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Reviewer 2:  
First, it suffers a lack of illustration. Indeed, a single figure appears, and intends to show the full 
geometry of the problem. For instance, from the figure, I cannot understand what is this “average 
current” (average in time, in ‘a’ coordinate? In ‘b’ coordinate?) Neither can I see a weak 
vorticity. Thus, the definition of vorticity is confusing. Another way to say the same thing is that 
the Euler to Lagrange coordinate transform is not clear. Is a background vertical flow included? 
Or do we only consider the vertical flow induced by the waves? 
 
Authors: 
We highly appreciate this comment. We shall add the required information in the figure. The 
horizontal current 

11tψ  depends on slow coordinates only. So we name it “average current” as it 
is average in fast variables 00 ,ta  (see Eq.13). A weak vorticity is set as an arbitrary function of 
the Lagrange coordinates in some region. For example, the vorticity may differ from zero within 
the restricted region. This case corresponds to the interaction of the wave with the localized 
vortex. We plan to illustrate this distribution of the vorticity in the figure. We concentrate on 
studying horizontal current because it is a term of the NLS equation. But in the quadratic 
approximation there exists the vertical flow as well. This one is described by the function 2f  
depending on the wave amplitude and the horizontal current (see Eq.21). In the Eulerian 
coordinates the background flow has two components of the velocity depending on the variables 

tyx ,, . 
 
Reviewer 2: 
Presentation of the results is a little bit confusing. 
For instance, it is shown that the absence of vorticity and current, the Akhmediev soliton solution 
in Lagrange coordinates does correspond to the Akhmediev soliton in Euler coordinates, up to 
the second order in epsilon. But then, for quadratic and cubic terms, it is claimed the solutions 
differ. Here could be an interesting result. Could be the authors consider obtaining these 
solutions and present differences? 
 
Authors: 
That is a good idea, but there are two serious problems. First, it is necessary to get a solution up 
to the third order in the Euler coordinates. As far as we know nobody was able to do that. 
Second, it is necessary to transform our solution to the Eulerian form, i.e. to solve equations for 
the functions 32321 ,,,, ffψψψ  and then to express the obtained solutions in the Euler variables. 
This program requires very unwieldy calculations. So we consider the reviewer’s idea worth 
being realized in a new paper.      
 
Reviewer 2: 
When considering the Gerstner wave, where does the vorticity profile comes from? Thus, the 
following sentence is disturbing: “From the physical point of view, this is due to the fact that the 
average current induced by the vorticity compensates the stokes drift”. Is it only true when 
integrated? The result associated is very interesting (finding Gerstner waves not affected by 



modulational instability), but its explanation is not straightforward and should be developed. 
Still, these waves are a very specific case, and this is not clear from the text. 
 
Authors: 
We agree that a more detailed explanation is necessary. The vorticity profile of the Gerstner 
wave is found by substitution of the solution (Eq. 42) into Eq. 6. This will be mentioned in the 
revised paper. Besides, special attention will be paid to the fact that the first term in Eq. 40 
coincides with the Stokes drift. It is a remarkable fact. In the quadratic approximation the 
vorticity of the Gerstner wave equals modulo and opposite in sign to the vorticity of Stokes drift. 
So these terms mutually neglect each other without integration (see Eq. 22). The Gerstner wave 
is really a very specific case and we shall mention this fact in the revised paper.     
 
Reviewer 2: 
Results of the following part, entitled “Rogue waves”, describe the evolution of the coefficients 
of the NLS equation with the structure of vorticity. In each one of the three cases studied, the 
eventuality of a breather soliton to exist is analyzed. Maybe, the characteristics of these new 
Peregrine breather could be described, by comparison with classical one. This analysis would 
provide an idea of whether or not a vertical flow is amenable to increase the probability of 
occurrence of rogue waves. 
 
Authors: The vorticity leads to variation of the wavelength of the carrier wave but doesn’t affect 
its amplitude. The vertical flow is described by the function 2f  (see Eq. 21). It affects the 
amplitude in the next approximation relatively to the solutions of the NLS equation.  
 
 
The authors would like to express their sincere thanks to Reviewer 2 for all of the valuable 
comments and helpful suggestions. 


