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The manuscript is devoted to a well studied aspect of water wave dynamics - weakly
nonlinear evolution of a narrow band wavetrain. The work contains two novel elements:
the focus of the consideration is on waves with weak vorticity, which has not been a subject
of a dedicated study before; the analysis and results are formulated in terms of Lagrangian
variables. The main result is the derivation of the nonlinear Schrodinger equation for the
wavetrain envelope in the Lagrangian variables and an analysis of a few examples on its
basis. The derivation is sound. The results are discussed from the rogue wave perspective.
Although the work does present new results, seems to be correct and is clearly written,
I cannot recommend its publication yet. However, it has a potential to be turned into a
much better paper. To this end a revision is needed. The specific points to address are
outlined below.

The main points:

(i) The motivation: From the provided literature review it is not clear why this particular
study is needed: What are the specific questions that the authors want to
clarify? Why these questions might be of interest and for what segments
of the scholar community? Wavetrain modulations upon arbitrary vertically
sheared currents were thoroughly studied by Benney and his group. If the Benney
asymptotic expansion becomes invalid for the range of small values of vorticity the
present work is focussing upon, then it has to be shown and explained what is wrong
with the Benney expansion. The same question applies to Jonsson (1976) results.

The dependence of the cubic nonlinearity on vorticity in Jonsson (1976) and the
works by Benney is not singular. Therefore similar expansion for the small vorticity
can be carried out in the Eulerian framework as well using the known results, say, by
Jonsson (1976) and /or the works by Benney group as the starting point. This should
be made clear. I think what the authors are doing is a re-derivation of the NLS for
weak vorticity; the results were known, although implicitly, since nobody looked
specifically into this case. Hence there is indeed a novelty here, but a comparison
with the Eulerian results is necessary. In the Eulerian case vorticity can also be
always presented as an expansion in e, although in contrast with the Lagrangian
approach only the leading order vorticity will be constant. In this context the most
intriguing question is concerned with one of the highlights of the work: the vanishing
of the cubic nonlinearity in the NLS in the Lagrangian variables for the Gerstner
wave. (This result is more significant than the authors give it credit for: it shows that
in principle an O(g?) shear might kill the NLS nonlinearity.) The question is: what is
the manifold of Eulerian shear profiles (or vorticity distributions) which would zero
the NLS nonlinearity? I believe it could be answered by a straightforward analysis
of the known expressions for the coefficient. Also the similar question applies to
the Lagrangian formulation: the vorticity distribution is arbitrary, what are other



distributions for which the NLS nonlinearity vanishes? I doubt that the Gerstner is
an isolated special case.

It follows from the works by Benney and his group that the transverse instability is
much stronger than the longitudional one, therefore, the studies of strictly longitudional
instabilities are of limited interest from the viewpoint of sea applications and could
be applied only to narrow wave tanks. I'd like this point to be mentioned more
explicitly in the introduction. This is important since it squarely places the derived
NLS into the realm of toy models. This does not mean that the results cannot be
of interest or should not be published, it just means that the results might interest

a different community.

The original element of the work is the asymptotic derivation of the NLS in Lagrangian
variables. In my view this is complementary to the existing Eulerian works and it
remains unclear what new features/aspects this might reveal.

(i) The NLS: In contrast to the NLS in Euler variables where we know that the
equation describes evolution of the envelope amplitude in the (z,t) space and how
the actual elevation can be expressed as a Stokes-like series in wave amplitude
up to cubic order, here the NLS in Lagrangian variables is an object which is
much less straightforward to interpret. Obviously, A is the envelope amplitude,
but what are the independent variables (a,b)? Their link to the standard Eulerian
variables (x,y) is not known. Although it is straightforward, at least in principle,
to provide this link in terms of a series in ¢, the authors choose not to do this.
They effectively use the zero order approximation where the difference between the
Eulerian and Lagrangian descriptions vanishes. Then the rationale for using the
Lagrangian approach apparently disappears.

I suspect (this is the most interesting point), that if the authors make transformation
to return to the Euler variables, they will get a higher order NLS type equation since
the transformation itself is nonlinear (see e.g. F.Nouguier, B. Chapron, C-A, Guiirin
Second-order Lagrangian description of tri-dimensional gravity wave interactions,
JEM 772, 165-196, (2015) and references therein).

If the authors do not want to go through this straightforward but quite time
consuming path I suggested above, then they can handle the comparison numerically.
The Lagrangian solution yields X,Y in terms of a, b, t. Hence the surface elevation
Y (a,0,t) and position of a parcel on the free surface, X (a,0,t), which are found
in terms of a series, provide implicit function Y (a,0,¢) which can be easily plotted
for a typical Y (X,t), say, a breather. This plot has to compared to the Eulerian
solution with the cubic terms retained.

The obtained NLS is presented in an "optical"form (with space rather than time
chosen as the propagation variable), which is a somewhat strange choice for a



hydrodynamic work. Dependence on ¢ in this context means dependence on the
running variable. I do not understand why the authors choose this form and stick
to it, they give no clue. They have either argue for their preference or switch to the
conventional form.

The authors consider the NLS derivation allowing for horizontal nonuniformity,
which raises a host of questions. How arbitrary the dependence on ay is? What does
it mean? Are the as dependencies of this vortical and potential parts of the Doppler
correction linked to satisfy the Lagrange equations? How these dependencies can be
specified?

(iii) Rogue waves: As I've already mentioned, the strong transverse instability of the
wavetrains does not allow one to speak seriously about ocean applications. I found
nothing new and specific adding to our understanding of rogue waves. The fact that
the NLS is formulated in the Lagrangian variables and only the leading order term
is used makes this equation equivalent (to this order) to the Eulerian NLS. The fact
that in the focussing NLS there is modulational instability and that such a NLS
admits breather solutions is known for about thirty years.

The term "rogue wave'is used in the manuscript as synonymous with the term
breather, just because the latter satisfy the rogue wave amplitude criterion. Although
the NLS breather solutions are indeed often used as prototypes of rogue waves, this
could be done only with appropriate explicitly spelled out caveats.

The weakest point in the rogue wave aspect of the paper is that I don’t see any new
insight into the nature of rogue waves even in the framework of the chosen toy model.

In my view the following question might be of interest in the context of rogue waves
and would have an element of novelty: what is the profile and maximal height of
the found Akhmediev Lagrangian breather in the Eulerian variables. To answer
this question the authors have to sum up all orders of their expansion and then
perform the transformation to the Eulerian variables. The results will differ from
the corresponding expansion in the Eulerian variables. I re-iterate that it would be
of interest to discuss this difference. I'’ve mentioned already the simplest way to get
it.



