlalwlbj 0, (16)

Re [iw2th0  Worp + i(w1t0a1 +W1t1a0) Wy, a0W1b Wy, + Wy bwlao} Q,, (17)
A - s

War, + P (pZaO + |p2bj = |g(W2610 +Walj — 2W1t1t0 : (18)

Substituting expression (13) for w, to Eq. (16) we have:

im| i +w, ik A=A, Jexplilka, + @t )+ kb]-ik? APe iy, |=0. (19)

which is integrated as follows:

= ilkAy, —bag, Jexplilkag + @ to )+ kb|+y, +if, (20)

here y,, f, are functions of slow coordinates and the Lagrange vertical coordinate
b and:

o = K2|A exp2kb -y, | (22)

the function y, is an arbitrary real function. It will be determined by solving the

following cubic approximation.
When substituting (13), (20) in (17) all of the terms containing the
exponential factor neglect each other, and the remaining terms satisfy the equation:

Vi = —2k2a>|A|2 exp(2kb)—-Q,. (22)

The expression for the function y, can be determined by a simple integration. It

should be emphasized that the vorticity of the second approximation, being a part
of Eq. (22), is an arbitrary function of the slow horizontal and vertical Lagrange
coordinates, so that Q, =Q, (a,,a,,b).

Taking into account the solutions of the first two approximations we can
write Eq. (18) as:

p—l( Pas, + iprj = i{gA,, —20A, Jexplika, + o 1)+ kb]+ig Vi (29)
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Its solution determines the pressure correction:
p, =Re|— 1 2a)A exp[(ka +ot )+kb] +pgj do+C (a a, t t)(24)
Aal l//lai

The limits of integration in the penultimate term are chosen so that this integral
term equals to zero at the free surface. Due to the boundary condition for pressure
(p,(b=0)=0),C,=0, and

o . .9 _1]g
Ay ~Cghe =0, CQ‘Z‘E\E (25)

here ¢4 is the group velocity of wave propagation in deep water, which in this

approximation is independent of the fluid vorticity. As expected, the wave of this
approximation moves with the group velocity ¢y to the left (the “minus” sign in

the Eq. (25)).
3.3 Cubic approximation

The equation of continuity and the condition of conservation of vorticity in the
third approximation have the form

Im IW2a0 + Wy + |(wla12 + W2a1 erzaoj—(wla1 +w2a2 b —W1a0 WZb} =0, (26)
Re|iw. +W +i(w +W, . +W, . +W j -W,, W, _ —
3t 1t 1 1tha ota, + W Wit b = Wop Wit o
%0 3tb 2 " ey " itga, T V2tag T \V2tgay 2 0%

(27)
+W2t1b_W1b( gty Vitag +W2thOJ++W ( b T 2tb)+wltb(wa1+waoﬂ 2,

We substitute the solutions of the first and second approximations in the
simultaneous equations:

: . — i(ka,+wt, kb
Im{lw3610 + W,y +'(W1a2 +W2a1)+ 2k(kb+1)AAale2b +G,e (kag+ety )+ }:0, (28)
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. -1 i(kaO +wt0)+ kb
Re |W3ao W, +(Gb + ZkV’ltlba’ Aje W o t Wi t

. (29)
: A a2kb|
+iok(4kb + 5)AA, e }_ Q,
| b? i K2 2 30
G:|bAa2+7Aa1a1—(kb+1)x//lAai— iy, +kf, ==y |A. (30)
We sought the solution for the third approximation in the following form:
W, = (Gl _G)ei(kao+a)t0)+kb +Gze—i(ka0+a)to)+kb by it (31)

here G,G,,y,, f; are functions of slow coordinates and b. Substituting this
expression in (28) and (29) we immediately find that:

fap Voo, +V1a, + k(KD +1)(AE—KAa1}32"b -0, (32)

1 S —
Wap + Wi + 5 (KD + 5)a>k(AAal —AA, )eZkb =-Q,. (33)

The function y, according to Eq. (33) is determined by a known solution for A
and y,, and by the given distribution Q.. The expression for the function f, is

derived then from Eqg. (32). These functions determine the horizontal and vertical
average movements respectively. But in this approximation they are not included
in the evolution equation for the wave envelope. The function y, should be

determined in the next approximation.
When solving (28) and (29) we found:

b : _
Glz—ka)‘lt//nlA; G, :ka)l[2ke2kb [ WltleZKbdb'—y/ltl JA. (34)

— o0

These relationships should be substituted in the Eq. (7), which in this
approximation has the following form:

Watty ~ igw3a0 = ip_{i( P2a, * pSan_ Pap = PopWaa ) + pg(wlaz +Waa, ﬂ -

- 2W1t2t0 - W1tltl - 2W2t0t1.

(35)

Taking into account (13), (20), (24), (31) and (34) we rewrite it as follows:

10
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1 N[5 OA . OA  O°A i( Kag +arty Jrkb
yo, (p3a0+|p3bj_[ 2|coat +|ga atf +2a)ky/1t1AJe + (36)

2~ Fai(kagrotyjrkb .
+20 GZAB _Hg(WZal _H'//laz}i_ g g( 23 '[V/laiaidb] Vi

Due to relationships (21), (22) and (25) the derivative of | by the vertical
Lagrangian coordinate is zero (1, =0), so | is the only function of the slow

coordinates and time - a,t,l>1. The contribution to the pressure of that term
I(al,tI )= 0will be complex, so it requires 1 =0.

The solution of Eq. (36) yields the expression for the pressure perturbation
in the third approximation:

Ps _ reik-t] 2 OA iy OA ek A dok? Ae-2b J v, 62 db (kagrotg +kb
Yo, ot, 88.2 1 Y
+ 9 E(l/lzal +1//1a2 )db'. (37)

In Eg. (37) the limits of integration for the second integral term have been pre-
selected to satisfy the boundary condition at the free surface (the pressure p,

should turn to zero). Then the factor before the exponent should be equal to zero:

0 0A _ig A O°A
2
o5, 9%,

— 4k A j [ vy e’ db=0. (38)
1

Introducing the “running” coordinate ¢, =a, +c4t, we may reduce Eq. (38)
in a compact form:
. OA k%A 4k3A ©

- + ek dh=0. 39

Further it will be shown that variables in Egs. (38), (39) were chosen in the easiest
form for their reduction (under the particular assumptions) to the classical NLS
equation.

The explicit form of the function Wi, Is found by integration of Eq. (22):

Vi, = kool A" 2K —_EOQZ(aZ,b')JIb'—U (a,t,). (40)

11
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This expression includes three terms. All of them describe a certain component of
the average current. The first one is proportional to square of the amplitude
modulus and describes the classical potential drift of fluid particles (see
(Henderson et al. (1999) for example). The second one is caused by the presence of
low vorticity in the fluid. And, finally, the third item, including U(a,,t,) term,

describes an additional potential flow. It appears while integrating Eq. (22) over
the vertical coordinate b and will evidently not disappear in case of A=0as well.
This is a certain external flow which must be attributed with the definite physical
sense in each specific problem. Note that a term of that kind arises in the Eulerian
description of potential wave oscillations of the free surface as well. In the paper
by Stocker and Peregrine (1999) it was chosen U =U.,sin(kx—wt) and was

interpreted as a harmonically changing surface current induced by the internal
wave. We shall consider further U =0.
Eq. (39) may be written in the final form after substitution of Eq. (40):

2
| 0A KO 2k K7|A7 + Blay) | =0,
oa, .2 ot} (41)
4k® 0 oxp

,B(az):jjme (_Zoﬂz(az,b')db']db.

This is the nonlinear SchrOdinger equation for the packet of surface gravity waves
propagating in the fluid with vorticity distribution Q=¢2Q,(a,,b). The function
Q,(a,,b) determining flow vorticity may be an arbitrary function setting the initial

distribution of vorticity. When integrating it twice we find the vortex component of
the average current which is in no way related to the average current induced by
the potential wave.

4 Examples of the waves
Let us consider some special cases arising from Eq. (41).

4.1 Potential waves

In this case Q,=0 and Eq. (41) becomes the classical nonlinear Schrodinger

equation for waves in deep water. Three kinds of analytical solutions of the NLS
equation are usually discussed regarding to water waves. The first is the Peregrine
breather propagated in space and time (Peregrine, 1983). This wave may be
considered as a long wave limit of a breather - a pulsating mode of an infinite
wavelength (Grimshaw et al., 2010). Two another ones are the Akhmediev
breather - the solution periodic in space and localized in time (Akhmediev et al.,
1985) and the Kuznetsov-Ma breather - the solution periodic in time and localized

12
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in space (Kuznetsov, 1977; Ma, 1979). Both latter solutions evolve at the
background of the unperturbed sine wave.

4.2 Gerstner wave

The exact Gerstner solution in the complex form is written as (Lamb, 1932;
Abrashkin and Yakubovich, 2006; Bennett, 2006):

W =a-+ib+iAexpli(ka+ ot)+kb]. (42)

It describes a stationary traveling rotational wave with a trochoidal profile. Their
dispersion characteristic coincides with the dispersion of linear waves in the deep

water w? = gk . Fluid particles are moving in circles and the drift current is absent.

Eq. (42) represents the exact solution of the problem. Following Egs. (8), (9)
the Gerstner wave should be written as follows

W=a +ib+ 5 &"-iAexplifke, +at )+kb] (43)

n>1

All of the functions wj, in Egs. (8), (9) have the same form. To derive the vorticity

of the Gerstner wave Eq. (43) should be substituted in Eq. (6). Then in could be
found that in the linear approximation the Gerstner wave is potential (&, =0), but

in the quadratic approximation it possesses vorticity

QZGerstner = _zwkz‘A‘zeZKb' (44)
For this type of the vorticity distribution the first two terms in the parentheses in
Eq. (41) neglect each other. From the physical point of view this is due to the fact
that the average current induced by the vorticity compensates the potential drift
exactly. The packet of weakly nonlinear Gerstner waves in this approximation is
not affected by their non-linearity, and the effect of the modulation instability for
the Gerstner wave is absent.

Generally speaking this result is quite obvious. As there are no particle’s
drift in the Gerstner wave the function y, equals to zero. So the multiplier of the
wave’s amplitude in Egs. (38), (39) may be neglected initially without derivation
of the vorticity of the Gerster wave.

Let’s consider some particular consequences of the obtained result. For the
irrotaional (Q, =0) stationary (A =|A =const) wave Eq. (40) for the velocity of the

drifting flow takes the form

Wy, = —wkAZ? (45)

13



483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499

500
501

502

503
504
505
506
507
508

509

510
511
512
513

514
515

516
517
518
519

520
521
522

It coincides with the expression for the Stokes drift in the Lagrangian coordinates
(in the Eulerian variables the profile of the Stokes current could be obtained by the
substitution of b to y). Thus, our result may be interpreted as a compensation of

the Stokes's drift by the shear flow induced by the Gerstner wave in a square
approximation. This conclusion is also fair in the "differential™ formulation for
vorticities. From Eq. (22) it follows that the vorticity of the Stokes drift equals to
the vorticity of the Gerstner wave with the inverse sign.

The absence of a nonlinear term in the NLS equation for the Gerstner waves
obtained here in the Lagrangian formulation is a robust result and should appear in
the Euler description as well. This follows from the famous Lighthill criterion for
the modulation instability because the dispersion relation for the Gerstner wave is
linear and do not include terms proportional to the wave’s amplitude.

4.3 Gouyon waves

As it has been shown by Dubreil - Jacotin (1934) the Gerstner wave is a special
case of a wide class of stationary waves with the vorticity Q =&Q (), where Q,

Is an arbitrary function, and y is the stream function. These results have been
obtained and then developed by Gouyon (1958) who explicitly represented the

vorticity in the form of a power series Q = fg“Qn(z//) (see also the monograph by
n=1

Sretensky (1977)).

When considering the plane steady flow in the Lagrange variables the stream
lines  coincide with the isolines of the Lagrangian vertical coordinate b
(Abashkin and Yakubovich, 2006; Bennett, 2006). We are going to consider a
steady-state wave at the surface of an indefinitely deep water. Let us assume that
there is no undisturbed shear current, but the wave’s disturbances have the

vorticity. Then, the formula for the vorticity has the form Q= f;g”Qn(b). Now we
n=1

name the steady-state waves propagating in such low-vorticity fluid the Gouyon
waves. In the Lagrangian description properties of the Gouyon wave for the first
two approximations were studied by Abrashkin and Zen'kovich (1990).

In our case Q, =0,Q, #0 and assuming the function€, to be independent
of the coordinate a a description of the Gouyon waves could be obtained. The
vorticity Q,depends on the coordinate b only and has the following form

Q2Goyuon = a)kz‘A‘z H (kb)’ (46)

here H(kb) is an arbitrary function. In case of H(kb)=—2exp(2kb) the vorticity of

the square-law Gerstner waves and the Gouyon waves coincide (compare Eqgs. (44)
and (46)). In the considered approximation the Gouyon wave generalize the
Gerstner wave. From Eq. (22) it follows that the function i, Is equal to zero only

14
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when the vorticity of the Gouyon waves is equal to the vorticity of the Gerstner
wave. Except of this case the average current vt will be always present in the

modulated Gouyon waves.
Substitution of ratio (46) in Eqg. (41) yields the NLS equation for the
modulated Gouyon wave possessing the square-law in amplitude vorticity:

. 0A k 9%2A
' o 2
08, 2 ot

- B KA A=0;
L (47)
B =1+4 erb( jH(b')db'Jdb; b =kb,

here b is a dimensionless vertical coordinate. The coefficient at the nonlinear term
in the NLS equation varies when taking into account the wave’s vorticity. For the
Gerstner wave it could be equal to zero as well as for the Gouyon waves when
satisfying the condition

?eza[?H (6°)db 'Jdﬁ :-%. (48)

Obviously an infinite number of distributions of the vorticity H(B) meeting this

condition are possible. And such distributions represent just a small part of all
possible ones. Therefore a realization of one of them seems to be improbable. Most
likely that in the natural conditions distributions of the vorticity with a certain sign
of ,BG are implemented. Its negative values correspond to the defocusing NLS

equation and positive ones relate to the focusing NLS equation. In the latter case
the maximal value of the increment as well as the width of the modulation
instability zone of a uniform train of vortex waves vary depending on the value of

Egs. (39) and (47) will be focusing for Wi, <0, b<0and defocusing if
Wy, >0, b<0. The case of the sign-variable function Wi, requires an additional

research. From the physical viewpoint the sign of this function is defined by a ratio
of the velocity of the Stokes drift (45) to the velocity of the current induced by the
vorticity (the integral term in Eq. (40)). For Wy, < 0 the Stokes drift either

dominates over a vortex current or both of them have the same direction. When
Wy, >0 the vortex current dominates over the counter Stokes drift. In case of the

sign-variable v, a ratio between these currents varies at different vertical levels,
so requiring a direct calculation of ﬁG :
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4.4 Waves with heterogeneous vorticity distribution in both coordinates

An expression for the vorticity as well as any methods of its definition were not
discussed while deriving the NLS equation. In Sections 4.2 and 4.3 for the
problems on the Gerstner and the Gouyon waves the vorticity was set proportional
to a square modulus of the wave’s amplitude. Note that waves can propagate at the
background of some vortex current, for example, at the localized vortex. In that
case the vorticity could be presented in the form

Q,(a,,b)= a{(p\,(az’b)Jr k2|A|2(pW(aZ,b)}

where the function wgy, defines the vorticity of the background vortex current and

the function a)kzwzgow defines the vorticity of waves. In the most general case

both functions depend on the horizontal Lagrangian coordinate as well. Then
Eq.(41) takes a form

. 0A k %A
'aaa 2 aatz ‘kﬂv(az)A—k3ﬁ+ﬂw(a2))A|2A=o,
2 w 1
b (49)
9 25[°® ~.) ~ | ,~
ﬂv,w(az)=4_[§ _£O¢V,W(a2,b db" db.
By the following substitution
a
A=A e"p(‘ ik [ 5,(a, )dazj (50)

Eq. (49) is reduced to the NLS equation with the non-uniform multiplier for the
nonlinear term:

*

oL ok

2

*

A" =0. (51)

Let's consider propagation of the Gouyon wave when g, =const=,BG -1 and

Eq.(51) turns into the classical NLS equation Eq. (47). As it is shown in Sec. 4.3 it
describes the modulated Gouyon waves. Therefore in view of substitution Eq. (50)
one can conclude that the propagation of the Gouyon waves at the background of
the non-uniform vortex current yields variation of the wave number of the carrier
wave. For g, =0 Eq. (51) describes propagation of a packet of potential waves at

the background of the non-uniform weakly vortical current. Peculiarities of
propagation of waves related to the variable g, require a special investigation.
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5 On correlation of Lagrangian and Eulerian approaches

Let us consider correlation between the Eulerian and the Lagrangian description of
wave’s packets. To obtain the value for elevation of the free surface we substitute
expressions (8), (9), (13) and b=0 to the equation for Y =ImW written in the

following form
Y =¢ImA(@,,t, Jexpika, + @ t,),

here A(az,tl)is the solution of Eq. (41). This expression defines the wave’s profile

in the Lagrangian coordinates (refer to subscript “L” for Y). To rewrite this
equation in the Eulerian variables it is necessary to define a via X . From relation
(8) it follows

X =a+¢Re (Wl+ Zg“‘lwnj=a+0(g),
n=2
and the elevation of the free surface in the Eulerian variables Y. will be written as:
Y, = £ ImA(X,,.t, Jexpi(kX,, +a)t0)+0(82j; X, =&'X.

The coordinate a plays the role of X, so the following substitutions are
valid for the Lagrangian approach

ag—> Xy > X0 a, > X,

This result could be named an “accordance principle” between the Lagrange and
the Euler descriptions for solutions in the linear approximation. This principle is
valid both for the potential and rotational waves.

To express the solution of Eq. (41) in the Eulerian variables it is necessary to
use the accordance principle and to replace the horizontal Lagrangian coordinate
a, by the coordinate X,. So the discrepancies between the Eulerian and the

Lagrangian estimations of the NLS equation for elevation of the free surface are
absent.

Taking this into account one could conclude that the result will be the same
in the Eulerian description if the vorticity Q, will be set as a function of the

coordinates X,y. Respectively when studying dynamics of wave packets in the

vortical liquid in the Eulerian variables it is necessary to replace (ex. in Eq. (41) or
(51)) the horizontal Lagrangian coordinate by the Eulerian one.

The solutions of the considered problem in the Lagrange and the Euler forms
in the quadratic and cubic approximations differ from each other. To obtain the full
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solution in the Lagrange form we should obtain the functions v,y ,,y,, f,, f.
This problem should be considered within a special study.

6 Conclusion

In this paper we derived the vortex-modified nonlinear SchrOdinger equation. To
obtain it the method of multiple scale expansions in the Lagrange variables was
applied. The fluid vorticity € was set as an arbitrary function of the Lagrangian
coordinates, which is quadratic in the small parameter of the wave’s steepness

Q=¢£%Q,(a,b). The calculations were carried out by introduction of the complex

coordinate of trajectory of a fluid particle.

The nonlinear evolution equation for the wave packet in the form of the
nonlinear SchrOdinger equation was derived as well. From the mathematical
viewpoint the novelty of this equation relates to the emergence of a new term
proportional to the amplitude of the envelope and the variance of the coefficient of
the nonlinear term. In case of the vorticity’s dependence on the vertical Lagrangian
coordinate only (the Gouyon waves) this coefficient will be constant. There are
special cases when the coefficient of the nonlinear term equals to zero and the
resulting non-linearity disappears. The Gerstner wave belongs to the latter case.
Another effect revealed in the present study is the vorticity’s relation to the shift of
the wave number in the carrier wave. This shift is constant for the modulated
Gouyon wave. In case of the vorticity’s dependence on both Lagrangian
coordinates the shift of the wave number is horizontally heterogeneous. It is shown
that the solution of the NLS equation for weakly rotational waves in the Eulerian
variables could be obtained from the Lagrangian solution by an ordinary change of
the horizontal coordinates.

Acknowledgments. EP thanks RNF grant 16-17-00041 for support.

References

Abrashkin, A. A. and Zen'kovich, D. A.: Vortical stationary waves on shear flow,
Izvestiya, Atmospheric and Oceanic Phys., 26, 35-45, 1990.

Abrashkin, A. A. and Yakubovich, E. I.: Vortex Dynamics in the Lagrangian
Description, Fizmatlit, Moscow, 2006. (In Russian).

Akhmediev, N. N., Eleonskii V. M., and Kulagin N. E.: Generation of periodic
trains of picosecond pulses in an optical fiber: exact solutions, Zh. Eksp. Teor. Fiz.
89, 1542-1551, 1985. Transl. Sov. Phys. JETF 62, 894-899, 1985.

Baumstein, A. I.. Modulation of gravity waves with shear in water, Stud. Appl.
Math., 100, 365-390, 1998.

18



676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

Bennett, A.: Lagrangian Fluid Dynamics, Cambridge University Press, Cambridge,
2006.

Benney, D.J. and Newell, A.C.: The propagation of nonlinear wave envelopes, J.
Math. Phys. 46(2), 133-139, 1967.

Benney, D.J. and Roskes, G.J.: Wave instabilities, Stud. Appl. Math., 48, 377-385,
19609.

Colin, T., Dias, F., and Ghidaglia, J.M.: On rotational effects in the modulations of
weakly nonlinear water waves over finite depth, Eur. J. Mech., B/Fluids, 14(6),
775-793, 1995.

Davey, A.: The propagation of a weak nonlinear wave, J. Fluid Mech. 53, 769-781,
1972.

Dubreil-Jacotin, M. L.: Sur la détermination rigoureuse des ondes permanentes
périodiques d’ampleur finie, J. Math. Pures Appl., 13, 217-291, 1934,

Gouyon, R., Contribution a la théorie des houles, Annales de la Faculté des
Sciences de I’Université de Toulouse, 22, 1-55, 1958.

Grimshaw, R., Slunyaev, A., and Pelinovsky E.. Generation of solitons and
breathers in the extended Korteveg-de-Vries equation with positive cubic
nonlinearity, Chaos, 20, 013102, 2010.

Hasimoto, H. and Ono, H.: Nonlinear modulation of gravity waves, J. Phys. Soc.
Jpn., 33, 805-811, 1972,

Henderson K.L., Peregrine, D.H., and Dold, JW.: Unsteady water wave
modulations: fully nonlinear solutions and comparison with the nonlinear
Shrodinger equation, Wave motion, 29, 341-361, 1999.

Hjelmervik, K. B. and Trulsen K.: Freak wave statistics on collinear currents, J.
Fluid Mech., 637, 267-284, 2009.

Johnson, R. S.: On the modulation of water waves on shear flows, Proc. R. Soc.
Lond. A, 347, 537-546, 1976.

Kuznetsov E. A.: Solitons in a parametrically unstable plasma, Sov. Phys. Dokl.
22,507-509, 1977.

Lamb, H.: Hydrodynamics, 6th ed., Cambridge University Press, 1932,

Li, J. C., Hui, W. H., and Donelan, M.A.: Effects of velocity shear on the stability
of surface deep water wave trains, in Nonlinear Water Waves, eds K. Horikawa
and H. Maruo, Springer, Berlin 213-220, 1987.

Ma, Y.-C.: The perturbed plane-wave solutions of the cubic SchrOdinger equation,
Stud. Appl. Math., 60, 43-58, 1979.

Mclntyre, M.E.: On the ‘wave momentum’ myth, J. Fluid Mech., 106, 331-347,
1981.

Oikawa, M., Chow, K., and Benney, D. J.: The propagation of nonlinear wave
packets in a shear flow with a free surface, Stud. Appl. Math., 76, 69-92, 1987.
Onorato, M., Proment, D., and Toffoli A.: Triggering rogue waves in opposing
currents, Phys. Rev. Lett., 107, 184502, 2011.

Peregrine, D. H.. Water waves, nonlinear SchrOdinger equations and their
solutions, J. Australian Math. Soc., Ser. B, 25, 16-43, 1983.

19



719
720
721
722
723
724
725
726
727
728
729
730

Sretensky, L. N.: Theory of wave motion in the fluid, Nauka, Moscow, 1977. (In
Russian).

Stocker, J.R. and Peregrine, D.N.: The current-modified nonlinear Schrodinger
equation, J. Fluid Mech., 399, 335-353, 1999.

Thomas, R., Kharif C., and Manna, M.: A nonlinear Shrodinger equation for water
waves on finite depth with constant vorticity, Phys. Fluids 24, 127102, 2012.
Zakharov, V. E.: Stability of periodic waves of finite amplitude on the surface of a
deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194, 1968.

Yuen, H. C. and Lake, B. M.: Nonlinear deep water waves: Theory and
experiment, Phys. Fluids, 18, 956-960, 1975.

20



