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Abstract. Climate signals are the results of interactions of multiple time scale media such as the atmosphere and ocean in the 

coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction 15 

initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time 

window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are 

sequentially assimilated with their original error scales. Given different time scales of characteristic variability in different 

media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? 

With a simple coupled model that simulates typical scale interactions in the climate system and “twin” CDA experiments, we 20 

address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational 

information that best fits characteristic variability of the medium during the data blending process. Maintaining correct scale 

interactions, the resulted CDA improves the analysis of climate signals greatly. This simple model results provide a guideline 

when the real observations are assimilated into a coupled general circulation model for improving climate analysis and 

prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere 25 

and diurnal in the ocean. 

1 Introduction 

Currently, the interactions between the earth climate system’s major components, such as the atmosphere, ocean, land and 

sea ice, have been reasonably simulated by coupled climate models, which can also give the evaluation of climate changes 

(Randall et al. 2007). However, because of the uncertainties and errors in models (e.g., parameterization is only an 30 

approximation to sub-grid processes and dynamical core is imperfect), models always tend to produce different climate 

features and variability from the real world (e.g. Delworth et al. 2006; Collins et al. 2006; Zhang et al. 2014). Due to the 
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significant importance of preserving the balance and coherence of different model components (or media) during the coupled 

model initialization, data assimilation for state estimation and prediction initialization should be performed within a coupled 

climate model framework (e.g. Chen et al. 1995; Zhang et al. 2007; Chen 2010; Han et al. 2013). The characteristic 

variability time scales of different media within the coupled frameworks are usually different. When the observed data 

included in one or more components of the coupled system framework are assimilated, the observational information will be 5 

able to be transferred among different media through the coupled dynamics so that all media gain consistent and coherent 

adjustments. Such an assimilation procedure is called coupled data assimilation (CDA), which can sustain the nature of 

multiple time-scale interactions during climate estimation and prediction initialization (e.g. Zhang et al. 2007; Sugiura et al. 

2008; Singleton 2011), thus producing better climate analysis and prediction initialization and therefore improve the coupled 

models’ predictability (e.g. Yang et al. 2013). Zhang et al. (2007) developed the first CDA system in a fully coupled general 10 

circulation model, the version 2 of Geophysical Fluid Dynamics Laboratory Coupled Model (GFDL CM2). The National 

Centres for Environmental Prediction (NCEP) also started using coupled models to generate first-guess forecasts for their 

Climate Forecast System Reanalysis (CFSR, Saha et al. 2010). Despite the enormous benefits and demand for CDA, it 

remains both theoretical and technical challenges to implement strong CDA in fully-coupled models, including the 

estimation of the coupled model error covariance matrix and the huge computational costs (Han et al. 2013; Lu et al. 2015; 15 

Liu et al. 2016). 

During the coupled data assimilation process, usually an observational time window (OTW) is used to collect measured data 

in each medium for an assimilation cycle (e.g. Pires et al., 1996; Hunt et al., 2004; Houtekamer and Mitchell, 2005; Laroche 

et al., 2007) to increase observational samples. As in Hunt et al. (2004), we expand the EnKF to include a time window in 

which the observations are treated as the exact assimilation times, even though their times are different in the window. 20 

Namely, we just assume that all the collected data sample the “truth” variation at the assimilation time and will be 

sequentially assimilated with their original error scales. Thus the OTW is applied in a 3-dimensional data assimilation 

fashion rather than a 4-dimensional one. Apparently, while a large OTW provides more observational samples at the 

assimilation time, the assimilation process blends more data from different times and may distort variability being retrieved. 

Given the fact that climate signals are the results of interactions of multiple time scale media, correct variability retrieved for 25 

each medium so as correct scale interaction maintained in CDA is particularly important for climate analysis and prediction 

initialization. In this study we attempt to answer the following two questions: 1) What is the impact of varying OTWs for 

each coupled component within the coupled model framework on the quality of CDA? 2)Based on this impact, does an 

optimal OTW exist so that assimilation fitting has maximum observational information but minimum variability distortion?  

With a simple conceptual coupled climate model and a sequential implementation of the ensemble Kalman filter, this study 30 

first analyses the characteristic variability time scale of each coupled medium and identifies the corresponding optimal OTW. 

Then the impact of optimal OTW on the quality of CDA and its linkage with the corresponding time scale of characteristic 

variability are investigated. The simple coupled model consists of three typical components, including the synoptic 

atmosphere (Lorenz 1963) and the seasonal-interannual slab upper ocean (Zhang et al. 2012) coupling with the decadal deep 
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ocean (Zhang 2011a,b). Although the simple conceptual coupled model does not share the similar complex physics with a 

coupled general circulation model (CGCM), it does reasonably simulate the typical interactions between multiple time-scale 

components in the coupled climate system (see Zhang et al. 2013). The simple coupled model helps us understand the 

essence of the problem by revealing the relationship between the optimal OTWs and corresponding time scales of 

characteristic variability as well as their impact on CDA. The low-cost nature of the simple model also provides convenience 5 

for a large number of CDA experiments with different OTWs in optimal OTW detection. The ensemble Kalman filter (e.g. 

Evensen 1994; 2007; Whitaker and Hamill 2002; Anderson 2001; 2003) used in this study is the ensemble adjustment 

Kalman filter (EAKF, e.g. Anderson 2001; 2003; Zhang and Anderson 2003). Using the EAKF with the simple coupled 

model, we first establish a twin experiment framework. Within such a framework, the degree by which the state estimation 

based on a certain OTW recovers the truth is an assessment of the influence of the OTW on the quality of CDA. By such a 10 

way, the optimal OTW of each medium is detected and the impact of optimal OTWs on CDA is evaluated. We also discuss 

the influence of model bias on optimal OTW through biased twin experiment setting. 

This paper is organized as follows. Section 2 briefly describes the simple conceptual coupled model, the ensemble 

adjustment Kalman filter, as well as the twin experiment framework including perfect and biased settings. With a simplest 

case, we first show the influence of OTWs on assimilation quality and its linkage with the time scale of characteristic 15 

variability in section 3. Then section 4 presents results on detection of the optimal OTWs for different media and the impact 

of optimal OTWs on CDA. The influence of realistic assimilation scenarios on optimal OTWs is discussed in section 5. 

Finally, summary and discussions are given in section 6. 

2 Methodology 

2.1 The model 20 

Due to the complicate physical processes and huge computational cost involved, it is inconvenient to use a CGCM to 

investigate the impact of the different OTWs on the analysis of climate signals so as to detect each coupled medium’s 

optimal OTW. Instead, here we employ a simple coupled “climate” model developed by Zhang (2011a). This simple model 

is based on the Lorenz’s 3-variable chaotic model (Lorenz 1963) that couples with a slab upper ocean (Zhang et al. 2012) 

and a simple pycnocline predictive model (Gnanadesikan 1999). Although very simple with low computational cost, in terms 25 

of multi-scale interaction inducing low-frequency climate signals, this model shares fundamental character with a CGCM 

and it is very suitable for addressing the problem that is concerned here. And for the readers’ convenience, here we simply 

review some key aspects of this conceptual coupled model. With all quantities being given in non-dimensional units, the 

governing equations are:  
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�̇�1 = −σ𝒳1 + σ𝒳2                                                                                   

�̇�2 = −𝒳1𝒳3 + (1 + 𝒞1ω)𝑘𝒳1 − 𝒳2                                                  

�̇�3 = 𝒳1𝒳2 − 𝑏𝒳3                                                                                   

𝒪𝓂ω̇ = 𝒞2𝒳2 + 𝒞3η + 𝒞4ωη − 𝒪𝒹ω + 𝒮𝓂 + 𝒮s cos(2π𝓉 𝒮𝑝𝑑⁄ )

Γη̇ = 𝒞5ω + 𝒞6ωη − 𝒪𝒹η                                                                       

                                                                                          (1) 

where 𝒳1 , 𝒳2and𝒳3  represent the atmospheric model states while  ω  and  η denote those for upper and deep ocean, 

respectively. A dot above the variable denotes the time tendency. The atmosphere model states are the high frequency 

variables while the slab oceanic variable is of a lower frequency. For sustaining the chaotic nature of the atmosphere in 

reality, the standard values of the parameters including in the atmospheric component (σ, 𝑘 and 𝑏) are set as 9.95,28 and 8/3, 5 

respectively. In the equation of ω, the parameters 𝒪𝒹 and 𝒪𝓂  denote the damping coefficient and heat capacity of the upper 

slab ocean, respectively. Due to the lower frequency of ω than that of the model states in the atmospheric components, the 

time scale of the upper slab ocean variable must be much slower than that of the atmospheric model states. Thus the damping 

rate parameter (𝒪𝒹) should be much smaller than the heat capacity, namely, 𝒪𝒹 ≪ 𝒪𝓂. Here following Lorenz’s idea (Lorenz 

1963), the atmospheric time scale is defined as the typical time by which the atmosphere goes through an attractive lob as 10 

one non-dimensional time unit (TU) ~O(1). We set the parameters (𝒪𝓂 , 𝒪𝒹) as (10,1), which show that the slab oceanic 

variable’s time scale is ~O(10), i.e. 10 times of that of the atmospheric model states. While the 𝒮𝓂 +

𝒮s cos(2π𝓉 𝒮pd⁄ ) represents the external forcing, the parameter 𝒮pd denoting the model seasonal cycle is set as 10 to make 

sure that the period of the external forcing is comparable with the upper slab ocean variables’ time scale. In this simple 

coupled model, the seasonal cycle is set as 10TUs and thus a model year (decade) equals to 10 (100) TUs. And the 15 

parameter 𝒮𝑠 and 𝒮𝓂, denoting the magnitudes of the external forcing’s seasonal cycle and annual mean, are insensitive to 

the coupled model and set as (1,10). The coefficients 𝒞1and 𝒞2 in the equations of 𝒳2and ω are used to implement the 

coupling between the fast atmosphere model states and the upper slab oceanic variable and set as (0.1,1), with that 𝒞1denotes 

the upper slab oceanic forcing on the atmosphere while 𝒞2 denotes the atmosphere forcing on the ocean. In addition, 𝒞3 and 

𝒞4represent the deep oceanic forcing and the nonlinear interaction between the upper and deep ocean. In order to make sure 20 

that the atmospheric forcing plays a dominant role in the upper slab ocean, the magnitudes of 𝒞3 and 𝒞4should be lower than 

that of 𝒞2and both set as 0.01. Same as in Zhang (2011a), the deep ocean model state variable η, denoting the anomaly of 

pycnocline depth in the deep ocean, is derived from the two-term balance model of the zonal-time mean pycnocline 

(Gnanadesikan, 1999). Within the equation of η, the parameter Γ keeps as a constant and the ratio of Γ and 𝒪𝒹 denotes the 

deep ocean variable’s time scale. The time scale of deep ocean variable is longer than that of slab ocean, defined by the 25 

relative magnitude of Γ to 𝒪𝒹  (Γ is set as 100). Similar to the equation of ω, the coefficients 𝒞5 and 𝒞6denote the linear slab 

oceanic forcing and the nonlinear interaction between upper and deep ocean. Also for guaranteeing that the linear interaction 

is dominant and the nonlinear interaction is weaker than that in the deep ocean model, 𝒞5 and 𝒞6 are set as (1, 0.001). In 

summary, in this study the standard values of the parameters including in this simple model 
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(σ, 𝑘, 𝑏, 𝒞1, 𝒞2, 𝒪𝒹 , 𝒪𝓂 , 𝒮𝓂 , 𝒮𝑠, 𝒮𝑝𝑑, Γ, 𝒞3, 𝒞4, 𝒞5, 𝒞6)  are set as (9.95,28,8/3,0.1,1,1,10,10,1,10,100,0.01,0.01,1,0.001) (e.g., 

Zhang 2011a,b; Zhang et al., 2012; Han et al., 2013,2014). 

As the study of Han et al. (2014), the fourth-order Runge-Kutta time-differencing scheme is used in this paper to resolve this 

simple coupled model and the time step equals to 0.01TU (1 TU=100 time steps). 

Zhang (2011b) illustrated that, given the model parameters described above, the constructed simple coupled model can 5 

effectively simulate a fundamental feature of the real world climate system in which different time scales interact with each 

other to develop climate signals. Namely, the synoptic to decadal time-scale signals are produced by the interactions between 

the transient atmosphere attractor, the slow slab ocean and the even-slower deep ocean (see Zhang 2011a; Han et al. 2014). 

Again, although the simple coupled model does not have complex physics and cannot consider the issue of impact of 

localization and imbalance as in a CGCM, it can help us investigate the fundamental issue we want to address here more 10 

directly and clearly. 

2.2 Ensemble coupled data assimilation 

Following Zhang (2011a), during the state estimation, the error statistics evaluated from ensemble model integrations, such 

as the error covariance between model states, will be used in an ensemble filter to extract observational information to adjust 

the model states (e.g., Evensen, 1994, 2007; Anderson, 2001; Hamill et al., 2001; Zhang, 2011a,b; Zhang et al., 2012; Han et 15 

al., 2014). In this study, a derivative of Kalman filter (Kalman 1960; Kalman and Bucy 1961) called ensemble adjustment 

Kalman Filter (EAKF, Anderson 2001; 2003; Zhang and Anderson 2003; Zhang et al. 2007) which is a sequential 

implementation of ensemble Kalman Filter under an “adjustment” idea is used to implement the CDA scheme. The 

assumption of independence of observational error allows the EAKF to sequentially assimilate observations into 

corresponding model states (Zhang and Anderson 2003; Zhang et al. 2007). While the sequential implementation provides 20 

much computation convenience for data assimilation, the EAKF maintains much of the non-linearity of background flows as 

possible (Anderson 2001; 2003; Zhang and Anderson 2003). 

Based on the two-step implementation of EAKF scheme (Anderson, 2001; 2003), the observational increment at an 

observation location is first computed. The observation is denoted as 𝒴 at time 𝑡 (simply 𝒴 instead of 𝒴𝑡) which has the 

observation value 𝒴o and standard deviation σ𝑦
o  (assumed to be Gaussian). Firstly, the reshaping of the model ensemble at 25 

the observation location,  ∆𝒴′ is formulated as: 

∆𝒴𝑖
′ =

∆𝒴𝑖
𝑝

√1 + 𝑟𝑘
2

  𝑎𝑛𝑑 𝑟𝑘 =
σ𝑘,𝑘

p

σ𝑘,𝑘
o                                                                                                                                                                   (2) 

where 𝑖  represent the ensemble index and 𝑘  denotes the observation index. σ𝑘,𝑘
o  and σ𝑘,𝑘

p
are the standard deviation of 

observation error and its prior estimated ensemble standard deviation, respectively, while 𝑟𝑘 is the corresponding ratio. If 

𝑟𝑘 > 1, the ensemble spread is largely reduced by the observation; otherwise, the ensemble remains close to the prior. The 

shift of the ensemble mean induced by the observation is computed by: 30 
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�̅�𝒰 =
�̅�p

1 + 𝑟𝑘
2 +

𝒴o 

1 + 𝑟𝑘
−2                                                                                                                                                                                 (3) 

We can see that if the prior estimated ensemble standard deviation is greater than that of the observation error, the ensemble 

mean shifts toward the observation value; otherwise the ensemble mean remains close to the prior model ensemble mean �̅�p. 

Then the observational increment induced by the observation value 𝒴o for the 𝑖𝑡ℎ ensemble member at the 𝑘𝑡ℎ observation 

location is computed as: 

∆𝒴𝑘,𝑖
𝑜 = (�̅�𝑘

𝒰 + ∆𝒴𝑘,𝑖
′ ) − 𝒴𝑘,𝒾

𝒫 = (
�̅�𝑘

p

1 + 𝑟𝑘
2 +

𝒴𝑘
o 

1 + 𝑟𝑘
−2 +

∆𝒴𝑘,𝑖
𝑝

√1 + 𝑟𝑘
2

 ) − 𝒴𝑘,𝒾
𝒫                                                                                         (4) 

Once we get the observational increment at the observation location, then a least square fit is used to distribute the increment 5 

over the relevant grid points impacted by the observation using the covariance between the grid index 𝑗 and the observation 

𝑘, 𝑐𝑗,𝑘
𝑝

, using: 

∆𝒵𝑖,𝑗 =
𝑐𝑗,𝑘

𝑝

(σ𝑘,𝑘
p

)2
∆𝒴𝑘,𝑖

𝑜 =
𝐶𝑜𝑣(𝒵𝑗 ,  𝒴𝑘)

(σ𝑘,𝑘
p

)2
∆𝒴𝑘,𝑖

𝑜                                                                                                                                             (5)  

Where 𝒵 represents a certain state variable at the grid point 𝑗. The term ∆𝒵𝑖,𝑗  is the contribution of the 𝑘𝑡ℎ observation to 𝑖𝑡ℎ 

ensemble member of the model state estimated at grid point 𝑗. When an observation is available, the Eq.(5) will be applied to 

implement CDA for state estimation in a straight forward manner (Zhang et al., 2007; Zhang 2011a;). 10 

Although many sophisticated inflation algorithms (e.g. Anderson 2007;2009; Li et al. 2009; Miyoshi 2011) exist for 

atmosphere data assimilation, the inflation scheme for a coupled model is a new subject due to the multiple time-scale nature 

of the system. Furthermore, trial-and-error experiments show that the usual form of inflation (e.g. only inflate the 

atmosphere model states or inflate all the model states equally) will lead the analysis to become unstable. Thus, in this paper, 

for simplicity and computational convenience as well as convenience for comparison, no inflation is used in our assimilation 15 

experiments, just as in Han et al. (2014). 

2.3 Perfect and biased twin experiment setups 

In this study, a perfect twin experiment framework and a biased twin experiment framework are designed, respectively. In 

both perfect and biased twin experiments, a “truth” model using the standard parameter values listed in section 2.1 is used to 

generate the “true” solution of the model states and produce the observations sampling the “truth”. Starting from the initial 20 

condition (0,1,0,0,0), the “truth” model is firstly integrated forward 10000TUs (i.e. 1000 model years) for sufficient spin-up 

and then integrated forward for another 10000TUs to generates the “truth” model states. The observations are produced by 

sampling the “truth” solution of the model states at an observational interval and superimposing with a white noise 

simulating the observational errors. As schematically shown in Fig. 1, all the observational intervals using in this study are 

assumed to be 1 time step (0.01TU). Although in the real climate system, the oceanic observations are usually available less 25 

frequently than those in the atmosphere (namely the oceanic observation interval is larger than that we set here), for this 
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proof-of-concept study we will set the time interval of the oceanic observations as small as possible. The standard deviations 

of the observational errors are 2 for 𝒳1, 𝒳2, 𝒳3 and 0.5 for ω. Also, although the deep ocean lacks observations in the real 

world, we also conduct some observation simulation experiments for η (the standard deviations of the observational error is 

0.06 for η) in this conceptual study. 

We first want to learn some basics from the perfect experiment which represents an idealized data assimilation regime. In the 5 

perfect twin experiment framework, the assimilation model also uses the standard parameter values, but starts from different 

initial conditions. Using the Gaussian white noises with the same standard deviation as observational errors (2 for 𝒳1, 𝒳2 and 

𝒳3, 0.5 for ω and 0.06 for η) added on the model states at the different time in spin-up run to form the ensemble initial 

conditions for each ensemble filtering data assimilation experiment. Each assimilation experiment is integrated for 

10000TUs and only the data obtained in the last 5000TUs is used to conduct error statistics for evaluation. We choose the 10 

model states between 9000TUs and 10000TUs during the spin-up at an interval of 50TUs being perturbed to form 20 cases 

of ensemble initial conditions for each assimilation experiment analysed in section 4 and 5. In this way, we attempt to 

minimize the dependence of the results of optimal OTWs on ensemble initial states. Then each assimilation experiment will 

be repeated for 20 times starting from these 20 independent ensemble initial conditions and we will analyse the mean value 

and uncertainty evaluated from these 20 cases. 15 

Then we use the biased experiment setting to simulate the real world scenario. The biased twin experiment framework is 

similar as the perfect one except that the assimilation model in the biased twin experiment framework has a systematic 

discrepancy from the observations. Thus, in the biased twin experiment framework, the parameters included in the 

assimilation model will have 10% errors relative to the standard values. The errors in the parameters will be the only model 

error source. 20 

Figure. 1 also illustrates the assimilation update intervals (the assimilation intervals are 5 time steps for atmosphere, 20 time 

steps for slab ocean in all assimilation experiments and 100 time steps for deep ocean if using the η observations) as well as 

the length of observational time window (OTW), which will be used throughout the study. In addition, the coupling strength 

between the atmosphere and ocean may have influences on the characteristic variability time scale of each coupled medium, 

so as on the optimal OTW. We discuss this issue through changing the values of coupling coefficients 𝒞1 and 𝒞2. In this 25 

simple model case, the model stability is sensitive to coupling coefficient 𝒞1(Zhang et al., 2012) and changing 𝐶1only 

influences on the chaotic component, so here we just change 𝒞2 to investigate the impact of coupling coefficient between the 

atmosphere and upper ocean on the optimal OTWs. As in Zhang and Anderson (2003), an ensemble size of 20 is applied in 

all assimilation experiments in this study. 
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3 The length of observational time window (OTW) and retrieval of characteristic variability 

3.1 Influence of OTW on the accuracy of CDA 

In order to exhibit the influence of OTW on the quality of climate analysis, we show 3 simple assimilation experiments (the 

time series of 𝛚′𝐬 absolute errors) in Fig. 2: 1) standard CDA (green) (assimilating the observations rights at the analysis 

times without any atmospheric/oceanic OTW); 2) OCN-OTW(5) CDA (red) (assimilating all 11 ocean observations in an 5 

oceanic OTW with a half-width of 5, defined as the length of the OTW hereafter, but no atmospheric OTW is considered) 

and 3) OCN-OTW(100) CDA (assimilating all 201 ocean observations in an oceanic OTW with the length of 100, but no 

atmospheric OTW is considered). Three assimilation experiments above are all conducted using the perfect model setting (all 

the parameters use their standard values) and the uni-variate adjustment scheme. And the atmospheric and oceanic update 

intervals are 0.05 TU and 0.2 TU, respectively. While the standard CDA does NOT use the atmospheric and oceanic OTWs 10 

and only assimilates the observations right at the analysis time, the OCN-OTW CDA incorporates all the valid observations 

collected in the oceanic OTW. All three assimilation experiments above do not use an atmospheric OTW.   

From Fig. 2, we can see that a small OCN-OTW (total 11 observations in the oceanic OTW) can make a much better ocean 

analysis than the standard CDA (comparing the red line with the green line). We can understand that this is because an OTW 

can provide more observational information thus enhancing the observational constraint so as to improve the accuracy of 15 

climate analysis. However, comparing the blue line to the green/red line, it is clear that a too large OTW degrades the quality 

of the ocean analysis. The results of these simple assimilation experiments tell us, if an appropriate OTW is used, we can 

gain optimal climate analysis. How can we determine such an optimal OTW? Next, starting from analysing characteristic 

variability of each coupled medium, we will discuss the methodology how to determine an optimal OTW for each medium in 

a coupled climate system. 20 

3.2 The time scale of characteristic variability and optimal OTW 

The key to improve the accuracy of climate analysis in CDA is accurately recovering characteristic variability of different 

media in the coupled system. Thus we can assume that the length of optimal OTW for each medium will have some 

relationship with the corresponding characteristic variability time scale. Then, we should first analyse the time scale of 

characteristic variability in each medium. 25 

Fig. 3 presents the power spectrum of  𝓧𝟐 , 𝛚 and 𝛈 based on the model states with a 4800-TU length (totally 480000 data) 

after the spin-up described in section 2.3. From Fig. 3, we learned that in this simple model, the characteristic variability 

time scales of atmosphere (𝒳2), upper ocean (ω) and deep ocean (η) are about 1-2 TUs (1-2 model months), 50-100 TUs (5-

10 model years) and 500 TUs (5 model decades), respectively. Namely, the characteristic variability time scale of the slab 

ocean is much larger than that of the atmosphere but smaller than that of the deep ocean.  30 

An optimal OTW aims to provide maximal observational information that best samples characteristic variability of that 

medium during the data blending process. Thus the length of the optimal OTW should be smaller than the corresponding 
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characteristic variability time scale, which means that the optimal OTW in the atmosphere must be much smaller than 1 TU 

(100 time steps), and in the ocean, the optimal OTW must be much smaller than 50 TUs (5000 time steps). If we will take 

observations for η, the optimal OTW for η must be much smaller than 500 TUs (50000 time steps).  From Fig. 3, we also see 

that the characteristic variability time scales of different coupled media are a little larger than the corresponding ones set in 

the Eq.(1). This is owing to the strong nonlinearity and smoothness of the fourth-order Runge-Kutta time-differencing 5 

scheme that prolongs the characteristic variability time scales of the simple coupled model. But they do not change the 

essence of the problem we address in this study. Given different time scales of characteristic variability in different media, in 

the following section we will further detect the optimal OTWs based on the corresponding characteristic variability time 

scales and examine their impact on the quality of climate analysis in CDA. 

4 Detection of the optimal observational time window 10 

In this section, with the perfect model framework described in section 2.3, we first conduct a series of CDA experiments 

with different ATM-OTWs and different OCN-OTWs to detect the optimal OTW for each medium. The assimilation scheme 

is the simple uni-variate adjustment scheme serving as a proof-of-concept study. To eliminate the dependency of results on 

initial states, each experiment is repeated for 20 independent initial conditions described in section 2.2. Then the mean value 

of 20 case RMSEs and the spread are plotted in Fig. 4. 15 

Fig. 4a shows that the optimal ATM-OTW is 1, i.e., the optimal ATM-OTW includes only 3 atmosphere observations, with 

which the assimilation produces the lowest RMSE of the atmosphere and the smallest spread (In this study each assimilation 

experiment will be repeated for 20 times starting from 20 different independent initial ensemble conditions. Here the spread 

just represents the standard deviation of these 20 cases. Thus it will be smallest when using the optimal OTW.). In these 

experiments for detecting the optimal ATM-OTW, the ocean assimilation is kept in the standard setting (i.e. no OTW, 0.2 TU 20 

update interval). Then we keep the ATM-OTW as 1 and change the length of OCN-OTW to produce Fig. 4b.  

From Fig. 4b, we can see that the optimal OCN-OTW is about 10 (i.e., each OTW includes total 21 observations), with 

which the lowest ω-RMSE and the smallest RMSE spread are produced. Compared to the case of standard CDA (denoted as 

CDA_NOTW), the uses of optimal ATM-OTW and OCN-OTW make the RMSEs of 𝒳1,2,3and ω significantly reduced. 

When the RMSE of ω has a distinguishable sensitive variation with respect to OCN-OTWs, the RMSE of 𝒳 (Because we 25 

just choose the optimal OCN-OTW from the figure of ω-RMSE. Thus in this study the variation of 𝒳-RMSEs in the OCN-

OTW space is not shown.) does not show such a sensitivity to the optimal OCN-OTW. This means that in this simple system, 

due to the strong nonlinearity and chaotic nature of the “atmosphere”, the improved accuracy for ω  from optimal 

observational constraint is not sufficient to impact the “atmosphere” (this point will be expended in section 5.3). Similar to 

the characteristic variability time scale of the slab ocean vs. that of the “atmosphere” shown by Fig. 3, the optimal OCN-30 

OTW is much larger than that of ATM-OTW.  
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To further understand the relationship between the optimal OTW and characteristic variability time scale, we also examine 

the η −RMSEs in the space of η-OTWs. The assimilation interval of the pycnocline depth is set as 1 TU (100 time steps), 

which is much larger than that of the slab ocean. When we change the η-OTW, the optimal ATM-OTW and OCN-OTW 

detected from Figs. 4ab are used. As shown in Fig. 4c, the optimal η-OTW is about 100 (i.e. total 201 observations), which 

is much larger than that of OCN-OTW and smaller than the characteristic variability time scale of the deep ocean pycnocline 5 

depth. With the optimal η-OTW, the RMSE of η is reduced about 77.4% from the level of the CDA_NOTW. 

We also check the variation of the 20-case mean ensemble spread in the space of OTWs as shown in Fig. 5. The mean and 

standard deviation of the ensemble spreads of 𝒳1,2,3 and ω (the uncertainty of the state estimation in each assimilation 

experiment is shown as the blue shadow in Fig. 5) gradually decrease when the ATM-OTW and OCN-OTW become larger. 

When the OTWs are set too large (here the ATM-OTW and OCN-OTW are greater than 20 and 250, respectively), the 10 

ensemble spreads of 𝒳1,2,3 and ω decrease dramatically. While increasing the length of the OTWs, more observations will be 

assimilated into the corresponding model states, which can function as a smoother. The larger the OTW is, the stronger the 

smoother will be. Under this circumstance, the too strong smoother will distort characteristic variability of the model states, 

which explains the green line of Fig. 2. Also from Fig. 4 and Fig. 5, we can see that the mean of ensemble spread is 

significantly smaller than that of the corresponding RMSE. It is owing to that no inflation scheme is applied in this study. 15 

And the statistics for evaluation are conducted from the data obtained in last 5000TUs. Thus after first 5000TUs’ 

assimilation in each assimilation experiment, the ensemble spreads of model states have been greatly reduced due to no 

inflation. Then the mean ensemble spread is significantly smaller than the mean RMSE. 

To understand the essence of optimal OTWs, we show the auto-correlation for each model state and marks the time 

correlation coefficients at the time scales of optimal OTWs for 𝒳2 (panel a), ω (panel b) and η (panel c) detected from Fig. 4 20 

in Fig. 6. The result is the mean of 20 cases. In each case, the number of data is 10000 (steps) (100TUs), which are chosen 

from the period of 5000TUs to 9000TUs in the truth run after spin-up. From Fig. 6 we can see that all auto-correlation at the 

optimal OTW length are located around 0.995. This means that the observations including in an optimal OTW are extremely 

highly correlated with the model state at the analysis time. This can be understood since in this sequential assimilation 

scheme all the observations including in an OTW are assumed to be sampled at the analysis time so that the difference 25 

among them must be in a negligible arrange. Under such a circumstance, the optimal OTWs provide maximal observational 

information that best fits characteristic variability and minimizes the analysis error. 

5 Influences of realistic assimilation scenarios on optimal OTW 

In this section, we first show the impact of the multi-variate adjustment scheme on the optimal OTWs in perfect model 

setting. Then we discuss the influence of model bias through a biased model framework. We will also investigate the impact 30 

of coupling strength on the optimal OTWs. 
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5.1 Influence of multi-variate adjustment on optimal OTWs 

While the experiments with the uni-variate adjustment scheme provide us a direct understanding of the influence of the 

OTWs on CDA, we want to check whether or not it also applies to the multi-variate adjustment scheme. So we repeat the 

experiments described in section 4 but with the multi-variate adjustment scheme. The results are shown in Fig. 7. Here the 

multi-variate adjustment scheme is only limited to the atmospheric observations (i.e., only the cross-covariances among  5 

𝒳1 , 𝒳2 , 𝒳3  are used) (as indicated in Han et al. 2013, the multi-variate adjustment scheme using the coupling cross-

covariance between different coupled media involves complex scale interactions and may complicate the investigation of the 

problem we are addressing here). The results shown in Fig. 7 are similar with Fig. 4, suggesting the multi-variate adjustment 

scheme has little influence on the optimal OTWs, since it does not change the characteristic variability time scales 

(especially in this simple model).  10 

The perfect experiment framework provides a direct guideline for the relationship between the optimal OTW and the 

corresponding characteristic variability time scale. However, in reality, the numerical model has errors and is biased with the 

observation. It is necessary to investigate the influence of model bias on optimal OTWs so as on the quality of CDA. 

5.2 Influence of model bias on optimal OTWs 

With the biased model experiment framework described in section 2.3, we repeat all the experiments above for detection of 15 

the optimal OTWs. The results are shown in Fig. 8. Compared to the results in the perfect model setting, the results in the 

biased model setting have 2 differences. First, the optimal ATM-OTW and OCN-OTW are larger than their counterparts in 

the perfect model setting, becoming 3 and 20 (namely the total observations are 7 and 41, respectively). Second, the RMSE 

curves in the space of OTWs show more concavity and sensitive variation. This is more distinguishable in the curve of ω-

RMSEs in the OCN-OTW space. All these phenomena can be explained by the influence of model bias on the assimilation 20 

quality. On the one hand, due to the existence of model bias, the assimilation not only needs observations to fit the observed 

variability but also needs observations to reduce the mean discrepancy between the model and observation. This requires 

stronger observational constraints. An optimal OTW that makes the smallest RMSE of model states must include more 

observed data. On the other hand, the forecast ensemble in a biased model underestimates the forecast error, which results in 

that the EAKF under-weighs the observations. Therefore the optimal OTWs are larger than those in the perfect experiment 25 

case that the observations including in the optimal OTWs will be assimilated for multiple times, which results in improving 

of filter performance. The test experiment for the optimal  η-OTW is also consistent with this point (in Fig. 8c): the 

optimal η-OTW in the biased model setting is larger than that in the perfect model setting. Then we also investigate the 

influence of OTWs on the quality of CDA with the multi-variate adjustment scheme in the biased experiment framework 

(not shown here). Results are the same as the perfect model setting case, i.e., multi-variate adjustment scheme does not 30 

change the optimal OTWs.  
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Comparing the results from two experiment frameworks, we can see that regardless of perfect or biased model setting used 

in the assimilation experiments, the optimal OTW must be associated with the corresponding characteristic variability time 

scale in the medium. It is clear that while using observations in an OTW increases observational information, a too large 

OTW can distort the characteristic variability of coupled media during the information blending process. Therefore choosing 

an optimal OTW that is much smaller than the medium’s characteristic variability time scale is very important. The simple 5 

model results suggest that the length of an optimal OTW is about 1-5% of the medium characteristic time scale, with which 

characteristic variability of the medium can be retrieved most accurately. 

In this study, the OTW validates the observations in a time window to the analysis time and all the observations including in 

the OTW are sequentially assimilated with their original error scales. Another general approach is to assimilate the average 

of the observations including in the OTW but the observational errors decrease as 1/√𝑁 of their original error scales (𝑁 10 

represents the number of the observations including in the OTW). From the comparison of these two methods (not shown), 

we can see that the results obtained by them is almost same. From the perspective of the calculation process of the EAKF 

method, owing to that no inflation scheme was used, after many assimilation steps the ensemble spreads of the models states 

have been greatly reduced and significantly smaller than the corresponding observational error scales. And the prior 

ensemble member will be very close to the prior ensemble mean. Thus the analysis adjustments obtained by these two 15 

methods will be almost same. It is worth mentioning that although the resulted RMSEs obtained by these two assimilation 

schemes will be different when using the suitable inflation schemes, the lengths of the optimal OTWs are still same and the 

essence of this study still firms and does not change.  

Also among above assimilation experiments in this study, we have not considered the temporal offset induced by the 

difference between the time of observations in the OTW and the analysis time. Here we can use the de-correlation 20 

coefficients to weight the observations including in the OTW and avoid overweighting them. The comparison of these two 

assimilation approaches (non-weighted and weighted) have been conducted (the results are not shown). From the comparison 

we learn that the lengths of the optimal OTWs obtained by these two assimilation schemes are similar except that the 

RMSEs in the weighted observation experiment will be lower than that in the non-weighted one when using longer OTWs 

(when the length of ATM-OTW is greater than 4 and/or that of the OCN-OTW is larger than 50). This is owing to the high 25 

correlation between the observation included in the optimal OTWs and model states at the analysis time (exceed 0.995). 

Thus the influence of the temporal offset can be ignored and the results obtained by these two schemes shall be almost same 

when using the shorter OTWs. And when we use the longer ones, the correlation will decrease and influence of the temporal 

offsets will be obvious that the results of the weighted observation experiment will be better. For the CDA systems in the 

CGCMs, owing to the complex physics and dynamics, the influence of the time offsets will be obvious and the weights of 30 

the observations will be very necessary. But from this simple model case, we can see that whether or not using the weighted 

observations, the relationship between the characteristic variability time scales and the optimal OTWs will be firm and the 

essence of this study is established. 
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5.3 Influence of coupling strength on optimal OTWs 

Changing coupling strength (controlled by the coupling coefficients 𝒞1and 𝒞2in this case) between the atmosphere and upper 

ocean may have some influence on the characteristic variability time scales of coupled media, so as on the optimal OTWs. 

Test experiments show that changing the coupling coefficient 𝒞1 has little influence on the characteristic variability time 

scales of 𝒳1,2,3 and ω. This is because the characteristic time scale of 𝒳 is determined by the chaotic nature of the Lorenz 5 

equations, not by the oceanic forcing associated with the coupling coefficient  𝒞1 . Therefore, here we just change 𝒞2  to 

investigate the coupling coefficient between the atmosphere and upper ocean on the optimal OTW of ω.  Setting the values 

of  𝒞2 as 1.5, 1.25, 1.0, 0.8, 0.5 and 0.1 and keeping 𝒞1 as 0.1, we repeat all the biased CDA experiments with the multi-

variate adjustment scheme. The results are shown in Fig. 9, which presents the power spectrum of  𝒳2 and ω (panel a and b) 

of six cases above based on the model states between 5000 TUs and 9800 TUs, as well as the time series of model states 10 

between 5000 TUs and 5100 TUs (panel c) after the spin-up described in section 2.3. We can see that changing 𝒞2 does not 

influence on the characteristic variability time scale of the atmosphere but strongly influences on variability of the slab ocean. 

From the equation of ω, the characteristic variability time scale of ω is determined by the combination of the atmospheric 

forcing and the periodic external forcing. When 𝒞2 is small, the forcing of atmosphere to ocean is weak and then the periodic 

external forcing plays a dominant role on determining the characteristic variability time scale of ocean component. 15 

Then we examine the difference of the optimal OTW of ω in the six cases above, as shown in Fig. 10. The results show that 

changing 𝒞2 does not have any influence on the optimal ATM-OTW (not shown). From Panels a and b we can see that when 

𝒞2 is smaller, the optimal OCN-OTW is larger. This can be explained by the increasing role of the periodic external forcing 

on determining variability of the slab ocean, for which data assimilation needs more observational information to recover the 

periodic variation of ω, determined by the time scale defined by 𝒮𝑝𝑑(10 TU). When 𝒞2 is larger than 1.0, changing it has 20 

little influence on characteristic variability of the ω, so as on the optimal OCN-OTW. 

On the one hand these experiments can further illustrate the idea that a close relationship between the length of the optimal 

OTW and the corresponding characteristic variability time scale exists. On the other hand, for a realistic CDA system, the 

coupling physics could be very complicate and affected by many factors. The results of this simple model give the insights 

that we can only consider the factors which have obvious influence on the characteristic variability time scales when 25 

determining the length of the optimal OTWs for a realistic CDA system. In this way the process of determining the optimal 

OTWs in a realistic CDA system can be greatly simplified and make it possible to apply the method of using the optimal 

OTWs into the realistic CDA system. 

6 Summary and discussions 

With a simple conceptual climate model and the EAKF method, the impact of OTWs on the quality of CDA has been 30 

investigated in this study. This simple conceptual coupled model consists of a synoptic atmosphere (Lorenz 1963) and 
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seasonal-interannual slab upper ocean (Zhang et al. 2012) coupling with a decadal deep ocean (Zhang 2011a,b), and 

reasonably simulates the typical interactions between  multiple time-scale components in the climate system. Determined 

from the characteristic variability time scale in each coupled medium, an optimal OTW provides maximal observational 

information to best fit characteristic variability of the medium during the data blending process. With correct scale 

interactions within the coupled system, CDA can recover the climate signals most accurately through incorporating all 5 

observations in the optimal OTWs into the coupled model. Although in an idealized and simple model circumstance, the 

conclusion addressing best fitting characteristic variability in each medium with the optimal OTW is comprehensive and 

therefore provides a guideline for improving climate analysis and prediction initialization when real observations are 

assimilated into a CGCM. For example, learned from the simple model results, we may consider to improve the quality of 

climate analysis and prediction initialization through accurately recovering some important characteristic variability in the 10 

atmosphere (sub-diurnal variations, for instance) and ocean (diurnal cycle in the tropical oceans, for instance). 

However, the current work only can serve as a proof-of-concept study. Although CDA with the optimal OTWs has shown 

promising improvement in this simple model, serious challenges still exist for detecting optimal OTWs in the real world with 

a CGCM for improving climate analysis and predictions. First, the characteristic variability time scales in different media of 

the real world are complex and it remains great challenges to identify the characteristic variability of the different component 15 

models and the real atmosphere, upper and deep ocean, which need to be further studied. Also in a real ocean model, the 

upper and deep ocean is inseparable, which bring some troubles to use different OTWs for different parts of the same ocean 

model. Second, due to model biases, characteristic variability in a CGCM may be different from the real world. The 

combination of variability of the real world and that of the model may further complicate the problem. Therefore, model bias 

and its influence on model variability need to be thoroughly analysed before an optimal OTW is determined. Thirdly, the 20 

coupling physics between different coupled components are very complicate and impacted by many factors for a realistic 

CDA system. Even though we only consider the factors which will obviously impact the characteristic variability time scales 

when determining the length of OTWs for different coupled components, it remains as heavy workload. In addition, in this 

study we assume that all observations in the OTWs have equal weighting to contribute to the observational constraint. In the 

real observation case, the observation far away from the assimilation time should have less contribution to the state 25 

estimation at the assimilation time. How to take the time correlation into account in a sequential algorithm needs to be 

studied before implementing optimal OTWs into the assimilation with CGCM and real observations. 
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Figure 1: The schematic for the assimilation interval, the length of observational time window (OTW) as well as observational interval in 

terms of the model integration time step. Here L represents the time steps at one side of OTW. For example, OCN-OTW (L) in the content 

stands for an ocean observational time window with total observations of 2L+1.  
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Figure 2: Time series of the absolute errors of the slab ocean variable (𝛚) in 3 assimilation experiments based on the model states between 

9100 TUs and 9110 TUs assimilation results in the perfect model experiment framework with the uni-variate adjustment scheme. Green – 

CDA control with the standard update intervals of 0.05 TU for 𝓧𝟏,𝟐,𝟑 and 0.2 TU for 𝛚; Red – CDA with an ocean observational time 

window (OCN-OTW) of 5 time steps [OCN-OTW (5)]; Blue – CDA with OCN-OTW (100).  10 
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Figure 3: The power spectrum (green) of a) 𝓧𝟐  b) 𝛚, c) 𝛈 based on the model states between 5000TUs and 9800TUs integrations after 

the spin-up which integrates for 10000TUs from the initial condition (0,1,0,0,0) with respect to the frequency, with 95% statistics 

significance (red).  

 5 

  
Figure 4: Variations of root mean square errors (RMSEs) of a) “atmospheric” states 𝓧𝟏,𝟐,𝟑  (namely the average of 𝓧𝟏, 𝓧𝟐  and 

𝓧𝟑 RMSEs)  in the space of ATM-OTW length when the “oceanic” state (𝛚) only uses a single observation at the assimilation time; b) 

“upper ocean” state (𝛚) in the space of OCN-OTW length when the ATM-OTW is fixed 1 as shown in panel a (1 for the ATM-OTW, i.e. 3 

observations in each window, see the caption of Fig. 1) but the OCN-OTW (for 𝛚) is varying and c) “deep ocean” state (𝛈) in the space of 10 
𝛈-OTW length when the “deep ocean” observations are assumed to be valid and the ATM-OTW and OCN-OTW are fixed as 1 and 10, 

respectively. The experiments are conducted in a perfect model setting with a simple uni-variate adjustment scheme. The red lines are the 

20-case mean, each using different initial conditions taken from different periods in the control integration (see description in section 2.2), 

and the blue lines represent the upper/lower bounds (mean ± standard deviations) of the RMSEs. An OTW with the length of 0 represents 

only assimilating the observation at the assimilation time (i.e. with no OTW, dashed-black lines). The RMSE values of the control case (no 15 
observational constraint, called CTL) are marked in the parenthesis. 
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Figure 5: Same as the panels a and b in Fig. 4 but for the variation of ensemble spreads of the model states. In panel b the optimal ATM-

OTW is also set as 1. The area between the lower and upper bounds (blue) represents the range evaluated from the 20 cases. And the blue 

shadow below the ensemble spreads represents the range of the uncertainty of state estimation in each assimilation experiment. 

 5 

 
Figure 6: The auto-correlation coefficient of a) 𝓧𝟐  b) 𝛚, c) 𝛈 in the space of lag times are marked by corresponding time correlation 

coefficients at the time scale (L) of optimal OTWs as detected by Fig. 4 for different media (The black dashed lines). What are shown is 

the mean of 20 cases. In each case, an independent section (each has 10000 data of the state – 100 TUs with the interval of 0.01 TU) is 

used to evaluate the lag correlation coefficient. The 20 independent sections are taken from the model states apart each 200TUs between 10 
5000TUs and 9000TUs integrations after the spin-up of 10000TUs from the initial condition (0, 1, 0, 0, 0). 
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Figure 7: Same as Fig. 4 but using multi-variate adjustment scheme. In panels b the optimal ATM-OTW is also set as 1. 

 

 
Figure 8: Same as Fig. 4 but using the biased model setting. In panel b) the optimal ATM-OTW is set as 3. And in panel c) the optimal 5 
ATM-OTW and OCN-OTW are kept as 3 and 20, when the “deep ocean” observations are assumed to be valid. 
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Figure 9: The power spectrum of a) 𝓧𝟐  and b) 𝛚 based on the model states between 5000 TUs and 9800 TUs integrations after the spin-

up which integrates for 10000TUs from the initial condition (0,1,0,0,0) with different coupling strength (𝓒𝟐 is set as 1.5, 1.25, 1.0, 0.8, 0.5 

and 0.1while 𝓒𝟏  keeps as 0.1.). Panel c) shows the time series of the model state 𝛚 between 5000 TUs and 5100 TUs integrations 

corresponding to the six cases. 5 

 

 
Figure 10: Panel a) is same as Panel b) in Fig. 9 but for using six different coupling strength cases (with 𝓒𝟐values as 1.5, 1.25, 1.0, 0.8, 

0.5, 0.1 while 𝓒𝟏 keeps as 0.1). Panel b) is the variation of the length of the optimal OCN-OTW with respect to the values of 𝓒𝟐. 
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