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Abstract. Results of extensive simulations of swell evolution within the duration-limited setup for the kinetic Hasselmann

equation for long durations of up to 2·106 seconds are presented. Basic solutions of the theory of weak turbulence, the so-

called Kolmogorov-Zakharov solutions, are shown to be relevant to the results of the simulations. Features of self-similarity

of wave spectra are detailed and their impact on methods of ocean swell monitoring are discussed. Essential drop of wave

energy (wave height) due to wave-wave interactions is found at initial stages of swell evolution (of order of 1000 km for typical5

parameters of the ocean swell). At longer times wave-wave interactions are responsible for a universal angular distribution of

wave spectra in a wide range of initial conditions. Weak power-law attenuation of swell within the Hasselmann equation is not

consistent with results of ocean swell tracking from satellite altimetry and SAR (Synthetic Aperture Radar) data. At the same

time, the relatively fast weakening of wave-wave interactions makes the swell evolution sensitive to other effects. In particular,

as shown, coupling with locally generated wind waves can force the swell to grow at relatively light winds.10

1 Physical models of ocean swell

Ocean swell is an important constituent of the field of surface gravity waves in the sea and, more generally, of the sea environ-

ment as a whole. Swell is usually defined as a fraction of wave field that does not depend (or depends slightly) on local wind.

Being generated in confined stormy areas these waves can propagate long distances of many thousand miles, thus, influencing

vast ocean stretches. For example, swell from Roaring Forties in the Southern Ocean can traverse the Pacifica and reach distant15

shores of California and Kamchatka. Predicting of swell as a part of sea wave forecast remains a burning problem for maritime

safety and marine engineering.

Pioneering works by Barber and Ursell (1948); Munk et al. (1963); Snodgrass et al. (1966) discovered a rich physics of the

phenomenon and gave first examples of accurate measurements of magnitudes, periods and directional spreading of swell.

All the articles contain thorough discussions of physical background of swell generation, attenuation and interaction with20

other types of ocean motions. Nonlinear wave-wave interactions have been sketched by Snodgrass et al. (1966) as a novelty

introduced by the milestone papers by Phillips (1960) and Hasselmann (1962). A possible important role of these interactions
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at high swells for relatively short time of evolution has been outlined and evaluated. The first estimates of the observed rates of

swell attenuation have been carried out by Snodgrass et al. (1966) based on observation at near-shore stations. Their e-folding

scale about 4000 km (distance in which an exponentially decaying wave height decreases by a factor of e) is consistent with

some of today’s results of the satellite tracking of swell (Ardhuin et al., 2009, 2010; Jiang et al., 2016) and with treatment

of these results within the model of swell attenuation due to coupling with turbulent atmospheric layer (e.g. Kantha, 2006).5

Alternative semi-empirical model of Babanin (2006) predicts quite different algebraic law and stronger swell attenuation at

shorter distances from the swell source (Young et al., 2013). Note that the effect of the decay of a monochromatic wave due to

turbulent wave flow is found to be quadratic in wave amplitude, i.e. to be of lower-order nonlinearity than in the non-dissipative

theory of weakly nonlinear water waves (cubic nonlinearity). It makes questionable an incorporating of the model into the today

statistical (and even dynamical) theories of sea waves that account for the effect of intrinsic wave nonlinearity.10

It should be stressed that all the mentioned models treat swell as a quasi-monochromatic wave and, thus, ignore nonlinear

interactions of the swell harmonics themselves and the swell coupling with locally generated wind waves. The latter effect can

be essential as observations and simulations clearly show (e.g. Kahma and Pettersson, 1994; Pettersson, 2004; Young, 2006;

Badulin et al., 2008b, and refs. therein). At most the swell is continuing to be considered as a superposition of harmonics that

do not interact with each other and, thus, can be described by the well-known methods of the linear theory of waves (e.g. Ewans,15

1998; Ewans et al., 2004). Many features of the observed swell can be related to such models. For example, the observed effect

of linear growth of the swell frequency in a site can be explained as an effect of dispersion of a linear wave packet over long

time and successfully used for relating these observations with stormy areas that generate the swell (e.g. Barber and Ursell,

1948; Ewans et al., 2004).

Synthetic aperture radars (SAR) allow for spatial resolution up to tens of meters (e.g. Ardhuin et al., 2010; Young et al.,20

2013). Satellite altimeters measure wave height averaged over a snapshot of a few square kilometers. These snapshots are

adequate for currently known methods of statistical description of waves in research and application models. These can be

used for swell tracking in combination with other tools (e.g. wave models as in Jiang et al., 2016). Re-tracking of swells

allows, first, for relating the swell events with their probable sources – stormy areas and, secondly, the swell transformation

gives a clue to estimating effects of other motions of the atmosphere and ocean – seasonal wind activity (e.g. Chen et al., 2002),25

wave-current interaction (e.g. Beal et al., 1997) and bathimetry effects (Young et al., 2013) etc. Such work requires adequate

physical models of swell propagation and transformation as far as the number of parameters of sea environment remains beyond

our control.

Meanwhile, the linear treatment remains quite restrictive and cannot explain important features of swell. The observed swell

spectra exhibit frequency downshift which is not predicted by deterministic linear or weakly nonlinear models of narrow-30

banded wave guide evolution (e.g. data of Snodgrass et al., 1966, and comments on these data by Henderson and Segur (2013)).

Moreover, these spectra show invariance of their shapes that is unlikely to appear in linear dispersive wave system. These noted

features are common for wave spectra described by the kinetic equation for water waves, the so-called Hasselmann (1962)

equation.
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In this paper we present results of extensive simulations of ocean swell within the Hasselmann equation for deep water

waves. The simplest duration-limited setup has been chosen to obtain numerical solutions for the duration up to 2 ·106 seconds

(about 23 days) for typical parameters of ocean swell (wavelengths 150−400 meters, wave periods 10−16 s, initial significant

heights 3− 15 meters).

We analyze the simulation results from the viewpoint of the theory of weak turbulence (Zakharov et al., 1992). The slowly5

evolving swell solutions appear to be quite close to the stationary milestone Kolmogorov-Zakharov solutions for water waves

in a frequency range (Zakharov and Filonenko, 1966; Zakharov and Zaslavsky, 1982). We give a short theoretical introduction

and present estimates of the basic constants of the theory in the next section. In sect.3 we relate results of simulations with

properties of the self-similar solutions of the kinetic equation. Zaslavskii (2000) was the first to present the self-similar solutions

for swell assuming the angular narrowness of the swell spectra and stated explicit analytical results. In fact, more general10

consideration, in the spirit of Badulin et al. (2002, 2005a), leads to important findings and raises questions independent of the

assumption of angular narrowness.

We demonstrate the well-known fact that is usually ignored: the power-law swell attenuation within the conservative kinetic

equation. We show that it does not contradict results of observations mentioned above. We also reveal a remarkable feature of

collapsing the swell spectra onto an angular distribution that depends weakly on initial angular spreading. Such universality15

can be of great value for modelling swell and developing methods for its monitoring (Delpey et al., 2010).

We conclude this paper with a discussion of how to apply this model. Evidently, the setup of duration-limited evolution

is quite restrictive and does not reflect essential features of ocean swell when wave dispersion and spatial divergence play a

key role. At the same time, wave-wave interactions remain of importance independently of the setup. The weakening of swell

evolution is not directly related to abatement of wave-wave interactions which are able to effectively restore perturbations20

of these quasi-stationary states (Zakharov and Badulin, 2011). On the contrary, this favors coupling of the quasi-stationary

swell with ocean environment. In particular, the locally generated wind-driven waves can switch the swell attenuation to swell

amplification. This effect can be considered for interpretation of recent observations of swell from space (‘negative’ dissipation

in words of Jiang et al., 2016). Many problems of adequate physical description of swell in the ocean are still open. This paper

is an attempt to reveal essential features of swell evolution within the simplest model of the kinetic Hasselmann equation.25

2 Solutions for ocean swell

2.1 The Kolmogorov-Zakharov solutions

In this section we reproduce previously reported theoretical results on evolution of swell as a random field of weakly interacting

wave harmonics. We apply the statistical theory of wind-driven seas (Zakharov, 1999) to the sea swell, whose description with

this approach, is usually considered questionable. A random wave field is described by the kinetic equation derived by Klauss30

Hasselmann (1962) for weakly nonlinear deep water waves in the absence of dissipation and external forcing

∂Nk

∂t
+∇kωk∇rNk = Snl. (1)
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Equation (1) is written for the spectral density of wave action N(k,x, t) = E(k,x, t)/ω(k) (E(k,x, t) is the wave energy

spectrum and the wave frequency obeys linear dispersion relation ω =
√
g|k|). Subscripts for ∇ corresponds to the two-

dimensional gradient operator in the corresponding space of coordinates x and wavevectors k (i.e. ∇r = (∂/∂x,∂/∂y)).

The right-hand term Snl describes the effect of wave-wave resonant interactions and can be written in explicit form (see

Appendices in Badulin et al., 2005a, for collection of formulas). The cumbersome term Snl causes many problems for wave5

modelling whenever (1) is extensively used. Nevertheless, for the deep water case, one has a key property of homogeneity

Snl[κk,υNk] = κ19/2υ3Snl[k,Nk]. (2)

that helps in acquiring important analytical results. Stretching in κ times in wave scale or in υ times in wave action, where

κ, υ are positive leads to simple re-scaling of the collision term, Snl. This important property gives a clue for constructing

power-law stationary solutions of the kinetic equation, i.e. solutions for the equation10

Snl = 0. (3)

Two isotropic stationary solutions of (3) correspond to constant fluxes of wave energy and action in wave scales. The direct

cascade solution (Zakharov and Filonenko, 1966) in terms of frequency spectrum of energy

E(1)(ω,θ) = 2Cp
P 1/3g4/3

ω4
(4)

introduces the basic Kolmogorov constant Cp and describes the energy transfer to infinitely short waves with constant flux P .15

The wave action transfer in the opposite direction of long waves is described by the inverse cascade solution (Zakharov and Zaslavsky,

1982) with wave action flux Q and another Kolmogorov’s constant Cq:

E(2)(ω,θ) = 2Cq
Q1/3g4/3

ω11/3
. (5)

An approximate weakly anisotropic Kolmogorov-Zakharov solution has been obtained by Katz and Kontorovich (1974) as an

extension of (4)20

E(3)(ω,θ) = 2
P 1/3g4/3

ω4

(
Cp +Cm

gM

ωP
cosθ+ . . .

)
. (6)

It associates the wave spectrum anisotropy with the constant spectral flux of wave momentum M and the so-called second

Kolmogorov constant Cm. As it is seen from (6) the solution anisotropy vanishes as ω →∞: wave spectra become isotropic

for short waves. The whole set of the KZ solutions (4–6) can be treated naturally within the dimensional approach: these are

just particular cases of solutions of the form25

E(KZ)(ω) =
P 1/3g4/3

ω4
G(ωQ/P,gM/(ωP ),θ) (7)

where G is a function of dimensionless arguments scaled by spectral fluxes of wave energy P , action Q and momentum M .

Originally, solutions (4–6) were derived in particularly sophisticated and cumbersome ways. Later on, simpler and more

physically transparent approaches have been presented (Zakharov and Pushkarev, 1999; Balk, 2000; Pushkarev et al., 2003,
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2004; Badulin et al., 2005a; Zakharov, 2010). These more general approaches allow for looking at higher-order terms of the

anisotropic Kolmogorov-Zakharov solutions (6). In particular, they predict the next term proportional to cos2θ/ω2 which is

the second angular harmonics of the stationary solution (6).

Swell solutions evolve slowly with time and, thus, give a good opportunity for discussing features of the KZ solutions (or,

alternatively, the KZ solutions can be used as a reference case for the swell studies). One of the key points of this discussion5

is the question of uniqueness, universality of the swell solutions that can be treated in the context of general KZ solutions (7).

The principal terms of the general Kolomogorov-Zakharov solutions (4–6) have clear physical meaning of total fluxes of wave

action (5), energy (4) and momentum (6) and do not refer to specific initial conditions. This is not the case for the higher-order

terms. The link between these additional terms with inherent properties of the collision integral Snl and/or with specific initial

conditions is a subject of special study.10

2.2 Self-similar solutions of the kinetic equation

The homogeneity property (2) is extremely useful for studies of non-stationary (inhomogeneous) solutions of the kinetic

equation. Approximate self-similar solutions for reference cases of duration- and fetch-limited development of wave field

can be obtained under the assumption of dominance of the wave-wave interaction term Snl (Pushkarev et al., 2003; Zakharov,

2005; Badulin et al., 2005a; Zakharov and Badulin, 2011). These solutions have forms of the so-called incomplete or the second15

type self-similarity (e.g. Barrenblatt, 1979). In terms of frequency-angle dependencies of wave action spectra one has for the

duration- and fetch-limited cases correspondingly (Badulin et al., 2005a, 2007; Zakharov et al., 2015)

N(ω,θ,τ) = aττ
pτΦpτ (ξ,θ) (8)

N(ω,θ,χ) = aχχ
pχΦpχ(ζ,θ) (9)

with dimensionless time τ and fetch χ20

τ = t/t0; χ= x/x0. (10)

Dimensionless arguments of shape functions Φpτ (ξ), Φpχ(ζ) in (8,9) contain free scaling parameters bτ , bχ and exponents of

frequency downshifting qτ , qχ

ξ = bτω
2τ−2qτ ; ζ = bχω

2χ−2qχ . (11)

Homogeneity properties (2) dictates ‘magic relations’ (in the words of Pushkarev and Zakharov, 2015, 2016) between expo-25

nents pτ , qτ and pχ, qχ

pτ =
9qτ − 1

2
; pχ =

10qχ − 1

2
. (12)

Additional ‘magic relations’ coming from homogeneity property (2) fix a link between the amplitude scales aτ , aχ and the

bandwidth scales bτ , bχ of the self-similar solutions (8–11)

aτ = b19/4τ ; aχ = b5/2χ . (13)30
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Thus, ‘magic relations’ (12,13) reduce number of free parameters of the self-similar solutions (8,9) from four (two exponents

and two coefficients) to two only: a dimensionless exponent pτ (pχ) and an amplitude of the solution aτ (aχ).

The shape functions Φτ (ξ), Φχ(ζ) in (8,9) are specified by solutions of a boundary problem for an integro-differential

equation in self-similar variable ξ (or ζ for fetch-limited case) and angle θ (see sect. 5.2 Badulin et al., 2005a, for details).

Simulations (e.g. Badulin et al., 2008a) reveal remarkable features of the shape functions Φτ (ξ), Φχ(ζ). Numerical solutions5

generally show relatively narrow angular distributions for Φpτ (ξ), Φpχ(ζ) with a single pronounced maximum at a spectral

peak frequency ωp. This implies that the only one (or very few) of an infinite series of eigenfunctions of the boundary problem

for the shape functions Φpτ (ξ), Φpχ(ζ) contributes to wave spectra evolution in a wide range of initial and external forcing

conditions. This treatment of the heavily nonlinear boundary problem in terms of a composition of eigenfunctions is possible in

this case as demonstrated by Zakharov and Pushkarev (1999). Two-lobe patterns can be observed beyond the spectral peak as10

local maxima at oblique directions or as a ‘shoulder’ in wave frequency spectra. Their appearance within the kinetic equation

approach is generally associated with wind generation (e.g. Bottema and van Vledder, 2008, 2009) and/or effect of wave-wave

interactions (Pushkarev et al., 2003). Numerical simulations within the potential Euler equations also show formation of the

two-lobe patterns for rather short times (very few hundreds of spectral peak periods) of evolution of initially unimodal spectral

distribution (Toffoli et al., 2010).15

An important property of spectral shape invariance (terminology of Hasselmann et al., 1976) or the spectra quasi-universality

(in the words of Badulin et al., 2005a) is widely discussed both for experimentally observed and simulated wave spectra. This

invariance does not suppose a point-by-point coincidence of properly normalized spectral shapes. Proximity of integrals of the

shape functions Φpτ , Φpχ in a range of wave growth rates pτ , pχ appears to be sufficient for formulating a remarkable universal

relationship for parameters of self-similar solutions (8,9)20

µ4ν = α3
0. (14)

Here wave steepness µ is estimated from total wave energy E and spectral peak frequency ωp

µ=
E1/2ω2

p

g
. (15)

The ‘number of waves’ ν in a spatially homogeneous wind sea (i.e. for duration-limited case) is defined as follows:

ν = ωpt. (16)25

For spatial (fetch-limited) wave growth, the coefficient of proportionality Cf in the equivalent expression ν = Cf |kp|x (kp

being the wavevector of the spectral peak) is close to the ratio between the phase and group velocities Cph/Cg = 2. A universal

constant α0 ≈ 0.7 is a counterpart of the constants Cp, Cq of the stationary Kolmogorov-Zakharov solutions (4,5) and has a

similar physical meaning of a ratio between wave energy and the energy spectral flux (in power 1/3). A remarkable feature of

the universal wave growth law (14) is its independence of wind speed. This wind-free paradigm based on intrinsic scaling of30

wave development is shown to be a useful tool of analysis of wind-wave growth (Zakharov et al., 2015). Below we demonstrate

its effectiveness for results of swell simulations.
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2.3 Self-similarity of swell solutions

The self-similar solution for swell is just a member of a family of solutions (8,9) with special values of temporal or spatial rates

pτ = 1/11; qτ = 1/11 (17)

pχ = 1/12; qχ = 1/12 (18)

Exponents (17,18) provide conservation of the total wave action for its evolution in time (duration-limited setup) or in space5

(fetch-limited)

N =

∞∫
0

N(ω,θ)dωdθ = const (19)

On the contrary, total energy

E =

∫
ωN(k)dk (20)

and wave momentum10

K=

∫
kN(k)dk (21)

are only formal constants of motion of the Hasselmann equation and decay with time t or fetch x

E ∼ t−1/11; Kx ∼ t−2/11 (22)

E ∼ x−1/12; Kx ∼ x−2/12. (23)

The swell decay (22,23) reflects a basic feature of the kinetic equation for water waves: energy (20) and momentum (21) are15

not conserved (see Zakharov et al., 1992; Pushkarev et al., 2003, and refs. herein). The wave action is the only true integral of

the kinetic equation (1).

The swell solution manifests another general feature of evolving spectra: the downshifting of the spectral peak frequency (or

other characteristic frequency), i.e.

ωp ∼ t−1/11; ωp ∼ x−1/12. (24)20

The universal law of wave evolution (14) is, evidently, valid for the self-similar swell solution as well with a minor difference

in the value of the constant α0. As soon as this constant is expressed in terms of the integrals of the shape functions Φτ , Φχ

and the swell spectrum shape differs essentially from ones of the growing wind seas, this constant appears to be less than α0

of the growing wind seas.

The theoretical background presented above is used below for analysis of results of simulations.25
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3 Swell simulations

3.1 Simulation setup

Simulations of ocean swell require special care. First of all, calculations for quite long periods of time (up to 2 · 106 seconds

in our case) should be accurate enough in order to capture relatively slow evolution of solutions and, thus, be able to relate

results with the theoretical background presented above. Duration-limited evolution of the swell has been simulated with the5

Pushkarev et al. (2003) version of the code based on the WRT algorithm (Webb, 1978; Tracy and Resio, 1982). Features of

the code and numerical setups have been described in previous papers (Badulin et al., 2002; Badulin and A. N. Pushkarev,

2004; Badulin et al., 2005a, b, 2007; Zakharov et al., 2007; Badulin et al., 2008a, 2013; Pushkarev and Zakharov, 2015, 2016).

Frequency resolution for log-spaced grid has been set to (ωn+1 −ωn)/ωn = 1.03128266. It corresponds to 128 grid point in

frequency range 0.02− 1 Hz (approximately 1.5 to 3850 meters wave length).10

Standard angular resolution ∆θ = 10◦ has been taken as adequate for the goals of our study. A control series of runs with

angular resolution ∆θ = 5◦ showed very close but still quantitatively different shaping of wave spectra (see discussion below)

while differences of integral parameters (wave height, period, total momentum) did not exceed 1% after 106s of evolution.

Initial conditions were similar in all series of simulations: spectral density of action in wavenumber space was almost

constant in a box of the wavenumber modulo and angles. Slight modulation (5% of the box height) and low pedestal outside15

the box (six orders less than the maximal value) have been set in order to stimulate wave-wave interactions since the collision

integral Snl vanishes for N(k) = const:

N(k) =

 N0(1+0.05cos2(θ/2)), |θ|<Θ/2, ωl < ω < ωh

10−6N0, otherwise
(25)

In (25) the references to angle θ (cosθ = kx/|k|) and wave frequency ω are used for conciseness of the expression for spatial

wave action spectrum N(k). The default values ωl and ωh corresponding to wave periods 10 and 2.5s have been used for20

the most cases providing sufficient space for spectral evolution to low frequencies (spectra downshifting) and for stability of

calculations at high frequencies for the default cutoff frequency fc = 1Hz.

Dissipation was absent in the runs. Free boundary conditions were applied at the high-frequency end of the domain of

calculations: generally, short-term oscillations of the spectrum tail do not lead to instability, i.e. the resulting solutions can be

regarded as ones corresponding to conditions of decay at infinitely small scales (N(k)→ 0 when |k| →∞).25

Calculations with a hyper-dissipation (e.g. Pushkarev et al., 2003) or a diagnostic tail at the high-frequency range of the

spectrum (Gagnaire-Renou et al., 2010) do not affect results quantitatively compared to our other simulations. Very strong

dissipation at less than 10 grid points at the very end of frequency domain suppresses spectral level and, simultaneously,

reduces the overall energy dissipation at these points. Thus, the effect on the evolution of the energy-containing part of the

solution appears to be quite weak and depends slightly on particular form and magnitude of the hyper-dissipation. In some30

cases, the hyper-dissipation option that suppresses high-frequency noise can accelerate calculations. In a sense, it is equivalent
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to reducing an effective number of grid points. Test runs with the reduced frequency domain (cutoff up to fc = 0.6Hz, 112 grid

points) did not show essential quantitative difference with the default option (fc = 1Hz, 128 grid points).

In contrast to wind-driven waves where wind speed is an essential physical parameter that gives a useful physical scale,

the swell evolution is determined by initial conditions only, i.e. by N0 (dimension of wave action spectral density [N(k)] =

[Length4·Time]), a characteristic frequency (sideband [ωl,ωh]) and angular spreading Θ within the setup (25). We tried different5

combinations of these parameters. Three frequency bands [0.026− 0.09], [0.058− 0.25], [0.1− 0.4] Hz have been chosen to

generate swell with wavelengths approximately 200, 300, 400 meters at final stages of evolution. The angular spreading Θ was

set at 30◦, 50◦, 170◦, 230◦ and 330◦. Initial significant wave heights Hs were taken as approximately 4.8, 8, 10, 12, 18 meters.

As it will be detailed below an abrupt fall of wave energy occurred at the very first hours of evolution (up to 50% for the first 1

hour). Thus, the above high values of Hs can be accepted as realistic values for sea swell. Totally, more than 30 combinations10

of wave height, frequency range and angular spreading have been simulated successfully for the duration at least 106 s. In some

cases, for high amplitudes and narrow angular spreadings, simulations have failed because of strong numerical instability.

Below we focus ourselves on the series of Table 1 where initial wave heights were fixed (within 2%) at approximately 4.8

meters and angular spreading varied from very narrow Θ= 30◦ to almost isotropic Θ= 330◦ (25). The frequency range of the

initial perturbations was 0.1−0.4Hz. The simulations has been carried out for duration 2 ·106 seconds with angular resolution15

∆θ = 10◦ and checked for series sw030 and sw330 with ∆θ = 5◦.

3.2 Self-similarity features of swell

Evolution of swell spectra with time is shown in fig.1 for the case sw330 of Table 1. The example shows a strong tendency to

self-similar shaping of wave spectra. This remarkable feature has been demonstrated and discussed for swell in previous works

(Badulin et al., 2005a; Benoit and Gagnaire-Renou, 2007; Gagnaire-Renou et al., 2010) for special parameters that provided20

relatively fast evolution of rather short and unrealistically high waves. In our simulations, we start with the mean wave period

of about 3 seconds that corresponds to the end of calculations of Badulin et al. (2005a, see fig. 8 therein) and moderately high

steepness µ≈ 0.15 as defined by (15). The initial step-like spectrum evolves very quickly and keeps a characteristic shape for

less than 1 hour. For 555 hours the spectral peak period reaches 11.4 seconds (the corresponding wavelength λ≈ 200 meters)

and wave steepness becomes µ= 0.022. The final significant wave height Hs ≈ 2.8 meters is essentially less than its initial25

value 4.8 meters. All these values can be considered as typical ones for ocean swell.

Dependence of key wave parameters on time is shown in fig. 2 for different runs of Table 1. Power-law dependencies of self-

similar solutions (17,18,22-24) are shown by dashed lines. In fig. 2a,b total wave energy E and the spectral peak frequency

ωp show good correspondence to power laws of the self-similar solutions (8). By contrast, power-law decay of x−component

of wave momentum Kx depends essentially on angular spreading of initial wave spectra. While for narrow spreading (runs30

sw030 and sw050) there is no visible deviation from the Kx ∼ t−2/11 law, wide-angle cases clearly show these deviations.

The ‘almost isotropic’ solution for sw330 is tending quite slowly to the theoretical dependency of wave momentum Kx (23).

The duration more than 3 weeks appears ‘too short’: one can see a transitional behavior when wave spectra evolve from the

‘almost isotropic’ state to an inherent distribution with a pronounced anisotropy.
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A simple quantitative estimate of the ‘degree of anisotropy’ is given in fig.2d. Evolution of dimensionless parameter of

anisotropy in terms of the approximate Kolmogorov-Zakharov solution (6) by Katz and Kontorovich (1974) is shown for all

the cases of Table 1. We introduce parameter of anisotropy A as follows

A=
gM

ωpP
. (26)

where total energy flux P (energy flux at ω →∞) is estimated from evolution of total energy5

P =−dE

dt
. (27)

Similarly, total wave momentum (21) provides an estimate of its flux as follows

M =−dKx

dt
. (28)

Spectral peak frequency ωp has been used for the definition of ‘degree of anisotropy’, A (26). Different scenarios are seen in

fig. 2d depending on angular spreading of wave spectra. Nevertheless, a general tendency to a universal behavior at very large10

times (more than 2 · 106 seconds) looks quite plausible.

Similar dispersion of runs depending on anisotropy of initial distributions is seen in fig. 3 when tracing the invariant of the

self-similar solutions (14). Again, like in fig.2b, 2 · 106 seconds are not sufficient to demonstrate validity of relationship (14)

in its full. A limit α0 (14) is very likely reached at larger times. This limit is a bit less (by approximately 15%) than one for

growing wind seas α0 ≈ 0.7. Again, the ‘almost isotropic’ solution shows its stronger departure from the rest of the series.15

The differences are better seen in angular distributions rather than in normalized spectral shapes (fig. 4) when we are trying to

check self-similarity features of the solutions in the spirit of Badulin et al. (2005a); Benoit and Gagnaire-Renou (2007).

3.3 Directional spreading of swell spectra

Despite significant difference of the runs in integral characteristics of the swell anisotropy (e.g. figs. 2b,d), the resulting spectral

distributions still show pronounced features of universality as it is seen in frequency spectra (fig.4). As it will be shown below20

this universality of swell spectra is seen in angular distributions as well. This is of importance in the context of remarks of

sect.2.2: while the shape functions Φpτ
, Φpχ

of self-similar solutions (8,9) are not unique there is likely a mechanism of their

selection that supports the universality of the swell spectral distributions. Within a linear theory, it could be treated as survival

of the only eigenfunction or, more prudently, of very few eigenmodes of the problem. As mentioned in sect.2.2. this ‘linear’

treatment can be used with some reservations for our problem which is heavily nonlinear in terms of wave spectra but allows25

for a quasi-linear analysis in terms of spectral fluxes (see Zakharov and Pushkarev, 1999; Pushkarev et al., 2003).

The only physical mechanism of the mode selection in the swell problem is nonlinear relaxation to an inherent state due to

four-wave resonant interactions. This relaxation generally occurs at essentially shorter scales than ones of wind pumping and

wave dissipation (Zakharov and Badulin, 2011). There is no contradiction with the today vision of the sea wave balance in the

above statement. The effect of nonlinear interactions on wave spectra is two-fold: firstly, it supports an inherent shaping of the30
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spectra by very fast feedback to its perturbation and, secondly, it is responsible for relatively slow nonlinear cascading within

this inherent shaping.

Normalized sections of spectra at the peak frequency ωp are shown in fig.5 for runs of Table 1 at t= 106 seconds (approx.

11.5 days). ‘The almost isotropic’ run sw330 shows relatively high pedestal of about 2% of maximal value while other series

have a background one more order less. At the same time, the core of all distributions is quite close to a gaussian shape5

ygauss = exp

(
− θ2

2σ2

)
(29)

with half-width σ = 35◦ (dashed curve in fig.5). Experimentally based spreading functions are represented in fig.5 by two

reference curves. For growing wind seas the dependence by Donelan et al. (1985, eq.9.2)

y1985 = sech2(βθ); β = 2.28 (30)

gives almost twice narrower distribution (dot line in fig.5).The wrapped-normal fit of angular distribution for one of the case10

of the West Africa Swell Project (see Table 11.2 and fig.11.8 in Ewans et al., 2004) with standard deviation σ ≈ 14.3◦ gives a

sharper distribution shown by a dashed curve.

Evolution of directional spreading in time is shown in absolute values in fig. 6 for three runs: the most anisotropic case

sw030 (fig. 6a,b), weakly anisotropic initial state sw230 (fig. 6c,d) and ‘the almost isotropic’ run sw330 (fig. 6e,f). In

the left column the angular spreading at peak frequency shows remarkably close patterns for the first two cases: peak values15

at large times differ by few percents only. The weakly anisotropic case sw230 (initial angular spreading 230◦ with essential

counter-propagating fraction) reaches its almost saturated state for a couple of days only (cf. curves at t= 17 and t= 35 hours).

Similar proximity of these two cases can be observed for integrals of spectra in frequency as shown in the right column of fig.6,

i.e. for values

E(θ) =
ωc∫
0

E(ω,θ)dω. (31)20

Self-similar solutions (8) predict a power-law decay of magnitude of E with time which is what we see in fig.6b,d for the first

two cases. Behavior of ‘the almost isotropic’ case sw330 is qualitatively different. The relatively strong adjustment to a narrow

directional spreading occurs in course of all the duration 2 · 106 s. The duration appears to be too short to reach a self-similar

regime resembling cases sw030, sw230.

The effect of sharpening of angular distributions of the run sw330 in fig.6e,f requires additional comments. First, it manifests25

a transitional nature of the case sw330 when a solution is rather far from its self-similar asymptotics. Secondly, this case

illustrates the above statement of the paragraph on two scales of wave spectra evolution. The angular adjustment occurs at

relatively short temporal scales as compared with slow evolution of integral parameters (cf. fig.2). This adjustment is provoked

by excursion of initially ‘almost isotropic’ distribution from an anticipated ‘inherent state’ that, thus, stimulates wave-wave

interactions as a mechanism of relaxation. The example demonstrates ability of wave-wave interactions to effectively rebuild30

directional distributions. Note, that in some cases, say, in the problem of relaxation of wave field to sudden changes of wind
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direction the wave-wave interactions are considered as ineffective as compared to relaxation ‘due mainly to imbalance Sin <

Sdiss’ (e.g. Young et al., 1987, Sin – wind input, Sdiss – wave dissipation).

3.4 Bi-modality of swell spectra

Bi-modality of directional spreading of ocean swell is widely discussed for experimental data as a possible result of swell

evolution (e.g. Ewans, 1998, 2001; Ewans et al., 2004). Our simulations encounter this effect as a persistent feature of swell5

spectra. Fig.7 represents directional spreading of swell spectra in two ways. The left column shows directional distribution

function H(ω,θ) in the spirit of widely used definition (e.g. Ewans, 1998)

E(ω,θ) = Ē(ω)H(ω,θ), H(ω,θ)≥ 0,

π∫
−π

H(ω,θ)dω = 1. (32)

An alternative representation in the right column of fig.7 uses spectral densities normalized by their maxima at fixed frequency

to trace ‘ridges’ of surface Ẽ(ω,θ) defined as follows (cf. eq.1 in Young et al., 1995)10

Ẽ(ω,θ) = E(ω,θ)/ max
−π<θ≤π

(E(ω,θ)). (33)

Both representations reveal bi-modality of swell spectra fairly well for all cases of Table 1. ‘Narrow’ initial spectrum sw030

and ‘wide’ one sw170 evolves to very close X-shaped side-lobe patterns (fig.7a,c). Pronounced side-lobes are seen both above

and below the spectral peak frequency. Directional distribution function H(ω,θ) (32) does not show similar pattern for ‘the

almost isotropic’ case sw330 (fig.7e,g) but the X-shapes are seen fairly well in the ‘ridge’ representation (33) for all the15

cases. Directional spreading for the run sw330 is shown for simulations with standard angular resolution ∆θ = 10◦ (fig.7e,f )

and with fine one ∆θ = 5◦ (fig.7g,h). Higher resolution makes ‘ridges’ sharper and allows for resolving more details of the

directional distribution. In particular, side-lobes appear for counter-propagating waves at θ ≈±3π/4 and ω/ωp ≈ 5/4. At the

same time, the standard angular resolution in our simulations ∆θ = 10◦ seems to be adequate for the bi-modality phenomenon.

The patterns similar to ones of fig.7 have been obtained in simulations of the Hasselmann equation for wind-driven waves20

with the exact term of nonlinear transfer Snl by Banner and Young (1994b); Young et al. (1995) at formally finer resolution

∆θ = 6.67◦. It should be noted that directions beyond the cone θ =±120◦ have not been taken into account to speed up

calculations in the cited papers. It can explain discrepancy with our results at the high frequency end of fig.7f,h (cf. Plate 1 in

Young et al., 1995). This point can be clarified in further studies.

An important issue of agreement of our results and findings of Banner and Young (1994b); Young et al. (1995) is presence25

of low-frequency (below the spectral peak) side-lobes. Experimental results by Ewans (cf. figs.8,16 1998) show good corre-

spondence of the directional spreading functions with numerical results at high frequencies but do not fix any side-lobes below

the spectral peak.

Generally, the phenomenon of side-lobe occurrence is associated with a joint effect of wave-wave interactions and wind gen-

eration (e.g. Banner and Young, 1994b; Pushkarev et al., 2003; Bottema and van Vledder, 2008). The theoretical background30

of sect. 2.1 and our simulations of swell can propose an interpretation and alternative ways of advanced analysis of the effect in
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terms of stationary solutions of Kolmogorov-Zakharov (7). These solutions being presented as power series of dimensionless

ratios of spectral fluxes and as an extension of the approximate solution (6) by Katz and Kontorovich (1974) predict higher-

order angular harmonics and can be found within the formal procedure of Pushkarev et al. (2003, 2004). This approach is not

fully correct in the vicinity of the spectral peak but still looks plausible and useful for interpretation of the effect of wave-wave

interactions. Analysis of the next paragraph shows perspectives of the KZ solution paradigm.5

3.5 Swell spectra vs KZ solutions

Very slow evolution of swell in our simulations provides a chance to check relevance of the classic Kolmogorov-Zakharov

solutions (4-7) to the problem under study. The key feature of the swell solution from the theoretical viewpoint is its ‘hybrid’

(in the words of Badulin et al., 2005a) nature: inverse cascade (negative fluxes) determines evolution of spectral peak and its

downshifting while the direct cascade (positive fluxes) occurs at frequencies slightly (approximately 20%) above the peak.10

This hybrid nature is illustrated by fig. 8 for energy and wave momentum fluxes. In order to avoid ambiguity in treatment of

the simulation results within the weak turbulence theory we will not discuss this hybrid nature of swell solutions and focus on

the direct cascade regime. Thus, general solution (7) in the form

E(ω,θ) ==
P 1/3g4/3

ω4
G(0,gM/(ωP ),θ)

and its approximate explicit version (6) by Katz and Kontorovich (1971, 1974) will be used below for describing the direct15

cascading of energy and momentum at high frequency (as compared to ωp) .

Two runs of Table 1, sw030 and ‘almost isotropic’ sw330, are presented in fig.8 in order to show qualitative similarity of

extreme cases of initial directional spreading. Positive fluxes P and M decays with time in good agreement with power-law

dependencies (22) and have rather low variations in relatively wide frequency range 3ωp < ω < 6ωp in fig. 8. For energy fluxes

P (figs.8a,b) one can see good quantitative correspondence (note, that times for some curves are slightly different). Absolute20

values of momentum flux M as well as magnitudes of wave momentum itself (see fig.2) differ by more than one order.

The domain of quasi-constant fluxes ω > 3ωp can be used for verification of relevance of the stationary KZ solutions (4–6)

to the quasi-stationary swell solutions. All the cases of Table 1 show very close patterns of spectral fluxes (e.g. fig.8) and, what

is more important, very close estimates of Kolmogorov’s constants.

The first and the second Kolmogorov’s constants can be easily estimated for the approximate solution (6) from combinations25

of along- and counter-propagating spectral densities as follows

Cp =
ω4 (E(ω,0)+E(ω,π))

4g4/3P 1/3
(34)

Cm =
ω5P 2/3 (E(ω,0)−E(ω,π))

4g7/3M
. (35)

These estimates provide very close values of the Kolmogorov constants for all the series of Table 1 with the only exception

of ‘the almost isotropic’ run sw330 for the second Kolmogorov constant Cm. Fig. 9 gives the first Kolmogorov constant30

Cp ≈ 0.21±0.01 (slightly lower values for initially narrow distributions) and Cm ≈ 0.08±0.02 for all the runs except sw330

(cf. figs.9b,d for ‘narrow’ sw030 and ‘wide’ sw230).
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The analytic estimate gives very close result Cp = 0.219 (Zakharov, 2010, eq.4.33). Numerical simulations by Lavrenov et al.

(2002); Pushkarev et al. (2003); Badulin et al. (2005a) missed a factor of 2 in definitions of the Kolmogorov constants (cf.

our definitions 4-6 and eqs. 4.29, 4.30 in Zakharov, 2010). Taking this into account, one has the reported values 0.151<

Cp < 0.162; 0.105<Cm < 0.121 in Lavrenov et al. (2002, Table 1), 0.16<Cp < 0.23; 0.09<Cm < 0.14 in Pushkarev et al.

(2003, eqs. 5.3, 5.6, 5.8) and 0.19<Cp < 0.20 in Badulin et al. (2005a). The first experimental attempt to evaluate the first5

Kolmogorov constant by Deike et al. (2014) presented value C = 1.8± 0.2≈ 2πCp, i.e. 2π times bigger counterpart of Cp.

While the estimates of the Kolmogorov’s constants for the swell look consistent the numerical solutions differ essentially

from the approximate weakly anisotropic KZ solution (6). The directional spreading cannot be described by the only angu-

lar harmonics as in (6), higher-order corrections are clearly seen in figs.7 as side-lobes. Nevertheless, the robustness of the

estimates of the second Kolmogorov constant Cm provides a good reference for estimates of the spectra anisotropy.10

The estimates of Cm for sw330 (fig. 9f ) demonstrate a specific nonstationarity of the swell solution in terms of wave

momentum flux while the first Kolmogorov constant Cp (fig.9f ) show relevance of the stationary KZ solutions to the swell

problem.

4 Discussion. Swell and ocean environment

Results of our simulations showed their fairly good correspondence to findings of the theory of wave (weak) turbulence.15

Relevance of these results to experimental facts seems to be a logical close of this work. The issue of relevance is two-fold.

First, our results can help in explaining effects which interpretation in terms of alternative approaches (mostly, within linear

theory) is questionable. Secondly, one can formulate, or, at least, sketch cases where our approach becomes invalid or requires

an extension. Both aspects are considered in the final section.

Attenuation in course of long term swell evolution is an appealing problem of the swell monitoring. We show that contribu-20

tion of wave-wave interactions to this process can be important mostly at initial stages of swell evolution. The observed rates

of swell attenuation in an open ocean cannot be treated within our approach for a number of reasons. First of all, the duration-

limited setup of our simulations do not account for important mechanisms of frequency dispersion and spatial divergence due to

sphericity of the Earth. These mechanisms can both contribute into swell attenuation together with wave-wave interactions and

essentially contaminate results of observations. The intrinsic swell attenuation is, generally, small as compared to the effect of25

reduction (or amplification at large fetches) (see fig.2b in Ardhuin et al., 2009) which is accounted for within the linear model

of geometrical optics whose validity is generally assumed for ocean swell.

Ocean swell for long times (fetches), becomes likely an important constituent of the ocean environment which can be heavily

affected by relatively short wind-driven waves. We discuss the effect of swell amplification at rather low wind speeds and give

tentative estimates based on the approach of this paper.30
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4.1 Swell attenuation within the kinetic equation

Dependence of wave height on time is shown in upper panel of fig. 10 (see also fig.2) for the runs of Table1. All the runs show

quantitatively close evolution. Strong drop of up to 30% of initial value occurs within a relatively short time of about one day.

An essential part of the wave energy leakage corresponds to this transitional stage at the very beginning of swell evolution

when swell is tending very rapidly to self-similar asymptotics. Afterwards, the decay becomes much slower at following the5

power-law dependence of the self-similar solutions (22).

For comparison with other models, and available observations, the duration-limited simulations have been recasted into

dependencies of fetch through the simplest time-to-fetch transformation (e.g. Hwang and Wang, 2004; Hwang, 2006):

x(s) =

s∫
0

Cg(ωp(t))dt. (36)

The equivalent fetch is estimated as a distance covered by a wave guide travelling with the group velocity of the spectral peak10

component. The corresponding dependencies are shown in bottom panel in fig.10. Two quasi-linear models by Ardhuin et al.

(2009) and Babanin (2006) predict relatively slow attenuation at fetches in a ‘near zone’ less than 1000 km (approximately 1

day) and then gradual decay up to very few of the percentage points initial value at final distances about 18000 km where our

model shows qualitatively different weak attenuation.

It should be noted that our model describes attenuation of the ocean swell ‘on its own’ due to wave-wave interactions without15

any external effects. Thus, the effect of an abrupt drop of wave amplitude at short time (fetch) should be taken into consideration

above all others when discussing possible application of our results to swell observations and physical interpretation of the

experimental results.

4.2 Swell and wind sea coupling. Arrest of weakly turbulent cascading

Extremely weak attenuation of swell due to wave-wave interactions provokes a question on robustness of this effect. A variety20

of physical mechanisms in the ocean environment can change the swell evolution qualitatively. The above discussion of swell

attenuation presents a remarkable example of such transformation when dissipation becomes dominant. Tracking of swell

events from space gives an alternative scenario of transformation when swell appears to be growing. Satellite tracks can

comprise up to 30% of cases of growing swell ‘most of them are not statistically significant’ (Jiang et al., 2016). Nevertheless, a

possible effect of wind-sea background on long ocean swell opens an important discussion in view of theoretical (Badulin et al.,25

2008b) and experimental (Benilov et al., 1974; Badulin and Grigorieva, 2012) results that demonstrate swell amplification by

wind wave background.

As noted and shown above, evolution of swell can occur at different time scales for different physical quantities. Integrals

of motion (energy, action, momentum) evolve at relatively large scales: frequency downshift and energy follows power-law

dependencies 1/11 (ωp ∼ t−1/11 and E ∼ t−1/11). The slow evolution is supported by interactions within a wave spectra that30

is close to an ‘inherent’ quasi-stationary state.
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Oppositely, spectral shaping is evolving due to excursions from an ‘inherent state’ at much shorter scales that can be esti-

mated following Zakharov and Badulin (2011, see eqs.21,22 therein). The nonlinear relaxation rate as defined by eqs.14-16 of

the cited paper can be written as

Γ(ω) =Bω

(
ω

ωp

)3

µ4H(ω,θ). (37)

Here B is a big dimensionless coefficient (e.g. B = 22.5π ≈ 70.7 for an isotropic spectrum, see Zakharov and Badulin, 2011)5

and H(ω,θ) is directional distribution function (32). The big coefficient B in (37) provides relatively fast relaxation of local

excursions (in wave scales) from the slowly evolving ‘inherent’ swell, especially, in high frequency domain (factor (ω/ωp)
3 in

eq.37). Evidences of this relaxation can be seen in evolution of angular distribution of the run sw330 where visible transfor-

mation of angular distribution is observed for all the duration of more than three weeks (fig.6): the non-self-similar background

of the swell spectra is feeding the core of the spectral distribution.10

A similar effect can be realized in the mixed sea when background of relatively short wind-driven waves feeds the swell.

Total energy flux of the swell is decaying as rapidly as dE/dt∼ t−12/11 and at sufficiently large time the associated direct

cascading can be arrested by inverse cascading of wind-driven waves which fast relaxation to an ‘inherent’ swell ensures the

swell feeding. This mechanism has been analyzed numerically (Badulin et al., 2008b) and showed its remarkable efficiency.

Simple estimates of possibility of the effect can be made in terms of balancing of two fluxes: direct cascade of swell and in-15

verse cascade of wind-driven fraction. The swell energy leakage can be estimated from the weakly turbulent law (Badulin et al.,

2007, eq.1.9) as follows(
dE

dt

)
direct

=
E3ω9

p

α3
swellg

4
=

µswell
6C3

swell

α3
swellg

(38)

Here swell parameters are marked by proper subscripts: Cswell = g/ωp – phase velocity of the spectral peal component, µswell

– swell steepness by definition (15), and αswell – self-similarity parameter (αss in Badulin et al., 2007). Similar conversion20

of sea state parameters to spectral flux can be done for the wind sea fraction (see sect.5.1 in Badulin et al., 2007, or Table 1 in

Gagnaire-Renou et al. (2011))(
dE

dt

)
inverse

≈ Cw

(
ρa
ρw

)3
U3
10

α3
windg

(39)

where coefficient Cw =O(1) is introduced as soon as the conversion is based on dimensonal analysis and generalization of

experimental results (Toba, 1972). A counterpart of αswell, the self-similarity parameter αwind is approximately two times less25

in magnitude (Badulin et al., 2007). Thus, condition of balance of fluxes assotiated with different fractions of the mixed sea

says

2Cw
ρa
ρw

U10

Cswell
≈ µ2

swell (40)

For relatively short swell with period Tp = 10s (λ≈ 150m) and wind speed U10 = 7m/s one gets a critical swell steepness

µswell ≈ 0.03. In other words, the mean-over-ocean wind 7m/s can balance (arrest) direct cascading of rather steep swell and,30
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hence, provoke a growth of the swell due to absorbing short wind-driven waves. Evidently, this simple balance model gives very

tentative estimate of the effect. Nevertheless, visual observations (Badulin and Grigorieva, 2012) and satellite data (Jiang et al.,

2016), in our opinion, provide telling arguments for this phenomenon. Thus, ‘negative dissipation’ of swell (in the words of

Jiang et al., 2016) could find its explanation within the simple model.

The simple estimate (40) shows a limited value of our ‘pure swell’ model for ocean environment. Potentially, the effect of5

even light wind on long-term propagation of swell can change the result qualitatively. Our pilot numerical studies (see also

Badulin et al., 2008b) show importance of the swell and wind-sea coupling. This effect will be detailed in our further studies.

5 Conclusions

We presented results of sea swell simulations within the framework of the kinetic equation for water waves (the Hasselmann

equation) and treated these properties within the paradigm of the theory of weak turbulence. A series of numerical experiments10

(duration-limited setup, WRT algorithm) has been carried out in order to outline features of wave spectra in a range of scales

usually associated with ocean swell, i.e. wavelengths larger than 100 meters and duration of propagation up to 2 · 106 seconds

(more than 23 days). It should be stressed that the exact collision integral Snl (nonlinear transfer term) has been used in all

the calculations. Alternatively, mostly operational approaches, like DIA (Discrete Approximation Approach) can corrupt the

results quantitatively and even qualitatively.15

Key results of the study:

1. A strong tendency for self-similar asymptotics is demonstrated. These asymptotics are shown to be insensitive to initial

conditions in terms of evolution of integral quantities (wave energy, momentum). Moreover, universal angular distri-

butions of wave spectra at large times have been obtained for both narrow (initial angular spreading 30◦) and almost

isotropic initial spectra. Bi-modality of the spectral distributions in our simulations is found to be in agreement with pre-20

vious numerical and experimental results (Banner and Young, 1994a; Ewans, 2001; Ewans et al., 2004). The universality

of the spectral shaping can be treated as an effect of mode selection when very few eigenmodes of the boundary problem

determines the system evolution. The inherent features of wave-wave interactions are responsible for this universality

making the effect of initial conditions insignificant. Generally, the self-similar swell is co-existing with a background

which is far from self-similar state;25

2. The classic Kolmogorov-Zakharov (KZ) isotropic and weakly anisotropic solutions for direct and inverse cascades are

shown to be relevant to slowly evolving sea swell solutions. Estimates of the corresponding KZ constants are found to

agree well with previous analytical, numerical and experimental results. Thus, features of KZ solutions can be used as a

reference for advanced approaches in the swell studies;

3. We show that an inherent peculiarity of the Hasselmann equation, energy and momentum leakage, can also be considered30

as a mechanism of the sea swell attenuation. This mechanism is beyond the today models of sea swell. At the same time,

the energy decay rates of sea swell in the numerical experiments, generally, do not contradict the results of recent swell
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observations and modelling. These studies based on satellite data and wave model hindcasting are focused mostly on

‘far field’ behavior of swell, generally, 1000 or more kilometers away from a stormy area. Our simulations show that

a dramatic transformation of the swell occurs at shorter distances, in ‘near field’. The essential swell energy losses,

mostly due to wave-wave interactions, in the near field is an intriguing challenge for sea wave forecasting. Thus, fig.10

outlines different domains of our model relevance rather than the model relevance to the general problem of ocean swell5

attenuation;

4. Long term evolution of swell is associated with rather slow frequency downshift (ωp ∼ t−1/11) and energy attenuation

(E ∼ t−1/11). Meanwhile, the decay of other wave field quantities is essentially faster: wave steepness is decaying as

µ∼ t−5/22 and total spectral flux even faster dE/dt∼ t−12/11. This point is of key importance in our analysis as far as

we consider nonlinear cascades of wave energy as governing physical mechanism of swell evolution. As we showed in10

discussion, the weak direct cascade of swell can be arrested by relatively light wind and then swell can start to grow. In

our opinion, this conclusion correlates with manifestations of swell amplification in satellite data (Jiang et al., 2016) and

in visual observations (Badulin and Grigorieva, 2012). Thus, ‘negative dissipation’ of swell (in the words of Jiang et al.,

2016) could find its explanation within the simple estimate (40) of sect.4.2;

5. The last conclusion uncovers deficiency of the duration-limited setup for the phenomenon of swell. An alternative15

setup of fetch-limited evolution (∂/∂t≡ 0,∇r ̸= 0) introduces dispersion of wave harmonics as a competing mecha-

nism that can change the swell evolution dramatically. Recent advances in wave modelling (Pushkarev and Zakharov,

2016) makes the problem of spatial-temporal swell evolution feasible and specify the perspectives of our first step study.

The theoretical background for the classic fetch-limited setup when solutions depend on the only spatial coordinate (i.e.

∂/∂x ̸= 0, ∂/∂y ≡ 0) is sketched in sect. 2 of this paper. The one-dimensional model add an essential physical effect of20

wave dispersion. A passage to cylindrical coordinates allows us to consider an effect of spatial divergence in formally

one-dimensional problem where solutions depend on radial coordinate but are still anisotropic in wavevector space.

Self-similar solutions for this problem in the spirit of sect. 2 can be easily found and related to numerical results. All the

prospective simulations require developing effective numerical approaches. In particular, high angular resolution (not

worse than 5◦) could be recommended for these studies. V. Geogjaev & V. Zakharov has developed such code recently25

(a talk at the meeting Waves in Shallow Water Environment, 2016, Venice). We plan to use it in the swell studies.
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Table 1. Initial parameters of simulation series

ID Θ N (m2 · s) Hs (m)

sw030 30◦ 0.720 4.63

sw050 60◦ 0.719 4.6

sw170 180◦ 0.714 4.74

sw230 240◦ 0.721 4.67

sw330 330◦ 0.722 4.79
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Figure 1. Frequency spectra of energy at different times (legend, in hours) for the case sw330 (Θ= 330◦).
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Figure 7. Isolines of spreading functions for different runs (see Table 1) a,b) – sw030; c,d) – sw170; e,f) – sw330; g,h) – run sw330 with
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sw030 (c) and sw330 (d) at different times (legend, in hours).
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Figure 9. Left – estimates of the first Kolmogorov constant Cp, right – estimates of the second Kolmogorov constant Cm for the approximate

anisotropic KZ solution (6). a,b) – run sw030; c,d) – sw230; e,f) – sw330. Time in hours is given in legend.
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Answers to referee #1
Authors are grateful to the referee for attentive reading of the manuscript

and valuable comments and suggestions. The authors took all these com-
ments into account when preparing the revised version. Many changes are
made in the text, almost all the figures have been re-drawn, additional nu-
merical runs have been carried out as recommended by the referee for longer
duration and with higher directional resolution. Ten new references appeared
in the paper bibliography. Our answers follow the reviewer’s report.

Major remarks:

1. The authors realizes severe limitations of the duration-limited setup in
the problem of ocean swell. Nevertheless, even this extremely restric-
tive model show quite rich physics: self-similarity of swell evolution,
universality of spectral shaping, bi-modality of directional spreading.
Limitations of the duration-limited setup are now emphasized in many
parts of the text (e.g. 3/17-25 Page/Line). Everywhere in the text we
stress robustness of the effects of wave-wave interactions and present
prospective plans for more realistic models of swell evolution in time
and space where wave dispersion and spatial divergence play important
roles. We also note resemblance of our results with previous numerical
and experimental findings (e.g. Banner & Young, 1994; Ewans et al.,
2004);

2. The second point concerns the different phases of swell decay in the
form of near- field and far-field. We agree that the near-field behavior
of the ocean swell is extremely difficult to explore experimentally. This
is why we consider our results on the role of wave-wave interactions
in the near field as important. Discussion of directional spreading of
swell is now extended. Illustrations are given both for narrow and
wide directional distributions (figs.6,7). Swell attenuation in fig.10 is
presented for all the runs of Table 1: angular spreading has no essential
effect on rate of wave energy leakage. At the same time, initially wide
spectra (e.g. run sw330) demonstrate quite strong transformation of
angular spreading (fig.7) and essential deviations from the stationary
KZ reference in terms of the second Kolmogorov constant Cm (fig.9f);

3. We do not consider the mechanism of wind wave absorption by swell
as hypothetical. This effect has been discussed for experimental data



2

(e.g. Pettersson, 2004; Young, 2006) and in numerical simulations of
the Hasselmann equation (Badulin et al., 2008). In the updated paper
we analyze this physical effect as a competition of two spectral fluxes:
direct cascade produced by swell and inverse cascade of wind-driven
waves. Wind waves in this scheme are attempting to grow but are just
feeding the swell because of relatively fast relaxation to the inherent
swell state (see eq.37 for the relaxation rate). The concise estimate
(eq.40) looks quite suggestive for possible experimental verification.
The authors are grateful to the reviewer for addressing to works on swell
evolution (e.g. Ewans et al., 2004) that gave important experimental
illustrations of our results.

Minor remarks (Page number/Line number):

1. 2/2 briefly explain the concept of e-folding
Explained in lines 2/2: ‘Their e-folding scale (distance in which an
exponentially decaying wave height decreases by a factor of e) about
4000 km is consistent with some today results. . . ’;

2. 2/5 elaborate on the algebraic law, for which process is such
a law made.
Now 2/6. We added comments on the model deficiency. The mentioned
model relies upon a number of questionable hypothesis and empirical
observations and cannot be incorporated straightforwardly into existent
wave models in a mathematically consistent way;

3. 2/10 I disagree with the generality of the statement that swell
is considered a superposition of sinusoidal components with-
out interaction. Maybe in the time of Barber and Ursell
(1948), and Snodgrass (1966) and before the time of 3G-wave
models. Although I agree that the DIA in the WAM model
is not a nice example due to its limitations.

We made the statement less radical (2/14): ‘at most’ instead of ‘gener-
ally’. Unfortunately, the simplistic treatment of the swell is dominating
today in time of 3G-wave models. We may refer to the feedback of the
associate editor of Journal of Geophysical Research (the very first ver-
sion of our paper has been rejected from JGR as it is mentioned in the
submission form of NPG). Prof. Bruno Castelle wrote:
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‘Swell is rather unidirectional and monochromatic once it travels out-
side the storm area, the resonant interactions for such conditions should
therefore be negligible, in contrast with your numerical experiments us-
ing a ‘rectangular’ spectral distribution’.

One of the referees of the JGR continues:

‘As these waves propagate away from the storm generation site, fre-
quency dispersion means that they separate out into almost monochro-
matic wave trains of the same frequency. These single frequency waves
then propagate across oceanic basins and gradually decay.’

Thus, the hypotheses and the very first physical models of the ocean
swell of brilliant papers by Barber and Ursell (1948), Snodgrass et al.
(1966) are still alive without critical revision and without attentive
reading of important parts of these works (e.g. sect.8 of Snodgrass et
al., 1966);

4. 2/14 Briefly explain concept of e-folding
It is explained above (2/2 both in the paper and in the reviewer notes);

5. 2/15 You may reference to Kantha (2006) here concerning
theories about swell decay.
Thank you, it is just to the point (2/5);

6. 2/21 Which other motions are meant here?
The issue is detailed, a reference is added (2/25);

7. 2/33 Add assumption of deep water and also note correspond-
ing period range of 10 s–16 s
Thank you, done (3/2);

8. 3/9 A useful reference here is Delpey et al., 2009
Thank you for the useful link. It is cited now (3/16);

9. 3/10 Note that wave dispersion and spatial divergence are
considered important in ocean scale swell propagation, al-
though for distances over 10.000 km convergence kicks in.
The authors agree. It is noted in the revised text (e.g. Introduction
and Discussion);
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10. 3/13 The swell heightening by a weak background wind is
rather speculative, see comments in appropriate section. I
would not yet consider this a significant problem from a prac-
tical point of view. From a theoretical point of view it is
interesting to figure out exactly what is happening.
Effects of the swell ‘eating’ wind-driven waves are described in Young
(2006); Kahma & Pettersson (1994) and reproduced numerically in
Badulin et al. (2008). In this paper we just propose a tentative es-
timate of conditions when this effect can play. The discussion of this
effect is extended, see sect.4.2 ;

11. 4/3 The scaling law (2) only works when spectra are self-
similar, which may not be the case in nature.
It is not correct. The homogeneity property (2) is valid for any function
N(k). It is purely mathematical fact that can be checked easily by
simple change of variables in the collision integral Snl;

12. 5/7 I would rather drop the very before preliminary. Other-
wise, this result is not worth publishing yet.
You are right, thank you. Fixed in 5/9-10;

13. 8/1 The model setup should be specified in more detail. Just
referencing to Badulin et al. 200X is insufficient. After some
checking it appear that a 1-point model is used to mimic du-
ration limited wave growth, see e.g. Eq.6 in Badulin et al.
(2005). This is an important detail, especially since it vio-
lates the statement on page/line 3/10.
Description of the model setup is extended (see sect.3.1). We see no
contradiction with the statement of 3/10 if we treat 1-point (in the
words of the reviewer) and duration-limited setups as synonyms;

14. 8/8 10◦ resolution may be adequate, although no reasoning is
shown to back this claim, for the present application where
30◦ is the smallest directional spreading. In am not convinced
whether this is sufficient for ocean swells in nature, where di-
rectional spreading in the range of 10◦ − 15◦ are common. For
such situations a directional resolution of 5◦ is usually recom-
mended.
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Calculations with 5◦ resolution have been carried out for ‘the most in-
convenient’ runs sw030 and sw330 for the duration 2·106s. No difference
in evolution of integral parameters (energy, momentum, spectral peak
period) is found while quantitative difference in angular distributions is
visible for frequencies higher than the peak one (fig.7e-h). Comments
and new figures are given in the paper version. Robustness of the two-
lobe angular distribution is stressed in sect.3.4. The necessity of higher
directional resolution is stressed in final lines of the paper (18/25);

15. 8/10 The equation has some problems. The square 2 is at
the wrong location. Further, the variables on each side of the
equal sign are inconsistent. I suggest to use N(k, θ) in the left-
hand side. The frequencies ωl, ωh are not specified.
Thank you. The typo is corrected. The expression in terms of θ and ω
for the spatial spectrum looks more transparent (the issue of N(k) =
const). Comments to the eclectic presentation are given to explain our
preferences (8/19);

16. 8/17 Explain concept of hyper-dissipation, just the key notion
is sufficient.
We added the comment in sect.3.1 (8/26 and below). In earlier versions
of the code (Pushkarev et al., 2003) the hyper-viscosity option has been
used to guarantee stability of calculations at high frequencies. Later on
it has been realized that calculations can be stable in absence of dissi-
pation (free boundary conditions). The sufficiently strong dissipation
does not essentially affect numerical solutions: dissipation is stronger
– spectral magnitudes are lower, and the overall effect of the dissipa-
tion reaches a sort of saturation. The dissipation effect just absorbs a
spectral cascade directed to small (infinitely small) wave scales. Free
boundary conditions work in a similar way;

17. 8/19 Why mention here the number of 30 runs, whereas the
table 1 only contains 5 entries? What happened with the
other 25 runs?
Initial conditions are now described for all the series after 9/3. We
focused on runs of Table 1 that cover the full set of angles (effect
of anisotropy is our key priority) and have no troubles with possible
instability or too slow evolution;
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18. 9/7 If 11 days is too short, why not extend the simulation
longer? On the other hand, the earths oceans may be too
small to see this effect in nature. This poses a conflict, in
the applicability of these results. There is only a tendency to
approach self-similar solutions.
Calculations for our main series (Table 1) are extended to 2 · 106 s
to better specify tendency of wave parameters (height, period) and
spectral shapes to a self-similar behavior and to specify ‘pure effect’ of
nonlinear transfer due to four-wave interactions. It appears again ‘too
short’. Anyway, the tendency to self-similarity is better than tendency
to nowhere. ‘The effect in nature’ requires an advanced setup with
wave dispersion and spatial divergence/convergence taken into account
as the reviewer himself stressed;

19. 10/10 Which definition of sigma is used: the linear or the
circular definition. Note that the latter is commonly used in
wave model to quantify the directional spreading
Linear definition (in degrees) of σ and θ is used everywhere in the text
and in figures. Hope, it makes no problem for the paper potential
readers;

20. 10/13 Take a look at Ewans (1998) and Olagnon et al. (2013)
for realistic estimates of swell widths, these are close to your
definition of directional narrowness of Θ = 30◦.
Thank you for this reminder. We had the authentic report of Ewans
et al. (2004) and now use it in the updated text. This work give ex-
tremely wide range of estimates of directional spreading. We knew
about this report when preparing the first version of the paper but
it seemed too radical in following linear model of swell propagation.
Now both papers are cited in the context of angular spreading of swell
(sects.3.3,3.4);

21. 11/15 Equation number (31) is missing here. Renumber all
follow-up equations
There are no references to this equation in the text below. We leave
the equation unnumbered;

22. 11/18 There are also negative fluxes!
You are right. We added ‘negative’ and ‘positive’ in the previous
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paragraph when discussing the hybrid nature of swell solutions (13/9,
13/10);

23. 11/26 Why not provide the other estimates for the reader to
judge whether the results of this study are consistent?
The values are provided (14/1-6), a reference (Deike et al., 2014) to an
experimental estimate of Cp is added;

24. 12/14 (Likely, 14/24) I am still surprised by this statement
that such attenuation has never been seen in nature. Is it the
result of your model setup of using only a 1-point model and
only duration limited wave growth?
The effect of attenuation of swell has never been discussed as one ob-
served in nature. Other ‘visible’ mechanisms of swell decay like spatial
dispersion or dissipation are in the focus of swell studies. Moreover, the
fact itself of non-conservation of wave energy and momentum is not ac-
cepted by majority of researchers (Janssen, 2004, p.182, comments to
eq.4.20 or p.137, sect. Conservation laws in Komen et al. (1995)),

25. 12/25 I wonder whether the case shown in Figure 10 is prop-
erly chosen. Sw330 can hardly be seen as representative for
ocean swell in nature. Why not use the case sw030 here to il-
lustrate the point. Now, I am afraid that completely different
types of spectra are inter-compared, leading to false interpre-
tation.
Figure 10 is re-drawn. Upper panel shows all runs of the series with no
essential quantitative difference. Thus, our choice representative. See
also comments to page 29 below;

26. 13/20 Although the algebra may be trivial, mention the start-
ing point of this exercise
It is given in more details in sect.4.2 now;

27. 13/32 This may appear an interesting result, but it is only
valid within certain assumptions of self-similar spectra. I
doubt that this condition holds in case of some wind growth.
I expect that some local enhancement of spectral density will
appear, which will not cause any effect on the low-frequency
part. Having said that, only detailed numerical experiments
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can shed light on this issue. So, I welcome this hypothesis,
but for now it do not (yet) believe in this consequence.
The effect is seen fairly well in previous numerical experiments (Badulin
et al., 2008). We also have new results on this effect and hope to publish
them soon;

28. 14/1 I disagree with the choice of the word clearly, see my
previous comment. It is only an hypothesis within some as-
sumptions.
Thank you. We deleted it (17/5);

29. 14/11 Also quantitatively?
Thank you. Now ‘quantitatively and even qualitatively’ (17/15);

30. 14/15 I disagree that this can be used as a benchmark for real
ocean swells in view of the limited size of earths oceans. See
comment 9/7.
Thank you. Now ‘features KZ solutions can be used as a reference’ . . . (17/29);

31. 14/25 I disagree that todays models do not account for this
effect. In case of the DIA, the most common method for Snl4,
this may be crude or wrong, but it does something.
Thank you. Now we say: ‘This mechanism is beyond the today models
of sea swell. . . ’ (17/31). The problem can be addressed to the DIA,
first, to uncover whether the models are accounting for this effect;

32. 14/25 I am not convinced that this near field effect has never
been observed or noted. It is now too easy stated that this is
a problem. Still, it is an interesting notion for further inves-
tigations
We did not say ‘never been observed and noted’. The today studies
of swell from space do avoid discussion the near field effects and, thus,
skip an essential physics of sea wave dynamics. The text is modified
(bottom of p.17, top p.18);

33. 15/8 This is an interesting statement, but in view of com-
ment 8/1 both dispersion and spatial divergence are impor-
tant. Only a true 2-d spherical model of swell propagation
over the oceans can shed light on this issue. It is disappoint-
ing that this notion is not mentioned by the authors.
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Ok, we turn our cards over. Perspectives of the study are given in more
details now (18/19 and below);

34. 15/12 No clear recommendations are given for further studies.
See also previous point, which is probably one of the most
important steps forward.
Thank you. Corrected, see previous note;

35. 16/11 This reference cannot be found on the workshop web-
site, only the abstract resides there.
It is a pity. Reference to ResearchGate source of the paper is added.
Similarly, the same conference paper of Lavrenov et al. (2002) is put
into supplement of the ResearchGate web-page of Badulin et al. (2002)
and the corresponding reference is given. Unfortunately, Prof. Igor
Lavrenov deceased in 2009 and its paper resides now at this web-page;

36. 16/32 The journal of Chen et al., 2002 is wrong. Please cor-
rect. Journal of Atmospheric and Oceanic Technology
Thank you. Fixed;

37. 19 Table 1 only list 5 of the 30 cases. What are the remaining
25 cases?
Parameters of simulations are described in more details in sect.3.1;

38. 20 The initial shape at t = 0 does not match with Eq. 23.
We see no problem. Eq.23 (eq.25 now) gives spectral density of wave
action N(k) while Fig.1 shows evolution of energy frequency spectrum

E(ω) =
∫ π

−π

2ω4N(k(ω, θ))

g2
dθ

(see for refs. Badulin et al., 2005, unnumbered equations after eq.30);

39. 20 The unit along the vertical axis is incomplete m2/(rad/s)
Thank you. Corrected for two times longer evolution;

40. 22 How do you explain the significant mismatch in behavior
for case sw330?
Calculations are continued up to 2 · 106s, Figs.2,3 are redrawn. The
explanation can be found in sect.3.2-3.5. The case is ‘too isotropic’
and non-self-similar background corrupts a bit the simple asymptotics;
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41. 24 It is known that Snl4 is weaker in directions than in fre-
quencies to show self-similar behavior. This was for instance
noted in the directional response behavior of the spectrum
after a change in wind direction. I do not think the 1984 and
1985 are proper examples. See also remark 10/30.
We leave 1985 and added WASP from Ewans et al. (2004). Weakness
of Snl4 in direction is misleading. The relaxation rate depends on mag-
nitude of excursion. This is what we see in fig.6 for sw330. See also
10/30 – speculations on different scales of evolution due to wave-wave
interactions;

42. 25 The scale of the vertical axis is inconsistent with the one
in Figure 5.
You are right. In fig.5 normalized (by value at θ = 0) values for different
runs are shown while in fig.6 we give absolute values at different times
for the same run in order to demonstrate the phenomenon of relaxation
to a universal (our hypothesis) angular distribution;

43. 27 I am surprised that case sw170 is used is as an example.
This deviates from other choices. Please comment on or argue
this choice. Also, note the small instability for t = 1 hour. Also
note that also the negative fluxes tend to diminish. Also, ar-
gue choice of sw170 for this example. What happens for other
choices? In general, the behavior of sw030 or sw050 is much
more interesting in relation to real ocean swells. Although, it
is of interest that even for initial broad spectra, Snl4 tends to
force a uniform shape.
This figure is re-drawn. Results are shown for two extreme cases sw030
and sw330;

Sorry, we do not see any instability for red curves t = 1hr.

We answered the question on negative fluxes (hybrid nature of swell
evolution) in the note 11/18. Negative fluxes follow the same tendency
as positive fluxes when solutions are tending to self-similar behavior.
We see no reason to emphasize this point here.

Thanks for your last phrase of this note. You stressed the very impor-
tant finding of our work: Snl4 provides a uniform (we say universal)
shapes of swell irrespectively to initial spectral distribution;
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44. 28 Same comment in relation to choice of SW170
Three cases are shown. The only outlier is sw330 for the second Kol-
mogorov constant Cm;

45. 29 I am surprised that for this figure sw330 is taken to com-
pare with observations. Why not sw030 or sw050 as that is
much closer to field data
Re-drawn. All cases are shown. Time and coordinate axes are loga-
rithmic now to see the ‘near-field’ better;

46. 29 There is an inconsistency between figure legend and body
text concerning reference to Badulin.
Thank you. The figure is re-drawn. Time and fetch axes are log-spaced
now in order to demonstrate strong drop of wave heights in near zone
(less than 1000 km). Curves are given for all runs of the series and
show quite close behavior for different initial distributions.
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Answers to referee #2

The authors appreciate efforts of the reviewer and his/her valuable com-
ments. The paper is significantly updated: almost all the figures have been
re-drawn, additional numerical runs have been carried out as recommended
by one of referee for longer duration and with higher directional resolution.
Ten new references appeared in the paper bibliography. Our answers follow
the reviewer’s report.

1. The simulations are made for a very long time scale; could
higher order effect in the kinetic equation take place (e.g. five
wave interactions?)
We do not discuss the effect of five-wave (and higher-order) interactions
intentionally by a number of reasons.

First, the solution itself of the four-wave (Hasselmann) kinetic equation
for long time is a real computational problem. The five-wave extension
of the equation is well-known (see sect.5 and eqs. 5.1, 5.2 Krasitskii,
1994) but the authors are not aware of attempts to solve it numerically.

Secondly, the passage to the five-wave kinetic equation is ‘of principal
significance’ in words of Krasitskii (1994). The account for five-wave
interactions is violating the wave action conservation law (wave energy
and momentum remain to be formal integrals of the extension) and,
thus, makes the theoretical concept of the Kolmogorov-Zakharov cas-
cading and power-law Kolmogorov’s spectra inapplicable. The authors
set a high value on the theoretical background in this paper;

Finally, our principal goal was to stay within the today concept of wind
wave and swell prediction where the four-wave Hasselmann equation
plays a key role. Tentative estimates of the effect of five-wave interac-
tions for low steepness swell (µ ≃ 0.01) offer prospects of their rather
small effect. Quite interesting issue of wave field short-crestedness at
long times (e.g. Badulin et al., 1996) is, evidently, beyond of the paper
goals and the statistical theory of sea waves;

2. Line 9, page 6: while discussing the two-lobe structure of the
higher frequency part of the spectrum, the authors state that
the appearance of such structure is generally discussed as an
effect of wind. This is only partially true, indeed, the role of
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nonlinearity in the formation of the lobes has been already
discussed in Toffoli, Alessandro, et al. ”Development of a
bimodal structure in ocean wave spectra.” Journal of Geo-
physical Research: Oceans 115.C3 (2010).
Thank you. This note is extended by references to Pushkarev et al.
(2003) and Toffoli et al. (2010). Note, that the latter paper presents
results of simulations for rather short durations of very few hundreds
peak periods, i.e. about one hour only for our swell parameters. An
extensive discussion of the spectra bi-modality is given in sect.3.4 with
references to experimental (Ewans, 2001; Ewans et al., 2004) and nu-
merical works (Banner & Young, 1994; Young et al., 1995);

3. in eq. (16) the letter ν has already been used for the degree
of homogeneity of the wave action.
Thank you. Symbol ν in (2) is changed to υ now;

4. Please, comment more on the fact that the ‘wave action is the
only true integral of the kinetic equation’.
Comments are given in the cited papers (Zakharov et al., 1992; Pushkarev
et al., 2003);

5. Please, explain what do the authors mean by ‘free boundary
condition’ (line 15 page 8)
A short comment is added (now line 25, p.8): ‘Free boundary conditions
were applied at the high-frequency end of the domain of calculations:
generally, short-term oscillations of the spectrum tail do not lead to
instability, i.e. the resulting solutions can be regarded as ones corre-
sponding to condition of decay at infinitely small scales (N(k) → 0
when |k| → ∞).’

6. How much the reduction of the wave energy (Hs) depend on
the high frequency cut off in the simulations?
We did not find difference when reduced number of frequency grid
points from 128 to 112. This is mentioned in the updated text (line 1,
p.9)

7. English should be improved.
Thank you. We did our best to make the paper readable
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