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Abstract. In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely

incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length

and amplitude, reaching up to four times the amplitude of the incident waves. A variational approach is used to derive the

bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling

water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal5

directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies.

A variational Galerkin finite element method is applied to solve the system numerically in Firedrake with a second-order

Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of

the system. Using this approach, we are able to get close to the fourfold amplitude amplification predicted by Miles.

1 Introduction10

Offshore structures such as wind turbines, ships and platforms are designed to resist loads and stresses applied by winds,

currents and water waves. These three factors can cause damage or destroy these structures when their effect is underestimated.

Designers and engineers must take into account the effect of not only each of these phenomena separately but also their

interaction, which can increase their adverse effects. In this work, we focus on the impact of extreme waves created from

the propagation of an obliquely incident solitary wave along the side of a ship (a wave-structure interaction), or its impact15

with another identical obliquely incident wave (a wave-wave interaction). These two cases are mathematically equivalent since

reflection at a rigid wall (represented here by the ship’s side) is modelled through the boundary condition of no normal flow

at the wall, which is equivalent to the intersection of two identical waves travelling in opposite directions, in which case a

virtual wall is formed. The study of extreme, freak or rogue waves resulting from reflection at a wall or interaction of waves

has spawned different theories in the last 50 years, some of which are subsequently reviewed.20

The objective of the present work is to apply a theory first introduced by Miles (1977a, b) and based on experiments from

Perroud (1957), where he described analytically the behaviour of an incident solitary wave interacting with a wall. For a

specific range of angle of incidence ϕi and scaled amplitude ai of the wave, the reflection of the soliton may result in three

wave fronts: the incident and reflected waves (of respective amplitudes ai and ar), as well as a Mach stem wave (of amplitude

aw) propagating along the wall with an increasing length (see Fig. 1).25
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This theory holds in the case of small-but-finite wave amplitude, shallow-but-finite water depth, and weak nonlinearity, that

is

ϕ2
i �O(ε), ai =O(ε), for any ε�O(1), (1)

and is based on an interaction parameter, first defined as

κ=
ϕi√
3ai

, (2)5

that enables the prediction of the amplitude and direction of propagation of each wave front. The most important observation is

the transition at κ= 1 from a regular reflection (κ≥ 1) to a Mach reflection (κ < 1), which has led to the following definition

of the stem-wave amplification:

αw =


4

1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,

(3)

so that αw = aw/ai is the quotient of the stem wave and incident wave amplitudes. Equation (3) shows that at the transition10

point where κ= 1 the stem wave may grow up to four times the amplitude of the incident wave, leading to extreme loading on

offshore structures. The aim of the present study is to develop a (numerical) model that can accurately simulate the evolution

of the stem wave so that the distance and direction of propagation required to reach the fourfold amplitude can be estimated. A

challenging aspect is that it takes a long time and large distance of propagation before the stem wave has reached its maximum

amplitude, which was a limiting factor in previous experimental and numerical studies. Kodama et al. (2009) extended Miles’15

theory to the Kadomtsev-Petviashvili (KP) limit, in which the assumptions are

a0

H0
� ε,

(
H0

λ0

)2

� ε, tan2ϕi� ε, ε�O(1), (4)

where H0, a0 and λ0 are the water depth, the wave amplitude and wavelength, respectively. While the KP–limit still considers

shallow-but-finite depth and small-but-finite amplitudes, the main difference with Miles’ theory concerns the condition on the

angle ϕi. Yeh et al. (2010) explained that, in contrast to Miles’ theory, wherein the soliton propagates in one-direction only20

(the KdV–limit), the KP–limit assumes a quasi-two dimensional approximation, and therefore the condition tan2ϕi�O(ε)

cannot be simplified to ϕ2
i �O(ε) as in Miles’ assumptions. The quasi-two dimensional KP soliton is not solution of the KdV

equation but it can be transformed to an asymptotic KdV soliton via some manipulations detailed in Yeh et al. (2010). However,

the width of the obtained KdV soliton is proportional to√
aKP

cos2ϕi
, (5)25

with aKP the scaled amplitude of the initial KP soliton, and it therefore depends on the angle ϕi. This is physically unrealistic

since the KdV soliton should have the same shape whatever its direction of propagation. For this reason, Yeh et al. (2010)

brought a "high-order correction" to the solution, setting the amplitude of the KdV soliton to be

aKdV =
aKP

cos2ϕi
, (6)
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so that its width depends on its amplitude aKdV , but not on any angle. Taking this into account, they slightly modified the

definition (2) of the interaction parameter κ to

κ=
tanϕi

cosϕi
√

3ai
, (7)

where ai = aKdV /H0 is the scaled amplitude of the incident wave, leading to what we will hereafter identify as the "modified-

Miles’ theory" for the expected stem wave amplification:5

αw =


4

1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
with κ=

tanϕi
cosϕi

√
3ai

. (3-7)

Using this modified interaction parameter in Eq. (3-7), they found much better agreement between previous numerical simu-

lations (Funakoshi, 1980; Tanaka, 1993) and modified-Miles’ theory. Moreover, Kodama et al. (2009) showed that the stem

wave resulting from the interaction of two solitary waves with small incident angles is an exact solution of the KP equation.

Solving this KP equation, they could describe the exact solution depending on the angle of incidence and the amplitude of10

the initial waves, and validate their theory with numerical simulations (Kodama et al., 2009; Li et al., 2011). Both the ampli-

tude and length of the stem wave indeed followed their predictions in the case of regular and Mach reflection. The numerical

scheme could not simulate the highest amplitudes that Miles predicts for κ≈ 1. Recently, Ablowitz and Curtis (2013) studied

Mach reflection for the Benney-Luke approximation, showing that, in that case, modified-Miles’ theory applies asymptotically,

leading to amplifications of up to 3.9.15

The purpose of the present work is to derive and apply a stable numerical scheme able to estimate the solution over a

long distance of propagation, in order to model high-amplitude waves and to confirm the transition from regular to Mach

reflection happening for κ≈ 1. We develop a model similar to the one of Benney and Luke (1964), which is an asymptotic

approximation of the potential-flow equations for small-amplitude and long waves. Whilst it has the advantage of conserving

both the nonlinear and dispersive properties of the waves (essential to the modelling of a freak wave, for instance), it does not20

require a mesh moving vertically with the free surface since the model is reduced to the horizontal plane. Pego and Quintero

(1999) derived these modified Benney-Luke equations and Bokhove and Kalogirou (2016) recently used them to simulate a

soliton splash resulting from a wave running in a restricted channel. Their simulations were in reasonably good agreement

with experiments, which confirms that the Benney-Luke approximation is an accurate model of water waves. The present

approaches are necessary to determine how, in future work, we can impose the line-solitons on the wave makers to generate a25

fourfold amplified wave in the middle of a wave basin and measure its impact on offshore structures. The variational technique

used in the present approach enables to express the equations as a Hamiltonian system on which robust time integrators can be

applied (Hairer et al., 2006; Gagarina et al., 2016). The space and time Galerkin finite element method used to discretise the

present model ensures the overall conservation of mass, energy and momentum, which are essential in the high-amplitude and

long-distance propagating waves studied here.30

The remainder of this paper is organised as follows: the modified Benney-Luke-type model is derived from the variational

principle for an inviscid and incompressible fluid (Luke, 1967) in the potential-flow approximation, using the small-amplitude
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and small-dispersion scaling of Pego and Quintero (1999). In order to apply modified-Miles’ theory and verify our numerical

results against Kodama’s exact solution, the KP limit is obtained from the Benney-Luke approximation, leading to a new vari-

ational principle for KP. A careful scaling is then defined to obtain an asymptotic soliton solution of our present model, based

on the exact solution of the KP equation from Kodama et al. (2009). The corresponding interaction parameter is consequently

derived, leading to another version of modified-Miles’ theory (3-7), later used to compare our numerical simulations with5

respect to Miles’ expectations. The finite element method is then used to discretise the equations in space together with the

second-order Störmer-Verlet temporal scheme that ensures stable simulations. Results are finally discussed and compared to

the expectations.

2 Water-wave model

2.1 Introduction10

Our water-wave model is derived using a variational approach that ensures conservation of mass, momentum and energy. In

a basic sea state with extreme waves, these conservation properties are essential given the different length scales involved.

Starting from Luke’s variational principle for an inviscid fluid with a free surface (Luke, 1967), a model similar to the one

derived by Benney and Luke (1964) for small-amplitude and long waves is obtained. The (numerical) method developed by

Bokhove and Kalogirou (2016) is used to derive the relevant variational principle for our Benney-Luke model. This asymptotic15

model conserves the nonlinear and dispersive properties of the sea waves, which enables comparison with the Kadomtsev-

Petviashvili’s (KP) model for which the modified Miles’ theory Eq. (3-7) applies.

2.2 From Luke’s variational principle to the Benney–Luke set of equations

Water-wave equations are often adequately described by the potential-flow approximation. In the absence of vorticity, the fluid

velocity u = (ux,uy,uz) can be expressed as the gradient of the so-called velocity potential φ(x,y,z), such that u =∇φ. The20

deviation from the surface at rest H0 is defined by η(x,y, t) so that the total depth h(x,y, t) can be expressed as h(x,y, t) =

H0 + η(x,y, t) (cf. Fig. 2). We consider a flat sea bed lying at z = 0, with vertical walls at ∂Ωb, where Ωb is the horizontal

plane of the bed coordinates Ωb = {0≤ x≤ Lx,0≤ y ≤ Ly}. Luke (1967) described an inviscid and incompressible fluid with

a free surface in the potential-flow approximation through the following variational principle:

T∫
0

∫
Ωb

H0+η(x,y,t)∫
0

[
∂tφ+

1

2
|∇φ|2 +

1

2
(∂zφ)2 + g(z−H0)

]
dz dxdydt, (8)25

where g is the acceleration of gravity. The gradient∇ is defined on Ωb only, such that∇= (∂x,∂y)T is the horizontal gradient.

The velocity at the walls and sea bed are assumed to be zero, that is n ·∇φ= 0 on ∂Ωb, with n the outward horizontal normal,

and ∂zφ= 0 at z = 0. The boundary conditions at the free surface z = h and the equations of motion in the domain Ω are
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obtained from Eq. (8) as

∇2φ+ ∂zzφ= 0 in Ω, (9a)

∂tη+∇φ · ∇η− ∂zφ= 0 at z = h, (9b)

∂tφ+
1

2
|∇φ|2 +

1

2
(∂zφ)2 + gη = 0 at z = h, (9c)

n · ∇φ= 0 on ∂Ωb, (9d)5

∂zφ= 0 at z = 0. (9e)

The amplitude parameter ε= a/H0� 1, with a the amplitude of the waves, and the small dispersion parameter µ= (H0/λ0)2�
1, with λ0 the horizontal wave length, have been introduced by Milewski and Keller (1996) and Pego and Quintero (1999) to

scale Eq. (8). The scaled variational principle is

0 = δ

T∫
0

∫
Ωb

1+εη̂∫
0

[
ε∂t̂φ̂+

ε2

2
|∇̂φ̂|2 +

1

2

ε2

µ
(∂ẑφ̂)2

]
dẑ+

1

2
ε2η̂2 dx̂dŷ dt̂, (10)10

where

x̂=

√
µ

H0
x, ŷ =

√
µ

H0
y, ẑ =

1

H0
z, t̂=

√
gH0µ

H0
t, η̂ =

1

εH0
η and φ̂=

√
µ

εH0

√
εH0

φ. (11)

This scaling focusses on small-amplitude long waves. From now on, the hats on the variables introduced in Eq. (11) are omitted.

To derive the Benney-Luke model, the velocity potential φ is expanded in terms of the sea-bed potential φ(x,y,0, t) =

Φ(x,y, t) and the dispersion parameter µ as in Bokhove and Kalogirou (2016):15

φ(x,y,z, t) = Φ(x,y, t) +µΦ1(x,y,z, t) +µ2Φ2(x,y,z, t) + · · · . (12)

Combining this expansion with the system of equations (9) and retaining terms up to second order, Eq. (12) becomes (see

Bokhove and Kalogirou (2016) for details)

φ= Φ− µ

2
z2∆Φ +

µ2

24
z2∆2Φ +O(µ3). (13)

Substituting Eq. (13) into the variational principle (10) yields the variational principle under the Benney-Luke approximation20

0 = δ

T∫
0

∫
Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1

2
(1 + εη)|∇Φ|2 +

µ

3
(∆Φ)2 +

1

2
η2

]
dxdydt. (14)

Arbitrary variations in both Φ and η, together with boundary conditions n · ∇Φ = 0 and n ·∆∇Φ = 0 at ∂Ωb, lead to the

Benney-Luke equations

δη : ∂tΦ−
µ

2
∂t∆Φ +

ε

2
|∇Φ|2 + η = 0, (15a)

δΦ : ∂tη−
µ

2
∂t∆η+∇ · ((1 + εη)∇Φ)− 2

3
µ∆2Φ = 0. (15b)25
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Equations (15) will be solved numerically as explained in Sec. 4. However, to test our Benney-Luke model on modified Miles’

theory (3-7), it must first be compared to the KP theory for which Kodama et al. (2009) have shown that modified Miles’ theory

holds.

2.3 From Benney–Luke set of equations to the Kadomtsev-Petviashvili equation

The Kadomtsev-Petviashvili equation for small-amplitude solitons can be derived from the Benney-Luke variational principle5

(14) and Eqs. (15) through the transformations

X =

√
ε

µ
(x− t), Y =

ε
√
µ
y, τ = ε

√
ε

µ
t, Ψ =

√
ε

µ
Φ and η = η. (16)

Substituting scalings (16) into Eq. (15a), η can be expressed from Ψ as

η = ΨX − εΨτ −
ε

2
ΨXXX −

ε

2
(ΨX)

2− ε2

2
(Ψy)

2
+
ε2

2
ΨτXX −

ε3

2
ΨXY Y +

ε3

2
ΨτY Y . (17)

Substituting Eq. (16) into the transformed variational principle (14) yields10

0 = δ

T∫
0

∫
Ωb

[
η (εΨτ −ΨX) +

ε

2
ηX (εΨτX −ΨXX) +

ε2

2
ηY (εΨτY −ΨXY )

+
1

2
(1 + εη)

(
(ΨX)

2
+ ε(ΨY )

2
)

+
ε

3

(
(ΨXX)

2
+ ε2 (ΨY Y )

2
)

+
1

2
η2

]
dX dY dτ. (18)

Subsequent elimination of η using Eq. (17) and truncation to O(ε2) gives the variational principle for KP in terms of η ≈ΨX :

0 =εδ

T∫
0

∫
Ωb

[
ΨXΨτ +

1

2
(ΨX)3− 1

6
(ΨXX)2 +

1

2
(ΨY )2

]
dX dY dτ (19a)

=ε

T∫
0

∫
Ωb

δΨ

[
−2ΨXτ − 3ΨXΨXX −

1

3
ΨXXXX −ΨY Y

]
dX dY dτ. (19b)15

Note that we consider an infinite plane, with Ψ vanishing at the boundaries |X,Y | →∞, such that the boundary terms arising

from the integration by parts vanish in Eq. (19b). Since δΨ is arbitrary, the variational principle (19) yields the following

equation for the leading-order scaled potential Ψ:

2ΨXτ + 3ΨXΨXX +
1

3
ΨXXXX + ΨY Y = 0. (20)

From Eq. (17), at leading order in O(ε), η can be expressed as η = ΨX and, therefore, taking the partial derivative of Eq. (20)20

with respect to X leads to the KP equation for η:[
2ητ + 3ηηX +

1

3
ηXXX

]
X

+ ηY Y = 0. (21)
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A solution of the KP equation (21) is found by substituting the following soliton solution Ansatz, the form inspired by Yeh

et al. (2010) Eq. (9), into (21):

η(X,Y,τ) =Asech2 [B (X +Y tanϕ−Cτ)] , (22)

where ϕ is the angle of incidence, A is the amplitude of the soliton, and B and C are coefficients to be determined via direct

substitution. The KP soliton is then found to be5

η(X,Y,τ) =Asech2

[√
3

4
A(X +Y tanϕ−Cτ)

]
, (23)

with C =
1

2
A+

1

2
tan2ϕ, B =

√
3A/4 and A the prescribed amplitude. Using Eq. (17) at leading order, i.e. η = ΨX , the

solution for Ψ thus becomes

Ψ(X,Y,τ) =

√
4

3
A

[
tanh

(√3

4
A(X +Y tanϕ−Cτ)

)
+ 1

]
. (24)

3 Comparison with modified Miles’ theory and Kodama’s exact solution10

3.1 Introduction to Kodama’s exact solution

Kodama et al. (2009) have studied the reflection pattern for "symmetric V-shape initial waves consisting of two semi-infinite

line solitons with the same amplitude", in a system of coordinates (X̃, Ỹ, τ̃) related to our system of coordinates (16) (X,Y,τ)

via

X̃ =

(
3√
2

)1/3

X, Ỹ =

(
3√
2

)2/3

Y, η̃ =
1

3

(
3√
2

)4/3

η and τ̃ =
√

2τ. (25)15

They solved the KP equation

[4η̃τ̃ + 6η̃η̃X̃ + η̃X̃X̃X̃ ]
X̃

+ 3η̃Ỹ Ỹ = 0, (26)

for which the surface deviation solution η̃ is given by

η̃ = Ãsech2

√ Ã

2

(
X̃ + Ỹ tan ϕ̃− C̃τ̃

) , (27)

where Ã is the amplitude of the soliton, ϕ̃ is the angle of incidence at the wall, and C̃ is a constant defined as C̃ ≡ 1

2
Ã+20

3

4
tan2 ϕ̃. They showed that in this specific case, the transition from regular to Mach reflection occurs when

tan ϕ̃=
√

2Ã. (28)

Moreover, Kodama et al. (2009) defined exactly the incident, reflected and stem solitons resulting from the interaction as a

O-type soliton in the case where tan ϕ̃ >
√

2Ã, and a (3142)-type soliton in the case where tan ϕ̃ <
√

2Ã. The O–type soliton
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consists of two line-solitons travelling in the x–direction, each having a specific amplitude and angle with respect to the y–

axis (see Fig. 3). The (3142)–type soliton consists of two other line–solitons, also travelling in the x–direction with their own

amplitudes and angles with respect to the y–axis, but this soliton also has the property to be non-stationary, i.e. that while it

propagates along the x–axis, a new line–soliton is progressively created and grows parallel to the y–axis at the intersection of

the two initial line–solitons. In the case of both O-type and (3142)–type solitons, one of the line–soliton can be associated to the5

incident solitary wave presented in the introduction, the second line–solitons to the reflected wave (with a different amplitude

and angle), and the intersection of the two line–solitons as the stem wave, growing in length only when the angle of the incident

wave is smaller than the critical angle (28). These two solitons are represented in Fig. 3, obtained from Kodama et al. (2009).

A comparison between these theoretical solitons and those obtained numerically from the V–shape initial soliton showed very

good agreement, confirming that the incident, reflected and stem waves described by Miles are indeed asymptotically equivalent10

to the O–type and (3412)–type solitons, depending on the initial angles. In the case of a symmetric initial pattern, that is for

two initial line–solitons of equal amplitude and angle of incidence, Kodama et al. (2009) gave the expression of the maximal

amplitude of the intersection wave, as

amax =



1

2
(tan ϕ̃+

√
2Ã)2 for tan ϕ̃ <

√
2Ã,

4Ã

(1 +

√
1− 2Ã

tan2 ϕ̃
)

for tan ϕ̃≥
√

2Ã. (29)

Since the condition tan ϕ̃=
√

2Ã is equivalent to Miles’ condition κ= 1, we can define the interaction parameter correspond-15

ing to the KP equation (26) as

κ̃=
tan ϕ̃√

2Ã
. (30)

Substitution of the interaction parameter (30) into the amplification expectations (29) indeed yields Miles’ predictions (3) for

αw = amax/Ã.

3.2 Application to the present Benney-Luke model20

In Sec. 2.3, the Benney-Luke model was reduced to the KP equation (21). This equation for the surface deviation η is slightly

different from the one used by Kodama et al. (2009), and introduced in Eq. (26). In order to compare our numerical solutions to

Kodama et al. (2009)’s results (29)–(30), our KP equation (21) is (re)scaled using the coefficients introduced in Eq. (25), which

yields Eq. (26) used by Kodama et al. (2009). Using the same transformations Eq. (25) in the KP soliton solution Eq. (27), we

can obtain a solution for our KP equation (26) in terms of the original variables (X,Y,τ,η) introduced in Eq. (16), given by25

η = 3

(
3√
2

)−4/3

Ãsech2

[√
Ã

2

((
3√
2

)1/3

X − C̃
√

2τ +

(
3√
2

)2/3

Y tan ϕ̃

)]
. (31)
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The connection between the above solution (31) and the previously presented solution (23) can be established by applying the

following transformations in Eq.(31):

A= 3

(
3√
2

)−4/3

Ã, C =

(
4

3

)1/3

C̃ and tanϕ=

(
3√
2

)1/3

tan ϕ̃, (32)

withC =
1

2
A+

1

2
tan2ϕ, yielding the solution (23) derived in Sec. 2.3. Therefore, applying scaling (32) to the critical condition

(28) yields the critical condition for Eq. (21) and solution (23), given by5

tanϕ=
√

3A. (33)

We then apply scaling (16) to transform solution (23) for η back to the original Benney-Luke approximation Eq. (15) used in

our simulations, in which case the asymptotic solutions for η and Φ become

η(x,y, t) =Asech2

[√
3ε

4µ
A

(
x−x0 +

√
ε(y− y0)tanϕ+ (t− t0)(1−Cε)

)]
, (34a)

Φ(x,y, t) =

√
4µ

3ε
A

[
tanh

(√
3ε

4µ
A
(
x−x0 +

√
ε(y− y0)tanϕ+ (t− t0)(1−Cε)

))
+ 1

]
, (34b)10

where the soliton has been localised around the position (x0,y0) at time t= t0. Finally, by setting

ai =A, tanϕi =
√
εtanϕ and Ĉ =

1

2
ai +

1

2ε
tan2ϕi, (35)

the solutions (34) of the Benney-Luke equations can be rewritten as

η(x,y, t) = ai sech2

[√
3ε

4µ
ai

(
x−x0 + (y− y0)tanϕi + (t− t0)(1− Ĉε)

)]
, (36a)

Φ(x,y, t) =

√
4µ

3ε
ai

[
tanh

(√
3ε

4µ
ai

(
x−x0 + (y− y0)tanϕi + (t− t0)

(
1− Ĉε

)))
+ 1

]
. (36b)15

This solution is used as initial condition at time t= 0 in the simulations. Condition (33) defines the following relation between

ϕi, ai and ε in our Benney-Luke scaling, for Eq. (15):

tanϕi =
√

3εai. (37)

This condition is equivalent to Miles’ condition κ= 1 and therefore we can define our Benney-Luke interaction parameter as

κBL =
tanϕi√

3εai
. (38)20

Note, however, that taking into account the remark from Kodama (2010) about the quasi two-dimensionality of the KP limit,

as explained in introduction, the interaction parameter defined in Eq. (38) must be corrected to

κBL =
tanϕi

cosϕi
√

3εai
, (39)
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in order to satisfy Miles’ predictions (3). As shown in the potential-flow equations (9) for the Benney-Luke approximation,

the small amplitude parameter ε is defined as ε= a/H0. Therefore, in the specific case where ai = 1 and ε= aKdV /H0, the

interaction parameter (7) is recovered. The diagram in Fig. 4 summarises the equations and solutions derived thus far, in each

scaling. In the next section, we explain how the Benney-Luke system of equations are discretised in both space and time in

order to be solved numerically.5

4 Numerical implementation

As a first step in the computational solution, the Benney-Luke model needs to be discretised in space and time, on a meshed

domain. This section explains the methods used to discretise the domain and the equations.

4.1 Space discretisation: Finite Element Method (FEM)

A continuous Galerkin finite element method is used to discretise the solutions in space. The variables η and Φ are approximated10

by the finite element expansions

ηh(x,y, t) = ηi(t)ϕi(x,y) and Φh(x,y, t) = Φj(t)ϕj(x,y), (40)

where the subscript h denotes the discretised form of the solutions with basis functions ϕj(x,y), and i, j ∈ [1,N ] with 2N

unknowns. The Einstein notation for the implicit summation of repeated indices is used. To avoid the second-order derivative

in the fourth term of the variational principle Eq. (14), the auxiliary variable15

q(x,y, t) =−2

3
∆Φ(x,y, t), (41)

is introduced, so that, in the variational principle Eq. (14) the term
µ

3
(∆Φ)2 can be written as

µ

3
(∆Φ)2 = µ

(
2

3
(∆Φ)2− 1

3
(∆Φ)2

)
= µ

(
−2

3
∇∆Φ · ∇Φ− 3

4
(
2

3
∆Φ)2

)
= µ

(
∇q · ∇Φ− 3

4
q2

)
, (42)

which leads to the variational principle

0 = δ

T∫
0

∫
Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1

2
(1 + εη)|∇Φ|2 +µ

(
∇q · ∇Φ− 3

4
q2

)
+

1

2
η2

]
dΩb dt. (43)20

In keeping with Eq. (40), second-order Galerkin expansion for q is now expressed as

qh(x,y, t) = qi(t)ϕi(x,y). (44)

Substituting expansions (40) and (44) into the variational principle (43) yields the space–discrete variational principle

0 = δ

T∫
0

∫
Ωb

[
ϕjηjϕiΦ̇i +

µ

2
ηjΦ̇i∇ϕj · ∇ϕi +

1

2
(1 + εϕjηj)ΦiΦl∇ϕi · ∇ϕl

+µ

(
qiΦj∇ϕi · ∇ϕj −

3

4
qiqjϕiϕj

)
+

1

2
ϕiϕjηiηj

]
dΩb dt, (45)25
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with Φ̇i the time derivative of Φi. Its variation with temporal end-point conditions δΦi(0) = δΦi(T ) = 0 yields

0 =

T∫
0

δΦi

∫
Ωb

[
− η̇jϕjϕi−

µ

2
η̇j∇ϕj · ∇ϕi + (1 + εηjϕj)Φl∇ϕi∇ϕl +µqj∇ϕi · ∇ϕj

]
dΩb

+ δηi

∫
Ωb

[
ϕiϕjΦ̇j +

µ

2
∇ϕi∇ϕjΦ̇j +

ε

2
ϕiΦjΦl∇ϕj∇ϕl + ηjϕiϕj

]
dΩb

+ δqi

∫
Ωb

[
µΦj∇ϕi · ∇ϕj −

3

2
qjϕiϕj

]
dΩb dt. (46)

A matrix form of Eq. (46) can be found in Bokhove and Kalogirou (2016). Rather than using this matrix form directly, we5

accommodate only the spatial discretisation using Firedrake (Rathgeber et al., 2016; Balay et al., 2016, 1997; Dalcin et al.,

2011; Hendrickson and Leland, 1995), "an automated system for the portable solution of partial differential equations using

the finite element method (FEM)". This automated system uses the finite element method to solve partial differential equations,

and requires specification of the following:

– the domain in which the equations are solved, and the kind of mesh to use (e.g., quadilaterals, the spatial dimension,10

etc.);

– the order and type of polynomials used;

– the type of expansion for the unknowns (e.g., continuous Galerkin, Lagrange polynomials etc.);

– the function space of the unknowns and test functions, and;

– the weak formulations discretised in time.15

In the present case the domain is defined as a horizontal channel ending in an oblique wall, and quadrilaterals are used for its

discretisation (see details in Sec. 5.1.2). Here, we chose to use quadratic polynomials to expand Φ, q and η. The resulting weak

formulations implemented in Firedrake in terms of Φh, qh and ηh are the following:

δΦh : 0 =

T∫
0

∫
Ωb

[
− ∂tηhδΦh−

µ

2
∇∂tηh · ∇δΦh + (1 + εηh)∇δΦh · ∇Φh−µ∇qh · ∇δΦh

]
dΩb dt, (47a)

δqh : 0 =

T∫
0

∫
Ωb

µ

[
3

2
qhδqh−∇δqh · ∇Φh

]
dΩb dt, (47b)20

δηh : 0 =

T∫
0

∫
Ωb

[
δηh∂tΦh +

µ

2
∇δηh · ∇∂tΦh + ηhδηh +

ε

2
δηh∇Φh · ∇Φh

]
dΩb dt. (47c)

The forms given in Eq. (47) are convenient since they highlight the unknowns Φh, qh and ηh as well as the test functions δΦh,

δqh and δηh. The final step is to discretise the equations in time, with a second-order Störmer-Verlet scheme, as explained in

the next section.
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4.2 Time discretisation: second-order Störmer-Verlet scheme

After incorporating the FEM-expansions, the space-discrete form of the variational principle (43) can be written in the Hamil-

tonian form

0 = δ

T∫
0

[(
Mij +

µ

2
Aij

)
Φi
dηj
dt
−H(Φi,ηj)

]
dt, (48)

where Mij and Aij are the mass and stiffness matrices, respectively defined as5

Mij =

∫
Ωb

ϕiϕj dxdy and Aij =

∫
Ωb

∇ϕi · ∇ϕj dxdy, (49)

and the Hamiltonian is

H(φi,ηj) =
1

2
Sijk(1 + εηk)ΦiΦj +µ

(
AijqiΦj −

3

4
Mijqiqj

)
+

1

2
Mijηiηj , (50)

where

Sijk =

∫
Ωb

ϕk∇ϕi · ∇ϕj dΩb. (51)10

Note that dH/dt= 0 due to skew-symmetry. Gagarina et al. (2016) have shown that, for a generic Hamiltonian system in the

form

δL(P,Q,t) = δ

T∫
0

(
P
dQ

dt
−H(P,Q)

)
dt, (52)

here with P = {Φi} and Q= {(Mij +µ/2Aij)ηj}, robust variational time integrators conserving the overall mass and energy

can be formulated. To derive these time schemes, P and Q are discretised on each time interval [tn, tn+1] as the approximated15

momentum P τ and coordinate Qτ and expanded with coefficients Pm and Qm and linear continuous basis functions ψ̃m and

ψm:

P τ =Qmψ̃m(t), Qτ =Qmψm(t). (53)

The linear basis functions ψ̃m and ψm are continuous within each time interval, but admit discontinuities at the interface

between two time slots. Therefore, to discretise Eq. (52), the notion of jumps [[.]] and averages {{.}}βα for a time-dependent20

function d(t) must be introduced (Gagarina et al., 2016):

[[d]]|tn = dn,−− dn,+ and {{d}}βα|tn = αdn,−+βdn,+. (54)

The coefficients α and β are real numbers defined such that α+β = 1 and α,β ≥ 0. The notation dn,± denotes the left and

right traces of d(t) at time tn, that is

dn,± = lim
ε→0

d(tn± ε). (55)25
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Discretisation of the variational principle Eq. (52) then yields (Gagarina et al., 2016)

δLτ (P τ ,Qτ , t) = δ

[
N−1∑
n=0

tn+1∫
tn

(
P τ

dQτ

dt
−H(Qτ ,P τ )

)
dt−

N−1∑
n=−1

[[Qτ ]]{{P τ}}βα|tn+1

]
, (56)

where N is the number of finite time intervals [tn, tn+1] that divide the time domain [0,T ]. Gagarina et al. (2016) showed that

to obain a second-order Störmer-Verlet scheme, P andQmust be discretised with mid-point and trapezoidal rules respectively,

that is:5

Qτ =
tn+1− t

∆t
Qn,+ +

t− tn

∆t
Qn+1,−, (57)

P τ =
2(t− tn)

∆t
Pn+1/2 +

tn + tn+1− 2t

∆t
Pn,+. (58)

Substituting Eq. (57-58) into the discretised variational principle (56) yields

δLτ (P τ ,Qτ , t) = δ

[
N−1∑
n=0

(
Pn+1/2

(
Qn+1,−−Qn,+

)
− ∆t

2

(
H(Pn+1/2,Qn,+) +H(Pn+1/2,Qn+1,−)

))

−
N−1∑
n=−1

(
Qn+1,−−Qn+1,+

)(
2αPn+1/2−αPn,+ +βPn+1,+

)]
. (59)10

The variations of Eq. (59), when augmented by end-point conditions δP 0,− := δ(2P−1/2−P−1,+) = 0, δQ0,− = 0, δPN,+ =

0 and δQN,+ = 0, yields the following scheme

α
(
Qn+1,−−Qn+1,+

)
= β

(
Qn,−−Qn,+

)
(60a)

Pn+1/2 = 2αPn+1/2−αPn−1,+ +βPn,+− ∆t

2

∂H(Pn+1/2,Qn,+)

∂Qn,+
, (60b)

(1− 2α)Qn+1,−+ 2αQn+1,+ = Qn,+ +
∆t

2

(
∂H(Pn+1/2,Qn,+)

∂Pn+1/2
+
∂H(Pn+1/2,Qn+1,−)

∂Pn+1/2

)
, (60c)15

βPn+1,+ = (1− 2α)Pn+1/2 +αPn,+− ∆t

2

∂H(Pn+1/2,Qn+1,−)

∂Qn+1,− . (60d)

Setting Pn = αPn,+ +βPn,− with α= 0 and β = 1 ensures stability of the numerical scheme (Gagarina et al., 2016). Sub-

situting these conditions into Eq. (60) yields the continuity condition [[Q]]tn = 0 for Q in Eq. (60a), and the second-order

Störmer-Verlet scheme is recovered:

Pn+1/2 = Pn− ∆t

2

∂H(Pn+1/2,Qn)

∂Qn
, (61a)20

Qn+1 = Qn +
∆t

2

(
∂H(Pn+1/2,Qn)

∂Pn+1/2
+
∂H(Pn+1/2,Qn+1)

∂Pn+1/2

)
, (61b)

Pn+1 = Pn+1/2− ∆t

2

∂H(Pn+1/2,Qn+1)

∂Qn+1
, (61c)
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with the stability condition

|ω∆t| ≤ 2, (62)

where ω is the (maximum) frequency of the discrete waves. Setting the vectors P = {Φi} and Q=
{(
Mij +

µ

2
Aij

)
ηj

}
, the

variational principle (48) for Benney-Luke equations can therefore be discretised as in (61), leading to Eq. (A1) in Appendix A.

Since the space discetisation is performed internally within Firedrake, the weak formulations (A1) can be implemented with5

the full form of the variables Φh, qh and ηh and test functions δΦh, δqh and δηh yielding the time discretisation of Eqs. (47),

namely

0 =

∫
Ωb

(
Φ
n+1/2
h −Φnh

)
δηh +

µ

2
∇δηh · ∇

(
Φ
n+1/2
h −Φnh

)
+

∆t

2

[
ηnhδηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb, (63a)

0 =

∫
Ωb

(
q
n+1/2
h δqh−

2

3
∇δqh · ∇Φ

n+1/2
h

)
dΩb, (63b)

0 =

∫
Ωb

(
ηn+1
h − ηnh

)
δΦh +

µ

2
∇δΦh · ∇

(
ηn+1
h − ηnh

)
− ∆t

2

[(
(1 + εηnh)∇δΦh · ∇Φ

n+1/2
h −µ∇qn+1/2

h · ∇δΦh
)

10

+
(

(1 + εηn+1
h )∇δΦh · ∇Φ

n+1/2
h −µ∇qn+1/2

h · ∇δΦh
)]
dΩb, (63c)

0 =

∫
Ωb

(
Φn+1
h −Φ

n+1/2
h

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1
h −Φ

n+1/2
h

)
+

∆t

2

[
ηn+1
h δηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb. (63d)

Timesteps (63a), (63b) and (63c) are implicit, while step (63d) is explicit. Although the equations are nonlinear, the steps (63b),

(63c) and (63d) are linear with respect to the unknowns, qn+1/2
h , ηn+1

h and Φn+1
h , respectively. Therefore, linear solvers are

used to solve the three weak formulations (63b,c,d), which reduces the computational cost by assembling the Jacobian matrix15

only once instead of computing it at each time step. The implementation of such linear and nonlinear solvers is straightforward

in Firedrake, since functions that solve weak formulations for specific unknown and test functions already exist (Rathgeber

et al., 2016; Balay et al., 1997, 2016; Hendrickson and Leland, 1995; Dalcin et al., 2011).

5 Numerical results

In this section, the domain is specified and discretised in order to evaluate Φ and η numerically. The numerical evolution of the20

stem-wave amplitude is compared to the predictions from our modified-Miles theory Eq. (3) and Eq. (39). Finally, the angle of

propagation of the reflected and stem waves are measured and compared to the values predicted by theory.

5.1 Definition of the domain

5.1.1 Orientation of the channel

The interaction of two solitary waves can be modelled using either two obliquely intersecting channels, with incident solitons25

propagating along each channel (see scheme (a) in Fig. 5), or from the reflection of a soliton at a wall with the no-normal flow
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condition at the wall (see scheme (b) in Fig. 5). While the first case (a) is more relevant to the theme of this paper, we choose

to model the case (b) to reduce the size of the domain by half and thus to reduce the computational cost. Since the cases (a)

and (b) are mathematically equivalent, the results and conclusions obtained with half of the domain will also be valid for the

intersection of two oblique channels.

The domain is described by the length of the wall Lw, the length of the channel Lc, and the angle of incidence ϕi. The5

channel should be long enough, compared to the wavelength of the incident wave, in order for the boundaries to be far enough

from the initial soliton to be considered as being infinitely distant. From Eq. (34), the width of the initial soliton depends on√
3ε/4µ, and since µ is set to 0.02 for every simulation, the width of the soliton varies with ε from 2.5 (when ε= 0.20) to 4

(when ε= 0.12). We set Lc = 5 to leave enough space between the extremities of the soliton and the boundary of the channel

for every case, for the extremities to be considered infinitely distant from the soliton boundaries. To allow the stem wave to10

grow and reach its maximal amplitude, the wall also needs to be long compared to the wavelength. This constraint was a limit

in previous numerical and experimental studies (Tanaka, 1993; Li et al., 2011) since it requires robust and stable numerical

schemes and large wave basins. We set the wall length to 200≤ Lw ≤ 600 depending on the value of ε; that is, more than

100 times the incident-wave width. When considering half of the domain represented in Fig. 5b, we chose to set the wall in

the x–direction, in which case the initial soliton must propagate in an oblique direction and is therefore equivalent to a KP15

soliton, as defined in Eq. (36). Alternatively, we can let the initial soliton propagate in the x–direction, in which case the wall is

oblique and the expression of the KP-type soliton (36) can be simplified to a KdV-type soliton propagating in the x–direction,

as (Drazin and Johnson, 1989)

η(x,y, t) = ai sech2

[√
3ε

4µ
ai

(
x−x0 + (t− t0)

(
1− Ĉε

))]
, (64a)

Φ(x,y, t) =

√
4µ

3ε
ai

[
tanh

(√ 3ε

4µ
ai

(
x−x0 + (t− t0)

(
1− Ĉε

)))
+ 1

]
. (64b)20

The behaviour of the incident and stem waves in the cases of an oblique incident soliton (36) and a soliton propagating in

the x-direction only (64) are compared in Fig. 6. The initial solitons have amplitude ai = 1.0, small-amplitude parameter

ε= 0.14 and small-dispersion parameter µ= 0.02. The angle between the direction of propagation of the solitons and the wall

is ϕi = π/6 in both cases. The dashed lines represent the evolution of the interpolated amplitude of incident solitons with

time. While the initial amplitude was ai = 1.0 in both cases, we observe that both amplitudes first increase before decreasing25

to an asymptotic value slightly smaller than 1.0 (ai = 0.93). This behaviour is not expected for solitons, which should keep a

permanent shape. However, we solve here the Benney-Luke equations for which the KP soliton is only an asymptotic (and hence

not exact) solution because we recall that the transformation (16) from the Benney-Luke model to the KP theory is not exact

since it requires a trunctation to O(ε2). In the numerical simulations represented in Fig. 6, ε= 0.14 so the condition ε�O(1)

is respected only asymptotically; this is a possible explanation of the observed variation of amplitude. Figure. 6 shows that30

the incident KP and KdV–type solitons (36) and (64) converge, and that both do so to the same surface deviation, ai = 0.93.

This same limit shows that the approximation error from Benney-Luke to the KP soliton is asymptotically the same as from

Benney-Luke to KdV. The stem-wave amplitudes (solid lines in Fig. 6) resulting from the interaction of the KP-type (36) and

15



KdV-type (64) initial solitons with the wall are both amplified at the same speed and with the same amplification factor, which

confirms that the KP-type and KdV-type initial solitons (36) and (64) give the same results. The small variations in the curves

are due to the mesh resolution which is not fine enough to resolve a regular amplitude. However, the computed approximation is

sufficiently accurate to provide an estimate of the asymptotic amplitude of the stem wave. Since we have demonstrated that the

two types of initial solitons (36) and (64) evolve similarly to give the same results, subsequent simulations will be conducted5

using only a unidirectional soliton, as defined by Eq. (64), which is a solution of both the KP and KdV equations.

5.1.2 Mesh

In order to evaluate Φ and η at any position in the channel, the domain is discretised using quadrilaterals. This is done using the

mesh generator Gmsh (Geuzaine and Remacle, 2009). Since the domain is large, we define a heterogeneous mesh with areas of

higher refinement along the wall, where the solution needs to be more accurate. Moreover, the end of the domain is truncated10

with a blunt wall instead of the sharp angle, to avoid boundary quadrilaterals having internal angles that are too acute. The

final domain comprising different mesh refinements is presented in Fig. 7, in which the insets show the aforementioned refined

mesh and right-hand boundary quadrilateral elements.

5.2 Amplification of the stem wave

The numerical amplification of the stem wave is compared with the predictions of modified-Miles’ theory applied to our15

Benney-Luke model (3) and (39), namely

αw =


4

1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
(3)

with κ=
tanϕi

cosϕi
√

3εai
. (39)

The interaction parameter defined in Eq. (39) depends on three parameters: the scaled amplitude of the incident soliton ai,20

its angle of incidence ϕi, and the small-amplitude parameter ε. From Miles’ theory, a change in these parameters will modify

the behaviour of the reflected and stem waves. Figure 8 shows a comparison between predictions (3) and (39) and numerical

simulations for the maximal amplification of the stem wave. The amplitude and angle of incidence of the initial soliton are

the same for each of the simulations, with values ai = 1.0 for the amplitude and ϕi = 30◦ for the angle of incidence. Only the

small-amplitude parameter ε changes in the different cases, taking values from 0.12 to 0.20, which leads to different interaction25

parameters and thus different evolutions of the stem and reflected waves. Variation of ε is an alternative choice than the one

made in the work of Ablowitz and Curtis (2013) where, for a specific ε, they compute simulations with varying amplitude

and angle of incidence; this choice enabled them to show that the small-amplitude parameter ε has only a weak impact on the

amplification of the stem wave for κ < 1 but limits the amplification, with a decrease of O(ε) close to the resonant case κ= 1,

leading, for example, to a maximal wave amplification of 3.9 when epsilon = 0.1. Despite this asymptotic limitation in the30
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wave amplification, the purpose of the present simulations is to model wave amplification in various sea states, with various

depths of water and characteristic wave heights, and we do so by using different values of ε, recalling that the small-amplitude

parameter ε is the quotient between the characteristic wave height and the water depth. Modelling various sea-states will allow

the maritime industry to test wave impact on a wider range of structures, since different structures are used in different sea

states. Moreover, the incident-wave amplitude varies slightly when propagating along the basin, which has a high impact on5

the predictions. Indeed, a small change of orderO(10−2) in the incident-wave amplitude implies a change of orderO(10−2) in

the interaction parameter, which can lead to a prediction variation of up toO(10−1) near the transition case κ≈ 1, in which the

expected amplification varies dramatically. The amplification aw/ai is also affected by a change in the incident amplitude ai. It

is therefore necessary to use the accurate value for the incident amplitude. In performing the computations required for Fig. 8,

we defined the maximal amplification as follows: when the stem wave reaches its maximal amplitude awmax , we measure10

the amplitude of the incident wave ai at the same x–position. The new incident amplitude ai is used to adjust the interaction

parameter and to compute the amplification of the stem wave αw = awmax
/ai. The grid refinement is 0.25× 0.25 in the finest

area (e.g. at the wall), and 0.4× 1.5 elsewhere. The numerics follow the theoretical curve, but a slight difference between the

present results and those expected from modified-Miles is noticeable. As alluded to beforehand, we assume that this is due

to the fact that the soliton used as an incident wave is an asymptotic but not an exact solution of the Benney-Luke equations.15

The scaling from Benney-Luke to KP is not exact but asymptotic, with a truncation at second order, which leads to a slight

difference in the final wave amplification. This observation agrees with the conclusions of Ablowitz and Curtis (2013) on the

asymptotic amplification of the stem-wave in the case of the Benney-Luke model. The shift is probably also increased by the

mesh resolution, which could be optimised to get a better estimate of the incident-wave amplitude in order to limit the error

caused by its approximation. New simulations with higher mesh resolution are expected to verify the current results. However,20

the present Benney-Luke model still predicts the evolution of the stem-wave amplitude very well, enabling it to reach up to

3.6 times the initial amplitude. The stem-wave maximal amplification is reached for κ= 0.9733, marginally smaller than the

κ= 1.0 predicted by Miles. While the model from Kodama et al. (2009) is expected to predict the evolution of the stem wave

based on the KP equation perfectly, they were unable to reach more than 3.2 times the initial amplitude in their numerical

simulations.25

5.3 Angle of the stem and reflected waves

Miles’ theory also predicts different directions of propagation of the stem and reflected waves in the cases of regular and Mach

reflections. While in the first case, characterised by κ≥ 1, the angle of the reflected wave ϕr is expected to be equal to that of

the incident soliton ϕi, it should become larger than ϕi in the case of Mach reflection, i.e. when κ < 1:ϕr = ϕi for κ≥ 1

ϕr > ϕi for κ < 1.
(65)30
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Moreover, in the case of regular reflection, the stem wave is expected to propagate along the wall with a constant length, while

for Mach reflection, its length should increase linearly making a non-zero angle ϕw with the wall:ϕw = 0 for κ≥ 1

ϕw > 0 for κ < 1.
(66)

Predictions (65) and (66) will be checked numerically next.

5.3.1 Regular reflection5

Figure 9 shows numerical results and predictions for the case where κ= 1.12≥ 1. The wall makes an angle of 30◦ with the

direction of propagation of the initial solitary wave, hence ϕi = 30◦. In the bottom-right plot of Fig. 9, there is an angle of 60◦

between the reflected and stem waves which means that the angle ϕr between the reflected wave and the line perpendicular

to the wall is equal to 30◦, that is, equal to ϕi. This observation holds at any time and therefore the expectations (65) for the

reflected waves are satisfied in the case of regular reflection. The stem wave propagates along the wall without increasing in10

length, and therefore no angle can be measured between the stem wave and the wall, i.e., ϕw = 0, as predicted in (66) for

regular reflection. These results, together with Fig. 8 for the amplification of the stem wave, confirm modified-Miles’ theory in

the case κ≥ 1 for both the reflected and stem waves.

5.3.2 Mach reflection

Figure 10 shows numerical results and schematic expectations for the propagation of the reflected and stem wave for κ=15

0.58< 1. In the bottom-right sub-figure, the angle between the incident and reflected waves can be measured, as represented

in the top-right sub-figure, in order to check that ϕr is larger than ϕi. The total angle ϕr +ϕi measures 70◦, with the initial

incident angle set to ϕi = 30◦. Therefore, ϕr is 40◦, which is indeed larger than ϕi, thereby agreeing with our predictions.

The top-right sub-figure of Fig. 10 also shows that the stem-wave length should increase linearly to form an angle ϕw with the

wall. In the bottom-right figure, a top view of the numerical results at different times from t= 0.28 to t= 1.12 highlights the20

increase of the stem-wave’s length as it propagates along the wall. The dashed orange line that connects the solutions confirms

that the wavelength increases linearly.

6 Conclusions and discussions

The present model Eq. (15), together with the new scaled interaction parameter (39), shows good agreement, with the pre-

dictions of Miles, regarding the amplification of the stem wave and the angles of the reflected and stem waves. Two different25

regimes can be observed in the numerical results, with different behaviours of the waves in the case of Mach and regular reflec-

tions, which confirms the conclusions obtained by Ablowitz and Curtis (2013) regarding the ability of the Benney-Luke model

to predict reflection of obliquely incident solitary waves. Our simulations do not allow determination of the exact value of the

interaction parameter at the transition from Mach to regular reflection, but currently the maximal amplification is reached at
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κ= 0.9733, which is very close to the predicted maximal amplification at κ= 1.0. The maximal amplification obtained herein

is αw = 3.6 which is higher than the amplifications obtained with most previous models and experiments (Kodama et al., 2009;

Li et al., 2011; Tanaka, 1993; Funakoshi, 1980), but still slightly lower than the expected 3.9 amplification from Ablowitz and

Curtis (2013). This agrees with the conclusion of Ablowitz and Curtis (2013) concerning the impact of ε on the amplification

near κ= 1. While they obtained the maximal amplification αw = 3.9 for ε= 0.10, our amplification αw = 3.6 is obtained for5

ε= 0.17, which is larger than 0.1 and thus leads to a larger difference with Miles’ prediction of αw ≈ 4. Moreover, thanks to

the robust scheme, which ensures stable simulations over the large domain despite the different length scales involved, used to

derive and discretise our equations, our model is the first model able to describe numerically the dynamic development of the

stem wave up to such high amplitudes. Previous studies (Kodama et al., 2009; Li et al., 2011; Tanaka, 1993; Funakoshi, 1980)

were not able to attain such high amplifications because of numerical limitations such as insufficient computational resources.10

Ablowitz and Curtis (2013) obtained the highest numerical amplification αw = 3.9 by considering the final state, initialised

asymptotically using the KP two-line solution. This last approach gives an accurate understanding of the asymptotic maximal

amplification of the stem wave with the BL model, but does not describe the development of the stem wave along the wall. The

description and understanding of the wave propagation along the wall is however fundamental for application purposes. The

present results, although currently currently limited by computational resources, allow us to consider the relevance of obliquely15

interacting solitary waves in maritime engineering. More advanced simulations should enable determination of the value of κ

at the transition from Mach to regular reflection, and to reach higher amplification of the stem wave.

There are some limits to the current model. As already concluded in previous studies, the wave needs to propagate over a long

distance (relative to its wavelength) in order to reach its maximal amplitude. Consequently, the numerical domain needs to be

large, and the mesh fine enough to estimate the wave crests accurately. This numerical requirement increases the computational20

time. A compromise between the accuracy of the simulations and the running time is therefore needed. This constraint is

important because near the transition from Mach to regular reflection a slight change in the incident wave amplitude modifies

dramatically the interaction parameter and consequently the predictions of the stem and reflected waves. Therefore, a careful

analysis of the numerical results must be made. For the same reason, simulations for κ≈ 1 and large amplifications αw ≈ 4

are extremely difficult to obtain, since a slight change in the initial settings (ai, ε and ϕi) modifies completely the behaviour25

of the resulting waves. Indeed, Li et al. (2011) conjectured that the transition between Mach and regular reflection in the

neighbourhood of κ= 1 might appear gradually and not as abruptly as expected from Miles’ predictions (66).

One may wonder how likely it is that solitary waves would undergo reflection in an open ocean. Interaction of obliquely

incident waves on the sides of a ship leads to an increasing wave amplitude, sometimes reaching the deck. This phenomenon

is called "green water" and has been studied experimentally and numerically by the Maritime Research Institute Netherlands30

(MARIN) to limit the damage caused by waves on ships (Buchner et al., 2014). When the incident wave interacts with a

ship moving downwind, the effective ship length increases leaving more time for the stem wave to develop to its maximum

amplitude. Peterson et al. (2003) also studied the formation of extreme waves in shallow water and explained under which

conditions they are likely to occur and threaten ships. Kalogirou and Bokhove (2016) developed numerical models of wave

19



impacting buoys and ships. An extension of our oblique-wave interaction simulations to wave interactions with ships will be

an interesting extension of our present work.

The present model can be also used to predict the impact of extreme (i.e. freak or rogue) waves on structures. Indeed, when

the stem wave reaches more than twice the amplitude of the incident wave, it can be viewed as a freak wave since it has similar

properties in terms of nonlinearity, dispersivity and high amplitude. Table 1 shows the distance required by the stem wave to5

reach more than twice the incident-wave amplitude in several cases parameterised by different values of ε. For each value of the

small-amplitude parameter ε, the numerical (dimensionless) distance Ln required to reach at least twice the amplitude of the

initial wave has been measured from the simulations. Then, the definition of the small-amplitude parameter ε= a0/H0 and the

choice of a sea state with characteristic wave height a0 = 3m enables computation of the corresponding water depth H0. The

physical distance Lr required by the wave to propagate up to twice the characteristic wave height can then be obtained from10

scaling (11), using Lr = Ln×H0/
√
µ. The value of the small-dispersion parameter µ is set to 0.02 as in the results section.

Finally, the wavelength λ0 can be obtained from the definition of the small-dispersion parameter µ= (H0/λ0)2. In a wave

tank where waves can be generated in different directions, the angle of propagation and initial profile of two solitary waves can

be defined from the asymptotically exact solution Eq. (36) of our model Eqs (15), so that their interaction will lead to a stem

wave. The evolution of the stem wave can be predicted from the present model, so an offshore structure such as a scaled ship or15

a wind turbine can be placed at a position where the stem wave will reach more than twice the initial amplitude of the solitary

waves. For instance, a scaling of 1/10 between the values of H0, Lr and λ0 in Table 1 and experiments leads to achievable

incident-wave amplitudes and distances of propagation in MARIN’s shallow-water basin. From the amplitude of the stem wave

at a given position, the impact of the wave on structures can be estimated and the predictions yielded by the model tests can be

validated. The model can help the maritime industry to design safer offshore structures that can resist extreme-wave impacts.20

Finally, the present work can also be used as a starting point for the modelling of the interaction of three obliquely incident

line-solitons, which should lead to a ninefold-amplified resulting wave that can also be generated in wave tanks.1

7 Data availability

The implementation of our discretisation of the Benney-Luke equations is an example in Firedrake, www.firedrake.org (Bokhove

and Kalogirou, 2016). In addition, the expanded program we use is freely available there.25

1O. Bokhove suggested this calculation to Prof. Y. Kodama, personal communication, who performed the calculation using the KP equation at the interna-

tional workshop "Rogue waves" held at the Max Planck Institute in 2011, Dresden, Germany.
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Appendix A: Time-discretisation of the present Benney-Luke model

The Störmer-Verlet scheme (61) is applied to the variational principle (47) for Benney-Luke, with Q=
{(
Mij +

µ

2
Aij

)
ηi

}
and P = {Φi}, leading to:

0 =

∫
Ωb

(
Φ
n+1/2
i −Φni

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t

2

[
ηnj ϕjϕk +

ε

2
ϕjΦ

n+1/2
i Φ

n+1/2
k ∇ϕi · ∇ϕk

]
dΩb, (A1a)

0 =

∫
Ωb

(
q
n+1/2
i ϕiϕj −

2

3
∇ϕj · ∇ϕiΦn+1/2

i

)
dΩb (A1b)5

0 =

∫
Ωb

(
ηn+1
i ϕi− ηnj ϕj

)
ϕk +

µ

2
∇ϕk · ∇

(
ηn+1
i ϕi− ηnj ϕj

)
− ∆t

2

[(
(1 + εηni ϕi)∇ϕk · ∇ϕjΦ

n+1/2
j −µqn+1/2

i ∇ϕi · ∇ϕk
)

+
(

(1 + εηn+1
i ϕi)∇ϕk · ∇ϕjΦn+1/2

j −µqn+1/2
i ∇ϕi · ∇ϕk

)]
dΩb, (A1c)

0 =

∫
Ωb

(
Φn+1
i −Φn+1

i

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t

2

[
ηn+1
j ϕjϕk +

ε

2
ϕjΦ

n+1/2
i Φ

n+1/2
k ∇ϕi · ∇ϕk

]
dΩb. (A1d)
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Figure 1. Top: top view of a channel containing an incident solitary wave propagating in the x-direction with amplitude ai. The side wall

is oblique and makes an angle ϕi with the x-direction. Bottom: top view of the reflection pattern when the incident wave impacts upon the

wall. The pattern is composed of three waves: 1) the incident wave, 2) a reflected wave of amplitude ar that forms an angle ϕr with the angle

perpendicular to the wall, and 3) a Mach stem wave propagating along the wall with amplitude aw and an angle ϕw with the wall.
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Figure 2. Three-dimensional water-wave domain with rest-depth H0, velocity potential φ(x,y,z, t), total depth h(x,y, t) and free surface

deviation η(x,y, t).
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Figure 3. O–type and (3142)–type solitons as represented by Kodama et al. (2009). Top: evolution (from left to right) of the O-type soliton,

consisting of two line–solitons with different amplitudes and angles with respect to the y–axis. As it propagates, the shape of this soliton

remains unchanged. Bottom: evolution (from left to right) of the (3142)–type soliton, consisting of two line–solitons travelling in the x–

direction with different angles and amplitudes. As the soliton propagates, a new line–soliton is created at the intersection of the two initial

line–solitons, leading to a stem wave. Figure obtained from Kodama et al. (2009).
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Figure 4. Schematic plan showing the link between the scaling of the three system of equations involved in the derivation of the exact

solution and critical condition for which Miles’ and Kodama’s predictions hold in the Benney-Luke approximation.
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Figure 5. Definition of the domains in the two cases described in the text: a) intersection of two channels, with two obliquely incident solitons

interacting at a virtual wall, and b) half of the domain with a soliton propagating in one channel and colliding with an oblique wall. This

wall is in the x− direction (in which case the soliton has a two-dimensional propagation of direction) or oblique, in which case the incident

soliton propagates in the one-dimensional direction (x).
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Figure 6. Soliton surface deviations obtained for an initial amplitude ai = 1.0, and angle ϕi = π/6 rad. Blue: behaviour of the incident

(dashed line) and stem (full line) waves when the incident soliton propagates in an oblique direction; red: behaviour of the incident (dashed

line) and stem (full line) waves when the incident soliton propagates in one direction. The dashes lines essentially coincide after t > 30.

29



Figure 7. Domain discretisation using quadrilaterals in Gmsh. In order to reduce computational requirements, mesh refinement is restricted

to only the region adjacent to the wall.
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Figure 8. Comparison between the expected amplification (solid line) from Miles (3) and our numerical results (symbols) for different values

of the interaction parameter κ, namely: κ≈ 1.1265 (ε= 0.12), κ≈ 1.0526 (ε= 0.14), κ≈ 1.0077 (ε= 0.15), κ≈ 0.9989 (ε= 0.16),

κ≈ 0.9733 (ε= 0.17), κ≈ 0.9345 (ε= 0.18), κ≈ 0.8692 (ε= 0.20).
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Figure 9. Numerical results and predictions for the reflected and stem waves in the case of regular reflection, i.e. κ > 1 . Top left: top view of

the numerical evolution of the incident, reflected and stem waves. Top right: schematic plan view of the expected evolution of the stem and

reflected waves at two different times t1 and t2 with t1 < t2. The stem wave should propagate along the wall with constant length. The angle

ϕr of the reflected wave is expected to be constant and equal to the incident-wave angle ϕi. Bottom centre: side view of the time evolution

of the incident, reflected and stem waves, highlighting the amplification of the stem-wave amplitude compared to the initial solitary-wave

height.
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Figure 10. Numerical results and predictions for the reflected and stem waves in the case of Mach reflection, i.e. κ < 1 . Top left: schematic

plan view of the numerical evolution of the incident, reflected and stem waves. Top right: top view scheme of the predicted evolution of the

stem and reflected waves at two different times t1 and t2 with t1 < t2. The stem wave should grow linearly in length, leading to an angle

ϕw > 0 with the wall. The angle ϕr of the reflected wave is expected to be constant and larger than the incident-wave angle ϕi. Bottom

centre: side view of the time evolution of the incident, reflected and stem waves, highlighting the amplification of the stem-wave amplitude

compared to the initial solitary-wave height.
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ε

0.12 0.14 0.15 0.16 0.17 0.18 0.20

Numerical distance Ln 5.8 5.5 5.5 7.8 7.7 8.0 8.0

Water depth H0 (m) 25.00 21.43 20.00 18.75 17.65 16.67 15.00

Real distance Lr (m) 1025 833 778 1028 965 940 846

Wave length λ0 (m) 176.78 151.52 141.42 132.58 124.78 117.85 106.07

Table 1. Prediction of the minimal distance needed by the stem wave to reach at least twice its initial amplitude in a sea state with charac-

teristic wave height a0 = 3 m. The dispersion parameter µ is set to 0.02 while the small-amplitude parameter ε varies from 0.12 to 0.20,

leading to different wave evolutions. The numerical distance needed to reach more than twice the incident-wave ampitude is measured from

the numerical simulations. The corresponding water depth, real distance of propagation and wavelength are computed from the definition of

ε, µ, and scaling (11). These values are approximate.

34


