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Abstract. Theoretical studies usually attribute convections1 Introduction

to the developments of instabilities such as the static or sym-

metric instabilities of the basic flows. However, the follow- Convective activities have long been a subject of great im-
ing three facts make the validities of these basic theories unportance for the study of severe weather. Although ap-
convincing. First, it seems that in most cases the basic flowplied research toward the understanding of the generation
with balance property cannot exist as the exact solution, s@nd the roles of convection has considered many relevant
one cannot formulate appropriate problems of stability. Sec-@spects concerning latent heating, friction and other phys-
ond, neither linear nor nonlinear theories of dynamical in-ical processes such as the statistical equilibrium theory of
stability are able to describe a two-way interaction betweenArakawa and Schubert (1974), boundary forcing and surface
convection and its background, because the basic state whidixes, wind-induced surface heat exchange (WISHE), Tur-
must be an exact solution of the nonlinear equations of mobulent Kinetic Energy (TKE) and buoyancy production, etc.,
tion is prescribed in these issues. And third, the dynamicalurely theoretical studies so far have mainly attributed con-
instability needs some extra initial disturbance to trigger it, vection to the dynamical instabilities of the large scale ba-
which is usually another point of uncertainty. The presentSic state, including static instability and symmetric instabil-
study suggests that convective activities can be recognizedy (see, e.g. Holton, 1992; Hoskins, 1974; Xu and Clark,
in the perspective of the interaction of convection with vor- 1985). The mechanisms of these dynamical instabilities give
tical flow. It is demonstrated that convective activities can a reasonable explanation to many aspects of convective activ-
be regarded as the superposition of free modes of convectiofiies. Meanwhile, many other aspects of convective activities
and the response to the forcing induced by the imbalance ostill remain beyond the scope of the instability perspective
the unstably stratified vortical flow. An imbalanced vortical mainly due to the following three reasons. First, previous in-
flow provides not only an initial condition from which un- stability theories only deal with very simple basic states such
stable free modes of convection can develop but also a forcas the static state or parallel geostrophic flows with verti-
ing on the convection. So, convection is more appropriatelycal/horizontal shears (Holton, 1992; Pedlosky, 1979; Drazin,
to be regarded as a spontaneous phenomenon rather thant881), which are too simple cases to have more applications.
disturbance-triggered phenomenon which is indicated by anyt is almost impossible to establish the instability theory of
theory of dynamical instability. Meanwhile, convection, par- & general basic state, not only because of the difficulties in
ticularly the forced part, has also a reaction on the basic flonensuring the existence and finding out the exact solution for
by preventing the imbalance of the vortical flow from further @ general basic state, but also because of the even more dif-

increase and maintaining an approximately balanced flow. ficult mathematics for the instability of such basic states (see
Zhao, 2003 and references therein). Second, convective ac-

tivities and their spatiotemporal structures are essentially re-
sults of the two-way interaction between meso- and synoptic
scales (Emanuel et al., 1994; Roode et al., 2004). So, insta-
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description of this relationship between convection and its2.1 Basic state, vortical flow, balance and imbalance
environment. Last, once the basic state becomes unstable, it
does not mean that convection can arise, since an extra iniAs @ generalization of the simple basic state in the previ-
tial disturbance is usually needed to trigger the convectionOuUs instability theories such as static and parallel geostrophic
Sometimes, identifying the source of this initial disturbance flows, we would like to introduce the concept of the balanced
is itself a difficult problem, because any transient disturbancelow via that of the slow manifold. The starting pointis given
to the atmosphere has been finally damped after long tim®Y the vorticity equation, divergence equation and thermody-
evolution and even the existence of such disturbance is haramic equation irp-coordinates as below
to determine. ac ac IV

The development of theories on balanced flow and slow— =—f§—V.V¢—w—=—c¢d+k-(— x Vw) (1a)
manifold in the past decades (for a review on this issue, se p p
e.g. Mcintyre, 2000) provides a new possibility for the under-
standing of convective activities, particularly for overcoming 35
the above three drawbacks of dynamical instability theories.;
The replacement of the basic states of the instabilities by an P
approximate and adjustable balanced flow will logically infer — (8% 4a’+b*—c?H— e Vo (1b)
the existence of a new mechanism for the spontaneous pro- P
duction of the convection from the balanced flow. This can
be viewed as a generalization of the concept of the sponta-d  d¢
neous emission of inertia gravity waves by balanced or vorti- 5; @
cal flow (Lighthill, 1952; Ford et al., 2000). The motivation
of the present study is to incorporate convective activities inWhereé is the horizontal divergence; the vertical com-
the framework of the theory of the balanced flow or slow Ponent of vorticity, V' the horizontal wind with zonal com-
manifold so as to investigate the arising, development andonentu and meridional component, » the vertical wind
spatiotemporal structure of convection and the conditions ofnd ¢ the potential height. The Coriolis-parametgrhas
the balanced flow corresponding to these aspects. The pap@rtypical value of 10s* for mid-latitudes. The stability
is arranged as follows. In Sect. 2, by discussing some generdlarameters = —RTop~*dIndo/dp for the isobaric system
properties of convection and the balance/imbalance of vorti{S approximately a constant, afg is the potential temper-
cal flow, we give generalized definitions to the basic conceptgture corresponding to the basic state temperafyre In
associated with convection and its environment. In Sect. 3 weddition, a = 0u/dx — dv/dy,b = dv/dx + du/dy are de-
develop a theory for the response of convective activities toformations of the horizontal wind field. From the continu-
the forcing induced by the departure of a vortical flow from ity equation, vertical velocity is related to the divergerdce
balance. Many related issues such as the two-way interactioY @ = Jo 8dp. For simplicity, in the equations above the
between convection and vortical flow are discussed there aydrostatic assumption is made, and the advection of the

well. The last section is devoted to a summary and furtherCoriolis-parameterf, which gives rise to thg-effect and
discussion of related issues. the related generation of Rossby waves, is neglected as well.

These simplifications specify the range of spatial scales in
the present study. Since a small-scale convection cell has
2 Generalizations of basic concepts associated with strong deviations from the hydrostatic balance, the equations
convection above are more applicable to a meso-scale convection sys-
] ) . tem than to an individual cell within it. On the other hand,
Before further discussions, some important concepts and asne spatial scale should not be too large, so thaptedfect
sociated termmology need to _be clarified. We call the envi-is negligible. Accordingly, the applicable spatial scales of
ronment of convection the basic state or basic flow. The basi¢ne equations range from 100 to 1000 km. So, by “convec-

state may be roughly defined as the remaining part of motionjye activities” we primarily mean meso-scale systems in this
after convection is removed in some given way. In this defi- y55ar,

nition, the basic flow can be either a strict solution or justan A pajanced flow can be defined by lettidig: 0 in Eq. (1b).
approximate one, with or without the property of balance. InTpe so-called balance equation then is
contrast, we need also an appropriate definition of convection
to include more complex cases. The following parts of this 2 15, 5 2

: o o —Vep—= bs—¢9)=0. 2
section are devoted to generalizing these concepts and glVII’ng ¢ 2(a5 +he=¢9) )
more precise definitions.

8
=fg—V2¢—V-V8—a)a—
ap

):—oa)—V-V(%), (1c)
ap

Hereafter, the subscript and$§ denote the pure contribu-

tions from the vortical and divergent component of the flow,
respectively. Equation (2) indicates some certain way of bal-
ance between horizontal wind and geopotential height field.
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On the other handi =§(¢, ¢) =0 also defines a hypersur- However, convection, which may be another important phe-
face called the slow manifold in the phase space spanned byomenon associated with this loss of balance, has not been
(¢, 8, ¢). It can be viewed as a special case of the slow maniinvestigated theoretically so far. In our following studies
fold defined by Leith (1980) and Lorenz (1980). On this slow on meso-scale disturbance such as convective activities, the

manifold, the evolution of the system (1) is reduced to basic state can be selected as the vortical flow, no matter
dc whether or not it is an exact balanced flow. In this case, the
i -V x Vg (3a)  vortical component together withe is viewed as the ba-

sic state, while the divergent componéns the disturbances
5 96 90 about it. This idea is more clearly seen by a mathematical
— () ==V xV(—), (3b)  definition as below. LeS denote the phase state of the dy-
ot ap p namical system (1)§o the basic state an§l the disturbance,
i.e. an advection process of the relative vorticity (whers o)
constant) and the hydrostatic approximated temperature in-
duced by the vortical component of velocity. The balanced 8 8 0 ,
flow defined in this way is a purely vortical flow. Obviously, S={ ¢ |=| Q[+ | s |=5+5%o
basic states of static flow, parallel geostrophic flow and ax- ¢ 0 ¢

isymmetric gradier]t flow "’?re.i“St particular cases (.)f this p.al'regardless whether or not the basic st$jesatisfies the bal-
a}nced floyv..Just I|ke_ deviations of the geostrophic equ'l'b'ance Eq. (2). The conventional theory of balanced flow
rium, deviations of this general balanced flow can be on the ivides the atmospheric motions into two classes: high-
one hand fastgravi'Fy waves, or on the oj[her hand a slow an‘Eequency inertia-gravity waves (phase speeds up to hun-
forced secondary divergent motiémestoring the balance. dreds ms! and large divergence) and large-scale low-

Slow manifold or balanced flow has been a central Concephequency flow (phase speeds of the order of terr # pe-
for the understanding of many aspects of the atmospheric dy: '

ics. Much hhas b devoted to thi biect si riods of few days, vortical flow). However, the convective
hamics. vuch research has been devoted 1o this SUBJECL SINGG 5 05 416 in between. So dividing atmospheric motions into

it was proposed by Leith (1980) and Lorenz (1980), amongdivergent and vortical flow rather than into high- and low-

V\:h'Ch Wa_sf tlr:jefgenerla_ll tc_ilsctjssmnhab_mg the eflsttence_g eqguency seems more essential in the understanding of the
slow manitold Tor realistic atmospheric Tlows starting wi relationship between convection and balanced flow.
Lorenz (1986). The most important result of this research

was the discovery that the slow manifold is not an exact in-2 o Effects of balanced/imbalanced vortical flows on
variant manifold. It can only exist as a modified concept of so convection

called slow quasi-manifold or fuzzy manifold (Lorenz, 1986,

1987, 1992; Jacobs, 1991, Vautard and Legras, 1986; VallisEquation (1) can be reduced to one equatiorsfor
1996; Vanneste and Yavneh, 2004; Warn and Menard, 1986;
Warn et al., 1995; Warn, 1997; Ford, 2000), which meansd2s,,
that balanced flow, to some extent, is just an approximation 32
except for some particular cases such as parallel geostrophic . . L .
flows and axisymmetric gradient flows. There is also now 1€re, the S‘jbsc.r 'l denotgs the partial derlva}tlve with re-
strong experimental evidence that the slow manifold is notSPect top. “_(8) IS the_ nonlinear term of the _d|stu_rban&e

an invariant manifold (Williams et al., 2008). As no analytical solution of Eq. (4) can be gained in the non-

Since a much stronger conditign= 0 is imposed on the linear regime, it will be omitted in the following discussions

primitive equations in Eq. (1), the balance system of Egs. (z)wherea can be assumed to be small enough, not only because

and (3) in this paper are neither exactly analogous to the bal™'® just care about the triggering stage of th? convegtion, but
ance equations by Charney (1955) which permit the spurioug@‘lsoI becgusfls usually f_ar S”;‘?‘”elj thap as will be pointed
nonphysical solutions noted by Moura (1976) nor to the slowUt later in the next section. Finally,

equations by Lynch (1989) in which the spurious solutions s oV

are absent. As the slow manifold defined in the present waylc.¢8 =[—fVs Vs~ faro— fcd+ fk- (55 x Va)lpp

+0 V28 + 28, +3(8) —Le 98 =N(s, B). (4)

usually can not exist as an exact invariant manifold, the bal- —[V-V8+(acas+bcbs)+ “’GL Vol
ance system of Egs. (2) and (3) may also permit spurious 21w 99 g
i . . +VAV(5)-Vslp
nonphysical solutions. But the nonphysical parts of the solu- P
tions may be small enough to be neglected and the nonphys- ®)

ical solutions are roughly physical ones, if the slow manifold . : . .
: ghly pny is the linear operator acting @, while
remains to be a quasi-manifold.

It is also well recognized that the departure from the ex-
act balance is associated with the activities of inertia grav-
ity waves or the spontaneous emission (Ford et al., 2000).
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@ vortical flow from the balance, because at least the distinc-
1 tion between the balanced and imbalance flows is reflected
N(s.9) = —3 [(a§ +52 - gz),]pp — £V e XA pp well by (<, ) = 0 or (¢, ¢) £ 0, respectively. A physical

explanation of this imbalance forcing will be given in Sect. 3.

G
2 a
A [Vg X ap)L © 2.3 Reconsideration of the definition of convection

is the inhomogeneous term which depends only on the basiés mentioned above, if the basic states are purely balanced
state(s,¢). The subscript denotes the partial derivative flows, convection can be defined traditionally as the verti-
with respect ta. The physical meaning 9&(c, ¢) isrelated  cal motion arising from the instabilities of these balanced
with the so-called omega equation and will be discussed irflows. However, the loss of balance of the vortical flow al-
detail in the next section. ways yields an inhomogeneous tefiic, ¢) # 0 to Eq. (7),

If the basic statéc, ¢) is an exactly balanced flow, then it that is
is also the exact solution of Eq. (1). From Egs. (3) and (6), 52

we havedi(c, ¢) =0. Then Eq. (4) becomes le’!’ +oV3s +f25pp — L8 =N(c, ). (10)
2

L’z’l’ +oV2s+ f25pp €. 48=0. 7) In this case, since the basic state is no longer the exact solu-
ot tion, the definition of its stability becomes problematic and

This is a problem of stabilities including static instability and SO does the definition of convection. Consequently, we need
symmetric instability when the basic state is a static flow andto reconsider the definition of convection and give a more
parallel geostrophic flow, respectively. It follows that for the 9eneral one to include imbalance cases.

exactly balanced flow, convection can only be attributed to  The general solution of the linear Eq. (10) should be the
the instabilities of the balanced flow. For example, when thesuperposition of both the homogeneous soluéigsatisfying
balanced flow is the parallel geostrophic flow, and only sym-0nly homogeneous part of Eg. (10), and the inhomogeneous
metric disturbance is considered, Eq. (7) can be rewritten a§olutions, satisfying the whole equation of (10),

8 =101+62. (12)
328
912

+ N25yy — 2525yp + F25pp =0. (8) It is easy to see that the homogeneous part and its solution
31 behave like a problem of stability, no matter whether or

Here,N>=0, S?=fU, F?>=f(f+U,), andU isthe not(s,¢) is an exactly balanced flow witt(s, $) =0. So

x-oriented basic flow. It can be proven that the criterion for we can propose an apparent stability problem like Eq. (7)

the symmetric instability is for 81 even wheni(c, ¢) #0. As a result, convection is
b ) definitely associated with this kind of apparent instability
q=F*N*-S$*<0when N?>0. (9)  (Kelvin-Helmholtz instability, inertia instability, or symmet-

ric instability). On the other hand, the inhomogeneous solu-

Nevertheless, the exactly balanced flows are just a few of;,, 5, for an unstable homogeneous operator of Eq. (10)
very particular cases as mentioned above. Under ordi_nar)/nay also largely differ from that of a stable one that just
circumstances, the basic stéte¢) may more or less remain  yje|gs forced inertia gravity waves. So, both the homoge-
apart from this exact balance. S,O’ usually we have the inyeq,q and the inhomogeneous solution contribute to the con-
homogeneous terit(c, ¢) # 0, which appears as some ex- yective activity when the homogeneous operator is unstable.
ternal forcing on the convection from the basic st@afe¢).  consequently, the definition of convection can be general-
Consequently, besides producing instabilities, the impact of ¢4 45 the vertical motion resulting from an unstable basic
vortical flow on convection can also be attributed to a forc- state given byc, ), regardless whether or not the basic state
ing bY the imbalance of vo_rt|cal flow. Howevei(c, ¢) does _is a balanced flow. In other words, this generalized definition
not directly depend on this departure. Rather, as shown iReq4145 convection as the results of both apparent instability
Eq. (6), it depends on the spatiotemporal derivatives of eachy, forcing of an unstable and imbalanced basic state. There
of the three individual terms (or their advections) in Eq. (2) are two key points of this generalized definition of convec-

which cancel each other only in the case of exact balance. Agy, e (1) the basic staig, ¢) must be apparently unsta-
aresult, the forcing is not determined by the imbalance of theole ,and (2) it needs not to l;e balanced flow.

three terms of Eq. (2) but by the imbalance of spatiotempo-

ral derivatives of them (or their advections) in Eq. (6). This 2.4 Disturbance-triggered or spontaneous convection?
fact means that far departure from the balance does not need

to indicate a stronger forcing than a small departure and thaThe triggering mechanisms of convection for balanced and
the forcing by the vortical flow can be very complex. Even imbalanced vortical flows are also different. In the former
s0,M (g, ¢) can still be used to measure the departure of thecase, convection is an issue of purely instability which grows

Nonlin. Processes Geophys., 18, 7789 2011 www.nonlin-processes-geophys.net/18/779/2011/
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from some external initial disturbance. We call this kind of ~ Without the bilinear tern? 46, the homogeneous part of
convection a disturbance-triggered convection. In the lattefEq. (15) is identical to a problem of static instability, which
case, convection is a result of both apparent instability and resimplifies the concepts and mathematics of the presentissues
sponse to forcing by an imbalanced basic state. The triggerto a great extent. Consequently, the impact of the basic state
ing of the apparent instability does not need an external initialon convection is merely from the additive forcifiys, ¢),
disturbance, because for an imbalanced vortical flow we alvather than from the multiplicative forcing. 46 associated
ways have an initial disturbanég_g # 0. So, imbalance pro-  with the apparent instability.
vides not only a forcing but also an initial disturbance from By projecting Eq. {5) on the vertical mode#®, defined
which the apparent instability can develop. Therefore, it isby the eigen-system
more appropriate to attribute the triggering of convection to
the imbalance of the basic state itself rather than to some un- 4" £n _ AoP: n=0 12 ... (16)
. . . — *n n» — My Sy &y

known extra source. We can then call this kind of convection ~ dp?
a spontaneous convection. In the linear regime of the devel-_.. _ . . .

: L satisfying suitable lower and upper boundary conditions, we
opment of convection, this imbalance-forced part of convec- i (see Appendix A)
tion (82) cannot interact with free unstable modes of appar-
ent instability §1). However, as the convection develops into 326, S )
the nonlinear regime, we hypothesize that the nonlinear in-5 > =y Voo + [ 0n =N (s, ¢). (7)
teraction between thendy(ands,) may create an even more
complex structure of the convective activity. Even so, theHere,c2 =1/x,. If ¢2 > 0, or the atmosphere is stably strati-
spontaneous nature of the convection remains unchanged. fied, the left hand side of Eql{) describes the inertia grav-
ity waves, while the right-hand side is the “source” of these
waves. This is the concept of so-called spontaneous emis-
sion proposed and well studied in previous works such as
Lighthill (1952) and Ford et al. (2000). In the emission
Eq. @), we take the linear term. 48 to be a source term.

As mentioned above, the linkage between convection and it§!0Wever, in the Lighthill/Ford interpretation, it would be on
synoptic background is characterized by both a response t§€ |eft-hand side of Eq4f and would be regarded as a part
forcing M(c, ¢) and the instability of the basic flow with of the wave operator. This has |mpI|cat|pns for the ensuing
€48 involved. Usually, at synoptic scale, we have a Rossbyanaly5|s, because the smallness of the linear term compared

3 Convections interacting with vortical flows

3.1 Simplification of concepts

numbers < 1 and to the inhomogeneous term (Eq. 14) is then irrelevant, and
what matters is the smallness compared to the other terms

leext, (12) iq the wave operator. The resulting ma}themgticg is largely
- different from that of the present analysis. This discrepancy

may be understood as follows. Basically,d,¢) can also be
viewed as a small disturbance about the static background.
Therefore, by inertia gravity waves, we implicitly mean those
under the static background and the wave operator is then just
as the left-hand side of Eql%). The “linear” termé. 46 is
essentially a nonlinear one and should also be a small term
even compared to the true linear terms in the wave operator,
if weak linearity is assumed.

s Fr2 The spontaneous emission wheh> 0 is no longer the
' ’OC = <1l (13) topic of our present study. Rather, if the atmosphere is un-

stably stratified, i.ec? < 0, the left-hand side of Eq17)

For details regarding the above scale analysis, we refer talescribes the convection, and the right-hand side is viewed
Mclintyre (2000) or Ford et al. (2000). Under these condi- as the forcing from the vortical flow, which will be the focus
tions, since botli_ 46 andf (s, ¢) are quadratic terms, once of our following discussion.

Also, for a meso-scale vortical flow with Rossby number
0(1), we assume that the Froude numbier can be esti-
mated from the barotropic mode byr = U/./gH, where
U ~10'mst is the scale of wind speed, ard ~ 10*m
is the vertical scale. In this case, or even fér~ 10°m,
a much shallower equivalent depthy « 1 can be satisfied
very well, so that we have

S

8 is small, it can be proven that The inhomogeneous solution of EG.7j or the response to
the forcing can be obtained as below. By introducing a new
te.pd K<N(s, 9). (14 argument = ¢;7 with c?=—c2>0, Eq. (L7) is transformed
Equation (0) is then reduced to into a 3-dimensional Helmholtz equation
2 2 2 2
528 5 ) / %8, 0%, 093, f—(S:—S}i 18
T VPS4 28, = (s, 6). 15)  x2 gz T T @t T @M (18)
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It is highly necessary to point out that the elliptic E48)
is essentially different from the hyperbolic Eq. (18) with
¢2 > 0, because the latter is wave equation describing inertia
gravity waves while the former describes convection which
can not be simply regarded as unstable inertia gravity waves.

3.2 Analytical solution of convection

The general solution of Eq18) is the sum of its homoge-
neous and inhomogeneous solutions, corresponding to fre
modes of convection and forced convection as below, respec-
tively.

a. Free modes of convection

The homogeneous solution of E4.8{ can be written

as Aexp(kyx +kyy+wt)i], the growth rate of the un-
stable mode of which is obtained from the dispersion
relation as. =iw =/ (k2+k2)c? — f2. Obviously, dis-
turbances of small scale tend to grow more rapidly. So,

usually these free unstable modes are responsible for thg’

formation of small-scale cells of convection.

. Forced convection

The Green’s function of Eql{) can be obtained from
that of Eq. (L8) as

1 exdi £\/Ir —F2 42t —1')2]

G(rsr/9tst/)=4_
T \/|r—r’|2+ci2(t—t’)2

(19)

wherer = xi +yj, and the causality demands ¢’ (see
e.g. Guo, 1979). So, the inhomogeneous solution of
Eq. (L7) can be written as

0o 00
(Sn(rvt):L/ / /mn(r/st/)
47tCi2

t'<t—00—00
- f 2 200 N2
exr{lcl_\/|r 242 —1)2]

\/|r—r’|2+cl.2(t—t/)2

dx'dy’dt’ (20)

The physical meaning is clear: the strength of forced
convection inr at arbitrary timer depends on the cu-
mulative influence of the forcing from everywhere and
at all times earlier tham. The Green’s function indi-
cates that the influence of the forcing from the vorti-
cal flow is inversely proportional to the spatio-temporal
distance, which means that the overall spatio-temporal
structure of the forced convection is similar to that of
the forcingNi(c, ¢). If the structure of the vortical flow

is movable, then so is the overall structure of the forced
convection associated with it. On the other hand, as in-
dicated by the spatio-temporal structure of the Green’s

Nonlin. Processes Geophys., 18, 7789 2011
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Fig. 1. Spatio-temporal structure of the Green’s function (19) (con-
ur lines in divergent regions are not shown). The figure shows that
pulsation at time’ of the forcing located at’ can induce convec-

tive structures around (shadow areas), and that these structures will
move towards the “source” af.

function in Fig. 1, the fine structures reflect the numera-
tor of the Green'’s functioril@©). It shows that convective
structures induced by the pulsation at timef forcing
located atr’ will move toward the “source” at’. We
suppose that this is a universal property of forced con-
vection and that its structures tend to approach that the
centers with the strongest forcing. This structure of the
Green'’s function solution suggests that a spatial pattern
of forced convection can be generated instantly at infi-
nite distance from the source. However, as indicated by
the denominator of the Green'’s function, this structure
decays rapidly with the distance from the source. So, in
the real world, such pattern can only be expected to be
observed in the adjacent region of the source. To illus-
trate the effect of the cumulation of forcing at different
places and times as indicated by Eq. (20), Fig. 2 gives
the spatio-temporal structure of the superposition of the
responses to two pulsations of forcing &at#) = (0, 0)

and (,7) = (10,—2). A more complex structure than
that in Fig. 1 can be found due to this superposition.

c. Scale analysis of convective activities

The basic structure of the Green’s function indicates
that meso-scale forcing gives rise to forced convection
of meso-scale, while large-scale forcing gives rise to
forced convection of large-scale. However, the numera-
tor part of the Green'’s function gives a description of the
effect of the inertia oscillation on the forced convection.

Very complex oscillating/propagating structures may be
embedded in (or superposed to) the overall structure
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——————— ; ; L/U, or the time scale of the variation of the vortical
180 flow as the source of forcing. So the scale of forced
convectionis 2L/Fr > L whenFr « 1.

Anyway, the scales discussed above just apply to forced
convection by the imbalanced vortical flow. Free modes
of convection represented by the unstable homogeneous
solutions are another important factor that contributes
to the spatial scales of the convective activities. Conse-
quently, multiple spatial scales of convective activities
are caused by the following three factors: (1) the scale
of the imbalance of the vortical flow, (2) the scales of the
inertial oscillation and (3) the scales of the unstable free
modes of convection. Since unstable free modes of con-
vection tend to select structures with the smallest scales
and are embedded in the forced convection, convective

m _ activities always appear as the former modulated by the
X(scale: cff) Iatte r.

Fig. 2. To illustrate the effect of the superposition of forcings at 3.3 Two-way interaction between convection and
different places and times as indicated by Eq. (20), the figure shows vortical flow

the spatio-temporal structure of the superposition of the responses
to two pulsations of forcing at(s) = (0, 0) and §.7) = (10,—-2) | addition to the response of convection to the forcing in-
(contour lines in divergent regions are not shown). A more complexy,ceq py the imbalance of vortical flow as mentioned above,
structure can be found due to this superposition. Eqg. (15) is actually a problem of two-way interactions be-
tween convective activities and the basic flow as well. The
) ) ) convective activities can act on the basic flow and contribute
induced by the forcing of the vortical flow, and are es- 1o its adjustment. In principle, this interaction between con-
sentially different from the inertia gravity waves. vection and its basic state is described by Eq. (15), although
this kind of two-way interaction can never be dealt with in
the framework of dynamical instabilities of basic flows.
) - Generally speaking, the action of the convection on the
be very small or very large, depending on the static in-, __. :
. . : . basic flow seems far more complex to describe. In the present
stability (or the imaginary phase speed. This struc- . . .
; X . study we would like to address this issue mathematically as
ture can be viewed as being embedded in the synopy : .
. . .2 ""below. According to the Fredholm alternative (see any text
tic scale system whegy is small enough, otherwise it L . .
; : book on patrtial differential equation, e.g. Haberman, 2003),
can also be comparable to the synoptic scale whén . N
o . L the solvability of Eq. (15) requires its inhomogeneous term
large. However, this is just the case in the situation of _,
. . . N(c, ¢) to be orthogonal to the homogeneous solutigror
a vortical flow of synoptic scale. For a vortical flow

of meso-scale, Eq. (13) demands the Froude number

The spatial scale of such an oscillating/propagating
structure isc;/f. Sincef =10"%s"1, ¢;/f can either

Fr o« U/c; <1, which gives a limitation to the lower . Y _
bound ofc;. In order for the existence of Eq. (18), = °0 "(s> @) >_/80‘(h(§’ ¢)d <2 =0. (21)
must be large enough, otherwise the multiplicative forc- Q

ing £, 46 becomes too complex in form and cannot be
omitted and leads to a mathematical difficulty beyond
the capability of the present study. In this case, the
meso-scale vortical flow can induce forced convection
with scales larger than the vortical flow itself. In fact,
following Ford (2000), we can assume the forcing of
the vortical flow to be confined to a small region with
diameterL. If the scale of the wind speed of the vor-

Here, <, > is an inner product properly defined over some
spatiotemporal domaif?, &g is the homogeneous solution of
Eqg. (15) whilej is its adjoint solution. This constraint on
NR(g, ¢) means that the departure from balance is confined
to merely some very special ways. It can then be explained
as the action of convection on its basic flow. Since the ho-
mogeneous solutiody represents all possible free modes of
tical flow is U/, then the scale of temporal variations is convection, this reaction _adjusts.the basic flow in a particu—
L/U. Out of ,this small region, the growth rate of the Igr way so that the resulting forcn@(g, ¢) has no projec-
free r.node of convection can bé estimated by the disper-tlon on any free mode of (?onvect|on. As these free modes
of convection are all growing modes and can represent al-
sion relationship, i.ex =,/c?k?— f2, wherek is the  most all possible ways of growth with time, Eq. (21) implies
wavenumber. We can assume that it is proportional tothat)i(c, ¢) cannot have any infinitely growing component,
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which may be essentially a limitation to the further intensifi- fact that the group velocity goes to infinity whegoes to 0
cation of the forcingh(c, ¢), or roughly, a measure for the does not need to mean that there is no point unaffected by the
imbalance. So, the imbalance of the vortical flow cannot in-“source”, because the energy dendityas well as the flux¢
crease infinitely and an approximately balanced flow can bevanish, i.e. there is no transport of energy. On the contrary,

maintained. the local phase speed is given by
A more physical explanation for this action of convection
: : : —30/3t . —00/0dt c?t
on the basic flow can be obtained from an approximate analg — i j=——_r (29)
ysis of the Green’s function (19). The inhomogeneous solu-  96/9x a6/dy |2

tion of convection far apart from the “source” of the imbal- Thig phase propagation toward the “source” has been demon-
ance can be estimated by setting the “source”’at0 and  strated in Fig. 1. So, we can conclude that the two-way in-
t'=0in the Green’s function. So, we have teraction between convection and its basic state is character-
ized by the following process: the imbalance of the basic
flow generates convection, while the convection suppresses
the further increase of this imbalance in turn.

8u(r, 1) o Re(ae'’) =acog8), (22)
where the “phase” is given by

f 3.4 Physical explanation and observational evidences
0 =—\/Ir|?+ c?r? (23)
¢ In order to identify spontaneous convection as described
The amplitude: varies slowly withr and r and is assumed to  above in the real world, two fundamental aspects, i.e. un-
be constant. On the other hand, out of the “source” region§tab|e stratification and imbalance of the basic state should
we havei, (¢, ¢) =0, so the governing equation should be be observed simultaneously. The unstable stratification gen-
erates small cells of convection, while the imbalance gives a
larger-scale modulation with spatio-temporal structures indi-
cated by Eq. (20). In fact, since no exactly balanced flow can
lthouah the inh lution | idered. M It._be found in the atmosphere and un_stable ;t_ratification is also
ainough the inhomogeneous sofution IS considered. viutt very common, most of the convective activities have some-
plymg Eq. (24) byas”/at’ we have the following conserva- thing to do with this spontaneous convection.
tion law of Eq. (24) For the purpose above, we need also an explanation of the
31, 1, > 1 5 ) physical meaning of the imbalance forcifigc, ¢). If the
37 GO = S Vo™ S f78) + V- (c76u V8) =0. (25)  vertical or horizontal structures of the terms in brackets in
NR(g, ¢) are approximately sine or cosine functions, the im-
By substituting Egs. (22) and (23) into Eq. (25) and integrat-palance forcing can be viewed as the resuliugf+ b2 — ¢2),

2

5
BV, + 78, =0 (24)

ing from6 =0to6 = 27, we rewrite Eq. (25) as (nonsteady processes of the vortical floW),- V¢ (vorticity

9E advection) andV . - V(g—ﬁ)]p (difference of temperature ad-

e +V.-F=0, (26)  vections between upper and lower levels). The physical inter-
pretations of these terms are also clear: both local changes of

Here, vorticity/deformation with time and vorticity advection can

229 2 result in changes of the pressure so as to maintain the bal-
_ focitta (27a) ance, while the changes of the pressure gradient can cause
2(|r2+ C,-Zfz) convergence/divergence in turn. Similarly, temperature ad-
vection results in some changes of pressure, while the result-
22 o ing changes of the pressure gradient can also generate con-
_ fecita r (27b) vergence/divergence. These are usually the situations in syn-

2(r |2+ ciztz) optic systems of various scales such as fronts, jets, troughs,
_ ) ridges and eddies. These systems are subjected to departures
are the energy density and flux, respectively. The group vefrom palanced flows such as geostrophic and gradient flows.
locity which indicates the wave energy transportation can begq, example, a front is associated with a difference of tem-

obtained by perature advection between upper and lower level. Moving
FE 1 trough, ridges and eddies of various scales cause vorticity ad-
cg= = ;r. (28) vection, and local changes of deformation are related to the

speedup/slowdown of meso-scale jets. All these phenomena
It clearly demonstrates that outward and temporally de-may cause imbalances of vortical flows. So, if these sys-
caying energy transportation from the “source” accompaniesems become unstably stratified and convections arise within
the imbalance, which will essentially reduce the convectionthem, the convection resulting from these imbalance forcings
or § and tends to maintain the balance of the basic flow. Thecan be regarded as observational evidences of spontaneous
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4 Conclusions and discussions

Synoptic scale or
meso-scale with Fr << 1 The present study suggests that convective activities can be
1 recognized in the perspective of their interaction with the
; ~ vortical flow. It has been demonstrated that convective ac-
96, + V5 + 175, =R(s, §) tivities can be regarded as the superposition of free modes
o ) of convection and the response to the forcing induced by the

imbalance of the unstably stratified vortical flow. An im-

For vertical modes with balanced vortical flow provides not only an initial condition
bl ificati . .

unsteble stratification from which unstable free modes of convection can develop

but also a forcing on the convection. Soconvection is more
S, 62 626 f: 79? 9 appropriately to be regarded as a spontaneous phenomenon
g e & % (e rather than a disturbance-triggered phenomenon which is in-
dicated by any theory of dynamical instability. Meanwhile,
) 4+ 5, 2) convection, particularly the forced part, has also a reaction
on the basic flow by preventing the imbalance of the vortical
/ \ flow from further increase and maintaining approximately a
. balanced flow.
Homogeneous solution: Inhomogeneous solution: . . . .
apparent static instability Forced convection It is crucial to make clear how the proposed point of view
could improve the classical description of convection. The
key point is that, by introducing the framework of balanced
flows, it extends previous theories which attribute convec-

tion mainly to dynamical instabilities of the balanced basic
Act on basic flow? state. The presented theory considers not only the apparent
instabilities but also the interaction of convective activities
Fig. 3. A schematic overview about the different cases discussed |nWIth the imbalanced basic state. Moreover, the basic state
Sect. 3. can now be much more complex than in traditional theory.
These differences need not to increase the difficulties in the
analysis of the apparent instability and the interaction when
convection. A particular case for convection without large or £, 46 is dropped just as in Sect. 3.
meso-scale synoptic systems accompanied is daytime heat- The interaction between convection and basic flow is the
ing on a flat and homogeneous surface. In this case, the baypical situation for dry or adiabatic convection. Although
sic flow is nearly balanced andi(c, ¢) remains very small. we suppose that these purely dynamical processes work also
Once the stratification of the atmosphere becomes unstabléor moist or diabatic convection, other important processes
the unstable free modes dominate over the forced part of coneontributing to the interaction are associated with the exis-
vection. Although imbalance may be too weak to generate aence of water vapor. The dominant thinking about the inter-
noteworthy part of convection, it can still provide an initial action between large-scale atmospheric circulation and moist
disturbance from which instability develops spontaneously.convection holds that convection acts as a heat source for
Although the forcing terms are very similar to those of the large-scale circulation, while the latter supplies water vapor
well-knownw equation (see, e.g. Holton, 1992), it is worthy to the convection. Emanuel et al. (1994) shows that this idea
to mention that the forced part of convection is essentiallyhas led to fundamental misconceptions and offers an alterna-
different from the issue of vertical motion generated from tive paradigm. They suggest that the understanding of large-
vortical flow as described by the equation. If the atmo- scale circulations in convecting atmospheres can be regarded
sphere is stably stratified- (> 0), the w equation is an el- as a problem of understanding the distribution in space and
liptic equation. To the leading order, it describes the spon-time of the subcloud-layer entropy to which the temperature
taneous emission of inertia gravity waves in the “source” profile is directly tied. Also, they argue that the direct ef-
region. However, if the atmosphere is unstably stratifiedfect of convection on large-scale circulations is to reduce by
(0 <0), w equation becomes a hyperbolic equation and usuroughly an order of magnitude the effective static stability
ally not to be used for the diagnosis of the vertical motion. felt by such circulations, and to damp all of them. We be-
So, the vertical motion fos < 0 remains unclear so far, and lieve that our results do not conflict with those of Emanuel et
the present concept of forced convection can't be attributed tal. (1994), because these two theories just describe two dif-
the conventional vertical motion. In other words, it is the way ferent aspects (i.e. convections with and without water vapor
of response rather than the form of forcing that is different. considered) of interaction between convection and its basic
A schematic overview about the different cases discussed istate. Emanuel et al. (1994) also argue that the respective
this section is given in Fig. 3. time scales of convection and larger-scale forcing are too
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2

dP,
l dp. (A6)

dp

disparate to allow convection to directly affect the larger- Itis easy to prove that

scale flow. This is a central assumption in the statistical %

quasi-equilibrium hypothesis (SQE), which is not opposite < p,, LP, > — < LP,, P, >= (A, —A;’;)/ o|P,%dp. (A5)

to our conjecture that convection serves to adjust the larger- 0

scale environment to a state of balance. What Emanuel et aAnd by multiplying Eq. (A2) byP*, we have also

al., mean by convection corresponds just to the free modes

of convection or the homogeneous solution that is not related [ 70 2 dpy|Pe o

to the vortical flows in the linear stage of growth. On the )‘"/0 ol Pul"dp=— Py dp |, +/0

contrary, the forced part of convection or the inhomogeneous

solution does serve to adjust the larger-scale environment as SinceL is a self-adjoint operator and the first term of the

was pointed in last section. Such a discrepancy is just dudight hand side of Eq. (A6) is non-negative under any of the

to the difference of definitions of convection and is not sig- boundary conditions of Eq. (A3), for an arbitrary nontrivial

nificant for larger-scale vortical flow. But for smaller-scale solution of Eq. (A2), we have

vortical flows with strong imbalance, this discrepancy may 0

become important. Ay — )LZ)/ o | Py|2dp =0 (A7a)

Another question may also arise from this difference of 0

definitions of convection, that is, the larger-scale environ-

ment always has regions of convergence/divergence of the 0

same scale, while a vortical flow associated with the forc-,, / o|P|?dp > 0. (A7b)

ing N(c, ¢) is always nondivergent. This can simply be 0

explained because iq the gener_ali_zed defin?tion these Iarg_er,:or a certain eigenfunctioR,, we can define an equivalent

scale converge.nce/dl\./ergence is mpluded in the ConveCt'orbarameter of static stability by the weighted average of

rather than in |t§ envllronme'nt. It is a!so easy to see thabverthe entire layer of the atmosphere, i.e.

the friction and diabatic heating can be incorporated into the

present framework without technical difficulty. As a result,

the effects of the physical boundary layer and latent heating  [7° P24 A8

on convections can be discussed within this framework as” _/0 olPul"dp (A8)

well, which will be the topic of our future investigations on

this issue. We believe these theoretical results on balanceyhere the weight is chosen as the power of the normalized

circulations with convective activity can provide a new per- £»- It can be inferred from Eq. (A7a and b) thatoif > 0

spective for diagnostic studies to understand the formatior{o» < 0), A, is real andi, >0 (A, <0). A special case is

and the structure of meso-scale convection systems. wheno > 0(c <0) at all levels. In other words, if the at-
mosphere is statically stable, thign> 0 holds for all eigen-
functions. Otherwise, if the atmosphere is statically unstable

Appendix A at some layer, it is assumed that we can find sayne 0, a

particular case of which is all the, < 0 wheno < 0, or the

Let L denote the linear operator in the left-hand side of (15),atmosphere is statically unstable at the whole layer.

i.e. It is necessary to specify the vertical boundary condition
42 suitable for the presentissue from Eq. (A3). By letting=0

L= o (A1) and B2/a2 > 0 in Eqg. (A3), the eigen-system satisfies the
p

second and the third kind of boundary conditionspat 0
andp,, respectively. The physical meanings of these bound-
ary conditions are also clear: there is no exchange of conver-
LP,=\0P,;; n=0,1,2, .. (A2) gence at the top of the atmosphere, and exchange of conver-
gence at surface is proportional to the convergence in situ.

Then the eigen-system (15) can be written as

It may satisfy the following boundary conditions of the
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