
Dear Professor Grimshaw! 
We revised our manuscript according to the comments of the Reviewers 
which are definitely useful for the paper’s content and are accepted with our 
gratitude. 
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Anatoly Abrashkin and Efim Pelinovsky 
 



Answers on review’s comments on paper  
  

          The Lagrange form of the nonlinear Schrödinger equation for low 
vorticity waves in deep water: rogue wave aspect 

by 

Anatoly Abrashkin and Efim Pelinovsky 

 

THE MOTIVATION:  

RESPONSE TO REVIEWER 1 

From the provided literature review it is not clear why this particular study is 
needed? What the specific questions that the authors want to clarify? Why these 
questions might be of interest and for what segments of the scholar community? 

Review 1: 

We found a new family of solutions for the wave train propagation in the deep 
water. Their novelty is non-uniform distribution of the vorticity. 

Authors: 

Wavetrain modulations upon arbitrary vertically sheared currents were thoroughly 
studied by Benny and his group. If the Benny asymptotic expansion becomes 
invalid for the range of small values of vorticity the present work is focusing upon, 
then it has to be shown and explained what is wrong with the Benny expansion. 
The same question applies to Jonhson (1976) results. The dependence of the cubic 
nonlinearity on vorticity in Jonhson (1976) and the works by Benny is not singular. 
Therefore similar expansion for the small vorticity can be carried out in the 
Eulerian framework as well using the known results, say, by Jonhson (1976) and/or 
the works by Benny group as the starting point. I think what the authors are doing 
is a re-derivation of the NLS for weak vorticity; the results were known, although 
implicitly, since nobody looked specifically into this case. Hence there is indeed a 
novelty here, but a comparison with the Eulerian results is necessary. In the 
Eulerian case vorticity can also be always presented as an explanation in epsilon, 
although in contrast with Lagrangian approach only the leading order vorticity will 
be constant.  

Reviewer 1: 

 

Authors: We added (Sec. 5, lines 626-630): 



Taking this into account one could conclude that the result will be the same in the 
Eulerian description if the vorticity 2Ω  will be set as a function of the coordinates 

yx, . Respectively when studying dynamics of wave packets in the vortical  liquid 
in the Eulerian variables it is necessary to replace (ex. in Eq. (41) or (51)) the 
horizontal Lagrangian coordinate by the Eulerian one. 

 

In this context the most intriguing question is concerned with one of highlights of 
the work: the vanishing of the cubic nonlinearity in the NLS in the Lagrangian 
variables for the Gerstner wave. (This result is more significant than the authors it 
credit for: it shows that in principle an 

Reviewer 1: 

( )2εO  shear might kill the NLS nonlinearity.  
The question is: what is the manifold of Eulerian shear profiles (or vorticity 
distributions which would zero the NLS nonlinearity? I believe it could be 
answered by a straightforward analysis of the known expressions for the 
coefficient.  

 
Authors
 

: We added (Sec. 4.2, lines 477-489): 

Let’s consider some particular consequences of the obtained result. For the 
irrotaional ( 02 =Ω ) stationary ( constAA == ) wave Eq. (40) for the velocity of the 
drifting flow takes the form 

  
                                         kbekAt

22
11 ωψ −= .                                              (45) 

 
It coincides with the expression for the Stokes drift in the Lagrangian coordinates 
(in the Eulerian variables the profile of the Stokes current could be obtained by the 
substitution of b  to y ). Thus, our result may be interpreted as a compensation of 
the Stokes's drift by the shear flow induced by the Gerstner wave in a square 
approximation. This conclusion is also fair in the "differential" formulation for 
vorticities.  From Eq. (22) it follows that the vorticity of the Stokes drift equals to 
the vorticity of the Gerstner wave with the inverse sign. 
 
 
Reviewer 1: Also the similar question applies to the Lagrangian formulation: the 
vorticity distribution is arbitrary, what are other distributions for which the NLS 
nonlinearity vanishes? I doubt that the Gerstner is an isolated special case. 

Authors
 

: We added (Sec.  4.3, lines 513-556): 



In our case 0,0 21 ≠Ω=Ω  and assuming the function 2Ω  to be independent 
of the coordinate a  a description of the Gouyon waves could be obtained. The 
vorticity 2Ω depends on the coordinate b  only and has the following form 

 

                             ( )kbHAkGoyuon
22

2 ω=Ω ,                                         (46) 

 

here ( )kbH  is an arbitrary function. In case of ( ) ( )kbkbH 2exp2−=  the vorticity of 
the square-law Gerstner waves and the Gouyon waves coincide (compare Eqs. (44) 
and (46)). In the considered approximation the Gouyon wave generalize the 
Gerstner wave. From Eq. (22) it follows that the function 

1tψ  is equal to zero only 
when the vorticity of the Gouyon waves is equal to the vorticity of the Gerstner 
wave. Except of this case the average current 

1tψ  will be always present in the 
modulated Gouyon waves. 

Substitution of ratio (46) in Eq. (41) yields the NLS equation for the 
modulated Gouyon wave possessing the square-law in amplitude vorticity: 
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here b~ is a dimensionless vertical coordinate. The coefficient at the nonlinear term 
in the NLS equation varies when taking into account the wave’s vorticity. For the 
Gerstner wave it could be equal to zero as well as for the Gouyon waves when 
satisfying the condition 
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Obviously an infinite number of distributions of the vorticity )~(bH meeting this 
condition are possible. And such distributions represent just a small part of all 
possible ones. Therefore a realization of one of them seems to be improbable. Most 
likely that in the natural conditions distributions of the vorticity with a certain sign 
of 

G
β  are implemented. Its negative values correspond to the defocusing NLS 

equation and positive ones relate to the focusing NLS equation. In the latter case 
the maximal value of the increment as well as the width of the modulation 
instability zone of a uniform train of vortex waves vary depending on the value of 

G
β . 

Eqs. (39) and (47) will be focusing for 0,0
11 ≤< btψ and defocusing if 

0,0
11 ≤> btψ . The case of the sign-variable function 

11tψ requires an additional 
research. From the physical viewpoint the sign of this function is defined by a ratio 
of the velocity of the Stokes drift (45) to the velocity of the current induced by the 
vorticity (the integral term in Eq. (40)). For 0

11 <tψ  the Stokes drift either 
dominates over a vortex current or both of them have the same direction. When 

0
11 >tψ  the vortex current dominates over the counter Stokes drift. In case of the 

sign-variable 
11tψ a ratio between these currents varies at different vertical levels, 

so requiring a direct calculation of 
G

β . 

 
Reviewer 1

 

: It follows from the works by Benny and his group that transverse 
instability is much stronger than the longitudinal one, therefore, the studies of 
strictly longitudinal instabilities are limited interest from the viewpoint of sea 
applications and could be applied only to narrow wave tanks. I’d like this point to 
be mentioned more explicitly in the introduction. This is important since it 
squarely places the derived NLS into the realm of toy models. This does not mean 
that the results cannot be of interest or should not be published, it just means that 
the results might interest a different community. 

Authors

 

: We mentioned Benny’s result in the introduction (lines 41-49). And 
suppose that it is quite enough.  

Reviewer 1: The original element of the work is the asymptotic derivation of the 
NLS in Lagrangian variables. In my view this is complementary to the existing 
Eulerian works and it remains unclear what new features/aspects this might reveal. 

Authors

 

: The original aspect of our study is horizontal non-uniformity of 
vorticity’s distribution. As a consequence, in contrast to Benny and his group and 
Johnson we derived the evolutional equation with variable coefficients. 



 
THE NLS: 
 
Reviewer 1

( )tx,
: In contrast to the NLS in Euler variables where we know that the 

equation describes evolution of the envelope amplitude in the  space and how 
the actual elevation can be expressed as a Stokes-like series in wave amplitude up 
to cubic order, here the NLS in Lagrangian variables is an object which is much 
less straightforward to interpret. Obviously, A  is the envelope amplitude, but what 
are the independent variables ( )ba, ?  
 
Authors

 

: Lagrangian variables are the labels of the fluid particles, nothing more 
over.  

Reviewer 1 ( )yx,: Their link to the standard Eulerian variables  is not known. 
Although, it is straightforward, at least in principle, to provide this link in terms of 
series in ε , the authors choose not to do this. The effectively use the zero order 
approximation where the difference between the Eulerian and Lagrangian 
description vanishes. Then the rationale for using the Lagrangian approach 
apparently disappears. 
 
Authors

 

: We derived a new family of solutions due to Lagrange approach. A 
problem of their Eulerian description has not been solved yet. 

Reviewer 1

 

: I suspect (this is the most interesting point), that if the authors make 
transformation to return to the Euler variables, they will get a higher order NLS 
type equation since the transformation itself is nonlinear (see e.g. F. Nouguier, B. 
Chapron, C-A, Guérin Second-order Lagrangian description of tri-dimensional 
gravity wave interactions, JFM 772, 165-196 (2015) and references therein). 

Authors
 

: That is a special problem. We are ready to discuss it further. 

Reviewer 1

YX ,

: If the authors do not want to go through this straightforward but quite 
time consuming pass I suggested above, then they can handle the comparison 
numerically. The Lagrangian solution yields in terms of tba ,, . Hence the 
surface elevation ( )taY ,0,  and position of a parcel on the free surface, ( )taX ,0, , 
which are found in terms of series, provide implicit function ( )taY ,0,  which can be 
easily plotted for a typical ( )tXY , , say, a breather. This plot has to compared to the 
Eulerian solution with the cubic terms retained. 
 
Authors: That is a good programme, but nobody has calculated the Eulerian 
solution with the cubic terms. All authors are restricted to the derivation of the 
NLS equation. With what solution do we have to compare our results? Or we must 
study our problem in Euler variables too? Besides, we are interested in rogue 



waves in this paper and study the leading order of the solution only. The terms of 
the second and cubic orders are out of our attention.  
 
Reviewer 1

t

: The obtained NLS is presented in an “optical” form (with space rather 
than time chosen as the propagation variable), which is somewhat strange choice 
for a hydrodynamic work. Dependence on  in this context means dependence on 
running variable. I do not understand why the authors choose this form and stick to 
it, they give no clue. They have either argue for their preference or switch to the 
conventional form. 
 
Authors
 

: We added (Sec. 3.3, after Eq. (39), lines 398-400): 

Further it will be shown that variables in Eqs. (38), (39) were chosen in the easiest 
form for their reduction (under the particular assumptions) to the classical NLS 
equation. 
 
 
Reviewer 1

2a
: The authors consider the NLS derivation allowing for horizontal non-

uniformity, which raises a host of questions. How arbitrary the dependence on  
is? What does it mean? Are the 2a  dependencies of these vertical and potential 
parts of the Doppler correction linked to satisfy the Lagrange equations? How 
these dependencies can be specified? 
 
Authors ( )ba ,22Ω: The vorticity  is an arbitrary bounded function. The vertical and 
horizontal parts of the Doppler correction don’t link. It is obvious from the 
comparison of the equations (41) and (44).  
 
 
ROGUE WAVES: 
 
Reviewer 1: As I’ve already mentioned, the strong transverse instability of the 
wavetrains does not allow one to speak seriously about ocean applications. I found 
nothing new and specific adding to our understanding of rogue waves. The fact 
that the NLS is formulated in the Lagrangian variables and only the leading order 
term is used makes this equation equivalent (to this order) to the Eulerian NLS. 
The fact that in the focusing NLS there is modulational instability and that such 
NLS admits breather solutions is known for about thirty years. The term “rogue 
wave” is used in the manuscript as synonymous with the term breather, just 
because the latter satisfy the rogue wave criterion. Although the NLS breather 
solutions are indeed often used as prototypes of rogue waves, this could be done 
only with appropriate explicitly spelled out caveats. The weakest point in the rogue 
wave aspect of the paper is that I don’t see any new insight into the nature of rogue 
waves even in the framework of the chosen toy model. In my view the following 
question might be of interest in the context of rogue waves and would have an 



element of novelty: what is the profile and maximal height of the found 
Akhmediev Lagrangian breather in the Eulerian variables. To answer this question 
the authors have to sum up all orders of their expansion and then perform the 
transformation to the Eulerian variables. The results will differ from the 
corresponding expansion in the Eulerian variables. I re-iterate that it would be of 
interest to discuss this difference. I’ve mentioned already the simplest way to get it. 
 
Authors

 

: We excluded the discussion of the problem of rogue waves from our 
paper. 



 
Answers on the comments of the Reviewer 2 on paper  

  
          The Lagrange form of the nonlinear Schrödinger equation for low 

vorticity waves in deep water: rogue wave aspect 
by 

Anatoly Abrashkin and Efim Pelinovsky 
 
 
Reviewer 2:
First, it suffers a lack of illustration. Indeed, a single figure appears, and intends to show the full 
geometry of the problem. For instance, from the figure, I cannot understand what is this “average 
current” (average in time, in ‘a’ coordinate? In ‘b’ coordinate?) Neither can I see a weak 
vorticity. Thus, the definition of vorticity is confusing. Another way to say the same thing is that 
the Euler to Lagrange coordinate transform is not clear. Is a background vertical flow included? 
Or do we only consider the vertical flow induced by the waves? 

  

 

We are highly appreciated this comment. We shall add the information in the figure. The 
horizontal current 

Authors: 

11tψ  depends on slow coordinates only. So we name it “average current” as the 
average in fast variables 00 ,ta  (see formula (13)).The weak vorticity is set as an arbitrary 
function of  Lagrange coordinates in some region. For example, the vorticity can differ from zero 
inside the bounded region. This case corresponds to the interaction of the wave with the 
localized vortex. We drew a new figure. We concentrate on the studying of horizontal current 
because it is a term of the NLS equation. But in the quadratic approximation there exists the 
vertical flow too. This one is described by the function 2f  depending on the wave amplitude and 
the horizontal current (see the equation (21)). In the Eulerian coordinates the background flow 
has two components of the velocity depending on the variables tyx ,, . 
 

Presentation of the results is a little bit confusing. 
Reviewer 2: 

For instance, it is shown that the absence of vorticity and current, the Akhmediev soliton solution 
in Lagrange coordinates does correspond to the Akhmediev soliton in Euler coordinates, up to 
the second order in epsilon. But then, for quadratic and cubic terms, it is claimed the solutions 
differ. Here could be an interesting result. Could be the authors consider obtaining these 
solutions and present differencies? 
 

That is a good idea, but there are two serious problems. Firstly, it is necessary to get a solution 
up to the third order in Euler coordinates. As we know nobody did that. Secondly, it is necessary 
to transform our solution to the Eulerian form, i.e. to solve the equations for the functions 

Authors: 

32321 ,,,, ffψψψ  and then to express the obtained solutions in Euler variables. This program 
requires the very unwieldy calculations. So we establish that the realization of the reviewer’s 
idea has to be a subject of a new paper.      
 

When considering the Gerstner wave, where does the vorticity profile comes from? Thus, the 
following sentence is disturbing: “From the physical point of view, this is due to the fact that the 
average current induced by the vorticity compensates the stokes drift”. Is it only true when 

Reviewer 2: 



integrated? The result associated is very interesting (finding Gerstner waves not affected by 
modulational instability), but its explanation is not straightforward and should be developed. 
Still, these waves are a very specific case, and this is not clear from the text. 
 
Authors: 
To derive the vorticity of the Gerstner wave Eq. (43) should be substituted in Eq. (6). Then in 
could be found that in the linear approximation the Gerstner wave is potential (

We added in the next (Sec. 4.2, lines 460-489):  

01 =Ω ), but in 
the quadratic approximation it possesses vorticity  

 

             
.2 222

2
kb

Gerstner eAkω−=Ω
                (44)  

 
For this type of the vorticity distribution the first two terms in the parentheses in Eq. (41) neglect 
each other. From the physical point of view this is due to the fact that the average current 
induced by the vorticity compensates the potential drift exactly. The packet of weakly nonlinear 
Gerstner waves in this approximation is not affected by their non-linearity, and the effect of the 
modulation instability for the Gerstner wave is absent.  
 Generally speaking this result is quite obvious. As there are no particle’s drift in the 
Gerstner wave the function 1ψ  equals to zero. So the multiplier of the wave’s amplitude in Eqs. 
(38), (39) may be neglected initially without derivation of the vorticity of the Gerster wave. 
 Let’s consider some particular consequences of the obtained result. For the irrotaional 
( 02 =Ω ) stationary ( constAA == ) wave Eq. (40) for the velocity of the drifting flow takes 
the form 

  
                                         kbekAt

22
11 ωψ −= .                                              (45) 

 
It coincides with the expression for the Stokes drift in the Lagrangian coordinates (in the 
Eulerian variables the profile of the Stokes current could be obtained by the substitution of b  to 
y ). Thus, our result may be interpreted as a compensation of the Stokes's drift by the shear flow 

induced by the Gerstner wave in a square approximation. This conclusion is also fair in the 
"differential" formulation for vorticities.  From Eq. (22) it follows that the vorticity of the Stokes 
drift equals to the vorticity of the Gerstner wave with the inverse sign. 
 

Results of the following part, entitled “Rogue waves”, describe the evolution of the coefficients 
of the NLS equation with the structure of vorticity. In each one of the three cases studied, the 
eventuality of a breather soliton to exist is analyzed. Maybe, the characteristics of these new 
Peregrine breather could be described, by comparison with classical one. This analysis would 
provide an idea of whether or not a vertical flow is amenable to increase the probability of 
occurrence of rogue waves. 

Reviewer 2: 

 
Authors:

 

 We rewrote the Sec. 4. The differences between potential and vortical wave’s solutions 
are formulated in detail (Sec. 4.3; 4.4, lines 513-592): 

In our case 0,0 21 ≠Ω=Ω  and assuming the function 2Ω  to be independent of the 
coordinate a  a description of the Gouyon waves could be obtained. The vorticity 2Ω depends 
on the coordinate b  only and has the following form 

 



                             ( )kbHAkGoyuon
22

2 ω=Ω ,                                         (46) 
 

here ( )kbH  is an arbitrary function. In case of ( ) ( )kbkbH 2exp2−=  the vorticity of the 
square-law Gerstner waves and the Gouyon waves coincide (compare Eqs. (44) and (46)). In the 
considered approximation the Gouyon wave generalize the Gerstner wave. From Eq. (22) it 
follows that the function 

1tψ  is equal to zero only when the vorticity of the Gouyon waves is 

equal to the vorticity of the Gerstner wave. Except of this case the average current 
1tψ  will be 

always present in the modulated Gouyon waves. 
Substitution of ratio (46) in Eq. (41) yields the NLS equation for the modulated Gouyon 

wave possessing the square-law in amplitude vorticity: 
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here b~ is a dimensionless vertical coordinate. The coefficient at the nonlinear term in the NLS 
equation varies when taking into account the wave’s vorticity. For the Gerstner wave it could be 
equal to zero as well as for the Gouyon waves when satisfying the condition 
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Obviously an infinite number of distributions of the vorticity )~(bH meeting this condition are 
possible. And such distributions represent just a small part of all possible ones. Therefore a 
realization of one of them seems to be improbable. Most likely that in the natural conditions 
distributions of the vorticity with a certain sign of 

G
β  are implemented. Its negative values 

correspond to the defocusing NLS equation and positive ones relate to the focusing NLS 
equation. In the latter case the maximal value of the increment as well as the width of the 
modulation instability zone of a uniform train of vortex waves vary depending on the value of 

G
β . 

Eqs. (39) and (47) will be focusing for 0,0
11 ≤< btψ and defocusing if 

0,0
11 ≤> btψ . The case of the sign-variable function 

11tψ requires an additional research. 
From the physical viewpoint the sign of this function is defined by a ratio of the velocity of the 
Stokes drift (45) to the velocity of the current induced by the vorticity (the integral term in Eq. 
(40)). For 0

11 <tψ  the Stokes drift either dominates over a vortex current or both of them have 

the same direction. When 0
11 >tψ  the vortex current dominates over the counter Stokes drift. In 

case of the sign-variable 
11tψ a ratio between these currents varies at different vertical levels, so 

requiring a direct calculation of 
G

β . 

 



4.4 Waves with heterogeneous vorticity distribution in both coordinates 
 
An expression for the vorticity as well as any methods of its definition were not discussed while 
deriving the NLS equation. In Sections 4.2 and 4.3 for the problems on the Gerstner and the 
Gouyon waves the vorticity was set proportional to a square modulus of the wave’s amplitude. 
Note that waves can propagate at the background of some vortex current, for example, at the 
localized vortex. In that case the vorticity could be presented in the form 
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where the function vωϕ  defines the vorticity of the background vortex current and the function 

wAk ϕω 22  defines the vorticity of waves. In the most general case both functions depend on 
the horizontal Lagrangian coordinate as well. Then Eq.(41) takes a form 
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By the following substitution 
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Eq. (49) is reduced to the NLS equation with the non-uniform multiplier for the nonlinear term: 
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Let's consider propagation of the Gouyon wave when 1−==

Gw const ββ  and Eq.(51) turns 
into the classical NLS equation Eq. (47). As it is shown in Sec. 4.3 it describes the modulated 
Gouyon waves. Therefore in view of substitution Eq. (50) one can conclude that the propagation 
of the Gouyon waves at the background of the non-uniform vortex current yields variation of the 
wave number of the carrier wave. For 0=wβ  Eq. (51) describes propagation of a packet of 
potential waves at the background of the non-uniform weakly vortical current. Peculiarities of 
propagation of waves related to the variable wβ  require a special investigation. 
 
 
 
The authors would like to express our sincere thanks to the reviewer 2 for all the valuable 
comments and helpful suggestions. 
 



Dear Editor! 

We send the 
to the paper “The Lagrange form of the nonlinear Schrödinger equation for 
low vorticity waves in deep water” by Anatoly Abrashkin and Efim Pelinovsky: 

LIST OF CHANGES  

1) We changed the title of the manuscript;
2) We rewrote the introduction to exclude a discussion of the problem of

rogue waves;
3) We drew the new figure;
4) We rewrote the Sec. 4;
5) We included a new Sec. 5 which contains the comparative analysis of

the Lagrangian and the Eulerian approaches;
6) We removed all references with the topic of rogue waves.

Sincerely yours,  
Anatoly Abrashkin and Efim Pelinovsky 
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