
An upper limit for slow earthquakes zone: Self-oscillatory behavior
through the Hopf bifurcation mechanism from a model of
spring-block under lubricated surfaces
Valentina Castellanos-Rodríguez1, Eric Campos-Cantón2, Rafael Barboza-Gudiño3, and Ricardo Femat4

1,3Instituto de Geología, Universidad Autónoma de San Luis Potosí, México.
1,2,4Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, México.
2 Mathematics Department, University of Houston, Houston, Texas 77204-3008, USA.

Correspondence to: Castellanos-Rodríguez Valentina (valentina@cimat.mx)

Abstract. The complex oscillatory behavior of a springblock model is analyzed via the Hopf bifurcation mechanism. The

mathematical spring-block model includes Dieterich-Ruina’s friction law and Stribeck’s effect. The existence of self-sustained

oscillations in the transition zone-where slow earthquakes are generated within the frictionally unstable region -is determined.

An upper limit for this region is proposed as a function of seismic parameters and frictional coefficients which are concerned

with presence of fluids in the system. The importance of the characteristic length scale L, the implications of fluids, and the5

effects of external perturbations in the complex dynamic oscillatory behavior as well as in the stationary solution, are take into

consideration.

1 Introduction

In the last decade, the study of slow earthquakes (tremors, low and very low frequencies events, and slow slip events) has

taken a great relevance because of its possible relationship with the occurrence of large earthquakes. The stress redistribution10

of slow earthquakes, and the strain in the lowest limit of the seismogenic layer caused by them, could be helpful for a better

understanding of the nucleation process of ordinary earthquakes (Ide et al., 2007; Wech and Creager, 2007; Beroza and Ide,

2009; Peng and Gomberg, 2010; Rivet et al., 2011; Ikari et al., 2013; Jolivet et al., 2013; Abe and Kato, 2014; Audet and

Bürgmann, 2011; Bürgmann, 2014; Wallace et al., 2016). Although the most slow earthquakes have been detected in subduction

zones, there are reports of these in other types of faults (Vergnolle et al., 2010; Thomas et al., 2016; Wallace et al., 2016).15

Observations suggest that this occurs between the seismogenic zone and the frictionally stable zone (Fig. 1) surrounding the

critical value of ordinary earthquakes nucleation; i.e., on parts of faults where the behavior is transitional between frictional

properties on the rocks and slow, steady deformation (Scholz, 1998; Dragert et al., 2001; Beroza and Ide, 2009; Abe and

Kato, 2014; Watkins et al., 2015), but some investigation reveal that have been observed in shallow region (Davis et al., 2011;

Nishimura, 2014; Saffer and Wallace, 2015; Valée et al., 2015; Yamashita et al., 2015; Wallace et al., 2016). Figure 1 shows20

two stability regions and transition zones: at shallow depth, and on the base of seismogenic layer (Scholz, 1998) which is the

focus of the study presented in this paper.
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Scholz (1998) determined that at the border of the stability transition there is a region in which self-sustained oscillatory

(SSO) motion occurs into the conditionally stable region, below the critical point, and slow earthquakes are nucleated. These

oscillations are observed in presence or absence of external forces such as vibrations from neighbor faults but eventually tend

to stabilize.
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Figure 1. Transition zone related to slow earthquakes nucleation. The first dashed red line indicates the lowest limit of the shallow frictionally

stable region. The second one shows the deeper limit of the seismogenic layer (upper limit of the deeper frictionally stable region). Self-

oscillatory behavior is observed in the second transition.

Slow earthquakes occur in a variety of stick-slip (Ide et al., 2007). Watkins et al. (2015) say that observational studies have5

provided information for their characterization: variability in duration, recurrence and propagation velocity, but the mechanism

of slow earthquakes is still unclear. Experimental data show that the physical and mechanical parameters that control changes

in slow slip events are the rates of convergence, frictional parameters and effective normal stress, under rate and state dependent

constitutive properties of Dieterich-Ruina friction law (Dieterich, 1979; Ruina, 1983; Watkins et al., 2015; Marone et al., 2015;

Scuderi et al., 2016).10

The Dieterich-Ruina friction law has been successfully used to reproduce the stick slip behavior in the models of earthquakes

dynamics and slow earthquakes. Spring-block models have reproduced these events when coupled with rate and state dependent

friction laws, and contrary, models which have been used laws velocity-weakening friction and constant friction have not

been successful (Abe and Kato, 2014). Beroza and Ide (2009) infer that simple friction laws by themselves do not provide an

explanation for the complex behavior of slow earthquakes. Some investigations have suggested that fluids play an important role15

in this mechanism (Brown et al., 2005; Ide et al., 2007; Wallace et al., 2016). Some researches support this idea, conclusions

from revised literature establish that failures are lubricated on the shear area regardless of the composition of the rocks and the

frictional weakening mechanism involved (Faulkner et al., 2010; Di Toro et al., 2011).

An important issue of the rate and state dependent friction law is that it is totally macroscopic, i. e., it describes the frictional

properties of the system rather than microscopic mechanism which is responsible for the dissipation (Ruina, 1983; Carlson and20

Batista, 1996; Batista and Carlson, 1998). Experimental research on the role of fluids in the ordinary earthquakes mechanism
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has captured specific features associated with the molecular layer lubrication on the border between two surfaces in contact,

with different frictional properties when considering lubricants in volume and dry interfaces (Gee et al., 1990; Yoshizawa and

Israelachvili, 1993; Reiter et al., 1994; Carlson and Batista, 1996; Batista and Carlson, 1998; Amendola and Dragoni, 2013).

The initiation slip in the microscopic scale is associated with a shear melting transition in the lubricant layer (Carlson and

Batista, 1996) so that microscopic scales contribute to better understanding of friction mechanism.5

A path to study slow earthquakes is through spring-block model for ordinary earthquakes, because both the slow and ordinary

earthquakes are related by the critical value of nucleation. Some spring-block models display complex oscillatory behavior

associated with the transition zone (Gu et al., 1984; Abe and Kato, 2013, 2014). Gu et al. (1984) and Abe and Kato (2013),

used a spring-block model where complex oscillatory behavior was found near to a critical value of the earthquakes nucleation.

This behavior is presented as changing when there is a variation in any parameter related to the critical value.10

Batista and Carlson (1998) in a spring-block model introduced an alternative friction law, where the state variable is inter-

preted in terms of the shear melting of the lubricant (molecular layer of lubricant) between solid surfaces in contact. They

considered that by incorporating the microscopic mechanism it could determine other behavior and found that the transition

from steady sliding to stick slip is typically discontinuous and sometimes hysteretic. This transition is associated with a sub-

critical Hopf bifurcation (set of seismic parameters for the critical point of nucleation). Gu et al. (1984), Abe and Kato (2013),15

and Batista and Carlson (1998) observed a sudden and discontinuous onset in the amplitude of oscillations at the bifurcation

point. At surrounding of transition, complex oscillatory behavior was observed in these cases.

In terms of dynamical systems based on spring-block model, the presence of oscillations and self-oscillations can be ex-

plained by Hopf bifurcation mechanism (Kengne et al., 2014; Xin-YouMeng and Hai-Feng Huo , 2014; Wang et al., 2014).

Some nonlinear dynamical systems show SSO motion (Strogatz, 1994), one of them is relative to the earthquake physics20

mechanism (Scholz, 1998). The SSO behavior would be explained in the context of the complex system of faults, such that

the modeling of movement in a single failure would be affected by external forces (Chelidze et al., 2005). These forces can

be generated due to vibrations or stress transferred from neighboring faults, that make the system going from a limit cycle to

another, leaving different paths of recurrence (Chelidze et al., 2005; Dragoni and Santini, 2010; Dragoni and Piombo, 2011).

In this paper the main objective is to propose an upper limit for the SSO region in the frictionally unstable zone (Fig. 1).25

The upper limit is a function of mathematical and numerical relations in terms of seismic and frictional parameters. This limit

describes the complexity of the oscillatory movement in the nearest region to the critical point of nucleation. Another objective

is determine which is the role of the fluids in this region. The oscillatory behavior of the system is studied through analysis

of the Madariaga’s spring-block model (Erickson et al., 2008) complemented by the Stribeck’s effect (Alvarez-Ramírez et al.,

1995; Andersson et al., 2007). The Stribeck’s effect shows the transition from dry interfaces or lubricated at the border until30

separated by a layer of lubricant as a shear melting. This effect takes into account the microscopic mechanism between the

contacting surfaces during displacement. The Dieterich-Ruina-Stribeck oscillator (Fig. 2) depicts the behavior of the kinetic

mechanism between tectonic blocks in the earth’s crust undergoing stick-slip effects from friction. The oscillator is coupled to

a driven plate by the rheological properties of rocks, and to a static plate by frictional properties. The slider is on the rough and
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Figure 2. Dieterich-Ruina-Stribeck one degree of freedom oscillator. v0 is a reference velocity, v is the block velocity, k is the constant of

deformation, β3 is the dynamical viscosity coefficient. τ(t) is an external and perturbing force with angular frequency ω.

lubricated surface. The relative displacement, rate of displacement and acceleration are given by u= y− v0t, u̇= v− v0, and

ü= v̇ respectively where y is the block displacement and v = ẏ. An external periodic perturbation τ(t) is introduced in order

to show that this system exhibits SSO behavior between the critical point of nucleation and the region limited by the proposed

upper limit. In Section 2 the model is proposed, the linearized system, stationary solution and criterion for frictional stability

are analyzed; in Section 3 the oscillatory behavior is described, the upper limit of SSO region is proposed and numerical5

simulations are provided. Finally, in Section 4 a brief discussion of the outcomes and conclusions are presented.

2 Nonlinear Dynamical System

2.1 The model

The faults are lubricated in the shear area (Faulkner et al., 2010; Di Toro et al., 2011) as the most sliding contacts. A model

based in a slider block (Fig. 2) is essentially a mechanic representation, and the frictional components are velocity dependent.10

Andersson et al. (2007) explain the Stribeck’s effect as follows. The friction force varies with the sliding speed depending on

the extent to which the interacting contact surfaces are running under boundary, mixed (fluid in the union between asperities),

or full film lubrication (a layer of fluid as a shear melting). Even dry contacts show some behavior similar to that in lubricated

contacts in that they have a higher static friction than dynamic or sliding friction. In lubricated sliding contacts, the friction

decreases with increasing sliding speed until a mixed or full film situation is obtained, after which the friction in the contact15

can be constant, increasing or decreasing somewhat with increasing sliding speed due to viscous and thermal effects. This
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transition is the named Stribeck’s effect (Jacobson, 2003; Andersson et al., 2007) and has been formulated as :

Fs(v) = β1sign(v− v0) +β2e
−µ(v)sign(v− v0) +β3v, (1)

where β1 is the Coulomb friction; β2 = Fmax−β1 (with Fmax as the upper limit of static force); β3 represents the dynamical

viscosity coefficient of the fluid; and µ denotes a slip constant or decay parameter for the mixed lubrication.

On the other hand, the well known phenomenological friction law of Dieterich-Ruina is introduced in rocks mechanics to5

capture experimental observations of steady state and transient friction that depends on the displacement history effects (state

variable θ) and velocity (Dieterich, 1979; Ruina, 1983; Dieterich and Kilgore, 1994), one of its formulations is given by two

equations (Ruina, 1983):

Fdr(v,θ) = θ+A ln(v/v0) , θ̇ =−(v/L) [θ+B ln(v/v0)] . (2)

First equation represents the frictional stress under stable state (θ̇ = 0), and the second one corresponds to evolution of state10

variable θ that evolves with time, slip, and normal stress history (Dieterich and Kilgore, 1994). L is a characteristic sliding

distance over which θ evolves (required distance to renew the contact population). A and B are material properties, we assume

B >A> 0 for frictional instability.

Now it is possible to derive from Eqs. (1) and (2) an alternative friction law taking into account the macroscopic and

microscopic mechanism (frictional properties and dissipation). The equation of motion derived from Eqs. (1) and (2) gives15

a first order differential equation system, a similar expression is given by Erickson et al. (2008), but we complemented their

system by the term of Stribeck’s effect:

θ̇ = −(v/L)[θ+B ln(v/v0)],

u̇ = v− v0,
v̇ = −(1/M)[ku+Fdr(v,θ)]− (1/M)F0(v) + τ(t),

(3)

where the Stribeck’s effect from Eq. (1) is given now by

F0(v) = β1 +β2e
−µ(v) +β3v. (4)20

Note that the slider block velocity is relative to velocity of driver plate. From the second equation of the system (3), we infer

that the block will oscillate with respect to the position of the plate. This equation tells us whether the oscillator is to the right

or to the left with respect to the driver plate. Although the direction of the displacement of the system is always forward; if

v− v0 > 0, i.e., if v > v0, eventually the oscillator will be more advanced than the plate. On the other hand, if v− v0 < 0, i.e.,

v < v0 eventually the oscillator will be to the left of the plate. One of the objectives when introducing the function sign(v−v0)25

in the Eq. (1) is indicate this effect; assigning value 1 for the first case, -1 for the second case, and zero otherwise. We eliminate

the sign function because this effect is already considered in the second equation of the system (3).
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Defining new variables θ̂, v̂, û and t̂ (Erickson et al., 2008): θ/A= θ̂, v/v0 = v̂, u/L= û, t(v0/L) = t̂, the dimensionless

system is given by the following equations

˙̂
θ =−v̂[θ̂+ (1 + ε) ln(v̂)],

˙̂u= v̂− 1,

˙̂v =−γ2[û+ (1/ξ)(θ̂+ ln(v̂))]−αF0(v̂) + τ̂(t̂),

(5)

where α= {α1,α2,α3}; α1,2 = Lβ2

v20M
, α3 = Lβ3

v0M
. The external force is τ̂(t̂) = ĉsin(ŵt̂), where ĉ= L

v20
and ŵ = Lw

v0
. The

frictional parameters α are associated with frictional coefficients from the Stribeck’s effect and5

αF0(v̂) = α1 +α2e
−µ̂v̂ +α3v̂, µ̂= v0µ. (6)

x= (θ̂, û, v̂) is the dimensionless state variable, θ̂ stands for the measurement of contact with asperities from the Dieterich-

Ruina friction law; û is the dimensionless relative displacement between the block and the upper plate and v̂ > 0 is the di-

mensionless velocity of the block. The function f(x) on the right-hand side of Eq. (5) defines a mapping f : R3→ R3. This

mapping defines a vector field on R3. Thus, the system given by Eq. (5) induces in phase space R3 the flow (ϕt), t ∈ R such10

that each forward trajectory of the initial point x0 = x(t= 0) is the set {x(t) = ϕt(x0) : t≥ 0}.

Parameters Π=(ε,ξ,γ) are given as follows: ε=(B−A)/A; ξ=kL/A and γ=
√

(k/M)(L/v0), associated with stress drop

during displacement, deformation and the oscillation frequency, respectively. The Equation (5) is referred to the system of

Dieterich-Ruina-Stribeck (DR-S) where τ (̂t) = [0,0, τ̂(t̂)]T is the periodical and deterministic external force τ̂(t) = ĉsin(ω̂t),

here ω̂ is the angular frequency. We named unperturbed system when τ̂(t) = 0 and perturbed system otherwise. We will denote15

(θ̂, û, v̂) := (θ,u,v), τ̂(t̂) := τ(t), ω̂ := ω, ĉ := c, and µ̂ := µ.

2.2 Stationary solution at equilibrium point

The stationary solution x= x? of the system (5) with τ(t) = 0 is given by

x? = (θ?,u?,v?) = (0,η,1), u? = η = (α1 +α2e
−µ +α3)/γ2, γ > 0, (7)20

where η corresponds to the relative position of the single slider block. At x? the plate and the block have the same velocity and

the measure of the asperities contact is zero. Note that θ? and v? do not depend on Π but u? depends on frequency oscillation

γ (consequently on kL) and frictional constants of Stribeck’s effect, both are associated with the energy dissipation.

In the spring-block model, the logarithmic term in the Dieterich-Ruina’s friction law has introduced greater difficulty to

solve the problem. Due to the nonlinear term, analytic integration has not been possible, and even numerical solutions present25

challenges because of the logarithmic term (Erickson et al., 2008). The linearized system analysis is very useful to describe

some features of the nonlinear system about steady state solution (Gu et al., 1984; Shkoller and Minster, 1997; Erickson et al.,

2008). The local and asymptotic stability of x? is analyzed with the indirect method of Lyapunov that consists in the analysis of

the eigenvalues of the Jacobian matrix from the linearized system of Eq. (5) around the stationary solution (Khalil, 1996). Let
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x? be locally asymptotically stable, i. e., every solution of the system ϕt(x0) = (θ(t),u(t),v(t)), starting near of the stationary

solution, it remains at the surrounding of x? all the time, and eventually the solution converges to x? (convergence to frictional

stability). Let us denote the Jacobian matrix as Df (x?) = (∂fi(x)/∂xj) |x? , for i, j = 1,2,3, where f(x) = (f1,f2,f3) is the

vector field given by the right-hand side of (5) with τ(t) = 0; (x1,x2,x3) = (θ,u,v); and let λi be the eigenvalues of Df (x?):

Df (x?) =


−1 0 −(1 + ε)

0 0 1

−γ2/ξ −γ2 −γ2/ξ−φ,

 (8)5

where φ= α2µe
−µ−α3. The characteristic polynomial of (8) is given by:

P (λ) = a0λ
3 + a1λ

2 + a2λ+ a3, (9)

whose coefficients are in terms of seismic parameters Π, and frictional coefficients α and µ.

a0 = 1; a1 = 1 + γ2/ξ+φ; a2 = γ2(1− ε/ξ) +φ; a3 = γ2. (10)

The dynamical system of earthquakes is a naturally dissipative phenomena due to this feature the dissipativity condition of10

the stationary solution is required. Thus locally the system is dissipative at x? if a1 =−TraceDf (x?) =
∑3
i=1λi < 0 that is

true under the condition:

Mv0
L

+
A

v0
+β2µe

−µv0 < β3; (11)

Equation (11) comes directly from a1 < 0 and the values of γ, ε, ξ, and φ. The Equation (11) is the necessary condition for

the system to be sub-damped , and oscillations can be observed; moreover due to a3 =−detDf (x?)< 0, x? is hyperbolic.15

Through the analysis of the eigenvalues of Df (x?) we will explain what implies a hyperbolic equilibrium point related to

oscillatory behavior.

3 Oscillatory Behavior

The earthquakes dynamics is a nonlinear oscillatory phenomenon (Gu et al., 1984; De Sousa Vieira, 1995; Levin, 1996;

Chelidze et al., 2005; Maloney and Robbins, 2007; Erickson et al., 2008; Dragoni and Santini, 2010; Castellanos-Rodríguez20

and Femat, 2013; Amendola and Dragoni, 2013; Abe and Kato, 2014); where the nonlinear complex behavior is attributable

to the friction forces. The analysis of the oscillatory behavior is explored in this section. We use the full nonlinear term in the

numerical simulation in Section 3.2 and 3.3.

3.1 Analysis of Eigenvalues

The equilibrium point x? is locally asymptotically stable if the real part of all the eigenvalues is negative, i.e. Re(λi)< 0,25

and it is unstable if at least one eigenvalue of Df (x?) is positive, i.e. Re(λi)≥ 0. We are interested in the type of hyperbolic
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stationary solution x? = (0,η,1): it has a stable manifold; i.e.,Re{λi}< 0, Im{λi}= 0, and a unstable manifold that generates

oscillations in a plane, i.e., Re{λk}> 0, Im{λk} 6= 0 (Campos-Cantón et al., 2010). A sufficient condition for local and

asymptotic stability comes from the Routh-Hurwitz criterion, i. e., the sufficient conditions to ensure that Jacobian matrix (8)

has three eigenvalues with negative real part is that the coefficients of the characteristic polynomial holds the inequalities:

a0,a1,a2,a3 > 0 a1a2− a0a3 > 0. (12)5

Note that the first inequality holds: a0,a3 > 0, and a1 > 0 because φ < 1 and Π> 0; if sign(a2)> 0 we deduce

ε < ξψ; ψ = 1 +φ/γ2; (13)

as a necessary condition for stability but it is not sufficient. The sufficient condition for stability comes from the second

inequality of (12) and a2 > 0 as follow

ε < ξ

[
1− 1

1 + γ2/ξ+φ
+
φ

γ2

]
. (14)10

For the region with the sufficient condition (14), all eigenvalues of the Jacobian matrix (8) have negative real part and the
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Figure 3. Stability region for homogeneous system (τ(t) = 0), as a function of (ε,ξ,γ) for fixed values of ξ. (a) ξ = 0.4, (b) ξ = 0.8, and

(c) ξ = 1. The necessary and sufficient conditions are satisfied.

equilibrium point x? = (0,η,1) is a sink (Perko et al., 2001).

The relationship between the parameters Π associated with the necessary condition (13) and sufficient condition (14) are

described in Figures 3 (a), (b) and (c), for fixed ξ = 0.4,0.8,1, respectively. By means of numerical simulation the stability was

computed and found for values of γ > 0.5.15
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In order to determine how many eigenvalues of Df (x?) are real or complex conjugate, Descartes’ rule of signs to analyze

the roots of the characteristic polynomial is used. Under the condition (11), signs of coefficients (10) are

(+,+,sign(a2),+). (15)

If sign(a2)> 0 there are two possibilities: all eigenvalues are negative real, i. e., Re{λi}< 0, Im{λi}= 0 or one eigenvalue

is negative real and the other two are complex conjugates; the last statement corresponds to the oscillatory behavior.5

On the other hand, if sign(a2)< 0, there are possibly two positive real eigenvalues, i.e., Re{λk}> 0, Im{λk}= 0 and one

negative real; for this case there are no complex conjugate eigenvalue, hence non-oscillatory behavior is observed. For all cases

there is one negative real eigenvalue, the other two could be complex conjugates or positive real. Figure 4 shows the locus of

the real part of two eigenvalues corresponding to the oscillatory and the non-oscillatory behavior, it describes the relationship

between parameters Π. The graph for the negative real eigenvalue was omitted because we focused on complex eigenvalues.10

The oscillatory behavior is located before the branching, after which the system ceases to oscillate. The locus of the eigenvalues
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Figure 4. Locus of eigenvalues for different values of ξ and γ. The Figure shows the real part of eigenvalues as a function of parameters ε, ξ

and γ. For (a) and (b) fixed γ = 0.8,10, respectively; (c) and (d) shows eigenvalues for fixed ξ = 0.8,1 respectively.

for different values of ξ = 0.4,0.8,1 are shown in Figure 4(a), (b) for γ = 0.8 and γ = 10, respectively. The range of ε decreases

with the increasing of γ and the decreasing of ξ. Figures 4 (c) and (d) describe the same behavior as explained above, and it

was observed that for values of γ > 10 the range of ε for oscillatory behavior is almost equal, although after the branching
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point with the increasing of γ, one of the eigenvalues increases rapidly, i. e., kL increases, making biggest the system stiffness15

or L increases; and the other one tends to zero, more quickly.

It was found a set of parameters that satisfies the necessary condition (13) for stability, within an unstable and oscillatory

region which is around of the Hopf bifurcation (set of seismic parameters that satisfies the critical value of nucleation; Fig. 1).

The region with these features is proposed for the region of self-sustained oscillations (SSO) and consequently for the slow

earthquakes zone. The SSO region is in the unstable region and will be explored in the follow sections.
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u? = η near zero for γ = 10, ξ decreases as it is the range of u. (d), (e) and (f), for γ = 0.8 have both u? and the range of values for u higher

than (a)-(c).

5

3.2 A Hopf Bifurcation, Oscillatory Range (OR) and the Self-sustained Oscillations Region (SSO)

The presence of oscillations in physical systems can be explained through the mechanism of Hopf bifurcation. When three

eigenvalues exist two of them are complex conjugates and the other is a non-zero real, a Hopf bifurcation occurs (Fig. 5) if the

real part of the complex eigenvalues cross the imaginary axis. Periodic orbits and limit cycles are either created or destroyed

for the nearest values of the Hopf Bifurcation (Guckenheimer and Holmes, 1983). If all neighboring trajectories approach the10

limit cycle then it can be said that the limit cycle is stable or an attractor. Stable limit cycles are important because they model

systems that exhibit SSO behavior (Strogatz, 1994), therefore starting at Hopf Bifurcation, the oscillatory behavior around it
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will be analyzed.

There are three necessary conditions in order to a Hopf bifurcation may occurs: (i) The existence of an equilibrium point,

f(x?) = 0; (ii) the Jacobian matrix Df (x?) has a couple of eigenvalues on the imaginary axis, i. e., Re{λ1,2}= 0 and

Im{λ1,2} 6= 0; and (iii) the cross velocity of eigenvalues through imaginary axis must be different to zero.

For any system with three variables the conditions (ii) and (iii) for obtaining a Hopf bifurcation are given in terms of the5

characteristic polynomial coefficients a1, a2 , and a3 from Eq. (10) (Baca, 2007). The cross velocity is given by the derivative

r′(Π0) = d
dγ (Re{λ(Π)})|γ=γ0 6= 0, where Π0 = (ε0, ξ0,γ0) is a set of fixed values and λ(Π) is an eigenvalue of Df (x?) at Π.

The derivative is with respect to the bifurcation parameter, γ (oscillation frequency). The cross velocity is

r′(Π0) =
a′3(Π0)− b2a′1(Π0) +λ0a

′
2(Π0)

2(λ20 + b2)
, a1(Π0) =−λ0 and a2(Π0) = b2. (16)

The polynomial from Eq. (9) has a couple of imaginary roots λ1,2 if there is a Π such that the following two relations are10

satisfied

a3 = a1a2, a2 > 0. (17)

If Π = Π0 satisfies the Eq. (17), then the complex roots of Eq. (9) with real part zero are determined by

λ1,2 =±ib0 b0 =
√
a2, λ3 =−a3

a2
. (18)

From Eqs. (10) and (18), the eigenvalues of (8) for the Hopf bifurcation are given by15

λ1,2(Π0) =±i

√
γ20 −

γ20εHB
ξ0

+φ, λ3(Π0) =− γ20

γ20 −
γ2
0εHB

ξ0
+φ

. (19)

The Jacobian matrix (8) has two complex conjugate eigenvalues with positive real part for values of ε which depend on the

fixed values γ0 and ξ0. These eigenvalues correspond to oscillatory region in the unstable regime, and they are observed from

the Hopf bifurcation to the beginning of bifurcation as it is depicted in the Fig. 4, this interval is called the oscillatory range

OR. We want to find the limits of OR and the SSO in terms of seismic parameters.20

From Eqs. (10) and (17) it is determined εHB , i. e., the ε value for the Hopf bifurcation

εHB = ξ0

1− 1

1 +
γ2
0

ξ0
+φ

+
φ

γ20

 . (20)

εHB is the lower limit of OR. The upper limit is determined by the discriminant of the third order polynomial a0λ3 + a1λ
2 +

a2λ+ a3:25

D =

(
3a2− a21

9

)3

+

(
9a1a2− 27a3− 2a31

54

)2

, (21)
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If D > 0 there are two complex conjugate roots and one is real, if D = 0 all are real roots, and at least two are equal; and if

D < 0 all roots are real and unequal. We are interested in D = 0, which implies that the oscillatory behavior finishes (there are

not complex roots). From Eqs. (9), (10), and (21)

D =

3
(
γ20 −

γ2
0εD=0

ξ0
+φ
)
−
(

1 +
γ2
0

ξ0
+φ
)2

9


3

+

9
(

1 +
γ2
0

ξ0
+φ
)(

γ20 −
γ2
0εD=0

ξ0
+φ
)
− 27γ20 − 2

(
1 +

γ2
0

ξ0
+φ
)3

54


2

= 0,

and we can resolve by εD=0, according to Fig. 4. The OR for ε is in the interval5

OR ∈ (εHB ,εD=0). (22)

In the OR, the necessary condition (13) for stability is satisfied by a set of parameters Π around the Hopf bifurcation; the

region with these features is proposed for the SSO. The proposed interval for SSO is

SSO ∈ (εHB , ξ0ψ0), ψ0 = 1 +
φ

γ20
. (23)

Some numerical results are summarized in Table 1. Our interest is for the case that ε= (B−A)/A > 0, or B−A> 0; which

γ ξ εHB ±(λ1,2)HB εD=0 SSO ∈ (εHB , ξ0ψ0) r′ε(Π0)

0.8 0.4 0.1981 0.5030i 2.081779482130000 (0.1981,0.3562) 0.3042

0.8 0.2499 0.6083i 3.704570372000000 (0.2499,0.7123) 0.2058

1.0 0.2534 0.6385i 4.507300000000000 (0.2534,0.8904) 0.1749

10 0.4 0.3981 0.6313i 1.668570861615000 (0.3981,0.3997) 0.4981

0.8 0.7931 0.8911i 2.601243068598171 (0.7931,0.7994) 0.4963

1.0 0.9894 0.9954i 3.018387963893687 (0.9894,0.9993) 0.4953

Table 1. Relationship between parameters Π on the oscillatory range for Figures 4 (a) and (b). εHB : value of the Hopf Bifurcation;

(±λ1,2)HB : eigenvalues on the imaginary axis; εD=0: value when the discriminant of the characteristic polynomial is equal to zero, i.

e. upper limit of OR; SSO is the interval of self-sustained oscillations, and r′(Π0) is the cross velocity of eigenvalues.

10

means that the stress drop is negative and consequently an unstable regime is observed; under this assumption, ξψ it is a

positive amount implying that ψ > 0. Equation (13) is a necessary condition for stability, which is maintained within a set of

values of parameters where the system is unstable (Table 1).

In the DR-S model any small perturbation in the system can change the dynamical behavior. If the DR-S system is subject

to perturbations from neighboring faults, the seismic fault enters in a limit cycle, but it does not remain long there due to15

intervening stress perturbations (Dragoni and Santini, 2010).
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3.3 The System Under Forcing Conditions

This section aims to numerically describe the oscillatory behavior within and outside the range proposed for the SSO region

(23), under forcing and non-forced conditions. We want to prove numerically that the proposed upper limit determines the

changes in oscillatory behavior, below and above this. For more theoretical background into the theory of periodically forced

systems near a point of Hopf bifurcation, see Zhang and Golubitsky (2011) and references therein.

We are interested in the oscillatory behavior when the values of parameters Π are nearest to the Hopf bifurcation. We numer-5

ically explored the effects of an external, deterministic and periodic force τ(t) acting on the system (5), for Π={0.25,0.8,0.8},

α={1.6,0.2,0.1}, and µ=3. Such effects are illustrated by varying the angular frequency ω from τ(t) = sinωt. This numerical

analysis is helpful visualizing patterns in the dynamic of the system, especially those related to oscillatory behavior, such as

limit cycles and periodic orbits. Figure 6 shows numerical results of typical oscillations projected onto the plane (u,v) and
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Figure 6. Projection of the attractor onto the plane (u,v) and time series of the perturbed system (5). (a), (b) and (c) show the projection

onto the plane for ω = 0.1,1.2,2, respectively. (d), (e) and (f) display their respective time series for u .

time series generated by Eq. (5). The system (5) presents different behaviors when the parameter ω takes values in the interval10

[0.1,2]. For example when ω ∈ [0.1,0.8), a type of complex behavior for low frequencies is observed (Fig. 6 (a)). Figure 6 (b)

shows that for values of ω ∈ [0.8,1.3) periodic orbits of period two are found. For angular frequencies ω > 1.3 the flow of the

system converges to a limit cycle as shown in Fig. 6 (c). On the other hand, Figures 6 (d) to (f) describe the time series of u

when ω is 0.1, 1.2 and 2, respectively. The motion is periodical, this behavior emphasizes the periodic motion of the DR-S.

The time series for low frequencies (ω < 0.8) are more complex than the other cases.15
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3.3.1 Bifurcation Diagram for Unperturbed System

Qualitative changes in the dynamic of the system are better understood through bifurcation analysis such that when a control

parameter is varied the bifurcations show the transitions or instabilities of the system. The unperturbed system is considered

when τ(t) = sin(ωt) = 0, i. e., ω = 0. In order to show that the behavior of the unperturbed system displays SSO, the control

parameter γ =
√

(k/M)(L/v0) is varied, which in turn is related to frequency of oscillation of the slider block and to the

characteristic length of displacement L. Numerical results are for fixed ξ = 0.8, and the value for ε= 0.25 that holds the5

necessary condition (13).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7

8

γ

u
lm

ax
(t

)

Figure 7. Bifurcation diagram for unperturbed system τ(t) = 0, bifurcation parameter γ versus local maximum of time series ulmax(t),

Π = {0.25,0.8,γ}.

Under the necessary condition (13), the system without external perturbations oscillates and multi-periodic orbits are created

over an approximate range of values γ ∈ [0.6,1]. Eventually, the flow of the system converges to a limit cycle as is depicted in

Figures 7 and 8. This oscillatory behavior is observed when Π is nearest to the Hopf bifurcation in absence of external forces.

The range of ulmax(t) decreases when γ increases.10

3.3.2 Bifurcation Diagram for Perturbed System

According to previous outcomes, we considered the forced system τ(t) = sinωt centered at ω = {0.1,1.2}, for fixed ξ = 0.8,

and two values of ε. Two values for ε= {0.25,1} are explored. The first value holds the necessary condition and the second one

does not. The bifurcation parameter is γ. We named case one to the analysis of bifurcation with fixed ε= 0.25, and second case

for ε= 1; for both cases ξ = 0.8 is fixed . The bifurcation diagram for case one is displayed in Fig. 9, it shows the qualitative15
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Figure 9. Bifurcation diagram γ versus local maximum from the time series ulmax(t). Π = {0.25,0.8,γ}, µ= 3, α= {1.6,0.2,0.1}, sub-

damped system. (a) ω = 0.1, and (b) ω = 1.2.
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Figure 10. Bifurcation diagram γ versus local maximum from time series ulmax(t), ω = 1.2, Π = {1,0.8,γ} µ= 3, α= {1.6,0.2,0.1},

sub-damped system. (a) There are three types of behavior: Type I, II and III. (b) Zoom of Type I.

behavior of system relative to the variable of position u and oscillation frequency γ. The Figure 9 displays γ versus its local

maximum of time series ulmax(t). Figure 9 (a) for ω = 0.1 shows that the most orbits are weakly attractive until approximate

values of γ > 0.9 when limit cycles are observed.

On the other hand, Fig. 9 (b) for ω = 1.2 shows limit cycles, which are observed approximately when γ ∈ [0.55,0.66),

γ > 1.17 and γ = .765; whereas there are two points of bifurcation from orbits of period one to orbits of period two at γ = 0.66

and γ = 0.765. The orbits of period two have the form of Fig. 6 (b), and the limit cycles take the form as in Fig. 6 (c). The5

orbits are strongly attractive, which suggests that they could be stable at least during a short period. According to the necessary

condition for stability, the behavior of ulmax(t) relative to γ decreases for both ω = 0.1 and ω = 1.2 because after γ reaching

the values 0.9 and 1.17, respectively, the system falls into the limit cycle, in such a way that when γ increases, the range of

values for ulmax(t) decrease. The type of behavior displayed in Fig. 9 is expected when ε < ξψ.

The region of SSO could be numerically explained by this analysis; if the system is perturbed slightly by external forces10

τ(t), it always returns to the standard cycle.

The bifurcation diagram for case two is displayed in the Fig. 10 (a) for ω = 1.2. The necessary condition (13) fails; and the

dynamic of the system shows three types of behavior: behavior Type I (Fig. 10 (b)) is observed approximately at γ ∈ (0.6,1.55).

Type I shows periodic orbits of period one and two that appear to be alternating, bifurcations from orbits of period one to pe-

riod two occur, then the system reaches a limit cycle at γ = 1.55 but now with Type II behavior for approximate values of15
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γ ∈ (1.55,3.5). In the Type II ulmax(t) increases while maintaining the limit cycle until behavior Type III is observed approx-

imately for γ ∈ (3.5,5.5), which displays periodic orbits with different period. The behavior displayed in Fig. 10 corresponds

to unstable and oscillatory region outside of the SSO.

3.4 Type of Hopf bifurcation

In terms of the flow in phase space, a supercritical Hopf bifurcation occurs when a stable spiral changes into an unstable spiral

surrounded by nearly eliptical limit cycle (Strogatz, 1994). A subcritical Hopf bifurcation occurs when small perturbation can5

lead to either decaying oscillations due to a stable equilibrium or a jump to a large sustained oscillations in the system due

to an unstable limit cycle. For the analysis of the bifurcation type, the main challenge is the numerical stiffness, due to the

nonlinear logarithmic term. The set of parameters Π does no cross the Hopf bifurcation if γ > γHB . Small disturbances decay

after ringing for a while and stable spiral is observed. The block and the driver plate are moving at constant rate v = 1, and

the relative position is η. On the other hand for γ < γHB , the parameter values cross the Hopf bifurcation. The equilibrium10

state loses stability and unstable spiral is observed. This type of bifurcation is expected for smooth, non-catastrophic changes.

The slow earthquakes are almost imperceptible because the displacement rate is very low compared to ordinary earthquakes

and they are generated for parameter values around the critical value of nucleation. Hopf bifurcation is supercritical within the

proposed limits for unforced system. To find chaotic behavior or strange attractors with the non-forced system it is necessary

to vary epsilon very far (Erickson et al., 2008) from the value of the Hopf bifurcation that we are analyzing. However, Kostić15

et al. (2013) have found chaotic behavior for small values of Π by introducing time delay in the friction term. They have found

two types of Hopf bifurcation depending on the variation of the time delay. Similarly, by introducing the external force τ(t) a

subcritical Hopf Bifurcation could be given for some critical τ(t) and slight variation of the ε and ξ parameters. Disturbances

do not allow the system to remain at an equilibrium point resulting in continuous oscillations or chaos. For the case when the

set of parameters Π crosses the Hopf bifurcation, continuous oscillations were found in both displacement and velocity only20

by varying the bifurcation parameter. Determining critical values of Π and τ(t) requires more concrete study.

4 Discussion and Conclusions

We have analyzed the DR-S model which describes the kinetic mechanism during an earthquake. The system displays richness

in their oscillatory dynamic behavior: from attracting cycles of one and two periods to a limit cycle and multi-periodic orbits,

depending on the parameters values in the necessary condition for stability (13). The necessary condition is maintained even25

for a set of parameters within the frictionally unstable region. This behavior was studied by bifurcation diagrams through the

Hopf bifurcation mechanism.

The complex oscillatory behavior discussed in this paper is determined by the variation of parameter γ, fixed values ε and

ξ, and the necessary condition for stability (13). The necessary condition depends on the parameter γ, and this depends on

the characteristic length L, suggesting that the complex oscillatory behavior should be observed for a range of values for the30

parameter γ. The unperturbed and perturbed cases have shown how the system describes behavior as it is found in systems

17



with SSO, this is in the case when the necessary condition (13) is maintained (Figures 7 and 9). There are self-oscillations that

create multi-periodic orbits, but eventually converge to a limit cycle and the range of ulmax(t) decreases when γ increases.

The γ parameter seems to be relevant, and consequently the characteristic length L. Lapusta et al. (2000), Lapusta and

Rice (2003), and Abe and Kato (2013) derived some conclusions concerned to L from laboratory experiments and numerical

simulations. They associated L with the size of small earthquakes, with frequency, and SSO. If L decreases then the block is

frictionally less stable, i. e., there are more frequent displacements, moreover, they found under a range of parameters values5

the oscillations can change from periodic to aperiodic and conversely, but the border of the transition was not defined.

Under the assumption B >A> 0⇒ ε > 0 and Eq. (20), Hopf bifurcation occurs for any γ ≥ 0.5 within the standard 0.4<

ξ0 < 1, moreover, εHB → ξ0 when γ increases in such way that for any γ ≥ 10 the values of εHB are equal. For these values ε

is bounded in 0< εHB < 1. This would have some implications related to the slow earthquakes nucleation. For SSO region,

approximately for 0.5< γ ≤ 10 the oscillation frequency and fluid are determinant for the system have unstable oscillations.10

For small values of γ there are more transitions in the dynamical oscillatory behavior, when the necessary condition (13) holds

and does not it as it is shown in Figures 7, 9, and 10. On the other hand, for γ ≥ 10 there are less transitions, neither the

fluid and frictional coefficients of Stribeck in the medium affect to the oscillatory behavior (φ/γ2→ 0⇒ ψ→ 1). This general

behavior for small γ seems to be independent on the angular frequency, ω, of the external force because even the unperturbed

system displays this behavior. The function of the ω variation is the generation of the dominant type of orbits (one, two, or more15

periods) and its frequency of transition which is bigger when the necessary condition fails. The complex oscillatory behavior

is dependent of small γ values, and of the necessary condition for stability (13) that involves fluids from Stribeck’s effect.

The relevance of γ seems to be associated with the presence of fluid. Erickson et al. (2008) determined that the stationary

solution x? = (0,0,1) is independent of seismic parameters, the relative position of the block and the plate will not depend

on the frictional coefficients or seismic parameters; the system would be under the limit of the stable/unstable regime where20

the big earthquakes are nucleated. At this solution the block and the plate have the same velocity and there is no contact with

asperities, hence there is no displacement between the plate and the slider block.

Complementarily, we found if Stribeck’s effect is added to the Madariaga’s Model then the stationary solution x? = (0,η,1)

has the displacement or relative position as a function of seismic parameter γ. The parameter γ is associated with the oscillation

frequency of the block as well as the frictional constants related to fluid through ψ in the necessary condition (13). The relative25

position u is not necessarily zero although the relative displacement is. The role of frequency oscillations and fluid is decisive

for dissipation and consequently it is also for the block position. If γ is large enough then x?→ (0,0,1), i. e., if γ or kL

increases, then u?→ 0. The last statement could be interpreted as k increases making the system stiffer or L increases making

slower the stress drop under some conditions.

The stability analysis of x? was through eigenvalues of Eq. (8). If the real part is negative for all eigenvalues then the30

stationary solution is a sink and the system is in the stable regime, the medium properties break any nucleation or propagation

of earthquakes. Scholz (1998) determined a critical value for frictional stability/instability under elastic medium, with an
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oscillator coupled to Dieterich friction law:

σc =
−kL
a− b

(24)

that depends on the rocks properties, point nucleation and frictional parameters a−b, k, y L. The critical value σc corresponds

to the normal effective stress. When any σ holds σ ≥ σc, then there are changes in the frictional properties, such changes

unchained earthquakes. This phenomena is named frictional instability. Scholz (1998) reported that the SSO are into the stable

regime, below the critical value of nucleation (24) (Fig. 1), on complementary way this investigation reveals that the critical5

value (24) of Scholz (1998) have got to the upper limit of SSO in the unstable region, and it is related to the upper limit of

SSO in the frictionally unstable region regardless Stribeck’s effect.

The relation between the SSO (23) and (24) comes from the definition of Π = (ε,ξ,γ) and the statement (A−B) = σ(a−b)
(Daub and Carlson, 2008) as follows. From Eq. (24) σc(b−a) = kL⇒ (B−A) = kL⇒ (B−A)/A= kL/A⇒ ε= ξ, on the

other hand ε= ξψ⇒ σc(b− a)/A < kLψ/A⇒ σc =−kLψ/(a− b), a corrected value for SSO is as follows10

1< σ∗c ≡
−kLψ
(a− b)

≡ σcψ, (25)

which combines frictional parameters of Dieterich-Ruina friction law and Stribeck’s effect. Equations (13) and (25) are equiv-

alent. If γ > 10, ψ→ 1 and σ∗c → σc.

The upper limit of SSO behavior is a function of seismic parameters and frictional coefficients concerned to fluids although

this was established for the base of seismogenic layer, it is likely probably it could be applied to the shallow transition zone15

in addition with the parameters and constants related to the slip-hardening (Ikari et al., 2013). The fluid presence involves the

frequency of oscillation of the block as a very important element to dissipation and consequently with the stationary solution

(equilibrium point of the system) as well as in the upper limit proposed for slow earthquakes zone. The characteristic length L

has a primary relevance on the results of this research.

20

Although this investigation is more related to the proposal of a formal pattern in the study of SSEs, and with a first approx-

imation of the upper limit of the transition zone, this is considered as a preliminary study in order to be applied to the real

seismogenic regions. However, the parameters considered for slow earthquakes are still being studied through observations,

experiments, and by means of simulations, but there is still not something precise.

The study of SSEs in Cascadia (Watkins et al., 2015) indicates a possible link between the observational and experimental25

data with the parameters involved in the most of models of earthquake’s physic coupled to the Dieterich-Ruina’s friction law.

The slip amount of SSEs is in cm order but the average slip amount of smaller events are unknown. The effective normal stress

in the range of 3-9 MPa produce fault slip consistent with some observed SSEs, B−A is in the range (0.0015 to 0.003) of the

slow slip section. At the top of the slow slip section B−A is 0.003 and 0.001 at the base, A≈ 0.02, L is in the range 1-50

µm (real L is unknown), the rate of convergence (10 a 50 mm/year) represents the range of convergence rates of subduction30

zones where SSEs are observed with GPS. These parameters could vary depending on the region that SEEs occur. Further, the
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critical value Kc = (A−B)σ/L depend on L; viscosity=0.1 (nondimensional) has been used in earthquake models (Carlson

et al., 1994), but the estimation of the real viscosity depends on the region.

The proposed upper limit for the SSEs zone includes the fluids and oscillation frequency (and consequently L), through ψ.

They might be introduced into the simulations and experiments in order to see which are the implications over the recurrence

times, duration and velocity of SSEs in real seismogenic regions. A final step would be using scaling laws for SSEs to determine

the real values of parameters included either experimental and/or simulation data, such as the stiffness Kc and viscosity, take5

into account the specific characteristics of the fault.
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