
Final	Author’s	Response	to	Reviewers	#1	and	#2	for	the	article	
“Variational	modelling	of	extreme	waves	through	oblique	
interaction	of	solitary	waves:	application	to	Mach	reflection”	
	
	
I. Response	to	Reviewer	#1’s	comments	
	
Reviewer’s	comments:	

The	paper	re-examines	the	problem	of	oblique	interaction	of	a	plane	soliton	with	a	
rigid	boundary.	This	problem	is	known	as	the	Mach	reflection	and	has	been	studied	within	
the	 framework	 of	 the	 unidirectional	 Kadomtsev–Petviashvili	 (KP)	 equation.	 In	 the	
reviewed	paper	a	variational	approach	is	used	to	derive	a	more	general	the	bidirectional	
Benney–Luke	 (BL)	 set	 of	 equations	 which	 represent	 a	 shallow-water	 asymptotic	 equiv-
alent	of	the	three-dimensional	set	of	hydrodynamic	equations	for	water	waves.	Within	the	
derived	BL	 set	 equations	 one	 can	 study	wave	 propagation	 in	 two	 horizontal	 direc-tions,	
whereas	 for	 unidirectional	 wave	 propagation	 the	 set	 reduces	 to	 the	 conventional	 KP	
equation.	The	set	of	equations	is	solved	numerically	to	obtain	a	solution	for	the	Mach	stem	
through	 the	 intersection	 of	 two	 obliquely	 incident	 solitary	waves.	 It	 is	 shown	 that	 for	 a	
given	range	of	incident	angles	and	amplitudes	of	solitons,	the	Mach	stem	grows	linearly	in	
length	 and	 amplitude,	 reaching	 up	 to	 four	 times	 the	 amplitude	 of	 the	 incident	 solitary	
waves.	Such	a	big	grows	of	amplitude	makes	the	stem	wave	a	good	candidate	for	the	rogue	
waves	on	shallow	water.	

The	 paper	 is	 topical	 and	 interesting	 for	 a	 wide	 audience.	 It	 is	 well	 written	 and	
contains	valuable	results.	 It	 is	a	pleasure	to	see	 it	published.	 I	would	only	advise	to	make	
minor	stylistical	corrections	in	the	section	titles:	
1)		2.2	From	Luke’s	variational	principle	to	Benney–Luke	set	of	equation;		
2) 2.3	From	Benney–Luke	set	of	equations	to	the	Kadomtsev-Petviashvili	equation.	
	
Author’s	response:	

Thank	you	for	your	helpful	comments	and	suggestions.	We	have	accommodated	
the	following	section-title	changes	in	our	manuscript:		
1)	 2.2	 From	 Luke’s	 variational	 principle	 to	 Benney–Luke	 set	 of	 equations;	
2)	2.3	From	Benney–Luke	set	of	equations	to	the	Kadomtsev-Petviashvili	equation.		
	

	
II. Response	to	Reviewer	#2’s	comments	
	
• Reviewer’s	 comment:	This	paper	is	about	the	reflection	of	obliquely	incident	solitary	
waves	 on	 vertical	walls.	 This	 is	 a	well	 studied	 problem	and	 it	 is	 known	 that	 at	 small	
angles	a	Mach	stem	is	observed	which	can	lead	to	large	amplitudes	(up	to	4	times	the	
incident	 wave).	 The	 main	 goal	 of	 the	 paper	 is	 to	 devise	 a	 finite	 element	 numerical	
scheme	 that	 can	 be	 used	 to	 solve	 the	 Benney-Luke	 equation	 -	 an	 equation	 which	
encompasses	previous	studies	using	the	KP	equation.	

	
Author’s	 response:	 Thank	 you	 for	 commenting	 our	 article.	 Below	 is	 the	 point-by-
point	response	to	your	helpful	comments	and	suggestions.	
	

• Reviewer’s	 comment:	The	paper	is	well	written	but	probably	spends	too	many	pages	
re-deriving	BL	and	KP	(albeit	using	variational	methods).	

	
Author’s	 response:	Given	 that	we	require	a	variational	 formulation	underpins	our	
numerical	technique,	we	feel	that	our	presentation	is	currently	of	the	correct	length	
to	facilitate	understanding	of	our	work	by	the	readership.	



• Reviewer’s	 comment:	The	 name	Benney-Luke	was	 unfortunately	 seldom	used	 in	 the	
literature	 (to	 my	 knowledge	 it	 reappears	 in	 Milewski	 &	 Keller	 1996	 and	 Pego	 &	
Quintero	 1999)	 and,	 although	 I	 am	 not	 aware	 of	 any,	 I	 wonder	 if	 are	 any	 studies	 of	
Mach	reflection	using	“three-dimensional	Boussineq”	(which	is	essentially	what	Benney-
Luke	is)	models	in	the	literature.		

	
Author’s	response:		Thank	you	for	this	remark;	we	have	now	inserted	the	reference	
to	Milewski	and	Keller	(1996).	
	

• Reviewer’s	 comment:	 I	would	note	that	recently	Kodama	and	Yeh	have	claimed	that	
the	KP	order	 is	 insufficient	 to	capture	the	 large	amplitude	Mach	stem	and	that	better	
results	 are	 obtained	 using	 higher	 order	 corrections	 to	 KP.	 These	would	 be	 out	 of	 the	
range	 of	 the	 present	 BL	 equation.	 However,	 given	 how	 BL	 performs	 here	 one	 may	
wonder	whether	this	claim	is	correct.		
	
Author’s	 response:	As	we	derive	our	initial	BL	condition	from	the	KP	equation,	we	
actually	 include	 a	 higher	 order	 correction	 to	 our	 interaction	 parameter	 in	 Eq.(39),	
following	the	remark	from	Yeh	et	al.	(2010).	This	leads	to	a	much	better	agreement	
between	 our	 numerical	 results	 and	 the	 theoretical	 expectations,	 which	 confirms	
Kodama	and	Yeh’s	claim.		
	

• Reviewer’s	 comment:	 Note	 that	 the	 “extreme	 wave”	 claim	 for	 such	 cross	 wave	
constructions	in	shallow	water	is	not	new	(see	Peterson	et	al).			

	
Author’s response: Indeed,	 and	 in	 the	 paper	 you	 refer	 to,	 Peterson	 et	 al.	 also	
explained	 under	 which	 conditions	 extreme	 waves	 may	 occur	 in	 real	 conditions,	
which	may	 complete	 our	 note	 about	 ‘green	water’.	 Thank	 you	 for	 this	 remark;	we	
have	added	this	reference	to	our	paper.		
	

• Reviewer’s	 comment:	 I	 also	 believe	 the	 title	 is	 a	 bit	 too	 broad.	 It	 should	 probably	
mention	the	oblique	reflection	of	a	solitary	wave	with	a	wall.	 (perhaps	keep	the	same	
title	and	add	“:	application	to	Mach	reflection.”)		

	
Author’s	response:	We	have	extended	the	title.	
	

• Reviewer’s	 comment:	 I	 am	 happy	 to	 recommend	 this	 paper	 for	 publication.	
Incidentally	 I	 do	 not	 find	 the	 way	 the	 actual	 waves	 are	 presented	 (Figures	 9	 &	 10)	
particularly	informative	-	a	larger	version	of	the	top	view	(i.e.	the	bottom	right	panel)	
only	would	be	better.		

	
Author’s	response:	Thank	you	for	this	suggestion.	We	have	extended	and	improved	
these	 figures.	 They	 now	 contain	 a	 larger	 version	 of	 the	 top	 view	 of	 the	 numerical	
results,	 as	 well	 as	 a	 scheme	 of	 the	 expected	 behaviour	 of	 the	 stem	 and	 reflected	
waves	 for	 comparison.	 We	 also	 increased	 the	 size	 of	 the	 side	 view	 in	 order	 to	
highlight	the	difference	between	the	stem	and	incident	waves’	amplitudes.	We	have	
removed	the	front	view,	which	indeed	did	not	add	any	complementary	information.	
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Abstract. In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely

incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length

and amplitude, reaching up to four times the amplitude of the incident waves. A variational approach is used to derive the

bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling

water waves. This nonlinear and
::::::
weakly dispersive model has the advantage of allowing wave propagation in two horizontal5

directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies.

A variational Galerkin finite element method is applied to solve the system numerically in Firedrake with a second-order

Stormer-Verlet
:::::::::::
Störmer-Verlet

:
temporal integration scheme

:
,
:
in order to obtain stable simulations that conserve the overall

mass and energy of the system. Using this approach, we are able to get close to the fourfold amplitude amplification predicted

by Miles.10

1 Introduction

Offshore structures such as wind turbines, ships and platforms are designed to resist loads and stresses applied by winds,

currents and water waves. These three factors can cause damage or destroy these structures when their effect is underestimated.

Designers and engineers must take into account the effect of not only each of these phenomena separately but also their

interaction, which can increase their adverse effects. In this work, we focus on the impact of extreme waves created from15

the propagation of an obliquely incident solitary wave along the side of a ship (a wave-structure interaction), or its impact

with another identical obliquely incident wave (a wave-wave interaction). These two cases are mathematically equivalent since

reflection at a rigid wall (represented here by the ship’s side) is modelled through the boundary condition of no normal flow

at the wall, which is equivalent to the intersection of two identical waves travelling in opposite directions, in which case a

virtual wall is formed. The study of extreme, freak or rogue waves resulting from reflection at a wall or interaction of waves20

has spawned different theories in the last 50 years, some of which are now
::::::::::
subsequently

:
reviewed.

The objective of the present work is to apply a theory first introduced in
::
by

:
Miles (1977a, b) and based on experiments

from Perroud (1957), where he described analytically the behaviour of an incident solitary wave interacting with a wall. For

a specific range of angle of incidence ϕi and scaled amplitude ai of the wave, the reflection of the soliton may result in three
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wave fronts: the incident and reflected waves
:::
(of

::::::::
respective

::::::::::
amplitudes

::
ai :::

and
:::
ar), as well as a Mach stem wave

::
(of

:::::::::
amplitude

:::
aw)

:
propagating along the wall with an increasing length (see Fig. 1).

This theory holds in the case of small-but-finite wave ’s amplitude, shallow-but-finite water depth, and weak nonlinearity,

that is

ϕ2
i �O(ε), ai =O(ε), for any ε�O(1), (1)5

and is based on an interaction parameter, first defined as

κ=
ϕi√
3ai

, (2)

that enables one to predict the
::
the

:::::::::
prediction

::
of
::::

the amplitude and direction of propagation of each wave front. The most

important observation is the transition at κ= 1 from a regular reflection (κ≥ 1) to a Mach reflection (κ < 1), which has led to

the following definition of the stem-wave amplification:10

αw =


4

1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,

(3)

so that αw = aw/ai is the quotient of the stem wave and incident wave amplitudes. Equation (3) shows that at the transition

point where κ= 1 the stem wave may grow up to four times the amplitude of the incident wave, leading to extreme loading on

offshore structures. The aim of the present study is to develop a (numerical) model that can accurately simulate the evolution

of the stem wave so that the distance and direction of propagation required to reach the fourfold amplitude can be estimated.15

A challenging aspect is that it takes a long time and large distance of propagation before the stem wave has reached it
::
its

maximum amplitude, which was a limit
::::::
limiting

:::::
factor

:
in previous experimental and numerical studies. Kodama et al. (2009)

extended Miles’ theory to the Kadomtsev-Petviashvili (KP) limit, in which the assumptions are

a0

H0
� ε,

(
H0

λ0

)2

� ε, tan2ϕi� ε, ε�O(1), (4)

where H0, a0 and λ0 are the water depth, the wave amplitude and wavelength
:
, respectively. While the KP–limit still considers20

shallow-but-finite depth and small-but-finite amplitudes, the main difference with Miles’ theory concerns the condition on

the angle ϕi. Yeh et al. (2010) explained that, contrary
:
in

:::::::
contrast

:
to Miles’ theory, wherein the soliton propagates in one-

direction only (the KdV–limit), the KP–limit assumes a quasi-two dimensional approximation, and therefore the condition

tan2ϕi�O(ε) cannot be simplified to ϕ2
i �O(ε) as in Miles’ assumptions. The quasi-two dimensional KP soliton is not

solution of the KdV equation but it can be transformed to an asymptotic KdV soliton via some manipulations detailed in Yeh25

et al. (2010). However, the width of the obtained KdV soliton is proportional to√
aKP

cos2ϕi
, (5)

with aKP the scaled amplitude of the initial KP soliton, and
:
it
:
therefore depends on the angle ϕi. This is physically unrealistic

since the KdV soliton should have the same shape whatever its direction of propagation. For this reason, Yeh et al. (2010)
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brought a "high-order correction" to the solution, setting the amplitude of the KdV soliton to be

aKdV =
aKP

cos2ϕi
, (6)

so that its width depends on its amplitude aKdV , but not on any angle. Taking this into account, they slightly modified the

definition (2) of the interaction parameter κ to

κ=
tanϕi

cosϕi
√

3ai
, (7)5

where ai = aKdV /H0 is the scaled amplitude of the incident wave, leading to what we will hereafter identify as the "modified-

Miles’ theory" for the expected stem wave amplification:

αw =


4

1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
with κ=

tanϕi
cosϕi

√
3ai

. (3-7)

Using this modified interaction parameter in Eq. (3-7), they found much better agreement between previous numerical simu-

lations (Funakoshi, 1980; Tanaka, 1993) and modified-Miles’ theory. Moreover, Kodama et al. (2009) showed that the stem10

wave resulting from the interaction of two solitary waves with small incident angles is an exact solution of the KP equation.

Solving this KP equation, they could describe the exact solution depending on the angle of incidence and the amplitude of

the initial waves, and validate their theory with numerical simulations (Kodama et al., 2009; Li et al., 2011). Both the ampli-

tude and length of the stem wave indeed followed their predictions in the case of regular and Mach reflection. The numerical

scheme could not simulate the highest amplitudes that Miles predicts for κ≈ 1. Recently, Ablowitz and Curtis (2013) studied15

Mach reflection for the Benney-Luke approximation, showing that, in that case, modified-Miles’ theory applies asymptotically,

leading to amplifications of up to 3.9.

The purpose of the present work is to derive and apply a stable numerical scheme able to estimate the solution over a long

distance of propagation, in order to model high-amplitude waves and to confirm the transition from regular to Mach reflection

happening for κ≈ 1. We develop a model similar to the one of Benney and Luke (1964), which is an asymptotic approximation20

of the potential-flow equations for small-amplitude and long waves. Whilst it has the advantage of conserving both the nonlinear

and dispersive properties of the waves (essential to the modelling of a freak wave, for instance), it does not require a mesh

moving vertically with the free surface since the model is reduced to the horizontal plane. Pego and Quintero (1999) derived

these modified Benney-Luke equations and Bokhove and Kalogirou (2016) recently used them to simulate a soliton splash

resulting from a wave running in a restricted channel. Their simulations were in reasonable
:::::::::
reasonably

:
good agreement with25

experiments, which confirms that the Benney-Luke approximation is an accurate model of water waves. The
:::::
present

::::::::::
approaches

::
are

:::::::::
necessary

::
to

:::::::::
determine

::::
how,

::
in

::::::
future

:::::
work,

:::
we

:::
can

:::::::
impose

:::
the

::::::::::
line-solitons

:::
on

:::
the

:::::
wave

::::::
makers

:::
to

:::::::
generate

::
a

:::::::
fourfold

::::::::
amplified

::::
wave

::
in
::::

the
::::::
middle

::
of

::
a

::::
wave

:::::
basin

::::
and

:::::::
measure

::
its

::::::
impact

:::
on

:::::::
offshore

:::::::::
structures.

::::
The

:
variational technique used

in the present approach enables to express the equations as a Hamiltonian system on which robust time integrators can be

applied (Gagarina et al., 2016)
:::::::::::::::::::::::::::::::::
(Hairer et al., 2006; Gagarina et al., 2016). The space and time Galerkin finite element method30

used to discretise the present model ensures the overall conservation of mass, energy and momentum, which are essential in

the high-amplitude and long-distance propagating waves studied here.
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The remainder of this paper is organised as follows: the modified Benney-Luke type
:::::::::::::::
Benney-Luke-type model is derived

from the variational principle for an inviscid and incompressible fluid (Luke, 1967) in the potential flow
::::::::::::
potential-flow approxi-

mation, using the small-amplitude and small-dispersion scaling of Pego and Quintero (1999). In order to apply modified-Miles’

theory and verify our numerical results against Kodama’s exact solution, the KP limit is obtained from the Benney-Luke ap-

proximation, leading to a new variational principle for KP. A careful scaling is then defined to obtain an asymptotic soliton5

solution of our present model, based on the exact solution of the KP equation from Kodama et al. (2009). The corresponding

interaction parameter is consequently derived, leading to another version of modified-Miles’ theory (3-7), later used to com-

pare our numerical simulations with respect to Miles’ expectations. The present approaches are necessary to determine how to

impose the line-solitons on the wave makers to generate a fourfold amplified wave in the middle of a wave basin and measure

its impact on offshore structures. The finite element method is then used to discretise the equations in space together with the10

second-order Störmer-Verlet temporal scheme that ensures stable simulations. Results are finally discussed and compared to

the expectations.

2 Water-wave model

2.1 Introduction

Our water-wave model is derived from
:::::
using a variational approach that ensures conservation of mass, momentum and energy.15

In a basic sea state with extreme waves, these conservation properties are essential given the different length scales involved.

Starting from Luke’s variational principle for an inviscid fluid with a free surface (Luke, 1967), a model similar to the one

derived by Benney and Luke (1964) for small-amplitude and long waves is obtained. The (numerical) method developed by

Bokhove and Kalogirou (2016) is used to derive the relevant variational principle for our Benney-Luke model. This asymptotic

model conserves the non-linear
:::::::
nonlinear

:
and dispersive properties of the sea waves, which enables comparison with the20

Kadomtsev-Petviashvili’s (KP) model for which the modified Miles’ theory Eq. (3-7) applies.

2.2 From Luke’s variational principle to
:::
the Benney-Luke

:::
set

::
of

::::::::
equations

Water-wave equations are often adequately described by the potential-flow approximation. In the absence of vorticity, the fluid

velocity u = (ux,uy,uz) :::::::::::::
u = (ux,uy,uz) can be expressed as the gradient of the so-called

::::::
velocity

:
potential φ(x,y,z), such

that u =∇φ
:::::::
u =∇φ. The deviation from the surface at rest H0 is defined by η(x,y, t) so that the total depth h(x,y, t) can25

be expressed as h(x,y, t) =H0 + η(x,y, t) (cf. Fig. 2). We consider a flat sea bed lying at z = 0, with vertical walls at ∂Ωb,

where Ωb is the horizontal plane of the bed coordinates Ωb = {0≤ x≤ Lx,0≤ y ≤ Ly}. Luke (1967) described an inviscid

and incompressible fluid with a free surface in the potential
:::::::::::
potential-flow approximation through the following variational

principle:

T∫
0

∫
Ωb

H0+η(x,y,t)∫
0

[
∂tφ+

1

2
|∇bφ|2 +

1

2
(∂zφ)2 + g(z−H0)

]
dz dxdydt, (8)30
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where g is the acceleration of gravity. The subscript b denotes the horizontal plane of the bed coordinates such that∇b = (∂x,∂y)T

:::::::
gradient

::
∇

::
is

::::::
defined

:::
on

::
Ωb:::::

only,
::::
such

:::
that

:::::::::::::
∇= (∂x,∂y)T is the horizontal gradient. The velocity at the walls and sea bed are

assumed to be zero, that is nb · ∇bφ= 0
::::::::::
nb · ∇φ= 0 on ∂Ωb, with nb the outward horizontal normal, and ∂zφ= 0 at z = 0.

The boundary conditions at the free surface z = h and the equations of motion in the domain Ω are obtained from Eq. (8) as

∇b2φ+ ∂zzφ= 0 in Ω, (9a)5

∂tη+∇φ · ∇η− ∂zφ= 0 at z = h, (9b)

∂tφ+
1

2
|∇bφ|2 +

1

2
(∂zφ)2 + gη = 0 at z = h, (9c)

nb · ∇bφ= 0 on ∂Ωb, (9d)

∂zφ= 0 at z = 0. (9e)

The amplitude parameter ε= a/H0� 1, with a the amplitude of the waves, and the small dispersion parameter µ= (H0/λ0)2�10

1, with λ0 the horizontal wave length, have been introduced by
:::::::::::::::::::::::::
Milewski and Keller (1996) and

:
Pego and Quintero (1999) to

scale Eq. (8). The scaled variational principle is

0 = δ

T∫
0

∫
Ωb

1+εη̂∫
0

[
ε∂t̂φ̂+

ε2

2
|∇̂φ̂|2 +

1

2

ε2

µ
(∂ẑφ̂)2

]
dẑ+

1

2
ε2η̂2 dx̂dŷ dt̂, (10)

where

x̂=

√
µ

H0
x, ŷ =

√
µ

H0
y, ẑ =

1

H0
z, t̂=

√
gH0µ

H0
t, η̂ =

1

εH0
η,

:::
and φ̂=

√
µ

εH0

√
εH0

φ. (11)15

This scaling focusses on small-amplitude long waves.
::::
From

::::
now

:::
on,

:::
the

:::
hats

:::
on

:::
the

:::::::
variables

:::::::::
introduced

::
in

:::
Eq.

::::
(11)

:::
are

:::::::
omitted.

To derive the Benney-Luke model, the potential flow
::::::
velocity

::::::::
potential φ is expanded in terms of the sea-bed potential

φ(x,y,0, t) = Φ(x,y, t) and the dispersion parameter µ , as in Bokhove and Kalogirou (2016):

φ(x,y,z, t) = Φ(x,y, t) +µΦ1(x,y,z, t) +µ2Φ2(x,y,z, t) + · · · . (12)20

Combining this expansion with the system of equations (9) and retaining terms up to second order, Eq. (12) becomes (see

Bokhove and Kalogirou (2016) for details)

φ= Φ− µ

2
z2∆Φ +

µ2

24
z2∆2Φ +O(µ3). (13)

Substituting Eq. (13) into the variational principle (10) , one gets
:::::
yields

:
the variational principle under the Benney-Luke

approximation25

0 = δ

T∫
0

∫
Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1

2
(1 + εη)|∇Φ|2 +

µ

3
(∆Φ)2 +

1

2
η2

]
dxdydt. (14)
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Arbitrary variations in both Φ and η
:
, together with boundary conditions n · ∇Φ = 0 and n ·∆∇Φ = 0

:::::::::
n · ∇Φ = 0

::::
and

:::::::::::
n ·∆∇Φ = 0

at ∂Ωb with n
:
n the normal pointing outward, lead to the Benney-Luke equations

δη : ∂tΦ−
µ

2
∂t∆Φ +

ε

2
|∇Φ|2 + η = 0, (15a)

δΦ : ∂tη−
µ

2
∂t∆η+∇ · ((1 + εη)∇Φ)− 2

3
µ∆2Φ = 0. (15b)

These equations
::::::::
Equations

::::
(15) will be solved numerically as explained in Sec. 4. However, to test our Benney-Luke model5

on modified Miles’ theory (3-7), it must first be compared to the KP theory for which Kodama et al. (2009) have shown that

modified Miles’ theory holds.

2.3 From Benney-Luke
::
set

::
of

:::::::::
equations to

::
the

:
Kadomtsev-Petviashvili

::::::::
equation

The Kadomtsev-Petviashvili equation for small-amplitude solitons can be derived from the Benney-Luke variational principle

(14) and Eqs. (15) through the transformations10

X =

√
ε

µ
(x− t), Y =

ε
√
µ
y, τ = ε

√
ε

µ
t, Ψ =

√
ε

µ
Φ,

:::
and η = η. (16)

Substituting scalings (16) into Eq. (15a), η can be expressed from Ψ as

η = ΨX − εΨτ −
ε

2
ΨXXX −

ε

2
(ΨX)

2− ε2

2
(Ψy)

2
+
ε2

2
ΨτXX −

ε3

2
ΨXY Y +

ε3

2
ΨτY Y . (17)

Substituting Eq. (16) into the transformed variational principle (14) yields

0 = δ

T∫
0

∫
Ωb

[
η (εΨτ −ΨX) +

ε

2
ηX (εΨτX −ΨXX) +

ε2

2
ηY (εΨτY −ΨXY )15

+
1

2
(1 + εη)

(
(ΨX)

2
+ ε(ΨY )

2
)

+
ε

3

(
(ΨXX)

2
+ ε2 (ΨY Y )

2
)

+
1

2
η2

]
dX dY dτ. (18)

Subsequent elimination of η using Eq. (17) and truncation to O(ε2) gives the variational principle for KP in terms of η ≈ΨX :

0 =εδ

T∫
0

∫
Ωb

[
ΨXΨτ +

1

2
(ΨX)3− 1

6
(ΨXX)2 +

1

2
(ΨY )2

]
dX dY dτ (19a)

=ε

T∫
0

∫
Ωb

δΨ

[
−2ΨXτ − 3ΨXΨXX −

1

3
ΨXXXX −ΨY Y

]
dX dY dτ. (19b)

Note that we consider an infinite plane, with Ψ vanishing at the boundaries |X,Y | →∞, such that the boundary terms arising20

from the integrations by part
:::::::::
integration

::
by

:::::
parts vanish in Eq. (19b). Since δΨ is arbitrary, the variational principle (19) yields

the following equation for the leading-order scaled potential Ψ:

2ΨXτ + 3ΨXΨXX +
1

3
ΨXXXX + ΨY Y = 0. (20)
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From Eq. (17), at leading order in O(ε), η can be expressed as η = ΨX and, therefore, taking the partial derivative of Eq. (20)

with respect to X leads to the KP equation for η:[
2ητ + 3ηηX +

1

3
ηXXX

]
X

+ ηY Y = 0. (21)

The
:
A

:
solution of the KP equation (21) is found by substituting the following Ansatz

:::::
ansatz

::::::
soliton

:::::::
solution, the form inspired

by Yeh et al. (2010) Eq. (9), into (21):5

η(X,Y,τ) =Asech2 [B (X +Y tanϕ−Cτ)] , (22)

where ϕ is the angle of incidence, A is the amplitude of the soliton, and B and C ar
::
are

:
coefficients to be determined via direct

substitution. The KP soliton is then found to be

η(X,Y,τ) =Asech2

[√
3

4
A(X +Y tanϕ−Cτ)

]
, (23)

with C =
1

2
A+

1

2
tan2ϕ, B =

√
3A/4 and A the prescribed amplitude. Using Eq. (17) at leading order, i.e. η = ΨX , the10

solution for Ψ thus becomes

Ψ(X,Y,τ) =

√
4

3
A

[
tanh

(√3

4
A(X +Y tanϕ−Cτ)

)
+ 1

]
. (24)

3 Comparison with modified Miles’ theory and Kodama’s exact solution

3.1 Introduction to Kodama’s exact solution

Kodama et al. (2009) have studied the reflection pattern for a "symmetric V-shape initial waves consisting of two semi-infinite15

line solitons with the same amplitude", in a system of coordinates (X̃, Ỹ, τ̃) related to our system of coordinates (16) (X,Y,τ)

via

X̃ =

(
3√
2

)1/3

X, Ỹ =

(
3√
2

)2/3

Y, η̃ =
1

3

(
3√
2

)4/3

η,
:::
and τ̃ =

√
2τ. (25)

They solved the KP equation

[4η̃τ̃ + 6η̃η̃X̃ + η̃X̃X̃X̃ ]
X̃

+ 3η̃Ỹ Ỹ = 0, (26)20

for which the surface deviation solution η̃ is given by

η̃ = Ãsech2

√ Ã

2

(
X̃ + Ỹ tan ϕ̃− C̃τ̃

) , (27)

where Ã is the amplitude of the soliton, ϕ̃ is the angle of incidence at the wall, and C̃ is a constant defined as C̃ ≡ 1

2
Ã+

3

4
tan2 ϕ̃. They showed that in this specific case, the transition from regular to Mach reflection occurs when

tan ϕ̃=
√

2Ã. (28)25

7



Moreover, Kodama et al. (2009) defined exactly the incident, reflected and stem solitons resulting from the interaction as

a O-type soliton in the case where tan ϕ̃ >
√

2Ã, and a (3142)-type soliton in the case where tan ϕ̃ <
√

2Ã. The O–type

soliton consists of two line-solitons travelling in the x–direction
:::::::::
x–direction, each having a specific amplitude and angle with

respect to the y–axis
:::::
y–axis

:
(see Fig. 3). The (3142)–type soliton consists of two other line–solitons, also travelling in the

x–direction
:::::::::
x–direction

:
with their own amplitudes and angles with respect to the y–axis

:::::
y–axis, but this soliton also has the5

property to be non-stationary, i.e. that while it propagates along the x–axis
:::::
x–axis, a new line–soliton is progressively created

and grows parallel to the y–axis
::::::
y–axis at the intersection of the two initial line–solitons. In the case of both O-type and

(3142)–type solitons, one can indeed associate one of the line–soliton
:::
can

::
be

:::::::::
associated to the incident solitary wave presented

in the introduction, the second line–soliton
::::::::::
line–solitons

:
to the reflected wave (with a different amplitude and angle), and

the intersection of the two line–solitons as the stem wave, growing in length only when the angle of the incident wave is10

smaller than the critical angle (28). These two solitons are represented in Fig. 3, obtained from Kodama et al. (2009). A

comparison between these theoretical solitons and those obtained numerically from the V–shape initial soliton showed very

good agreement, confirming that the incident, reflected and stem waves described by Miles are indeed asymptotically equivalent

to the O–type and (3412)–type solitons, depending on the initial angles. In the case of a symmetric initial pattern, that is for

two initial line–solitons of equal amplitude and angle of incidence, Kodama et al. (2009) gave the expression of the maximal15

amplitude of the intersection wave, as

amax =



1

2
(tan ϕ̃+

√
2Ã)2 for tan ϕ̃ <

√
2Ã,

4Ã

(1 +

√
1− 2Ã

tan2 ϕ̃
)

for tan ϕ̃≥
√

2Ã. (29)

Since the condition tan ϕ̃=
√

2Ã is equivalent to Miles’ condition κ= 1, we can define the interaction parameter correspond-

ing to the KP equation (26) as

κ̃=
tan ϕ̃√

2Ã
. (30)20

Substitution of the interaction parameter (30) into the amplification expectations (29) indeed yields Miles’ predictions (3) for

αw = amax/Ã.

3.2 Application to the present Benney-Luke model

In Sec. 2.3, the Benney-Luke model was reduced to the KP equation (21). This equation for the surface deviation η is slightly

different from the one used by Kodama et al. (2009), and introduced in Eq. (26). In order to compare our numerical solutions to25

Kodama et al. (2009)’s results (29)–(30), our KP equation (21) is (re)scaled using the coefficients introduced in Eq. (25), which

yields Eq. (26) used by Kodama et al. (2009). Since we know that the KP soliton defined in
:::::
Using

:::
the

:::::
same

:::::::::::::
transformations

:::
Eq.

::::
(25)

::
in

:::
the

:::
KP

::::::
soliton

:::::::
solution

:
Eq. (27)is a solution of the

:
,
::
we

::::
can

:::::
obtain

::
a
:::::::
solution

:::
for

:::
our

:
KP equation (26) , we may

transform it back to the initial
::
in

:::::
terms

::
of

:::
the

:::::::
original variables (X,Y,τ,η) introduced in Eq. (16)to get the exact solutionof

8



our KP equation (21) :
:
,
:::::
given

::
by

:

η = 3

(
3√
2

)−4/3

Ãsech2

[√
Ã

2

((
3√
2

)1/3

X − C̃
√

2τ +

(
3√
2

)2/3

Y tan ϕ̃

)]
. (31)

Hence, the relations between our coefficients A, ϕ and C and those appearing in Kodama’s solution
:::
The

:::::::::
connection

::::::::
between

::
the

::::::
above

:::::::
solution (27) Ã, ϕ̃

:::
31) and C̃ are given by

A= 3

(
3√
2

)−4/3

Ã, C =

(
4

3

)1/3

C̃, tanϕ=

(
3√
2

)1/3

tan ϕ̃,5

using which the solution
:::
the

:::::::::
previously

::::::::
presented

:::::::
solution

::::
(23)

:::
can

:::
be

:::::::::
established

:::
by

:::::::
applying

:::
the

:::::::::
following

:::::::::::::
transformations

::
in

:::
Eq.(31)becomes

η =Asech2

[√
3

4
A(X +Y tanϕ−Cτ)

]
, (23)

:
:

A= 3

(
3√
2

)−4/3

Ã, C =

(
4

3

)1/3

C̃ and tanϕ=

(
3√
2

)1/3

tan ϕ̃,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(32)10

with C =
1

2
A+

1

2
tan2ϕ, which is indeed the solution (23) derived in Sec. 2.3. Therefore, applying scaling (32) to the critical

condition (28) yields the critical condition for Eq. (21) and solution (23)as ,
:::::
given

:::
by

tanϕ=
√

3A. (33)

When we
:::
We

::::
then

::::
apply

:::::::
scaling

:::
(16)

::
to

:
transform solution (23) for η back to the original Benney-Luke approximation

:::
Eq. (15)

used in our simulations(using scaling (16)),
:
,
::
in

:::::
which

::::
case

:
the asymptotic solutions for η and Ψ

::
Φ become15

η(x,y, t) =Asech2

[√
3ε

4µ
A

(
x−x0 +

√
ε(y− y0)tanϕ+ (t− t0)(1−Cε)

)]
, (34a)

Φ(x,y, t) =

√
4µ

3ε
A

[
tanh

(√
3ε

4µ
A
(
x−x0 +

√
ε(y− y0)tanϕ+ (t− t0)(1−Cε)

))
+ 1

]
, (34b)

where the soliton has been localised around the position (x0,y0) at time t= t0. Finally, by setting

ai =A, tanϕi =
√
εtanϕ, and Ĉ =

1

2
ai +

1

2ε
tan2ϕi, (35)

the solutions (34) of the Benney-Luke equations can be rewritten as20

η(x,y, t) = ai sech2

[√
3ε

4µ
ai

(
x−x0 + (y− y0)tanϕi + (t− t0)(1− Ĉε)

)]
, (36a)

Φ(x,y, t) =

√
4µ

3ε
ai

[
tanh

(√
3ε

4µ
ai

(
x−x0 + (y− y0)tanϕi + (t− t0)

(
1− Ĉε

)))
+ 1

]
. (36b)

9



This solution is used as initial condition at time t= 0 in the simulations. Condition (33) defines the following relation between

ϕi, ai and ε in our Benney-Luke scaling, for Eq. (15):

tanϕi =
√

3εai. (37)

This condition is equivalent to Miles’ condition κ= 1 and therefore we can define our Benney-Luke interaction parameter as

κBL =
tanϕi√

3εai
. (38)5

Notehowever
:
,
::::::::
however, that taking into account the remark from Kodama (2010) about the quasi two-dimensionality of the

KP limit, as explained in introduction, the interaction parameter defined in Eq. (38) must be corrected to

κBL =
tanϕi

cosϕi
√

3εai
, (39)

in order to satisfy Miles’ predictions (3). One can see from
::
As

::::::
shown

::
in
:

the potential-flow equations (9) for the Benney-

Luke approximation, that the small amplitude parameter ε is defined as ε= a/h0::::::::
ε= a/H0. Therefore, in the specific case10

where ai = 1 and ε= aKdV /h0 :::::::::::
ε= aKdV /H0, the interaction parameter (7) is recovered. The diagram in Fig. 4 summarizes

:::::::::
summarises

:
the equations and solutions derived thus far, in each scaling. In the next section, we explain how the Benney-Luke

system of equations are discretized
:::::::::
discretised

:
in both space and time in order to be solved numerically.

4 Numerical implementation

As a first step in the computational solution, the Benney-Luke model needs to be discretized
::::::::
discretised

:
in space and time, on15

a meshed domain. This section explains the methods used to discretize
::::::::
discretise the domain and the equations.

4.1 Space discretization
:::::::::::
discretisation: Finite Element Method (FEM)

A continuous Galerkin finite element method is used to discretize
:::::::
discretise

:
the solutions in space. The variables η and φ

::
Φ are

approximated by the finite element expansion

ηh(x,y, t) = ηi(t)ϕi(x,y),20

Φh(x,y, t) = Φj(t)ϕj(x,y),

:::::::::
expansions

ηh(x,y, t) = ηi(t)ϕi(x,y) and Φh(x,y, t) = Φj(t)ϕj(x,y),
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(40)

where the subscript h denotes the discretized
::::::::
discretised

:
form of the solutions with basis functions ϕj(x,y), and i, j ∈ [1,N ]

with 2N unknowns. The Einstein notation for the implicit summation of repeated indices is used. Substituting expansions (40)25

into the variational principle (14) yields the space–discretized variational principle

0 = δ

T∫
0

∫
Ωb

[
ϕjηjϕiΦ̇i +

µ

2
ηjΦ̇i∇ϕj · ∇ϕi +

1

2
(1 + εϕjηj)ΦiΦl∇ϕi · ∇ϕl +

µ

3
ΦiΦj∆ϕi∆ϕj +

1

2
ϕiϕjηiηj

]
dΩb dt,
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with Φ̇i the time derivative of Φi. Its variation with temporal end-point conditions δΦi(0) = δΦi(T ) = 0 is

0 =

T∫
0

δΦi

∫
Ωb

[
− η̇jϕjϕi−

µ

2
η̇j∇ϕj · ∇ϕi + (1 + εηjϕj)Φl∇ϕi∇ϕl +

2

3
µΦj∆ϕj∆ϕi

]
dΩb

+δηi

∫
Ωb

[
ϕiϕjΦ̇j +

µ

2
∇ϕi∇ϕjΦ̇j +

ε

2
ϕiΦjΦl∇ϕj∇ϕl + ηjϕiϕj

]
dΩb dt.

To avoid the second-order derivative in the fourth term
::
of

:::
the

:::::::::
variational

:::::::
principle

::::
Eq.

:::
(14), the auxiliary variable

q(x,y, t) =−2

3
∆Φ(x,y, t), (41)5

is introduced, so that, in the variational principle
:::
Eq.

:
(14) , the term

µ

3
(∆Φ)2 can be written as

µ

3
(∆Φ)2 = µ

(
2

3
(∆Φ)2− 1

3
(∆Φ)2

)
= µ

(
−2

3
∇∆Φ · ∇Φ− 3

4
(
2

3
∆Φ)2

)
= µ

(
∇q · ∇Φ− 3

4
q2

)
, (42)

which leads to the variational principle

0 = δ

T∫
0

∫
Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1

2
(1 + εη)|∇Φ|2 +µ

(
∇q · ∇Φ− 3

4
q2

)
+

1

2
η2

]
dΩb dt. (43)

In keeping with Eq. (40), second-order Galerkin expansion for q is now expressed as10

qh(x,y, t) = qi(t)ϕi(x,y). (44)

Substitution of the
:::::::::
Substituting

:
expansions (40) and (44) into the variational principle (43) yields the discretized variational

principle . Its variations with δΦj(0) = δΦj(T ) = 0 lead to the weak formulations in matrix form as
::::::::::::
space–discrete

:::::::::
variational

:::::::
principle

:

0 = δ

T∫
0

∫
Ωb

[
::::::::::

ϕjηjϕiΦ̇i +
µ

2
ηjΦ̇i∇ϕj · ∇ϕi +

1

2
(1 + εϕjηj)ΦiΦl∇ϕi · ∇ϕl

::::::::::::::::::::::::::::::::::::::::::::::::::

15

+µ

(
qiΦj∇ϕi · ∇ϕj −

3

4
qiqjϕiϕj

)
+

1

2
ϕiϕjηiηj

]
dΩb dt,

:::::::::::::::::::::::::::::::::::::::::::::::

(45)
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::::
with

::
Φ̇i:::

the
::::
time

::::::::
derivative

:::
of

:::
Φi.::

Its
::::::::
variation

::::
with

:::::::
temporal

:::::::::
end-point

::::::::
conditions

:::::::::::::::::::
δΦi(0) = δΦi(T ) = 0

:
is
:

0 =

T∫
0

δΦi

∫
Ωb

::::::::::

[
− η̇jϕjϕi−

µ

2
η̇j∇ϕj · ∇ϕi + (1 + εηjϕj)Φl∇ϕi∇ϕl +µqj∇ϕi · ∇ϕj

]
dΩb

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+δηi

∫
Ωb

::::::

[
ϕiϕjΦ̇j +

µ

2
∇ϕi∇ϕjΦ̇j +

ε

2
ϕiΦjΦl∇ϕj∇ϕl + ηjϕiϕj

]
dΩb

:::::::::::::::::::::::::::::::::::::::::::::::::::

+δqi

∫
Ωb

::::::

[
µΦj∇ϕi · ∇ϕj −

3

2
qjϕiϕj

]
dΩb dt.

:::::::::::::::::::::::::::::

(46)

:
A
::::::
matrix

::::
form

:::
of

:::
Eq.

::::
(46)

:::
can

::
be

:::::
found

:
in Bokhove and Kalogirou (2016). Rather than using this matrix form directly, we only5

accommodate the spatial discretization
:::::::::::
accommodate

::::
only

:::
the

::::::
spatial

::::::::::::
discretisation using Firedrake (Rathgeber et al., 2016;

Balay et al., 2016, 1997; Dalcin et al., 2011; Hendrickson and Leland, 1995), "an automated system for the portable solution

of partial differential equations using the finite element method (FEM)". This automated system uses the finite element method

to solve partial differential equations, and requires specification of the following:

– the domain in which the equations are solved, and the kind of mesh to use (e.g., quadilaterals, the spatial dimension,10

etc.);

– the order and type of polynomials used;

– the type of expansion for the unknowns (e.g., continuous Galerkin, Lagrange polynomials etc.);

– the function space of the unknowns and test functions; and, finally,
::::
and;

– the weak formulations discretized
::::::::
discretised

:
in time.15

In the present case , the domain is defined as a horizontal channel ending in an oblique wall, and quadrilaterals are used for its

discretization
:::::::::::
discretisation (see details in Sec. 5.1.2). Here, we chose to use quadratic polynomials to expand Φ, q and η. The

resulting weak formulations implemented in Firedrake in terms of Φh, qh and ηh are the following:

δΦh : 0 =

T∫
0

∫
Ωb

[
− ∂tηhδΦh−

µ

2
∇∂tηh · ∇δΦh + (1 + εηh)∇δΦh · ∇Φh−µ∇qh · ∇δΦh

]
dΩb dt, (47a)

δqh : 0 =

T∫
0

∫
Ωb

µ

[
3

2
qhδqh−∇δqh · ∇Φh

]
dΩb dt, (47b)20

δηh : 0 =

T∫
0

∫
Ωb

[
δηh∂tΦh +

µ

2
∇δηh · ∇∂tΦh + ηhδηh +

ε

2
δηh∇Φh · ∇Φh

]
dΩb dt. (47c)

12



The forms given in Eq. (47) are convenient since they highlight the unknowns Φh, qh and ηh as well as the test function

:::::::
functions

:
δΦh, δqh and δηh. The final step is to discretize

:::::::
discretise

:
the equations in time, with a second-order Stormer-Verlet

::::::::::::
Störmer-Verlet scheme, as explained in the next section.

4.2 Time discretization
:::::::::::
discretisation: second-order Stormer-Verlet

::::::::::::
Störmer-Verlet

:
scheme

The space discretized
::::
After

:::::::::::
incorporating

::::
the

::::::::::::::
FEM-expansions,

:::
the

:::::
space

:::::::::
discretised

:
form of the variational principle (14

::
43)5

can be written in the Hamiltonian form

0 = δ

T∫
0

[(
Mij+:

µ

2
Aij
::

)
Φi
dηj
dt
−H(Φi,ηj)

]
dt, (48)

where

Mij =

∫
Ωb

[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
dxdy,

and the Hamiltonian
:::
Mij::::

and
:::
Aij:::

are
:::
the

::::
mass

::::
and

:::::::
stiffness

::::::::
matrices,

::::::::::
respectively

::::::
defined

::
as

:
10

Mij =

∫
Ωb

ϕiϕj dxdy and Aij =

∫
Ωb

∇ϕi · ∇ϕj dxdy,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(49)

:::
and

:::
the

::::::::::
Hamiltonian

::
is
:

H(φi,ηj) =
1

2
(1 + εηk)ΦiΦjSijk +µ

(
qiΦjAij −

3

4
qiqjMij

)
+

1

2
ηiηjMij , (50)

:::::
where

Sijk =

∫
Ωb

ϕk∇ϕi · ∇ϕj dΩb.

:::::::::::::::::::::::

(51)15

Gagarina et al. (2016) have shown that, for a generic Hamiltonian system in the form

δL(P,Q,t) = δ

T∫
0

(
P
dQ

dt
−H(P,Q)

)
dt, (52)

robust
::::::::
variational

:
time integrators conserving the overall mass and energy can be applied

:::::::::
formulated. To derive these time

schemes, P and Q are discretized
::::::::
discretised

:
on each time interval [tn, tn+1] as the approximated momentum P τ and coordi-

nate Qτ , and expanded with coefficients P i and Qi and linear continuous basis functions ϕi and ψi:
:::
ϕm

:::
and

::::
ψm:

:
20

P τ =Qim
:
ϕim

:
(t), Qτ =Qim

:
ψim

:
(t). (53)
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The linear basis functions ϕi and ψi
:::
ϕm

:::
and

::::
ψm are continuous within each time interval, but admit discontinuities at the

interface between two time slots. Therefore, to discretize
::::::::
discretise Eq. (52), the notion of jumps [[.]] and average

:::::::
averages

{{.}}βα for a time dependent
:::::::::::::
time-dependent function d(t) must be introduced (Gagarina et al., 2016):

[[d]]|tn tn: = dn,−− dn,+, and {{d}}βα|tn tn: = αdn,−+βdn,+. (54)

The coefficients α and β are real numbers defined such that α+β = 1 and α,β ≥ 0. The notation dn,± denotes the left and5

right traces of d(t) at time tn::
tn, that is

dn,± = lim
ε→0

d(tn
n
:
± ε). (55)

Discretization
:::::::::::
Discretisation of the variational principle Eq. (52) then yields (Gagarina et al., 2016)

δLτ (P τ ,Qτ , t) = δ

[
N−1∑
n=0

∫
tn+1

tn
tn+1

tn
:::

(
P τ

dQτ

dt
−H(Qτ ,P τ )

)
dt−

N−1∑
n=−1

[[Qτ ]]{{P τ}}βα|tn+1 tn+1
:::

]
, (56)

where N
::
N

:
is the number of finite time intervals [tn, tn+1]

::::::::
[tn, tn+1] that divide the time domain [0,T ]. Gagarina et al. (2016)10

showed that to obain a second-order Stormer-Verlet
:::::::::::
Störmer-Verlet

:
scheme, P and Q must be discretized with a

:::::::::
discretised

::::
with trapezoidal and mid-point rules respectively, that is:

P τ =
tn+1− t

∆t
Pn,+ +

t− tn

∆t
Pn+1,−, (57)

Qτ =
2(t− tn)

∆t
Qn+1/2 +

tn + tn+1− 2t

∆t
Qn,n,+.

:::
(58)

Substituting Eq. (57-58) into the discretized
::::::::
discretised

:
variational principle (56) yields (Gagarina et al., 2016)15

δLτ (P τ ,Qτ , t) = δ

[
N−1∑
n=0

((
Pn,+ +Pn+1,−)(Qn+1/2−Qn,+

)
− ∆t

2

(
H(Pn,+,Qn+1/2) +H(Pn+1,−,Qn+1/2)

))

−
N−1∑
n=−1

(
2Qn+1/2−Qn,+−Qn+1,+

)(
αPn+1,−+βPn+1,+

)]
. (59)

Its variations with
:::
The

:::::::::
variational

::::::::
principle,

:::::
when

:::::::::
augmented

:::
by end-point conditions δ(2Q−1/2−Q−1,+) := δQ0,− = 0 and

δP 0,− = δQN,+ = δPN,+ = 0, and
:::::::
together

::::
with

:
conditions [[P ]]tn = 0 and Qn = αQn,+ +βQn,+

:::::::::::::::::::
Qn = αQn,+ +βQn,−,

with α ∈ [0.5,1] and β = 1−α (Gagarina et al., 2016), yields the following second-order Stormer-Verlet
::::::::::::
Störmer-Verlet20

scheme:

Pn+1/2 = Pn− ∆t

2

∂H(Pn+1/2,Qn)

∂Qn
, (60a)

Qn+1 = Qn +
∆t

2

(
∂H(Pn+1/2,Qn)

∂Pn+1/2
+
∂H(Pn+1/2,Qn+1)

∂Pn+1/2

)
, (60b)

Pn+1 = Pn+1/2− ∆t

2

∂H(Pn+1/2,Qn+1)

∂Qn+1
, (60c)
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with the stability condition

|ω∆t| ≤ 2, (61)

with
:::::
where

:
ω the waves’ frequency

:
is
::::

the
::::::::::
(maximum)

:::::::::
frequency

::
of

:::
the

:::::::
discrete

::::::
waves. Setting the vectors P = {Φi} and

Q= {ηj}:::::::::::::::::::::
Q=

{(
Mij +

µ

2
Aij

)
ηj

}
, the variational principle (48) for Benney-Luke equations can therefore be discretized

:::::::::
discretised as in (60), leading to Eq. (A1) in Appendix A. Since the space discetization

::::::::::
discetisation is performed internally5

within Firedrake, the weak formulations (A1) can be implemented with the full form of the variables Φh,
:::
qh and ηh and test

functions δΦh,
::::
δqh and δηh yielding Eq. (??), in Appendix A. Substituting the auxiliary variable q defined in Eq. (41), the

system of equations (??) corresponds to the time discretization
::
the

::::
time

:::::::::::
discretisation

:
of Eq. (47), namely

0 =

∫
Ωb

(
Φ
n+1/2
h −Φnh

)
δηh +

µ

2
∇δηh · ∇

(
Φ
n+1/2
h −Φnh

)
+

∆t

2

[
ηnhδηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb, (62a)

0 =

∫
Ωb

(
q
n+1/2
h δqh−

2

3
∇δqh · ∇Φ

n+1/2
h

)
dΩb, (62b)10

0 =

∫
Ωb

(
ηn+1
h − ηnh

)
δΦh +

µ

2
∇δΦh · ∇

(
ηn+1
h − ηnh

)
− ∆t

2

[(
(1 + εηnh)∇δΦh · ∇Φ

n+1/2
h −µ∇qn+1/2

h · ∇δΦh
)

+
(

(1 + εηn+1
h )∇δΦh · ∇Φ

n+1/2
h −µ∇qn+1/2

h · ∇δΦh
)]
dΩb, (62c)

0 =

∫
Ωb

(
Φn+1
h −Φ

n+1/2
h

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1
h −Φ

n+1/2
h

)
+

∆t

2

[
ηn+1
h δηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb. (62d)

Timesteps (62a), (62b) and (62c) are implicit, while step (62d) is explicit. Although the equations are nonlinear, one can see

that
:::
the steps (62b), (62c) and (62d) are linear with respect to the unknowns, qn+1/2

h , ηn+1
h and Φn+1

h ,
:
respectively. Therefore,15

linear solvers are used to solve these
:::
the three weak formulations ,

:::::::
(62b,c,d),

:
which reduces the running time

::::::::::::
computational

:::
cost

:
by assembling the Jacobian matrix only once instead of computing it at each time step. The implementation of these linear

and non-linear
::::
such

:::::
linear

:::
and

:::::::::
nonlinear solvers is straightforward in Firedrake, since functions that solve weak formulations

for specific unknown and test functions already exist (Rathgeber et al., 2016; Balay et al., 1997, 2016; Hendrickson and Leland,

1995; Dalcin et al., 2011).20

5 Numerical results

In this section, the domain is specified and discretized
:::::::::
discretised in order to evaluate Φ and η numerically. The numerical

evolution of the stem wave’s
:::::::::
stem-wave amplitude is compared to the expectations

:::::::::
predictions from our modified-Miles theory

Eq. (3) and Eq. (39). Finally, the angle of propagation of the reflected and stem waves are measured and compared to the

expectations
:::::
values

::::::::
predicted

::
by

::::::
theory.25
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5.1 Definition of the domain

5.1.1 Orientation of the channel

The interaction of two solitary waves can be modelled using either two obliquely intersecting channels, with incident solitons

propagating along each channel (see scheme (a) in Fig. 5), or from the reflection of a soliton at a wall with the no-normal flow

condition at the wall (see scheme (b) in Fig. 5). While the first case (a) is more relevant to the theme of this paper, we choose5

to model the case (b) to reduce the size of the domain by half and thus to reduce the simulation time
::::::::::::
computational

:::
cost. Since

the cases (a) and (b) are mathematically equivalent, the results and conclusions obtained with half of the domain will also be

valid for the intersection of two oblique channels.

The domain is described by the length of the wall Lw, the length of the channel Lc, and the angle of incidence ϕi. The

channel needs to
:::::
should

:
be long enough, compared to the wavelength of the incident wave, in order that the boundaries are

:::
for10

::
the

::::::::::
boundaries

::
to

::
be

:
far enough from the initial soliton to be considered as being at infinity

:::::::
infinitely

::::::
distant. From Eq. (34), the

width of the initial soliton depends on
√

3ε/4µ, and since µ is set to 0.02 for every simulation, the width of the soliton varies

with ε , from 2.5 (when ε= 0.20) to 4 (when ε= 0.12). We set Lc = 5 to leave enough space between the extremities of the

soliton and the boundary of the channel for every case,
:::
for

:::
the

::::::::::
extremities

::
to

::
be

::::::::::
considered

:::::::
infinitely

::::::
distant

:::::
from

:::
the

::::::
soliton

:::::::::
boundaries. To allow the stem wave to grow and reach its maximal amplitude, the wall also needs to be long compared to the15

wavelength. This constraint was a limit in previous numerical and experimental studies (Tanaka, 1993; Li et al., 2011) , since

it requires robust and stable numerical schemes and large wave basins. We set the wall length to 200≤ Lw ≤ 600 depending

on the value of ε , that is, more than 100 times the incident wave
:::::::::::
incident-wave

:
width. When considering half of the domain

as represented in Fig. 5b, we can chose to set the wall in the x- or y-direction
::::::::::
x–direction, in which case the initial soliton

must propagate in an oblique direction and is therefore equivalent to a KP soliton, as defined in Eq. (36), or .
::::::::::::
Alternatively,20

we can let the initial soliton propagate in the x- or y-direction
:::::::::
x–direction, in which case the wall is oblique and the expression

of the KP-type soliton (36) can be simplified to a KdV-type soliton propagating in the x- (or y-) direction, as
:::::::::
x–direction,

:::
as

:::::::::::::::::::::::
(Drazin and Johnson, 1989)

η(x,y, t) = ai sech2

[√
3ε

4µ
ai

(
x−x0 + (t− t0)

(
1− Ĉε

))]
, (63a)

Φ(x,y, t) =

√
4µ

3ε
ai

[
tanh

(√ 3ε

4µ
ai

(
x−x0 + (t− t0)

(
1− Ĉε

)))
+ 1

]
. (63b)25

The behaviour of the incident and stem waves in the case
::::
cases

:
of an oblique incident soliton (36) and a soliton propagating in

the x-direction only (63) are compared in Fig. 6. The initial solitons have amplitude ai = 1.0, small amplitude
:::::::::::::
small-amplitude

parameter ε= 0.14 and small dispersion
:::::::::::::
small-dispersion parameter µ= 0.02. The angle between the direction of propagation

of the solitons and the wall is ϕi = π/6 in both cases. The dashed lines represent the evolution of the interpolated amplitude

of incident solitons with time. While the initial amplitude was ai = 1.0 in both cases, we observe that both amplitudes first30

increase before decreasing to an asymptotic value , slightly smaller than 1.0 (ai = 0.93). This behaviour is not expected for

solitonssince they ,
::::::
which should keep a permanent shape. However, we solve here the Benney-Luke equations for which the
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KP soliton is only an asymptotic (and
:::::
hence

:
not exact) solution . We

::::::
because

::::
we recall that the transformation (16) from

the Benney-Luke model to the KP theory is not exact since it requires a trunctation to O(ε2). In the numerical simulations

represented in Fig. 6, ε= 0.14 so the condition ε�O(1) is respected only asymptoticallywhich might be responsible for this

:
;
:::
this

::
is
::
a
:::::::
possible

::::::::::
explanation

::
of

::::
the

:::::::
observed

:
variation of amplitude. One can however see from Fig

:::::
Figure. 6

:::::
shows

:
that

the incident KP and KdV–type solitons (36) and (63) converge, and that both do so to the same surface deviation, ai = 0.93.5

This same limit shows that the approximation error from Benney-Luke to the KP soliton is asymptotically the same as from

Benney-Luke to KdV. The stem waves
::::::::
stem-wave

::::::::::
amplitudes (solid lines in Fig. 6) resulting from the interaction of the KP-

type (36) and KdV-type (63) initial solitons with the wall evolve in exactly the same way
::
are

::::
both

::::::::
amplified

::
at

:::
the

:::::
same

:::::
speed

:::
and

::::
with

:::
the

:::::
same

:::::::::::
amplification

::::::
factor, which confirms that the KP-type and KdV-type initial solitons (36) and (63) give the

same results. The small variations in the curves are due to the mesh resolution which is not fine enough to secure
::::::
resolve

:
a10

regular amplitude. However, this
::
the

::::::::
computed

:
approximation is sufficiently accurate to provide an estimate of the asymptotic

amplitude of the stem wave. Since we have demonstrated that the two types of initial solitons (36) and (63) evolve similarly

to give the same results, subsequent simulations will be conducted using only a unidirectional soliton, as defined by Eq. (63),

which is a solution of both the KP and KdV equations.

5.1.2 Mesh15

In order to evaluate Φ and η at an arbitrary time
:::
any

:::::::
position

::
in

:::
the

::::::
channel, the domain is discretised using quadrilaterals. This

is done using the mesh generator Gmsh (Geuzaine and Remacle, 2009). Since the domain is large, we define a heterogeneous

mesh within which
::::
with areas of higher refinement along the wall, where the solution needs to be more accurate. Moreover,

the end of the domain is truncated with a blunt wall instead of the sharp angle, to avoid boundary quadrilaterals having internal

angles that are too acute. The final domain comprising different mesh refinements is represented
:::::::
presented

:
in Fig. 7, in which20

the insets show the aforementioned refined mesh and right-hand boundary quadrilateral elements.

5.2 Amplification of the stem wave

The numerical amplification of the stem wave is compared with the predictions of modified-Miles’ theory applied to our

Benney-Luke model (3) and (39), namely

25

αw =


4

1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
(3)

with κ=
tanϕi

cosϕi
√

3εai
. (39)

The interaction parameter defined in Eq. (39) depends on three parameters: the scaled amplitude of the incident soliton ai, its

angle of incidence ϕi, and the small amplitude
:::::::::::::
small-amplitude parameter ε. From Miles’ theory, a change in these parameters

will modify the behaviour of the reflected and stem waves. Figure 8 shows a comparison between predictions (3) and (39)30

17



and numerical simulations for the maximal amplification of the stem wave. The amplitude and angle of incidence of the initial

soliton are the same for each of the simulations, with values ai = 1.0 for the amplitude and ϕi = 30◦ for the angle of incidence.

Only the small-amplitude parameter ε changes in the different cases, taking values from 0.12 to 0.20, which leads to different

interaction parameters and thus different evolutions of the stem and reflected waves. This
::::::::
Variation

::
of

:
ε
:
is an alternative choice

than
:::
the

:::
one

:::::
made

:
in the work of Ablowitz and Curtis (2013) where

:
, for a specific ε, they run

::::::
compute

:
simulations with5

varying amplitude and angle of incidence. This
:
;
:::
this

:
enabled them to show that the small-amplitude parameter ε has only a

weak impact on the amplification of the stem wave for κ < 1 but limits the amplification,
:

with a decrease of O(ε) close to the

resonant case κ= 1, leadingfor instance
:
,
:::
for

::::::::
example, to a maximal wave amplification of 3.9 when epsilon = 0.1. Despite

this asymptotic limitation in the wave amplification, the purpose of the present simulations is to model wave amplification in

various sea state
:::::
states, with various depth

:::::
depths

:
of water and characteristic wave heights, and we do so by using different10

values of ε, since we recall
:::::::
recalling

:
that the small-amplitude parameter ε is the quotient between the characteristic wave

height and the water depth. This
:::::::::
Modelling

::::::
various

:::::::::
sea-states will allow the

:::::::
maritime

:
industry to test waves ’ impact on a

wider range of structures, since different structures are used in different sea states. Moreover, the incident wave
::::::::::::
incident-wave

amplitude varies slightly when propagating along the basin. This change
:
,
:::::
which

:
has a high impact on the predictions, since

:
.
::::::
Indeed,

:
a small change of order O(10−2) in the incident wave

:::::::::::
incident-wave

:
amplitude implies a change of order O(10−2)15

in the interaction parameter, which can lead to a prediction variation of up to O(10−1) near the transition case κ≈ 1since
:
,

:::::
where the expected amplification varies dramaticallyin this area. The amplification aw/ai is also affected by a change in the

incident amplitude ai. It is therefore necessary to use the accurate value for the incident amplitude. To obtain
:
In

::::::::::
performing

:::
the

:::::::::::
computations

:::::::
required

:::
for Fig. 8, we defined the maximal amplification as follows: when the stem wave reaches its maximal

amplitude awmax
, we measure the amplitude of the incident wave ai at the same x-position. This

:::::::::
x–position.

::::
The

:
new incident20

amplitude ai is used to adjust the interaction parameter , and to compute the amplification of the stem wave αw = awmax
/ai.

The incident channel has a length Lc = 5 and the stem wall 200≤ Lw ≤ 600. The grid refinement is 0.25× 0.25 in the finest

area (e.g. at the wall), and 0.4× 1.5 elsewhere. The numerics follow the theoretical curve, but a slight difference between the

present results and those expected from modified-Miles is noticeable. As alluded to beforehand, we assume that this is due

to the fact that the soliton used as an incident wave is an asymptotic but not
::
an exact solution of the Benney-Luke equations.25

The scaling from Benney-Luke to KP is not exact but asymptotic, with a truncation at second order, which leads to a slight

difference in the final wave amplification. This observation agrees with the conclusions of Ablowitz and Curtis (2013) on

the asymptotic amplification of the stem wave
:::::::::
stem-wave in the case of the Benney-Luke model. The shift is probably also

increased by the mesh resolutionthat ,
::::::
which could be optimised to get a better estimate of the incident wave’s amplitude and

:::::::::::
incident-wave

:::::::::
amplitude

::
in

:::::
order

::
to limit the error caused by its approximation. New simulations with higher mesh resolution30

are expected to verify the current results. However, the present Benney-Luke model still predicts very well the evolution of the

stem wave amplitude
:::::::::
stem-wave

::::::::
amplitude

::::
very

::::
well, enabling it to reach up to 3.6 times the initial amplitude. The stem-wave

maximal amplification is reached for κ= 0.9733, marginally smaller than the κ= 1.0 predicted by Miles. While the model

from Kodama et al. (2009) could predict perfectly
::
is

:::::::
expected

:::
to

::::::
predict

:
the evolution of the stem wave based on the KP

equation
:::::::
perfectly, they were unable to reach more than 3.2 times the initial amplitude in their numerical simulations.35
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5.3 Angle of the stem and reflected waves

Miles’ s theory also predicts different directions of propagation of the stem and reflected waves in the cases of regular and

Mach reflections. While in the first case, characterised by κ≥ 1, the angle of the reflected wave ϕr is expected to be equal to

the one
:::
that

:
of the incident soliton ϕi, it should become larger than ϕi in the case of Mach reflection, i.e. when κ < 1:ϕr = ϕi for κ≥ 1

ϕr > ϕi for κ < 1.
(64)5

Moreover, in the case of regular reflection, the stem wave is expected to propagate along the wall with a constant length, while

for Mach reflection, its length should increase linearly to make a positive
:::::
while

::::::::::
propagating

::::
with

:
a
::::::::
non-zero angle ϕw with the

wall:ϕw = 0 for κ≥ 1

ϕw > 0 for κ < 1.
(65)

Predictions (64) and (65) are now being checked numerically
::::
were

:::::::
checked

::::::::::
numerically

:::
as

::::::::
discussed

::::
next.10

5.3.1 Regular reflection

Figure 9 shows numerical results and expectations for the specific
::::::::
predictions

:::
for

:::
the case where κ= 1.12≥ 1. The wall makes

an angle of 30◦ with the direction of propagation of the initial solitary wave, hence ϕi equals 30◦. On
::::::::
ϕi = 30◦.

::
In the bottom-

right plot of Fig. 9, one can measure
::::
there

::
is
:
an angle of 60◦ between the reflected and stem waves which means that the angle

ϕr between the reflected wave and the line perpendicular to the wall is equal to 30◦, that is, equal to ϕi. This observation holds15

at any time and therefore the expectations (64) for the reflected waves are satisfied in the case of regular reflection. The stem

wave propagates along the wall without increasing in length, and therefore no angle can be measured between the stem wave

and the wall :
:::
i.e., ϕw = 0, as predicted in (65) for regular reflection. These results,

:
together with Fig. 8 for the amplification

of the stem wave,
:
confirm modified-Miles’ theory in the case κ≥ 1 , for both the reflected and stem waves.

5.3.2 Mach reflection20

Figure 10 shows numerical results and schematic expectations for the propagation of the reflected and stem wave for κ=

0.58< 1. In the bottom right plot, one can first measure
::::::::::
bottom-right

:::::::::
sub-figure, the angle between the incident and reflected

waves
::
can

:::
be

::::::::
measured, as represented in the top right scheme,

:::::::
top-right

::::::::::
sub-figure,

::
in

:::::
order to check that ϕr is larger than

ϕi. The total angle ϕr +ϕi measures 70◦, with the initial incident angle set to ϕi = 30◦. Therefore, ϕr measures
:
is
:
40◦and

:
,

:::::
which is indeed larger than ϕi, which corresponds to the

::::::
thereby

::::::::
agreeing

::::
with

:::
our predictions. The top right scheme

:::::::
top-right25

::::::::
sub-figure

:
of Fig. 10 also shows that the stem wave

:::::::::
stem-wave

:
length should increase linearly to form an angle ϕw with the

wall. In the bottom right
:::::::::::
bottom-right figure, a top view of the numerical results at different times from t= 0.28 to t= 1.12

highlights the increase of the stem-wave’s length as it propagates along the wall. The dashed orange line
:::
that

:
connects the

solutions , confirming
:::::::
confirms

:
that the wavelength increases in a linear way

::::::
linearly.
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6 Conclusions and discussions

The present model Eq. (15)
:
, together with the new scaled interaction parameter (39),

:
shows good agreement,

:
with the predic-

tions from Milesconcerning
::
of

:::::
Miles,

:::::::::
regarding the amplification of the stem wave and the angles of the reflected and stem

waves. One can observe two different regimes
:::
Two

::::::::
different

:::::::
regimes

:::
can

:::
be

:::::::
observed

:
in the numerical results, with differ-

ent behaviours of the waves in the case of Mach and regular reflections. This ,
::::::
which confirms the conclusions obtained by5

Ablowitz and Curtis (2013) concerning the ability of the Benney-Luke model to predict reflection of obliquely incident solitary

waves. Presently, our
::::
Our simulations do not allow determination of the exact value of the interaction parameter at the transi-

tion from Mach to regular reflection, but currently the maximal amplification is reached at κ= 0.9733, which is very close to

the predicted maximal amplification at κ= 1.0. The maximal amplification obtained at the moment
:::::
herein

:
is αw = 3.6 which

is higher than the amplifications obtained with most previous models and experiments (Kodama et al., 2009; Li et al., 2011;10

Tanaka, 1993; Funakoshi, 1980), but still slightly lower than the expected 3.9 amplification from Ablowitz and Curtis (2013).

This agrees with the conclusion of Ablowitz and Curtis (2013) concerning the impact of ε on the amplification near κ= 1.

While he
:::
they

:
obtained the maximal amplification αw = 3.9 for ε= 0.10, our amplification αw = 3.6 is obtained for ε= 0.17,

which is larger than 0.1 and thus leads to a larger difference with Miles’ prediction of αw ≈ 4. Moreover, thanks to the robust

schemeused to derive and discretise our equations, that
:
,
:::::
which

:
ensures stable simulations over the large domain despite the15

different length scales involved, our present
::::
used

::
to

::::::
derive

:::
and

::::::::
discretise

::::
our

::::::::
equations,

::::
our model is the first model able to

describe numerically the dynamic development of the stem wave up to such high amplitudes. Previous studies (Kodama et al.,

2009; Li et al., 2011; Tanaka, 1993; Funakoshi, 1980) could not
::::
were

:::
not

::::
able

::
to

:
attain such high amplifications because of

numerical limitations
:::
such

:::
as

::::::::
expensive

::::::::::::
computational

::::
time. Ablowitz and Curtis (2013) obtained the highest numerical am-

plification αw = 3.9 by considering the final stateinitialised immediately yet ,
::::::::
initialised

:
asymptotically using the KP two-line20

solution. This last approach gives an accurate understanding of the asymptotic maximal amplification of the stem wave with

the BL model, but does not describe the development of the stem wave along the wall. The description and understanding

of the wave propagation along the wall is however fundamental for application purposes. The present results, although cur-

rently limited by the
::
not

:::::::
optimal

::
in

:::::
terms

::
of

:
computational time, are therefore a necessary improvement for the application of

obliquely interacting solitary waves in maritime engineering. More advanced simulations should enable determination of the25

value of κ at the transition from Mach to regular reflection, and to reach higher amplification of the stem wave.

One can point out
:::::
There

:::
are some limits to the current model. As already concluded in previous studies, the wave needs to

propagate over a long distance (relative to its wavelength) in order to reach its maximal amplitude. Consequently, the numerical

domain needs to be large, and the mesh fine enough to estimate the waves’
::::
wave crests accurately. This numerical requirement

increases the computational time. One must therefore find a
::
A compromise between the accuracy of the simulations and the30

running time
:
is
::::::::

therefore
:::::::

needed. This constraint is all the more important in that near the transition from Mach to regular

reflection a slight change in the incident wave’s amplitude modifies dramatically the interaction parameter and consequently

the predictions of the stem and reflected waves. One must therefore be careful when analysing
::::::::
Therefore,

::
a

::::::
careful

:::::::
analysis

::
of

the numerical results
::::
must

::
be

:::::
made. For the same reason, simulations for κ≈ 1 and large amplifications αw ≈ 4 are extremely

20



difficult to obtain, since a slight change in the initial settings (ai, ε...) modifies completely the behaviour of the resulting

waves. Li et al. (2011) actually
::::::
Indeed,

:::::::::::::
Li et al. (2011) conjectured that the transition between Mach and regular reflection in

the neighbourhood of κ= 1 might be gradual
:::::
appear

::::::::
gradually

:
and not as abrupt

:::::::
abruptly as expected from Miles’ predictions

(65).

Finally, one may wonder how likely this solitary waves ’ reflection is to occur
:::
The

::::::::
likeliness

::::
with

::::::
which

::::::
solitary

:::::
waves

::::::
would5

:::::::
undergo

::::::::
reflection in an open ocean

:
is

:::::::::
interesting

::
to

:::::::::
investigate. Interaction of obliquely incident waves on the wall

::::
sides

:
of

ships leads to an increasing wave amplitude near the side
::::
sides, sometimes reaching the deck. This phenomenon is called ‘green

water´
:::::
’green

::::::
water’, and has been studied experimentally and numerically by the Maritime Research Institute Netherlands

(MARIN) to limit the damage caused by the waves on the
:::::
waves

:::
on ships (Buchner et al., 2014). A comparison between our

numerical simulations and experiments may be interesting to explore in the future
::::
When

:::
the

::::::::
incident

::::
wave

::::::::
interacts

::::
with

::
a10

:::
ship

:::::::
moving

::::::::::
downwind,

:::
the

:::::::
effective

::::
ship

::::::
length

::::::::
increases

::::::
leaving

:::::
more

::::
time

:::
for

:::
the

::::
stem

:::::
wave

::
to
:::::::

develop
::
to
:::

its
:::::::::
maximum

::::::::
amplitude.

::::::::::::::::::::::
Peterson et al. (2003) also

:::::::
studied

:::
the

::::::::
formation

:::
of

:::::::
extreme

:::::
waves

:::
in

:::::::
shallow

:::::
water

:::
and

:::::::::
explained

:::::
under

::::::
which

::::::::
conditions

::::
they

:::
are

:::::
likely

:::
to

:::::
occur

:::
and

:::::::
threaten

:::::
ships.

::::::::::::::::::::::::::::::::::
Kalogirou and Bokhove (2016) developed

::
a
::::::::
numerical

::::::
model

::
of

::::::
waves

::::::::
impacting

:::::
upon

:
a
:::::
buoy.

:::
An

::::::::
extension

:::
of

::::
these

::::::::::
simulations

::
to
:::::

wave
::::::::::
interactions

::::
with

:::::
ships

::::
may

:::
be

::
an

:::::::::
interesting

::::::::::
application

::
of

:::
our

::::::
present

:::::
work. The present model can also be

::
be

:::
also

:
used to predict the impact of extreme waves, such as

:::
(i.e. freak or15

roguewaves,
:
)
::::::
waves on structures.

Indeed, when the stem wave reaches more than twice the amplitude of the incident wave, it can then be viewed as a freak

wave since it has similar properties in terms of nonlinearity, dispersivity and high amplitude. Table 1 shows the distance

needed
:::::::
required by the stem wave to reach more than twice the incident wave’s amplitude in different cases (depending on the

value
:::::::::::
incident-wave

:::::::::
amplitude

::
in

::::::
several

:::::
cases

:::::::::::
parameterised

:::
by

:::::::
different

::::::
values of ε). For each value of the small-amplitude20

parameter ε, the numerical
:::::::::::::
(dimensionless)

:
distance Ln needed to reach at least twice the amplitude of the initial wave has

been measured from the simulations. Then, the definition of the small-amplitude parameter ε= a0/H0 and the choice of a sea

state with characteristic wave height a0 = 3m enables computation of the corresponding water depth H0. The real
:::::::
physical

distance Lr needed by the wave to propagate in this sea state up to twice the characteristic wave height can then be obtained

from scaling (11), with formula
:::::
using Lr = Ln×H0/

√
µ. The value of the small-dispersion parameter µ is set to 0.02 as in the25

results section. Finally, the wavelength λ0 can be obtained from the definition of the small-dispersion parameter µ= (H0/λ0)2.

In a wave tank where waves can be generated from
:
in

:
different directions, one can define the angle of propagation and initial

profile of two solitary waves
:::
can

::
be

:::::::
defined from the asymptotically exact solution Eq. (36) of our model Eqs (15), so that their

interaction will lead to a stem wave. The evolution of the stem wave can be predicted from the present model, so an offshore

structure such as a scaled ship or a wind turbine can be placed at a position where the stem wave will reach more than twice the30

initial amplitude of the solitary waves. A scaling of 1/10 from
:::::::
between values in Table 1 to

:::
and

:
experiments leads to achievable

incident waves’amplitudes and distance
:::::::::::
incident-wave

::::::::::
amplitudes

:::
and

::::::::
distances

:
of propagation in MARIN’s shallow water

basin. By knowing
:::::::::::
shallow-water

:::::
basin.

:::::
From the amplitude of the stem wave at a given position, one can estimate the impact

of the wave on structures and validate the predictions with such model tests
:::
can

::
be

::::::::
estimated

::::
and

:::
the

:::::::::
predictions

::::::
yielded

:::
by

:::
the
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:::::
model

::::
tests

::::
can

::
be

::::::::
validated. The model can thus help the

:::
help

:::
the

::::::::
maritime

:
industry to design safer offshore structures that

can resist extreme waves’
:::::::::::
extreme-wave

:
impacts.

The
::::::
Finally,

:::
the

:
present work can also be used as a starting point for the modelling of the interaction of three obliquely

incident line-solitons, which should lead to a ninefold-amplified resulting wave that can also be generated in wave tanks. 1

7 Data availability5

The Firedrake implementation of our discretisation of the Benny-Luke
:::::::::::
Benney-Luke

:
equations is an example in Firedrake,

www.firedrake.org (Bokhove and Kalogirou, 2016). In addition, the expanded program we used to do our simulation
:::
use is

freely available there.

Appendix A: Time-discretization
::::::::::::::::
Time-discretisation

:
of the present Benney-Luke model

The Störmer-Verlet scheme (60) is applied to the variational principle (48
::
47) for Benney-Luke, withP = {Φi} andQ= {ηi}::::::::::::::::::::::

Q=
{(
Mij +

µ

2
Aij

)
ηi

}
10

:::
and

:::::::::
P = {Φi}, leading to:

0 =

∫
Ωb

(
Φ
n+1/2
i −Φni

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t

2

[
ηnj ϕjϕk +

ε

2
ϕjΦ

n+1/2
i Φ

n+1/2
k ∇ϕi · ∇ϕk

]
dΩb, (A1a)

0 =

∫
Ωb

(
q
n+1/2
i ϕiϕj −

2

3
∇ϕj · ∇ϕiΦn+1/2

i

)
dΩb (A1b)

0 =

∫
Ωb

(
ηn+1
i ϕi− ηnj ϕj

)
ϕk +

µ

2
∇ϕk · ∇

(
ηn+1
i ϕi− ηnj ϕj

)
− ∆t

2

[(
(1 + εηni ϕi)∇ϕk · ∇ϕjΦ

n+1/2
j −µqn+1/2

i ∇ϕi · ∇ϕk
)

15

+
(

(1 + εηn+1
i ϕi)∇ϕk · ∇ϕjΦn+1/2

j −µqn+1/2
i ∇ϕi · ∇ϕk

)]
dΩb, (A1c)

0 =

∫
Ωb

(
Φn+1
i −Φn+1

i

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t

2

[
ηn+1
j ϕjϕk +

ε

2
ϕjΦ

n+1/2
i Φ

n+1/2
k ∇ϕi · ∇ϕk

]
dΩb. (A1d)

1O. Bokhove suggested this calculation to Prof. Y. Kodama, personal communication, who performed the calculation using the KP equation at the interna-

tional workshop "Rogue waves" held at the Max Planck Institute in 2011, Dresden, Germany.

22

https://bitbucket.org/Floriane_Gidel/bl-model-for-obliquely-reflecting-solitary-wave


Since the space discetization is performed internally within Firedrake, the weak formulations (A1) can be implemented with

the full form of the variables Φh and ηh and test functions δΦh and δηh as

0 =

∫
Ωb

(
Φ
n+1/2
h −Φnh

)
δηh +

µ

2
∇δηh · ∇

(
Φ
n+1/2
h −Φnh

)
+

∆t

2

[
ηnhδηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb,

0 =

∫
Ωb

(
ηn+1
h − ηnh

)
δΦh +

µ

2
∇δΦh · ∇

(
ηn+1
h − ηnh

)
− ∆t

2

[(
(1 + εηnh)∇δΦh · ∇Φ

n+1/2
h +

2

3
µ∆δΦh ·∆Φ

n+1/2
h

)

+

(
(1 + εηn+1

h )∇δΦh · ∇Φ
n+1/2
h +

2

3
µ∆δΦh ·∆Φ

n+1/2
h

)]
dΩb,5

0 =

∫
Ωb

(
Φn+1
h −Φ

n+1/2
h

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1
h −Φ

n+1/2
h

)
+

∆t

2

[
ηn+1
h δηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dxdy.
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Figure 1. Top: top view of a channel containing an incident solitary wave propagating in the x−direction
::::::::
x-direction with amplitude ai. The

side wall is oblique and makes an angle ϕi with the x−direction
::::::::
x-direction. Bottom: top view of the reflection pattern when the incident

wave impacts
::::
upon the wall. The pattern is composed of three waves: 1) the incident wave, 2) a reflected wave of amplitude ar that forms an

angle ϕr with the angle perpendicular to the wall, and 3) a Mach stem wave propagating along the wall with amplitude aw and an angle ϕw

with the wall.
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Figure 2. Three-dimensional water-wave domain with depth of rest
::::::::
rest-depth H0. We aim to estimate the potential φ(x,y,z, t) and the

free-surface deviation η(x,y, t) from the rest depth.
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Figure 3. O–type and (3142)–type solitons as represented by Kodama et al. (2009). Top: evolution (from left to right) of the O-type soliton,

consisting of two line–solitons with different amplitudes and angles with respect to the y–axis
::::
y–axis. As it propagates, the shape of this

soliton is kept
::::::
remains

:
unchanged. Bottom: evolution (from left to right) of the (3142)–type soliton, consisting of two line–solitons travelling

in the x–direction
::::::::
x–direction

:
with different angles and amplitudes. As the soliton propagates, a new line–soliton is created at the intersection

of the two initial line–solitons, leading to a stem wave. Figure obtained from Kodama et al. (2009).
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Figure 4. Link
::::::::
Schematic

:::
plan

::::::
showing

:::
the

:::
link

:
between the (scaling of the ) three system of equations involved in the derivation of the exact

solution and critical condition for which Miles
:
’
:
and Kodama’s predictions hold in the Benney-Luke approximation.
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Figure 5. Definition of the domain
::::::
domains

:
in the two cases described in the text: a) intersection of two channels, with two obliquely incident

solitons interacting at a virtual wall, and b) half of the domain with a soliton propagating in one channel and colliding with an oblique wall.

This wall is either in the x− or y−direction (in which case the soliton has a two-dimensional propagation of direction) or oblique, in which

case the incident soliton propagates in a
::
the

:
one-dimensional direction (xor y).
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Figure 6. Results
:::::
Soliton

::::::
surface

::::::::
deviations obtained for an initial amplitude ai = 1.0, and angle ϕi = π/6 rad. Blue: behaviour of the

incident and stem wave
:::::
waves when the incident soliton propagates in an oblique direction; Red

::
red: behaviour of the incident and stem wave

::::
waves

:
when the incident soliton propagates in one direction.
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Figure 7. Discretised domain with
::::::
Domain

::::::::::
discretisation

:::::
using quadrilaterals

::
in

:::::
Gmsh. The

:
In

:::::
order

:
to
::::::
reduce

::::::::::
computational

:::::::::::
requirements,

mesh
::::::::
refinement is refined along the wall

:::::::
restricted

::
to only ,

::
the

:::::
region

::::::
adjacent

:
to reduce the computational time

::::
wall.
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Figure 8. Comparison between the expected amplification (solid line) from Miles (3) and our numerical results (symbols) for different values

of the interaction parameter κ, namely: κ≈ 1.1265 (ε= 0.12), κ≈ 1.0526 (ε= 0.14), κ≈ 1.0077 (ε= 0.15), κ≈ 0.9989 (ε= 0.16),

κ≈ 0.9733 (ε= 0.17), κ≈ 0.9345 (ε= 0.18), κ≈ 0.8692 (ε= 0.20).
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Figure 9.
::::::::
Numerical

:::::
results

:::
and

:::::::::
predictions

::
for

:::
the

:::::::
reflected

:::
and

::::
stem

:::::
waves

:
in
:::

the
::::
case

::
of

:::::
regular

::::::::
reflection,

:::
i.e.

::::
κ > 1

:
.
::::
Top

:::
left:

:::
top

::::
view

:
of
:::

the
::::::::
numerical

:::::::
evolution

::
of

:::
the

::::::
incident,

:::::::
reflected

:::
and

::::
stem

:::::
waves.

::::
Top

::::
right:

:::
top

::::
view

::
of

::
the

:::::::
expected

:::::::
evolution

::
of
:::
the

::::
stem

:::
and

:::::::
reflected

::::
waves

::
at
:::
two

:::::::
different

::::
times

:::
t1 :::

and
::
t2 :::

with
:::::::
t1 < t2.

:::
The

::::
stem

::::
wave

:::::
should

::::::::
propagate

::::
along

:::
the

::::
wall

:::
with

:::::::
constant

:::::
length.

::::
The

::::
angle

:::
ϕr ::

of

::
the

:::::::
reflected

::::
wave

::
is

:::::::
expected

:
to
:::

be
::::::
constant

:::
and

:::::
equal

::
to
:::

the
:::::::::::
incident-wave

::::
angle

:::
ϕi.::::::

Bottom
:::::
centre:

::::
side

::::
view

:
of
:::

the
::::
time

:::::::
evolution

::
of

:::
the

::::::
incident,

:::::::
reflected

:::
and

::::
stem

:::::
waves,

:::::::::
highlighting

:::
the

::::::::::
amplification

::
of

:::
the

::::::::
stem-wave

:::::::
amplitude

::::::::
compared

::
to

::
the

:::::
initial

::::::::::
solitary-wave

::::::
height.
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Figure 10.
::::::::
Numerical

:::::
results

:::
and

::::::::
predictions

:::
for

:::
the

::::::
reflected

:::
and

::::
stem

:::::
waves

::
in

:::
the

:::
case

::
of

:::::
Mach

:::::::
reflection,

:::
i.e.

:::::
κ < 1

:
.
:::
Top

:::
left:

::::::::
schematic

:::
plan

::::
view

::
of

:::
the

:::::::
numerical

::::::::
evolution

::
of

::
the

:::::::
incident,

:::::::
reflected

:::
and

::::
stem

:::::
waves.

:::
Top

::::
right:

:::
top

::::
view

::::::
scheme

::
of

:::
the

:::::::
predicted

:::::::
evolution

::
of

:::
the

:::
stem

::::
and

::::::
reflected

:::::
waves

::
at

:::
two

:::::::
different

::::
times

::
t1::::

and
::
t2 :::

with
:::::::
t1 < t2.

:::
The

::::
stem

::::
wave

::::::
should

::::
grow

::::::
linearly

::
in

:::::
length,

::::::
leading

::
to

::
an

:::::
angle

::::::
ϕw > 0

:::
with

:::
the

::::
wall.

::::
The

::::
angle

:::
ϕr ::

of
:::
the

::::::
reflected

:::::
wave

:
is
:::::::

expected
::

to
:::

be
::::::
constant

:::
and

:::::
larger

::::
than

:::
the

::::::::::
incident-wave

:::::
angle

:::
ϕi.::::::

Bottom

:::::
centre:

:::
side

::::
view

::
of

:::
the

::::
time

:::::::
evolution

::
of

::
the

:::::::
incident,

:::::::
reflected

:::
and

::::
stem

:::::
waves,

:::::::::
highlighting

:::
the

::::::::::
amplification

::
of

:::
the

::::::::
stem-wave

::::::::
amplitude

:::::::
compared

::
to

:::
the

::::
initial

::::::::::
solitary-wave

::::::
height.
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ε

0.12 0.14 0.15 0.16 0.17 0.18 0.20

Numerical distance Ln 5.8 5.5 5.5 7.8 7.7 8.0 8.0

Water depth H0 (m) 25.00 21.43 20.00 18.75 17.65 16.67 15.00

Real distance Lr (m) 1025 833 778 1028 965 940 846

Wave length λ0 (m) 176.78 151.52 141.42 132.58 124.78 117.85 106.07

Table 1. Prediction of the minimal distance needed by the stem wave to reach at least twice its initial amplitude in a sea state with charac-

teristic wave ’s height a0 = 3 m. The dispersion parameter µ is set to 0.02 while the small-amplitude parameter ε varies from 0.12 to 0.20,

leading to different wave evolutions. The numerical distance needed to reach more than twice the incident wave’s
::::::::::
incident-wave ampitude is

measured from the numerical simulations. The corresponding water depth, real distance of propagation and wavelength are computed from

the definition of ε, µ, and scaling (11). These values are approximate.
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