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• This manuscript contains a description of the results of a series of experiments in which 4DVAR was
used to assimilate simulated data from a nonlinear system corresponding to the damped driven pen-
dulum in a chaotic parameter regime. This example differs from most other examples in the literature
of data assimilation in strongly nonlinear systems in that it is a non-autonomous system, unlike, say,
Lorenz (63). With a few reservations, the example is fairly well worked out. The application of the χ2

test is particularly noteworthy. The basic results are worth publishing in some form.

We thank the reviewer for noting the care we took in this analysis, especially the χ2 posterior test,
and for noting that the key results are worth publishing. We address some of your reservations in this
point-by-point response.

• The authors never state their model system explicitly. It is not (1). The system with which they are
actually working differs from (1) in that it has a white noise term with variance S f (see (5)) added to
the right hand side. The distinction is not trivial. I assume that the reference solution in their twin
experiments is the stochastic system with the stochastic term set to zero. The effect of adding the un-
known stochastic term is to increase the number of degrees of freedom in the control space from two,
i.e., the initial conditions in the purely deterministic problem, to the number of time steps taken by the
numerical method, which is potentially infinite.

Thanks to the reviewer for spotting the error in defining the external forcing term. The equation is
deterministic and is now stated explicitly in equation (1). The weight matrix S f in equation (5) is
selected in the state estimation process to limit the difference of the improved guess from the first
guess, similar to the formulation in Bennett (2002). The revised text reads as follows.

The motion of the forced pendulum is described by the deterministic equation (Baker and
Gollub, 1990),
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where θ is the displacement angle from vertical, q is a damping coefficient, g is gravi-
tational acceleration, l is the pendulum length, and f (t) is an external forcing term. In
turn, the external forcing has a first guess and a perturbation, f (t) = f0 +δ f (t), where the
first-guess is set to periodic forcing, f0(t) = b cos(ωdt).

• The general level of discussion in this manuscript might have been marginally acceptable twenty years
ago, when implications of applications of techniques from the engineering world were still being ex-
plored, but most of the manuscript is far below the current state of the art.

It is clear that the motivation and goals of the manuscript need to be made more explicit. The La-
grange multiplier method is popular in oceanography due to automatic adjoint model compilers and
strategies to reduce computer memory consumption. Much time and effort has been spent to develop
this technique in real-world scenarios, yet it is unclear whether this method should be applied to eddy-
resolving models and how long the time window should be. For the Lagrange multiplier method to
be successful in state-of-the-art ocean models, two major issues need to be addressed: (1) the high di-
mensionality of the forward model and estimation problem, and (2) the nonlinearity of ocean models
at increasingly fine resolution. Issue (1) has been overcome by groups such as the ECCO Consortium.
Here we focus on (2). It is true that issues may arise by the combined effect of (1) and (2), but first we
attempt to isolate the effect of nonlinearity.

With this problem in mind, it is logical to find a numerical model that can be thoroughly understood
and one that is highly nonlinear. It is not the goal of this manuscript to use a state-of-the-art numerical
model. We believe that these expectations should be set at the outset, so we include the following in
the Introduction.
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Because the effect of nonlinearity is seen as the major roadblock for application of the La-
grange multipler method, we isolate this effect by choosing a model that is highly nonlin-
ear but low-dimensional: the forced, chaotic pendulum (Section 2). Toy models are worth
revisiting because the dynamics are comparatively simple to understand, and they have
strongly influenced when the Lagrange multiplier method has been deployed to realistic
ocean problems. We will show that previous toy models have sometimes been misinter-
preted.

We now also emphasize upfront that the development of a new state-of-the-art data assimilation tech-
nique is not the goal of this work, either. Instead, we wish to evaluate the current use of the Lagrange
multiplier method. Now, the Introduction makes this explicit.

Rather than developing a new state-of-the-art data assimilation technique, we proceed by
taking the existing Lagrange multipler method and developing diagnostics regarding when
and why it succeeds or fails, as evaluated by the ability to fit observations. Relative to
the initialization problem, the prospects for a successful state estimate are shown to be
improved in the boundary control problem, even if one uses a highly nonlinear model such
as the forced, chaotic pendulum (Section 3).

The typical criterion for successful state estimation has been the stability to initial perturbation. In
the manuscript, we provide a counterexample showing that state estimation can be successful for an
unstable system when it is controllable. This is one novel result we are reporting, and the previous
works suggested by the reviewers have not already made this point, nor do they appear to contradict
it.

• Studies of chaotic systems forced by white noise have appeared in a number of places in the literature.
One example can be found in a paper by Tziperman from the early 90s.

We now mention Tziperman’s work on chaotic systems as a motivating factor in using our toy model.

Toy models are worth revisiting because the dynamics are comparatively simple to un-
derstand, the nonlinear coupling to periodic forcing has been shown to be important in
atmosphere-ocean dynamics (e.g., Tziperman et al., 1994), and these models have strongly
influenced when the Lagrange multiplier method has been deployed to realistic ocean prob-
lems.

• There is nothing novel about writing the 4DVAR cost function in terms of a Lagrange multiplier. The
use of Lagrange multipliers in variational formulations of estimation and control problems has been
in the engineering textbooks since the 70s, and ap- peared in the early work of Thacker in the ocean
modeling literature. In the present context, in which the task is to estimate an unknown stochastic
forcing function, the Lagrange multiplier formulation is valid, but the same Euler-Lagrange equa-
tions result from equivalent cost function formulations without Lagrange multipliers, see, e.g., the text
by Kalnay or either of the books by Bennett, as well as many of the reviews in the literature.

The reviewer’s point that the Lagrange multiplier method is just another way to express a minimization
problem is in line with the point of our Section 4.1. In that section, we suggest that the criteria for
successful use of the Kalman Filter/Smoother, which also minimizes the same cost function, is the
same as that for the Lagrange multiplier method. In particular, Sec. 4.1 states the following.

Our results suggest that the equivalence of the Kalman filter/smoother and Lagrange mul-
tiplier method may be extended to nonlinear problems, thus explaining why the chaotic
estimation problem may be solved by the Lagrange multiplier method.

• The authors should note that the estimation problem is the dual of the control problem. General ques-
tions of linear controllability and observability are dealt with in engineering textbooks. This topic has
been well worked out in the context of models of the ocean and atmosphere in the work of S. E. Cohn
in the late 80s and early 90s. The question of nonlinear observability is very complex. There was a
book by Casti on the subject published some time ago.
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We thank the reviewer for the excellent suggestions for further references. In addition, we now point
out the duality of the estimation and the control problem. As pointed out by the reviewer, observability
and controllability conditions for nonlinear state estimation are difficult problems. Results for certain
nonlinear systems are found in the book by Casti (1985) (which evolves from the review paper of Casti
(1982)). For general nonlinear estimation problems, the down-gradient-based iterative optimization
is likely one of the best methods, and we have shown the relevance of controllability to the iterative
process in our example. We include the following new paragraph in the Discussion.

To recover the true trajectory of a system, observability is also important, as the estimation
problem is the dual of the control problem (Fukumori et al., 1993; Marchal, 2014). For
the linear problem, Cohn and Dee (1988) showed that completely observability implies
asymptotic stability of the Kalman filter/smoother. Defining observability and controllabil-
ity conditions for nonlinear state estimation problems is difficult Casti (1985). In practice,
the important criterion is ability to solve equation (10). Strictly speaking, the solution cri-
teria will therefore depend upon both the controllability matrix, C, and the observational
matrix, E, which combines the issues of observability and controllability. Here, we suggest
the operational definition that a system is effectively controllable when the solution to (10),
generalized to multiple observations, exists.

• The question of dealing with underdetermination has been discussed extensively in the literature. So-
lutions to underdetermined problems are not, in general, unique. The problem, in practice, is the fact
that minimizing the cost function (5) involves searching a space of corrections that is potentially in-
finite. The highly irregular reconstructed forcing shown in the bottom panel of figure 4 is most likely
one of an enormous number of minimizers of (5). There are almost certainly many others that will
minimize the cost function, some smoother, many even more irregular.

The reviewer’s point about the underdetermined nature of the problem is consistent with our discus-
sion in Sec. 3.3, where we acknowledge that the solution is not unique, but we focus on finding any
acceptable fit. We view the problem as having two clear steps. It is a first step to find any solution
that acceptably fits the data. Only then can we proceed to investigate the uniqueness of the solution.
In real-world situations, the first step may be the only one that is practical.

• Bennett showed that, in the linear problem, one solution can be found by choosing a correction to the
first guess that lies in an N y dimensional space spanned by repre- senter functions, where N y is the
number of observations. This solution corresponds to the Moore-Penrose inverse. Arguments as to
why that solution should be preferred over others are the stuff of textbooks.

It is worth clarifying that the external forcing had been treated as a controllable parameter in many
works in the literature. In the Introduction, we now state the following.

As has been documented in detail by many authors including the textbook of Bennett
(1992), the ocean state estimation problem is better described as a time-variable bound-
ary value problem because synoptic atmospheric variability acts as an external forcing on
the ocean (Section 2). Given our relatively uncertain knowledge regarding air-sea fluxes,
the ocean state estimation is rightfully considered a time-variable boundary value problem
where both the initial conditions and boundary conditions must be found. For example,
Bennett (2002) described an estimation method for the external forcing, initial and bound-
ary conditions that solves the Euler-Lagrange equations for a linear model.

• Similar practical results can be had without explicit calculation of representers. In practical prob-
lems in modeling the ocean and atmosphere, the correction to the forcing function lies in a space of
enormous dimension, so it is common to precondition the search for a cost function minimizer. This
effectively reduces the dimension of the con- trol space by choosing corrections to be a linear combi-
nation of singular vectors of the error covariance matrix. This approach is documented in the work
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of A. Lorenc and O. Talagrand. In the present problem, it might be reasonable to impose nontrivial
temporal correlation on the forcing correction, which might have the effect of limiting the spec- trum
of the correction and thus ruling out irregular forcing corrections like that shown in figure 4.

As the reviewer suggests, temporal correlations in the forcing field can be imposed through the use of
nondiagonal weighting matrix, S f , in the cost function. The revised manuscript now describes how
temporal correlations have been enforced in our analysis. The following material has been added to
Sec. 3.4.

We investigate the effect of a decrease in the number of controls by redefining the external
forcing control perturbation. For Nu forcing controls, we define,

f (t) = f0(t)+Γ(t)




δ f (0)
δ f (T/Nu)

δ f (2T/Nu)
...

δ f (T )



, (2)

where Γ(t) is a matrix that performs linear interpolation in time, and δ f (t) is only defined
at Nu control times. This formulation enforces some temporal correlation in the external
forcing. Alternatively, this could be accomplished using a nondiagonal weighting matrix,
S f .

• The authors have a choice. They can simply report on the results of their twin exper- iments on their
nonautonomous system and eliminate nearly all of the discussion, or they can go back over twenty or
twenty five years of literature and rewrite the discussion to make it a meaningful contribution to the
current state of the art.

We have taken seriously the reviewer’s suggestions to place our work in the greater context of the pub-
lished literature. Major revisions include new paragraphs in the Introduction regarding the motivation
and aims, more information about the background of controllability that places our work in a broader
context, and a new figure using an imperfect model that recreates a more realistic scenario.
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