
Reviewer #2

• Main points: The perfect model and observations may not be sufficient in supporting the conclusions
reached in this manuscript. Even though the reviewer agrees with the authors 4DVAR has its potential
in oceanic state estimation, their case is simply too perfect for convincing the readers, particularly
those from the non-variational analysis community, like EnKF or 4DEnVar. The reviewer suggests
more realistic experiments and recommend this manuscript for major revision.

Thanks to the reviewer for the interesting and helpful perspective. The experimental setup may not be
as idealized as originally thought. For example, the synthetic observations generated in this study are
not perfect, and we detail their generation in the response to the next point below.

Regarding the perfect model assumption, our equations have been formulated in analogy to the ECCO
(Estimating the Climate and Circulation of the Ocean) state estimation equations (Stammer et al.,
2002), as our goal is to develop diagnostics regarding when and why the Lagrange multiplier method
succeeds or fails. In the ECCO formulation, the ocean model equations are typically treated as perfect
in the ocean interior, and errors are permitted in the surface gridcells with air-sea forcing. Here, we
permit these errors and attribute them to errors in the external forcing.

One aspect of the analysis that we have improved is the first-guess of the forcing field. In a case study
where the first-guess of the forcing is zero, the results are similar to the original case. This is reported
in a new Section 3.5 and a new Figure 8. The new section follows.

The previous examples in Section 3 proceed with prior information that the forcing is
periodic with an accurate magnitude and phase. A good analogy is the regular forcing
of solar insolation on the ocean surface. Here, we test the performance of the Lagrange
multiplier method with inaccurate prior information about the forcing, as is a more realistic
analogy to the uncertainty of air-sea fluxes. In particular, our first guess of the forcing,
f0(t), is systematically biased by decreasing b from 1.5 to 0.75 rad s−2. The trajectory
driven by inaccurate forcing is no worse than the previous cases with accurate forcing due to
the dominance of the chaotic dynamics of system (Figure 8). Using the same observations
as shown in Figure 3, we find that the chaotic pendulum trajectory is tracked over multiple
nonlinear timescales despite this more stringent test. In this case, however, the forcing
estimate still contains errors relative to the true forcing calculated with b = 1.5 rad s2,
and some high-frequency structures remain in f (t) (see “improved first guess” in bottom
panel, Figure 8). If instead the Lagrange multiplier method is started from the standard first
guess, a smoother and more accurate estimate of the forcing is obtained at the expense of
not fitting the data as well (see “final estimate” in bottom panel). Any remaining irregular
structures can be handled by imposing temporal correlations as was done in Section 3.4.
If such measures are not taken, the investigator must take care to decide what elements of
the forcing represent true variability and which are compensating for model error. In our
simple system of equations, model errors and forcing errors are mathematically equivalent.
In state estimates with eddy-resolving GCMs, however, smallscale forcing variability is
found near oceanic fronts and the investigator must determine on a case-by-case basis to
what extent it reflects real variability.

Convincing the non-variational analysis community to adopt the Lagrange multiplier method would
be a challenging task, but outside the goals of our work. It is clear that the motivation and goals
of the manuscript need to be made more explicit. The Lagrange multiplier method is popular in
oceanography due to automatic adjoint model compilers and strategies to reduce computer memory
consumption. Much time and effort has been spent to develop this technique in real-world scenarios,
yet it is unclear whether this method should be applied to eddy-resolving models and how long the
time window should be. For the Lagrange multiplier method to be successful in state-of-the-art ocean
models, two major issues need to be addressed: (1) the high dimensionality of the forward model and
estimation problem, and (2) the nonlinearity of ocean models at increasingly fine resolution. Issue

7



(1) has been overcome by groups such as the ECCO Consortium. Here we focus on (2). It is true
that issues may arise by the combined effect of (1) and (2), but first we attempt to isolate the effect of
nonlinearity.

With this problem in mind, it is logical to find a numerical model that can be thoroughly understood
and one that is highly nonlinear. It is not the goal of this manuscript to use a state-of-the-art numerical
model. We believe that these expectations should be set at the outset, so we include the following in
the Introduction.

Because the effect of nonlinearity is seen as the major roadblock for application of the La-
grange multipler method, we isolate this effect by choosing a model that is highly nonlin-
ear but low-dimensional: the forced, chaotic pendulum (Section 2). Toy models are worth
revisiting because the dynamics are comparatively simple to understand, and they have
strongly influenced when the Lagrange multiplier method has been deployed to realistic
ocean problems. We will show that previous toy models have sometimes been misinter-
preted.

We now also emphasize upfront that the development of a new state-of-the-art data assimilation tech-
nique is not the goal of this work, either. Instead, we wish to evaluate the current use of the Lagrange
multiplier method. Now, the Introduction makes this explicit.

Rather than developing a new state-of-the-art data assimilation technique, we proceed by
taking the existing Lagrange multipler method and developing diagnostics regarding when
and why it succeeds or fails, as evaluated by the ability to fit observations. Relative to
the initialization problem, the prospects for a successful state estimate are shown to be
improved in the boundary control problem, even if one uses a highly nonlinear model such
as the forced, chaotic pendulum (Section 3).

Thus, a practical goal of this work is to convince those groups that already use the Lagrange multiplier
method to reconsider the range of scenarios in which they apply the method.

• 1. What are the values of ? From the true solution? I am afraid if ideal observations are used, it does
not imply the conclusions made for this ideal model to be useful.

Stochastic noise is used to generate synthetic data, mimicking the imperfection of ocean observations.
This is a common approach that has appeared in ocean state estimation studies such as Tziperman et
al. (1992), who used the same iterative adjoint method on a simplified ocean GCM (the momentum
equations are balanced and the nonlinear advection is neglected). The manuscript states the following.

We consider an “identical twin” experiment where the true solution is known (solid line,
Figure 1), and we observe the pendulum angle episodically through time with normally-
distributed random errors of standard deviation, σθ = 0.5 rad. In most oceanographically-
relevant cases, observations have already been collected over some fixed time interval (0 ≤
t ≤ T ). Here, observations, y(t), are taken at a set of Ny evenly-spaced times with an time
interval of Δty = T/(Ny −1).

• 2. Page 4, line 23, The statement of . . .the quantity inside curl brackets vanishes is not generally true.
To do so, there needs an additional term, penalizing the constraint.

The terms in the curly bracket vanish by definition of our time-stepping model in equation (2). There
was an error in defining the external forcing term which may have caused confusion. The equation
is deterministic and is now stated explicitly in equation (1). The weight matrix S f in equation (5)
is selected in the state estimation process to limit the difference of the improved guess from the first
guess, similar to the formulation in Bennett (2002). The revised text reads as follows.

The motion of the forced pendulum is described by the deterministic equation (Baker and
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Gollub, 1990),
d2θ
dt2 +

1
q

dθ
dt

+
g
l

sin θ = f (t), (3)

where θ is the displacement angle from vertical, q is a damping coefficient, g is gravi-
tational acceleration, l is the pendulum length, and f (t) is an external forcing term. In
turn, the external forcing has a first guess and a perturbation, f (t) = f0 +δ f (t), where the
first-guess is set to periodic forcing, f0(t) = b cos(ωdt).

• 3. Page 5, line 23. That is where the problem is that such as observation and prior knowledge and
freely-running forward model are not enough.

We agree with the reviewer that the first-guess may not always be sufficient to track a chaotic system.
For this reason, we implement a χ−2 test, detailed in the next point-by-point response, that diagnoses
the likelihood of success or failure.

• 4. For solving a global minimization problem of (6), the first guess is crucial as the authors stated in
page 4 line 25-26. However, the improved initial guess of their work presented in Section 2.4 cannot
guarantee the initial guess is good enough for converging to the global minimizer. The authors should
at least present convincing arguments of why they believe their improved initial guess could reach
their goal. To the reviewer, the improved initial guess may fall into the same valley as the original
initial guess.

The reviewer correctly states that there is no guarantee that a solution will be a global minimizer.
We discuss the underdetermined nature of the problem in Sec. 3.3, where we acknowledge that the
solution is not unique. Instead, we focus on finding any acceptable fit. We view the problem as having
two clear steps. It is a first step to find any solution that acceptably fits the data. Only then can we
proceed to investigate the uniqueness of the solution. In real-world situations, the first step may be the
only one that can actually be evaluated.

To consider whether a solution is an acceptable fit, we include Figure 6 which details the size of the
cost function for various numbers of controls and observations. By implementing a χ2 posterior sta-
tistical test, we determine the ratio of success to failure for various parameter ranges. After running
many trials, we do not guarantee the results for any particular number of observations and controls,
but a clear pattern emerges. We suggest that the pattern of Figure 6 is explained by the basic metrics
of controllability and observability. rather than the stability of the system. This is one novel result we
are reporting, and the previous works suggested by the reviewers have not already made this point,
nor do they appear to contradict it.

9


