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Abstract. Changes in land-use systems in tropical regions, including deforestation, are a key challenge for global sustainability

because of their huge impacts on green-house gas emissions, local climate and biodiversity. However, the dynamics of land-use

and land-cover change in regions of frontier expansion such as the Brazilian Amazon is not yet well understood because of the

complex interplay of ecological and socio-economic drivers. In this paper, we combine Markov chain analysis and complex

network methods to identify regimes of land-cover dynamics from land-cover maps (TerraClass) derived from high-resolution5

(30m) satellite imagery. We estimate regional transition probabilities between different land-cover types and use clustering

analysis and community detection algorithms on similarity networks to explore patterns of dominant land-cover transitions.

We find that land-cover transition probabilities in the Brazilian Amazon are heterogeneous in space and adjacent subregions

tend to be assigned to the same clusters. When focusing on transitions from single land-cover types, we uncover patterns

that reflect major regional differences in land-cover dynamics. Our method is able to summarize regional patterns and thus10

complements studies performed at the local scale.

1 Introduction

Land-use/cover change does not only affect local ecosystems and climate but has global consequences for the Earth system

(Foley et al., 2005). Land use emits about 25 % of annual greenhouse gases to the atmosphere world wide. Particularly in

tropical regions, increasing demand for food, fibre and biofuels drives land conversion from forest biomes to agriculturally used15

areas (Lambin and Meyfroidt, 2011). In order to analyze the causes of tropical deforestation, it is thus crucial to understand

the dynamics of land-cover changes that occur after deforestation, compare them between regions, and connect them to socio-

economic and political drivers. Furthermore, this could help to better understand the effects of land-use intensification that can

potentially reverse deforestation trends, as hypothesised in forest transition theory (Meyfroidt and Lambin, 2011).

The Brazilian Amazon is one of the world’s key regions with highly dynamic land-use change and is subject to multiple20

pressures (Laurance and Williamson, 2001; Keller et al., 2009; Davidson et al., 2012). Economic activities such as unsustain-
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able logging and agricultural expansion of cattle ranching and soy bean cultivation lead to a fragmentation of the landscape

resulting in biodiversity loss (Laurance et al., 2002). Global climate change may decrease precipitation and increase forest fires

(Chen et al., 2011). All these pressures are increasing the risk of destabilizing the ecosystem and crossing a tipping point with

irreversible consequences (Lenton et al., 2008; Nepstad et al., 2008; Staal et al., 2015).

In the 1970s and 80s, deforestation was mostly driven by large infrastructure and settlement programs, but more recent years5

saw mainly market drivers pushing the deforestation frontier further, while government programs tried to contain it (Fearnside,

2005). Since 2005, deforestation rates in the Brazilian Amazon have been reduced enormously. In recent years, the rates are

fluctuating between 5000 and 6000 km2 per year, which is a reduction of about 80% compared to the peak of deforestation

activities in 2004 (INPE, 2016). The changes are explained by new monitoring programs, public policies and supply chain

interventions (Nepstad et al., 2014; Dalla-Nora et al., 2014; Gibbs et al., 2015). However, there are warnings that deforestation10

may increase again (Fearnside, 2015; Aguiar et al., 2016).

In order to understand deforestation rates, it is crucial to take subsequent land-uses and their dynamics into account. This

paper focuses on developing methods to detect patterns of land-cover dynamics using data from remote sensing and identifying

large-scale differences between subregions of the Brazilian Amazon as a sample region. To do so, we draw on the theory of

Markov chains that has been used in the context of land-system science to describe and analyze land-cover dynamics (Bell15

and Hinojosa, 1977; Baker, 1989). Markov chains are stochastic systems that are described by transition probabilities between

discrete states, here referring to a specific land-use or land-cover type. An ensemble of such chains describes a collection

of land patches that undergo stochastic transitions between land-cover classes. Because simple Markov models do not take

spatial correlations into account, they often form only one part of hybrid land-cover models that introduce stochasticity into the

model (see e.g. Brown et al., 2000; Subedi et al., 2013). For example, Fearnside (1996) applied a Markov analysis to estimate20

greenhouse gas emissions from land-use change in the Brazilian Amazon and found that carbon storage in the land system

decreases as it approaches an equilibrium.

In the past, most studies using Markov analysis focused on small regions due to limited data availability. Modern geographic

information systems (GIS) enable the detection of land-cover changes at an unprecedented scale using satellite images (Lu

et al., 2004). Automated algorithms allow the classification of land use and land cover of vast regions. Furthermore, it is pos-25

sible to compare the land-use dynamics between different subregions and find differences and similarities based on consistent

datasets. For example, Levers et al. (2015) combined different sources of land-use indicators and used self-organizing maps to

identify archetypical land uses and regions with similar land-use change in Europe.

In this study, we use Markov transition probability matrices as a descriptor of aggregate land-cover dynamics estimated from

high-resolution land-cover data for 3 time slices of land-cover over 6 years in the Brazilian Amazon. To our knowledge, Markov30

analysis has so far not been applied to investigate interregional heterogeneity of land-cover dynamics. This paper explores

this idea by comparing transition matrices from different subregions in the Brazilian Amazon to identify patterns of similar

land-cover dynamics drawing on large data sets derived from satellite imagery. While previous studies mostly worked with

predefined regions to compare land-cover dynamics, we develop methods to identify regions with similar land-cover dynamics

which allows a large-scale analysis of land-cover change patterns. With this methodology we approach the hypothesis that35
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different land-cover dynamics can be identified by the characteristics of their transition matrix and a partition of subregions,

for example into remote, frontier and consolidated areas, can be detected from the data.

The paper is structured as follows: In the subsequent Sections 2 and 3, we present the details of the proposed method

and describe the data that we apply it to. Section 4 gives results from the analysis and discusses them, pointing to possible

interpretations but also restrictions of the method. Section 5 concludes with an outlook on how the method could be applied to5

further analyses.

2 Data

In this study, we use land-cover maps of the Brazilian legal Amazon (cp. Fig. 1) produced by the TerraClass project (INPE

and EMBRAPA) for the years 2008, 2010 and 2012. The land-cover maps are derived from high-resolution Landsat-5 thematic

mapper (TM) and MODIS imagery using a mix of techniques including supervised learning and classification by spectral10

properties of different land-cover types and their annual variations (for details, see Almeida et al., 2016; Coutinho et al., 2013).

The maps consist of polygons that represent patches of land attributed to one of 16 specific land-cover types (see Table S1

in the supplementary materials). The maps are based on the PRODES project that distinguishes between forest, patches not

belonging to the rain forest biome (mainly savanna), hydrography (i.e. lakes and rivers), and deforested patches larger than

6.25 ha (INPE, 2016). TerraClass further specifies the land-cover of formerly deforested areas according to 12 types including15

different kinds of pasture land, secondary vegetation and annual crops. Coutinho et al. (2013) evaluated the accuracy of land-

cover detection using the method described in Congalton and Green (2009). Considering a very small sample of the data set,

they found up to 58 % commission and up to 34 % omission errors. Almeida et al. (2016) found that the dominant land cover

on previously deforested land is pasture (62% as of 2008) followed by secondary vegetation (21%). Annual crops only covered

about 5% of the total deforested areas.20

This paper focuses on relevant transitions between major land-cover classes occurring in different subregions of the Brazilian

Amazon. Therefore, we first exclude patches that could not be classified, e.g. due to cloud cover. Second, we discard land-

cover types that do not change by definition, i.e. lakes and rivers and patches not belonging to the rain forest biome. Third, we

aggregate similar land-cover types into six new classes. These classes combine different types of less intensively used pasture

as well as types that only make up small fractions of the Amazon like mining and urban patches (see Table S1) and group25

land-cover types between which high confusion errors exist, thus decreasing them. In a final step of the data preparation, we

assign patches to N different subregions. Depending on the scale of spatial aggregation of our analysis, the subregions either

correspond to the legal municipalities of the Brazilian Amazon (N=770, as of 2007) or to the mesoregions (N = 30) as defined

by the Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics, IBGE (2016)).
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Figure 1. Map of the Brazilian legal Amazon and its nine federal states: Acre (AC), Amapá (AP), Amazonas (AM), Maranhão (MA), Mato

Grosso (MT), Pará (PA), Rondônia (RO), Roraima (RR) and Tocantins (TO).

3 Method

In order to compare land-cover dynamics between different subregions of the Amazon, we proceed in two steps: First, we

calculate the area in a given region that undergoes a transition from one land-cover type to another between two reference

years (including the lumping of several land-cover types into one class) and normalize the obtained matrices. Second, we

compare the transition matrices between subregions by means of cluster analysis and network methods. In this section, we5

describe the steps of the method in detail.

3.1 Transition matrices

Markov chains are stochastic systems, in which the probability distribution of the next time step only depends on the current

state of the system, i.e. the system has no memory. A subregion can be thought of as consisting of a number of land patches that

undergo transitions between land-cover classes. Markov analysis then describes how the set of patches may change over time.10

Although the Markov property, i.e. that the transition probability only depends on the present state of the system, can be shown

to hold approximately for land-use systems (Robinson, 1978), the transition rates are generally not constant over time, which

means the system is not stationary. This is not surprising because of the various climatological and socio-economic drivers

and political decisions influencing land-cover dynamics (Walker, 2004). Even though Markov chain analysis may oversimplify

land-cover dynamics because it does not take the underlying processes explicitly into account and may therefore not be suitable15

to project future land-cover change, it serves here as a first approximation in obtaining a general understanding of the land-cover

dynamics observed in the data.
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Figure 2. Illustration of the geometric union operation that combines the information of two land-cover maps into a transition map and how

the transition matrices are obtained from this map.

We obtain the transition matrices of subregions by calculating the areas in a given subregion that undergo a transition

from a land-cover class i to another class j. The transition matrix of one subregion T(t) is an n×n matrix with elements

Tij(t), i, j ∈ {1, ...,n}, where n is the number of land-cover classes. The transition matrix depends on time, indicating the

non-stationarity of the Markov process. In the following, however, we omit the time dependence for ease of notation. With the

aggregation described above, n= 6. We estimate Tij from the data by first projecting the coordinates of the patches (in the data5

given in the South American Datum (SAD69) coordinate system) to the South America Albers Equal Area Conic projection.

Second, we compute the geometric union with a GIS software combining the information contained in the two land-cover

maps of the reference years into one data set. Finally, we sum up the area of all patches in one subregion that undergo the same

transition. Figure 2 illustrates the creation of the transition matrix Tij from the data.

To estimate transition probabilities, we have to normalize the transition matrices. Thereby, we also make subregions of10

different total area comparable. We normalize the rows of the transition matrices to 1, which allows us to focus on relative

changes in single land-cover classes,

pij =
Tij∑
k Tik

for i, j : 1...n. (1)

The normalization does not work if one land-cover class i does not figure in the data of one subregion as
∑
k Tik would be

equal to zero. In such cases, we set the diagonal element Tii = 1, implying that we handle the land-cover class in the particular15

subregion as if no change occurs.

In statistical terms, p = (pij) is a stochastic matrix (compare Norris, 1997) with the properties pij ≥ 0 and
∑
j pij = 1 for

i= 1...n. It corresponds to the maximum likelihood estimation of the transition probability matrix of a first order Markov chain

where land-cover classes correspond to the states of the Markov chain and the rows of p specify the transition probabilities

between the states (Anderson and Goodman, 1957).20

Figure 3(a) presents a visualization of the Markov chain and the calculated transition probabilities estimated for the whole

Brazilian Amazon. The figure shows that there are transitions between almost all aggregated classes, but they occur with very

different probabilities. After deforestation, about two thirds of the areas are used as pasture, whereas the rest is mostly classified

as secondary vegetation. Furthermore, transitions occur frequently between pasture partly covered with woody vegetation (dirty

pasture) and clean pasture. The former makes also frequent transitions to secondary vegetation. Finally, there are considerable25
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Figure 3. Illustration of the normalized transition matrices between simplified classes derived for the whole Brazilian Amazon from the

TerraClass data set (changes between 2010 and 2012): (a) Markov transition matrix p (self-loops omitted) (b) conditional transition matrix

q. The strengths of the arrows are scaled with the transition probabilities except for those representing small values. Arrows with very small

values (below 0.005) are not shown. The values are given in Tables S2 and S3.

transitions from and to the “other” class, in which we aggregated the minor land-cover types mosaic of uses, urban area, mining,

others and reforestation from the original TerraClass classification.

Alternatively to the Markov analysis, one could normalize the sum of the transition matrix elements Tij to one. Such a

normalization would keep the information on the initial distribution of land-cover classes in one subregion but would not allow

to analyze relative changes in individual land-cover classes.5

The transition probability matrix p, representing the dynamics of an underlying Markov chain process, includes information

on the patches that undergo changes and the patches that remain in their land-cover class. To only consider changes, we set the
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diagonal elements to zero before normalizing the rows of T to 1,

qij =





Tij∑
k 6=iTik

for i 6= j

0 for i= j.
(2)

q = (qij) thus estimates the probability to make a transition from a single land-cover class i conditional on that there is a

transition to a different land-cover class j. Figure 3(b) shows a visualization of this conditional transition matrix for the whole

Brazilian Amazon. For land-use classes that have a high proportion of patches remaining in the same class, this figure allows5

inspecting the relative shares of transitioning patches more easily.

The normalized matrices p and q describe the transitions between all land-cover classes. In the following we are particularly

interested in comparing transition probabilities from a single land-cover class to all others, formally represented by the rows of

the normalized matrices. If we only focus on the rows, we solve the above-mentioned problem of missing land-cover classes

in a subregion by simply discarding the respective subregions from the analysis. To increase the robustness, we also discard10

subregions having less than 1km2 of the considered land-cover class.

As described above, we estimated the normalized transition matrices p and q for all mesoregions and municipalities sepa-

rately. In general, the lower the spatial aggregation, the higher is the variability in space and in time, which we observe when

comparing the mesoregion and municipality maps and transitions between different times. Figure 4 shows two exemplary com-

ponents of the matrices q calculated for each municipality. The two maps highlight these subregions in darker colors in which15

the transition probability from clean pasture to secondary vegetation and vice versa is high compared to transitions to other

land covers. In Fig. 4(a), we can observe that transitions from clean pasture to secondary vegetation are infrequent compared

to other transitions except in the central North and the South West. Figure 4(b) suggests that along a horizontal band from the

West to the East and in the North (state of Roraima) the transition probability from secondary vegetation to clean pasture is

higher than in the other parts of the Brazilian Amazon. The maps in Fig. 4 and similar maps for all other possible transitions20

contain the information that we aim to aggregate using clustering analysis. The next section therefore describes this second

step of our method.

3.2 Clustering analysis

Clustering methods are a basic techniques described in the machine learning and data mining literature (Jain and Dubes, 1988;

Gan et al., 2007). In recent years, the basic problem of clustering nodes in complex networks has also gained a lot of interest in25

complex systems science (Fortunato, 2010). In this paper we choose a combination of established and more recent clustering

methods to compare and test the robustness of our results. The chosen established methods are hierarchical clustering and

the k-means algorithm. The other methods are based on complex networks that we construct from a difference measure. To

partition the network, we apply two different community detection algorithms, the fastgreedy and Louvain algorithms (Clauset

et al., 2004; Blondel et al., 2008).30

The first method applies hierarchical clustering that merges data points or clusters based on their distance in the abstract data

space. In the context of this analysis, a data point x is either a full normalized transition matrix (flattened, such that x ∈ Rn2
)
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Figure 4. Map of two selected components of the conditional transition matrices q for each municipality of the Brazilian legal Amazon.

Colors indicate the shares of areas that make a transition from (a) clean pasture to secondary vegetation and (b) secondary vegetation to clean

pasture.

or a single row of such a matrix (x ∈ Rn). Each data point corresponds to an individual subregion. We choose to calculate the

distance between two data points x and y by the `1 norm, also called Manhattan distance, d(x,y) =
∑
i abs(xi− yi). This

distance is easy to interpret in the context of probabilities and compared to the euclidean metric does not punish outliers of a

cluster as much. The distances between two clusters or one cluster and one data point are calculated using the complete linkage

algorithm that takes the maximal distance between the points of two clusters. This algorithm identifies compact clusters with5

small diameters (Jain and Dubes, 1988). Hierarchical clustering produces a dendrogram of cluster partitions. The clusters are

obtained by cutting the dendrogram at a certain level determining the number of clusters.
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The second method uses the k-means algorithm. The algorithm works in an iterative manner: It associates data points to

centroids and adjusts the position of the centroids by minimizing the within-cluster sum of squared distances. The k-means

algorithm inherently requires the choice of the euclidean metric to calculate distances.

The network methods both require the construction of a similarity network first. In the network, each node vα represents a

subregion and nodes with similar dynamics are linked by an edge eαβ , where the greek character indices refer to subregions.5

The connectivity of the network can also be represented by an adjacency matrix A = (Aαβ). To determine the similarity, we

use a normalized version of the Manhattan distance as the difference measure d(x,y) = 1
2k

∑
i abs(xi− yi), where k is the

number of land-cover classes n if we compare whole transition matrices and k = 1 if we only consider transitions from single

land-cover classes. The metric is zero if and only if transition probabilities are equal and 1 if they are completely different. We

set a threshold dth to transform the data into a network with the adjacency matrix A:10

Aαβ =





1 if d(xα,xβ)< dth

0 else.
(3)

This adjacency matrix contains all information on the similarity network. The threshold dth, which determines the subregions

that are connected, is chosen such that only links that are significantly different from a distribution of difference measures

of random vectors or matrices are realized. In order to obtain dth, we apply Monte Carlo simulation: we generate a large

number (106) of random samples of vectors or matrices, the values of which are drawn from a uniform distribution and rows15

are normalized. From the computed distribution of pairwise difference measures, we use the 5th percentile to determine the

threshold dth.

A visualization of such a similarity network is shown in Fig. 5 for transitions from clean pasture to other land-cover types.

The nodes of the network represent data points for the municipality drawn around it. Links are drawn between regions that

have a difference measure below the significant threshold dth = 0.11, which we obtain as described above from a Monte20

Carlo calculation of normalized random vectors of dimension 4 (because transitions to 4 other classes are possible). A visual

inspection of the network suggests that similar transition probabilities are detected in regions of the Eastern and the Southern

Amazon, whereas there are less similar transitions in the Northern part. The inset in Fig. 5 furthermore shows a histogram

of all pairwise differences. The threshold is indicated as a red vertical line. From tests with different thresholds and different

underlying data, we can conclude that the patterns observed in the similarity networks hardly depend on the exact choice of the25

threshold (or link density). Thus the construction of the network is robust with respect to variations of the threshold.

The visual inspection of similarity networks is difficult and may not be reliable. Therefore, we applied community detection

algorithms to the networks to infer information about the network structure. These algorithms identify clusters of nodes on

the network (in the literature the clusters are often called communities, hence the name) that have a high internal connectivity.

Most of these algorithms are based on the idea of optimizing modularity Q, a network measure that compares the frequency of30
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Figure 5. Illustration of a similarity network with a spatial division in municipalities for transitions from clean pasture to other land-cover

classes between 2010 and 2012. Inset: Histogram of difference metric values with threshold in red.

links inside of communities to the frequency of links between communities (Fortunato, 2010). For a network with adjacency

matrix A and clusters C, the modularity is given by

Q=
1

2m

∑

α,β

Aαβ −
kαkβ
2m

δ(Cα,Cβ), (4)

where kα =
∑
βAαβ is the degree of node α and m is the number of edges in the network. The term δ(Cα,Cβ) only gives

a contribution if nodes α and β belong to the same cluster. In the following, we constrain our comparison to the fastgreedy5

and the Louvain algorithms, which are computationally efficient and yield comparatively high modularity values. The general

idea of the fastgreedy algorithm as described in Clauset et al. (2004) is to subsequently join clusters such that the increase in

modularity is highest after the join. This produces a dendrogram, similar to the output of the hierarchical clustering method,

which can be cut at the level of highest modularity Q. In contrast, the Louvain algorithm developed in Blondel et al. (2008)

proceeds in two iterative steps: It first checks subsequently if the reassignment of single nodes to other clusters leads to an10

improvement in modularity. In a second step, it builds a new network combining all nodes of a community found in the

previous step into one node and sums up all edges between communities to form weighted new edges.

In the following, we apply these algorithms to the same heterogeneous data. A comparison between the different methods

will show whether the clustering can be considered robust.

10
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Figure 6. Relative areas that undergo changes in land-use classes between the years 2010 and 2012 (excluding primary forest).

4 Results and Discussion

This section describes patterns of land-cover change found in the Brazilian Amazon when applying the clustering algorithms of

differently normalized transition matrices or single rows of them. We show the spatial comparison of transitions between 2010

and 2012 with the threshold for the construction of the similarity networks set to dth = 0.11 (see Section 3.2). Comparisons of

transitions between other years are shown in the supplementary material.5

As explained in the methods section, we considered different normalizations of the transition matrices: the Markov matrices

p that also contain information about patches remaining in the same land-cover class and conditional transition matrices q

that disregard this information. First, we note that the majority of land patches does not change its class from one time step to

the next. This is illustrated in Fig. 6, where the relative area of patches that make a transition to a different land-cover class

is plotted (excluding primary forest), i.e. the sum of the diagonal elements of the transition matrix divided by the sum of all10

elements. Only in the Central Amazon and in some of the smaller municipalities there are considerable fractions of up to 50%

of the area undergoing a change in land-cover class. Because we are interested in the changes, we will focus our discussion

first on the conditional transitions matrices q and compare only single rows between the municipalities.

As an example, Fig. 7 displays the result of the clustering analysis for transitions from clean pasture to other land-cover

classes. To make the clustering comparable we fixed the number of clusters for the hierarchical and k-means clustering to the15

one obtained from the fastgreedy network clustering algorithm. As we can see from the figure, there are clearly distinguishable

clusters in the South and the North West of the Amazon colored in orange and cyan for all four different clustering algorithms.

These clusters are identified independently of the chosen clustering algorithm. In the other parts of the Amazon region, the

clusters vary dependent on the applied clustering algorithm. Both network community detection algorithms identify similar

clusters, even though the Louvain algorithm finds seven and the fastgreedy algorithm reveals five communities in the data.20
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Figure 7. Comparison of network (a, b) and classical (c, d) clustering algorithms for conditional transitions from clean pasture to other

land-cover classes between 2010 and 2012. Each cluster is visualized by one color. White regions lack data to estimate the transition matrix,

grey regions are not connected to the similarity network. The number of clusters for the hierarchical and k-means clusters was chosen to

match the outcome of the fastgreedy algorithm (5). The Louvain algorithm detects 7 clusters.

Also, some clustering algorithms seem to find two clusters for a group of municipalities, where other algorithms only find one

(compare e.g. the fastgreedy with the k-means algorithm). In addition to the two relatively stable clusters, we can observe in

Fig. 7 that most clusters consist of adjacent municipalities. This suggests that neighboring municipalities have a high likelihood

to exhibit similar relative land-cover changes.

In order to interpret the clusters, we analyzed the cluster centroids, i.e. the mean of all data points in a cluster weighted by5

the area of the considered land patches in the subregion. Figure 8 shows the cluster centroids from the hierarchical clustering.

The bars indicate the shares of patches making a transition from clean pasture to another land-cover class and thus show which

transitions are dominating or are absent in the cluster. They allow a straight-forward interpretation of different clusters: For

instance, in municipalities belonging to the orange cluster, most of the areas are converted to annual crops while only a small

fraction makes the transition to dirty pasture. This is in line with a previous study by Macedo et al. (2012) who found that10

cropland expanded mostly into pasture in the region between 2006 and 2010. The orange cluster is located inside the Mato

Grosso State, one of the biggest producers of soybeans in Brazil, which are detected as annual crops in the data. As we can see,
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Figure 8. (a) Hierarchical clustering with conditionally normalized transition probabilities from clean pasture to other land-cover classes

between 2010 and 2012, as in Fig. 7(c). (b) Cluster centroids showing the conditional transition probabilities of the average over the respective

cluster indicated by cluster color.

the clusters generally differ by their relative shares of land-cover types such as dirty pasture and secondary vegetation. When

comparing the cluster centroids between algorithms, these shares differ for the unstable clusters while the cluster centroids of

the stable clusters are almost the same.

So far, we discussed transitions from clean pasture to other land-cover classes as one example. But our analysis has shown

that the stable clusters identified in Fig. 8 can also be found when considering transitions from other land-cover classes, e.g.5

from secondary vegetation (see Figs. S1 and S2). However, the same patterns are not found for all transitions from single

land-cover types. This is not surprising considering typical land-cover sequences (often called land-use trajectories) that follow

total deforestation and are discussed in the literature (Ramankutty et al., 2007; Alves et al., 2009; de Espindola et al., 2012).

According to these studies, a common trajectory is that cleared forest patches are converted to pasture land or used for small-

scale subsistence agriculture. After a while, as the soil degrades, the areas are often abandoned leaving them for regrowth of10

secondary vegetation. Later, they may be cleared again and reused as pasture or they are converted to more intensive agricultural

cropland, e.g. for soy bean cultivation. These accounts are generally consistent with our results.

In addition to the clustering based on transitions from single land-cover classes, we tried to identify regions that are similar

regarding the transitions between all land-cover classes. The clustering based on the full Markov matrices p proved to be

very unreliable due to the high heterogeneity and dimensionality of the data (see Fig. S3). Furthermore, the analysis of the15

difference measure showed that only a small fraction of municipalities are significantly similar to each other compared to

random matrices. The clustering based on the full conditional transition matrix q turned out to be highly dependent on the

assumptions we made to fill in missing data. Thus, we can conclude that a general classification of land-cover dynamics only

based on the full transition probability matrices between different land-cover types is not reliable.

This may have several reasons: First, the underlying processes of land-cover change in the Amazon are very heterogeneous20

in space and time and are therefore difficult to compare. Second, the areas of the municipalities may be too small for a reliable

estimation of transition probabilities. For this reason we also analyzed the transition matrices at the level of mesoregions (see
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Fig. S5). However, there was no reliable clustering at this spatial aggregation either. Third, the classification of land-cover types

in the TerraClass data set comes with considerable errors. We tried to reduce the errors by aggregating some of the original

classes. However, there is not yet an evaluation of the performance of change detection available for this data set, which makes

an estimation of the errors in our analysis difficult.

The Brazilian Amazon has been broadly divided into mostly undisturbed, frontier and consolidated areas. For example,5

Becker (2005) distinguishes between the Arch, i.e. densely populated areas in the South and the East of the legal Amazon, new

frontier regions in the Central Amazon and the mostly undisturbed West. Aguiar et al. (2007) used this partition to analyze

inter-regional differences in factors potentially determining deforestation and found that the importance and combination of

factors such as protected areas, distance to roads and access to markets differs between the three subregions. Although these

studies focus on the 1990s and large-scale socio-economic patterns may have changed since then, our analysis suggests that10

there are no clear patterns in the estimated transition probabilities which correspond to a spatial partition such as the one

proposed by Becker (2005).

5 Conclusions

This paper has explored variations of a method that is able to provide important information on the dynamics of land covers,

including the ability to quantify and compare land-cover transition frequencies and identify regions of similar patterns of15

land-cover change. We have applied different clustering techniques to find patterns in the subregional transition probabilities

between land-use classes and detected patterns of subregions presenting similar transitions dynamics that are consistent with

other studies. In some regions, such as Northern Mato Grosso where transitions from pasture to annual crops dominate, spatial

patterns of relative land-use changes are consistent between different clustering methods. However, our analysis also indicates

that relative land-use changes do not follow clearly distinguishable patterns that are linked to earlier socio-economic partitions20

of the Brazilian Amazon.

The integration of socio-economic data into the framework described in this paper could potentially yield insights about the

underlying drivers and processes of land-cover transitions and how regionally different transition probabilities are determined.

Furthermore, the analysis presented in this paper could potentially be used to parametrize models of land-cover change that

track aggregate areas with different land-cover types. By controlling specific transition rates as functions of socio-economic25

drivers, such models, to be developed in future research, could give rough ideas about possible future developments of land

cover and thus support the planning of future land-use policies in the Amazon region.
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