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Abstract. In the earth sciences, there is only one single true reality for a property of any dimension whereas many 

realization models of the reality might exist. In other words, a set of interpreted multiplicities of an unknown 10 

property can be found but only one unique fact exists and the task is to return from the multiplicities to the 

uniqueness of the reality. Such an objective is mathematically provided by sparse approximation methods. The 

term ‘approximation’ indicate the sufficiency of an interpretation that is close enough to the true mode, i.e. reality. 

In geosciences, the multiplicities are provided by multiple-point statistical methods. Realistic modeling of the earth 

interior demands for more sophisticated geostatistical methods based on true available images, i.e. the training 15 

images. Among available MPS methods, the DisPat algorithm is a distance-based MPS method which generate 

appealing realizations for stationary and nonstationary training images by classifying the patterns based on distance 

functions using kernel methods. Advances in nonstationary image modeling is an advantage of the DisPat method. 

Realizations generated by the MPS methods form the training set for the sparse approximation. Sparse 

approximation is consisted of two steps, i.e. sparse coding and dictionary update, which are alternately used to 20 

optimize the trained dictionary. Model selection algorithms like LARS are used for sparse coding. LARS optimizes 

the regression model sequentially by choosing a proper number of variables and adding the best variable to the 

active set in each iteration. Out of numerous training dictionary methods given in the literature, the ILS-DLA is a 

variant of the MOD algorithm where the latter is inspired by the GLA and the whole trained dictionary is 

sequentially updated by alternating between sparse coding and dictionary training steps. The ILS-DLA is different 25 

from the MOD for addressing the internal structure of the dictionary by considering overlapping or non-

overlapping blocks and modifying the MOD algorithm according to the internal structure of the trained dictionary. 

The ILS-DLA is faster than the MOD in the sense that it inverts for smaller blocks constructing the trained 

dictionary rather than inverting for the entire block. The subject of this paper is an integration study between sparse 

approximations from image processing and compressed sensing, multiple-point statistics from the field of 30 

geostatisitcs, and the geophysical methods and reservoir engineering from the branch of petroleum science. This 

paper specifically emphasizes the utilization of image processing in solving reservoir complexities and enhancing 

reservoir models. 
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1 Introduction 

In geoscience, there is only one single true model for a property of the earth but numerous models of the real earth 

property exists. This concept is referred to as uncertainty in the geoscience and reservoir modeling. In geoscience 

and reservoir modeling it is mostly acknowledged to manipulate the models and find the best one among a finite 

set of possible models by performing further experiments and observing the results. It is neither guaranteed that 5 

the best model of a finite set of models is actually the true model nor that it is the best practically achievable model. 

Trivially, the more available models as the population samples, the more it is guaranteed that the selected best 

model is a closer translation of the reality, i.e. the true model. 

1.1 Model multiplicities by the MPS methods 

In reservoir characterization and modeling, providing a large set of population samples is practically impossible 10 

unless introducing stochasticity in the models using the multiple-points statistics (MPS) methods. It is known that 

simple two-point geostatistics methods (Deutsch and Journel, 1998; Strebelle, 2000) fail to properly generate 

stochastic models especially for complex reservoirs, e.g. a reservoir which is deltaic in one part and fractured 

carbonate ramps in other parts. Delta properties are nonstationary and fracture network properties can also be 

nonstationary. Two-point geostatistics methods use variogram to model property variations between two points in 15 

the reservoir based on spatial distance. It will fail to properly model for farther distances if the changes in property 

is abrupt or nonstationary. To alleviate, different variogram models can be built for a neighborhood to capture 

property variations, but even this method does not completely capture the variations. 

As a more advanced variant, a location-independent model can be used as a source of information and statistical 

changes for multiple-point statistics (MPS) algorithms to train and produce reliable reservoir static models. This 20 

location-independent model is called training image and its location-independence property will lead to producing 

various stochastic reservoir models (Haldorsen and Damsleth, 1990; Mariethoz and Caers, 2015). More realistic 

training images and more reliable stochastic models will be generated if wide and accurate prior information about 

the reservoir is available. Pattern-based methods like SimPat (Arpat, 2005), FilterSim (Zhang, 2006), Direct 

Sampling (Mariethoz and Renard, 2010), DisPat (Honarkhah, 2011), and WaveSim (Chatterjee et al., 2012) are 25 

generally best methods for MPS reservoir modeling. The SimPat algorithm is time-consuming and in the FilterSim, 

defining the filters adds complexity to the algorithm. The WaveSim algorithm is similar to the FilterSim and its 

complexity is in selecting an optimum scale for wavelet decomposition in the task of pattern classification. DisPat 

algorithm is known as the best of this kind for its ability to integrate data based on visual system of the human 

being and representing new algorithms for modeling images with nonstationary properties. 30 

1.2 Sparse approximation as mathematical tools to sparsity-based compressed model 

The MPS methods are used to generate the set of multiplicities based on one single training image which itself is 

not known as the true model. Therefore, the MPS generated realizations are all translation of an unknown true 

model. The task is to achieve one single model image as the representation of the true model from a large set MPS 

realizations which are considered as the manipulations of the true model. The mathematical tools to perform such 35 

a task is known as the sparse approximation from the field of image processing. The term approximation reminds 

the impossibility or unnecessity of obtaining the exact true model. 
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In a wider branch of image processing, the large set of stochastic reservoir MPS model images (generated by any 

of the MPS methods) could be used as a set of training images for dictionary training in the context of image 

compression (Aharon et al., 2006a and 2006b; Bryt and Elad, 2008; Cheng, 2015; Elad, 2010; Elad and Aharon, 

2006; Horev et al, 2012; Khaninezhad and Jafarpour, 2013; Mairal et al., 2009 and 2008; Rubinstein et al., 2010a, 

2013, 2010b and 2008; Skretting and Engan, 2011a, 2011b and 2010; Skretting and Husøy, 2003; Skretting et al., 5 

1999; Starck et al., 2010). There are generally two types of dictionaries that can be employed to compress a set of 

model images: explicit and implicit dictionaries. The explicit dictionaries are out of the shelve dictionaries with 

fixed elements usually explicitly stated by analytical equations. The implicit dictionaries are different from the 

explicit ones in the sense that they are trained and adapted by the specific set of training images. Therefore, the 

explicit dictionaries are general but less effective and the implicit dictionaries are trained on specific training 10 

images but more effective on that set or similar sets of training images. 

The process of sparse approximation basically deals with implicit dictionaries which are trained and adapted on 

specific sets of training samples (images or signals). The sparse approximation is itself a sequential alternation 

between two steps: sparse coding and dictionary update. The sparse coding step deals with selecting the best vector 

(or model) from a large set of vectors (or models) which minimizes an optimization problem under some sparsity 15 

constraint. In other words, in each iteration, the sparse coding methods like BP (Chen et al., 1999), MP (Mallat 

and Zhang, 1993), OMP (Rubinstein et al., 2010b; Tropp, 2004; Tropp and Gilbert, 2006), and ORMP (Gharavi-

Alkhansari and Huang, 1998) and model selection algorithms like LARS (Efron et al., 2004; Tibshirani, 1996) and 

Lasso (Hastie et al., 2009) are employed using a fixed dictionary to obtain the sparse coefficients. The obtained 

sparse coefficients are alternately used in the dictionary update step. 20 

Different methods of dictionary updating are presented in the literature, e.g. MOD (Cheng, 2015; Elad and Aharon, 

2006), K-SVD (Aharon et al., 2006b; Bryt and Elad, 2008; Rubinstein et al., 2010b; Skretting and Engan, 2011a 

and 2011b), ODL (Mairal et al., 2009), ILS-DLA (Engan et al., 2007; Skretting and Engan, 2011b), and RLS-DLA 

(Skretting and Engan, 2011a and 2010). The MOD algorithm is inspired by the GLA to sequentially update the 

trained dictionary by alternating between the sparse coding and dictionary update steps inverting for the whole set 25 

of training data. The K-SVD algorithm is the generalization of the k-means clustering algorithm. In the K-SVD, 

the dictionary is updated sequentially by applying the singular value decomposition on each column of the trained 

dictionary in each iteration. The Online Dictionary Learning algorithm also follows the two step procedure and it 

is specifically designed to handle large scale data sets under the scope of online optimization algorithms. The ODL 

is fast for being based on stochastic approximation and updating the dictionary recursively by using the previous 30 

one as the warm restart. The ILS-DLA is a variant of the MOD algorithm and it is different from the MOD for 

addressing the internal structure of the dictionary by considering overlapping or non-overlapping blocks and 

modifying the MOD algorithm according to the internal structure of the trained dictionary. The ILS-DLA is faster 

than the MOD in the sense that it inverts for the smaller blocks which are constructing the trained dictionary rather 

than inverting for the whole block. The RLS-DLA exploits the same methodology as in the MOD algorithm where 35 

the RLS-DLA starts with an initial dictionary and at each step a new vector of data is introduced into the training 

set and the dictionary is updated accordingly. A forgetting factor is introduced into the algorithm to forget the early 

stages dictionaries and focus on the late stages dictionaries. 
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1.3 The case study 

In this paper, the sparsity-based compressive reservoir characterization and modeling workflow using the ILS-

DLA training dictionary with LARS sparse coding methodologies is explained and applied on a gas injection case 

of an Iranian oilfield located southwest of Iran. The gas is injecting into the Asmari reservoir of this oilfield to 

maintain pressure and preserve the recovery factor. The Asmari reservoir in this oilfield is described as a very 5 

complicated reservoir because of the presence of interbeds of sandstones and carbonates, the possibility of a 

fracture network connecting the reservoir along the crest, and the presence of a deltaic depositional system in the 

west of the reservoir. Modeling such a complicated reservoir demands for new stochastic MPS methods rather than 

simpler two-point geostatistical methods. 

Seismic, well log and reservoir data are used to build semi-industrial reservoir model images and the DisPat MPS 10 

method is applied to manipulate the model images and generate a large set of stochastic reservoir model images 

for two cases of fracture and deltaic systems. The gas injection process is simulated on couple of 2D models 

extracted from the fractured part and the deltaic part of the reservoir. A set of stochastic realizations based on the 

training images from the fractured part were generated under the stationarity condition and for the deltaic part 

under the nonstationarity assumption. Each of these training sets were used to train dictionaries by the ILS-DLA 15 

method. The offline trained dictionary was then utilized in a sparsity-based image compression scheme using the 

LARS method to represent a single model, i.e. the compressed sparsity-based model. Proper experiments for 

comparison of goodness between the MPS generated stochastic realizations and the resultant compressed sparsity-

based model image is to run the simulation for each model and compare the production and pressure profile with 

those of the true model. Experimental results show that the compressed sparsity-based model images, in almost 20 

every cases and testing all the methods, are superior to the majority of the MPS stochastic realizations, 89.58% of 

the experiments falling in the area of 90%-90% (upper 10%) superiority, and 95.83% in the area of 85%-85% 

(upper 15%). The results are even more encouraging considering the fact that the MPS realizations are quite 

stochastic and are not conditioned with hard or soft data, and that the interfering parameters involved in sparse 

approximation processes could be optimized to achieve much better results. 25 

The subject of sparsity-based compressive reservoir characterization and modeling is an integration study which 

involves the geostatistics (for multiple-point statistics modeling), image processing (for dictionary training, sparse 

approximation, and image compression), seismic data interpretation and inversion (for providing AI along with 

saturation and porosity inverted 3D cubes, seismic spectral decomposition 3D cube, interpreted horizons), 

petrophysics (for providing well log data and interpretation), and reservoir simulation (for providing criteria to 30 

quantify the goodness of model image). 

1.4 Paper structure 

In this paper, first the major blocks of the sparsity-based compressive workflow in reservoir characterization and 

modeling is presented. These main blocks are consisted of the DisPat multiple-point statistics method and the 

sparse approximation algorithm. The sparse approximation algorithm is consisted of sparse coding and dictionary 35 

training steps. For the sparse coding step, the LARS algorithm and its variants are introduced and for the dictionary 

update step, the ILS-DLA algorithm is represented. The application of the sparsity-based compressive workflow 
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on a case study is discussed afterwards and the results are presented. The paper is finalized by some concluding 

points. 

2 DisPat MPS Algorithm 

DisPat is a distance-based pattern-based multiple-point geostatistical method which was first introduced by 

Honarkhah (2011). In this algorithm, alike the other pattern-based MPS methods, the training image is scanned by 5 

the designed template and the patterns are extracted from the training image. The patterns are then classified based 

on distance functions using the kernel methods. A distance function measures the distance between each pair of 

patterns in the metric space. Any two close points in the metric space refer to two similar patterns from the pattern 

database. The kernel k-means clustering algorithm is used to classify the patterns in the pattern database. 

2.1 Pattern Simulation 10 

Having the patterns classified, the sequential simulation is performed on the realization grid. The closest cluster to 

the data event is determined and one pattern from that cluster will be randomly chosen to be replaced on the node 

location. The distance function which is used to find the closest cluster to the data event has to account for the 

informed nodes, frozen nodes, and hard data nodes by specifying different weights to each type of the data. The 

SimPat method uses Euclidean distance function to find the most similar pattern to the data event. Filtersim method 15 

uses the Manhattan distance function whereas DisPat algorithm uses two distance functions for two different 

purposes; the proximity distance transform is used to build the distance matrix and the Manhattan distance function 

is used to find the most similar pattern to the data event. 

2.2 Multigrid and Multiresolution 

To improve the long-range spatial characteristics of the realizations, DisPat utilizes the widely used multigrid 20 

approach and the newly invented multiresolution approach. In the multigrid approach, the grid size does not change 

but the template size changes from one level to another level. Sequential simulation starts from larger scale and 

the final realization at each level will be transferred to the lower level considered as informed nodes. As a result, 

large-scale properties are transferred from one grid level to the next finer grid level. In the multiresolution method, 

on the other hand, the template size is fixed and the grid size is changing from one level to the next. The simulation 25 

starts from the coarsest resolution and continues to the last finer resolution grid. The final realization at each level 

is informed to the next resolution level where a one-to-one correlation between two consequent grids is not held. 

Correspondingly, the realization and the training image are rescaled and interpolated to the next resolution level. 

2.3 Hard Data Integration 

The DisPat algorithm considers two hard data integration scopes for the two multigrid and multiresolution 30 

approaches. For the multigrid approach, the DisPat will strictly specify each hard data to the closest possible node 

and if the node has been introduced before, it will be specified to the next closest enclosing node. The hard data 

which are left out of this procedure will be rejected. In the multiresolution approach, the grids are different in size 

and the location of nodes changes from one level to the next level and a one-to-one correlation does not hold. The 

cubic interpolation is used to transfer the hard data from one level to the next level. For interpolation, either kriging 35 
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or inverse-distance weighting method is used. Hard data integration based on multiresolution approach will result 

in more appealing MPS realizations. The reason for such an improvement is that the multiresolution approach 

captures the statistical information of the training image better than the multigrid approach. Furthermore, the 

inverse-distance weighting will better represent the data structure in lower resolution grids. 

2.4 Soft Data Integration 5 

Hard data refers to well data and soft data refers to seismic data. In SimPat, along with the training image, a soft 

training image is considered and the soft pattern data base is sought and formed as it is done for the training image 

itself. A weight is given to the soft data to diminish or increase its role in building the final pattern based on the 

reliability wright given to the soft data. In Filtersim, Zhang (2006) and Wu (2007) proposed a new method for 

continuous images. They do the conventional unconditional simulation and find the most similar pattern for the 10 

node location. Simultaneously, the corresponding soft data event is found and pasted on the uninformed part of the 

data event and hence, the soft data is injected into the final simulation. For categorical images, the method in 

SimPat is integrated with the ߬ model from the SNESim and a new data event is produced. The algorithm searches 

for the most similar prototype to the data event and the ߬ model is used to combine this data event with the soft 

data event. Another search is done to find the closest prototype to this newest data event produced by the ߬ model. 15 

In DisPat, the soft data integration is performed through distance calculations. The pattern databases are formed 

for the two sets of training image and the soft training image, patterns are clustered and the prototypes are specified. 

For each data event on a node location, the distance to each of the prototypes in either sets of the data (training 

image and the soft data) are calculated. These two distances are combined to form a new distance function in which 

the soft distance (i.e. the distance of the data event to the prototypes of the soft data) is weighted. This specified 20 

weight is itself a factor of the soft data reliability multiplied by the fraction defined as the ratio of the number of 

the informed nodes in a data event to the total number of nodes in that data event. It can be proven that this distance-

based soft data integration is a special case of the ߬ model. 

2.5 Nonstationarity 

Training images could be stationary or nonstationary. In a stationary image the patterns are repeated and the 25 

statistical properties are steady, whereas in a nonstationary image, no prior information is expected for any location. 

In SimPat, a reservoir is subdivided into different regions upon the user’s decision and based on the morphological 

characteristics of the reservoir. Each subregion is scaled or rotated such that the transition to the adjacent 

subregions are smooth and gradual. In Filtersim, additional morphological information is provided for grid nodes 

through the two other distinct grids conveying the scaling and rotation information. The drawback to these methods 30 

is the discontinuities which appear at the borders of these subregions where their corresponding training images 

are not coherent. Honarkhah (2011) has proposed three algorithms to generate nonstationary realizations needing 

only the training image as the prerequisite. 

In the Spatial Similarity Method (SSM), the DisPat algorithm saves the patterns in the database along with the 

location of each pattern in a separate location database. This method is based on the fact that the patterns closer to 35 

the data event are more similar to it than the farther patterns. The SSM searches all over the grid for the most 

similar pattern. The most similar pattern to the data event is the one which minimizes a distance function and is 
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defined as combination of the weighted pattern distance with the weighted location distance. These weights are 

complementary and add up to 1. The neighborhood-radius method (NRM) is principally similar to the SSM method 

except that the algorithm searches within a definite circle of neighborhood and during the simulation, similar 

patterns inside this neighborhood will be searched for. The distance function will be the distance between the data 

event and the patterns; the location criteria is applied on the boundary within which the patterns are selected. This 5 

method is most suitable for semi-stationary training images where the circle of neighborhood controls the distance 

for which the statistical properties can be assumed stationary. The automatic segmentation method (ASM) is used 

for highly nonstationary images in which stationary regions cannot be defined for any border locations. As a result, 

such images must be automatically segmented into supposedly stationary regions. The approach to such a task is 

to extract several features of the property in the image and cluster the training image based on these extracted 10 

features by the k-mean clustering method. Gabor filter banks are used to extract image properties in few orientation 

angles at constant frequencies. The energy of each filtered images is then exposed by applying the sigmoid function 

and convolving with the Gaussian function as the smoothing filter. Additional Spatial component images are added 

to the set of features as input to the k-mean clustering algorithm. The k-means clustering algorithm will 

automatically segment the training image into k subregions based on the set of input features. The number of 15 

subregions, k, is defined by the user. 

3 Sparse Approximation via Dictionary Learning 

The exact way to represent the signal ݀ ∈ Թ௡ as a linear combination of the columns of matrix ࡳ ∈ Թ௡ൈ௞ is given 

by ݉ࡳ ൌ ݀, where ݉ ∈ Թ௞. The sparsest solution to this problem is expressed as min
௠
‖݉‖଴ for which the ‖. ‖଴ 

counts the number of non-zero entries in the solution. The most desired solution to this system of equations is the 20 

one with the fewest number of nonzero coefficients. 

In an image processing problem, matrix ࡳ is called dictionary and its columns are called the atoms. These atoms 

are the building blocks of the dictionary and are normalized. Vector ݀ can be represented as a linear combination 

of the dictionary atoms, ൛ܩ௝ൟ௝ୀଵ
௞

. Curvelets, contourlets, wedgelets, bandlets, steerable wavelets, and short-time 

Fourier transforms are examples of the dictionary matrices. This representation is either exact or approximate and 25 

the exact representation of the vector ݀ is expressed as  

min
௠
‖݉‖଴ ݉ܩ					݋ݐ	ݐ݆ܾܿ݁ݑݏ						 ൌ ݀                                                                                                                       (1) 

The solution to the exact problem is ܳሺିࡳଵ݀ሻ and this is only achievable if ࡳ is invertible. In real problems, the 

exact solution is usually unachievable or it is not favorable and the approximate solution suffices. Obtaining the 

approximate solution to ݉ࡳ ൎ ݀ which bears the criterion of being the sparsest, is called the sparse approximation. 30 

The formulation for sparse approximation is represented as 

min
௠
‖݉‖଴ ݉ܩ‖					݋ݐ	ݐ݆ܾܿ݁ݑݏ						 െ ݀‖ଶ ൑ ߳                                                                                                          (2) 

In this case, matrix ࡳ is an overcomplete dictionary. The whole process is called compression technique. In the 

well-known cases of transform coding, the DCT or wavelet dictionaries are used to compress the data. The 

compression process finds and captures the redundancies in the data. For a set of ܰ signals, if the columns of ࡳ ∈35 

Թ௡ൈ௞ are normalized and ࢓ ∈ Թ௞ൈே (݊ ൏ ݇ ≪ ܰ) is sparse enough with ݏ଴ non-zeros in each column, the solution 
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to the factorization ࢓ࡳ ൌ  is guaranteed, it is unique, and it is the sparsest solution and can be achieved by the ࢊ

pursuit methods. Here,	ࢊ ∈ Թ௡ൈே (݊ ≪ ܰ) is the set of signals containing ܰ signals as its columns and ࢓ is the 

compressed solution and it certainly has lower entropy than the signal ݀ (Aharon et al., 2006a and 2006b; Horev 

et al, 2012; Rubinstein et al., 2010b). 

Sparse transform has wide applications in compression, feature extraction, regularization in inverse problems, 5 

denoising, dynamic range compression in images, separation of texture and cartoon content in images, inpainting, 

facial imagery and more. 

Optimal dictionaries are considered as flexible, simple, efficient for which the objective functions are well-defined. 

It is appropriate to have a structured dictionary rather than a free one. The proper dictionary is either drawn from 

a prespecified set of linear transforms or it is adapted to a set of training signals. The prespecified dictionaries are 10 

simple and fast and can be easily pseudoinversed if tight frames are used. These predetermined dictionaries are 

also called analytic dictionaries because the algorithm to derive the coefficients is known and analytically stated. 

For the same reason, they are called implicit dictionaries because the coefficients are implicit analytical statements 

instead of explicitly stated numbers. These dictionaries are highly structured, practically fast and efficient but they 

lack adaptability and they are only used for general-purpose image compression tasks. 15 

Alternatively, the trained content-specific dictionaries outperform the prespecified ones. One drawback to the 

content-specific dictionaries is its computational time. Whereas this drawback is downplayed nowadays by the 

ever-growing computational capabilities, but still their drawback of loss of generality remains as these content-

specific dictionaries are optimized for specific classes of images. These learning-based explicit dictionaries are 

adaptable but costly and inefficient. The coefficients of the learning-based dictionaries are explicitly computed by 20 

using machine learning algorithms which train the dictionary on a set of examples. The explicit dictionaries are 

tuned much finer than the implicit dictionaries and they perform significantly better. The size of the trained 

dictionary and the processed signal are limited by the complexity constraints. 

As a remedy, an input-adaptive approach can be designed to restore generality while preserving adaptivity. A novel 

dictionary, ࡳ, with a parametric structure is defined as the product of a fixed non-adaptive base dictionary, ࣘ, and 25 

a sparse atom representation matrix, ࡿ, i.e. ࡳ ൌ  The choice of ࣘ imposes a structure on the process of .ࡿࣘ

dictionary training which acts as regularizer and reduces the overfitting and instability in the presence of noise. 

The universal base dictionary consists of a fixed set of fundamental signals from which all observable dictionary 

atoms are formed. The generic matrix ࣘ can have any number of atoms but they are assumed to span the signal 

space. The matrix ࡿ provides efficient forward and adjoint operators which bridges the gap between implicit and 30 

explicit dictionaries (Horev et al, 2012). 

Adaptive methods prefer explicit dictionary representation over the structured ones. In fact, the atoms in ࡳ is a 

sparse combination of the atoms in ࣘ. In a sense, the dictionary ࡳ can be viewed as an extension to existing 

dictionaries (matrix ࣘ) adding them a new layer of adaptivity. The adaptive structure (ࡳ) is significantly more 

efficient than the generic dictionary (ࣘ) depending on the ࣘ–choice. It is evidently more compact to store and 35 

transmit. Parametric dictionaries bridges the gap between complexity and adaptivity for gaining a higher degree 

of freedom in training but sacrificing regularity and efficiency of the result. As a result, the input-adaptive approach 

compressions are applicable to a wide range of images (Horev et al, 2012) and it provides a simple, flexible, 
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adaptive and efficient dictionary representation for its low complexity, compact representation, stability under 

noise, and reduced overfitting. 

The main difficulty of the sparse representation is the problem of dealing with ݈଴ norm. The basis pursuit (Chen et 

al., 1999) turns this problem into an ݈ଵ norm which is an optimization problem, i.e. Eq. (1) and Eq. (2) are 

convexicated by replacing ݈଴ semi-norm with an ݈ଵ norm. Therefore, the goal of the basis pursuit is to find a 5 

solution to the sparse representation problem for which the number of non-zero coefficients is minimized. On the 

other hand, Lasso (Tibshirani, 1996) does not minimize the number of non-zero coefficients but it nulls the 

coefficients by changing the non-zero coefficients until the number of non-zero coefficients reaches a definite 

threshold. Lasso is in fact a sparsity-constrained sparse coding problem. Lasso is a modification of the Least Angle 

Regression and Shrinkage (LARS) algorithm and both are described under the scope of model selection algorithms. 10 

3.1 Model Selection Algorithms 

Subset Selection, Forward Selection, Forward Stagewise Linear Regression, Backward Elimination, Lasso, and 

LARS are different types of model selection algorithms used to select a parsimonious set of covariates among a 

larger set of them. Subset Selection is a discrete process which produce interpretable models by retaining a subset 

of predictors and discarding the rest. Shrinkage methods like ridge regression, Lasso, and LARS are more 15 

continuous than the subset selection method and are less susceptible to high variance. The followings are selected 

from (Efron et al., 2004; Hastie et al., 2009). 

3.1.1 Ridge Regression 

The ridge coefficients are obtained by minimizing the residual sum of squares which are also penalized by 

imposing a constraint on their size 20 

ෝ݉ ௥௜ௗ௚௘ ൌ argmin
௠

ቄ∑ ൫݀௜ െ ݉଴ െ ∑ ௜݃௝ ௝݉
௞
௝ୀଵ ൯

ଶ
൅௡

௜ୀଵ ߣ ∑ ௝݉
ଶ௞

௝ୀଵ ቅ                                                                         (3) 

where ߣ is a shrinkage controlling complexity factor and its larger values leads to larger shrinkage. The following 

is an equivalent way to write the ridge problem and explicitly state the size constraint 

ෝ݉ ௥௜ௗ௚௘ ൌ argmin
௠

∑ ൫݀௜ െ ݉଴ െ ∑ ௜݃௝ ௝݉
௞
௝ୀଵ ൯

ଶ௡
௜ୀଵ 				݋ݐ	ݐ݆ܾܿ݁ݑݏ				 ∑ ௝݉

ଶ௞
௝ୀଵ ൑  (4)                                                   ݐ

The inputs to the ridge regression should be centered and standardized before solving for the coefficients. The 25 

ridge problem can be rewritten in matrix form as 

ܴܵܵሺߣሻ ൌ ሺ݀ െ ሻ்ሺ݀݉ࡳ െ ሻ݉ࡳ ൅  (5)                                                                                                            ்݉݉ߣ

And the solution will be 

ෝ݉ ௥௜ௗ௚௘ ൌ ሺࡳ்ࡳ ൅  (6)                                                                                                                                  ்݀ࡳሻିଵࡵߣ

This formula indicates that the ridge estimates are just the ordinary least squares solution scaled by a factor of 30 
ሺ1 ൅ ݊ ሻ. Writing the SVD decomposition of theߣ ൈ ݇ matrix ࡳ as ࢁ઱ࢀࢂ, the least squares fitted vector can be 
written as 

ࡳ ෝ݉௟௦ ൌ ்݀ࡳሻିଵࡳ்ࡳሺࡳ ൌ  (7)                                                                                                                           ்݀ࡳࡳ

and the ridge solution is equivalently 
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ࡳ ෝ݉௥௜ௗ௚௘ ൌ ࡳ்ࡳሺࡳ ൅ ்݀ࡳሻିଵࡵߣ ൌ ઱ሺ઱ଶࢁ ൅ ்݀ࢁሻିଵ઱ࡵߣ ൌ ∑ ௝࢛
ఙೕ
మ

ఙೕ
మାఒ

௝࢛
்݀௞

௝ୀଵ                                                    (8) 

where ࢛௝ is the column of matrix ࢁ. Knowing that ߣ ൒ 0, the ߪ௝
ଶ ൫ߪ௝

ଶ ൅ ൯ൗߣ  coefficient is obviously less than 1. 

By comparing the ridge regression to the linear regression we conclude that the coordinates are shrunk by a factor 

of ߪ௝
ଶ ൫ߪ௝

ଶ ൅ ൯ൗߣ , which suggests that greater shrinkages are corresponding to smaller ߪ௝
ଶ’s. Small singular values 

 having small variance. 5 ࡳ ௝ correspond to the directions in the column space ofߪ

3.1.2 Lasso 

The Lasso is in fact a constrained version of ordinary least squares. In image processing, the Lasso is known as 

basis pursuit. Lasso is similar to the ridge regression and it is given as 

ෝ݉ ௟௔௦௦௢ ൌ argmin
௠

∑ ൫݀௜ െ ݉଴ െ ∑ ௜݃௝ ௝݉
௞
௝ୀଵ ൯

ଶ௡
௜ୀଵ 				݋ݐ	ݐ݆ܾܿ݁ݑݏ				 ∑ ห ௝݉ห

௞
௝ୀଵ ൑  (9)                                                  ݐ

Similar to the ridge regression, the inputs can be centered and reparametrized to eliminate the role of ݉଴ in the 10 

formula. The ܮଶ size constraint ∑ ௝݉
ଶ௞

ଵ ൑ ∑ ଵ size constraintܮ in ridge regression is replaced by the ݐ ห ௝݉ห௞
ଵ ൑  .ݐ

The Lasso Lagrangian form is given as 

ෝ݉ ௟௔௦௦௢ ൌ argmin
௠

ቄ∑ ൫݀௜ െ ݉଴ െ ∑ ௜݃௝ ௝݉
௞
௝ୀଵ ൯

ଶ
൅௡

௜ୀଵ ߣ ∑ ห ௝݉ห
௞
௝ୀଵ ቅ                                                                      (10) 

The parameter ݐ should also be adaptively set alike the ߣ factor. Each of the subset selection, ridge regression, and 

Lasso methods apply a simple transformation to the least squares solution. The subset selection estimate retains 15 

the ܯ largest coefficients of the least squares solution, ഥ݉ ௜. |ሺ݇݊ܽݎሾܫ ഥ݉ ௜| ൑  ሻሿ, and is known as a sort of hardܯ

thresholding. The ridge regression applies a proportional weight of 1 ሺ1 ൅ ⁄ሻߣ  as the shrinkage factor to the least 

squares solution, i.e. ഥ݉ ௜ ሺ1 ൅ ⁄ሻߣ . The Lasso solution truncates the least squares solution at zero and translates the 

rest by a factor of ߣ, i.e. ݊݃݅ݏሺ ഥ݉௜ሻሺ| ഥ݉௜| െ  .ሻା , which is known to be soft thresholdingߣ

The constraint region for the ridge regression is the disk ݉ଵ
ଶ ൅݉ଶ

ଶ ൑ |and for the Lasso is the diamond |݉ଵ ,ݐ ൅20 

|݉ଶ| ൑  The solution is the first point where the elliptical response contours of the minimization function touches .ݐ

these constraint regions. In the case of Lasso, since the diamond has corners, the corners are specific solutions to 

the problem where one of the coefficients is zero. In higher dimensions, the constraint region will be a rhomboid 

and the number of specific (sparse) solutions will be more and more coefficients will equal to zero at those 

locations. 25 

A generalization to the Lasso and ridge regression solutions is given by 

෥݉ ൌ argmin
௠

ቄ∑ ൫݀௜ െ ݉଴ െ ∑ ௜݃௝ ௝݉
௞
௝ୀଵ ൯

ଶ
൅௡

௜ୀଵ ߣ ∑ ห ௝݉ห
௤௞

௝ୀଵ ቅ                                                                            (11) 

for ݍ ൒ 0. Setting ݍ ൌ 0, the equation will solve for variable subset selection and ݍ ൌ 1 is corresponding to the 

Lasso. For ݍ ൌ 2, the solution estimates the ridge regression coefficients. For 1 ൏ ݍ ൏ 2, the equation is a 

compromise between Lasso and ridge regression. It is worthy to note that in the case of ݍ ൌ 1, the solution is not 30 

differentiable at the corners whereas for 1 ൏ ݍ ൏ 2,  it is differentiable. To take advantage of this property in Lasso 

(sparse solutions at the corners) elastic net equation is introduced as	ߣ ∑ ൫ߙ ௝݉
ଶ ൅ ሺ1 െ ሻหߙ ௝݉ห൯

௞
௝ୀଵ  to represent the 
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compromise between Lasso and ridge regression while keeping the property of having sharp solutions at the 

corners. 

3.1.3 LARS 

The least angle regression and shrinkage (LARS) method is introduced by Efron et al. (2004) and it is similar to 

the Forward Stepwise Regression but less greedy. The Forward Stepwise Regression builds the regression model 5 

sequentially and at each step, the best variable is added to the active set until all the active variables are included. 

LARS is similar to the Forward Stepwise but it does not work with the whole set of active variables. It only works 

with a proper number of variables. 

The inputs must first be centered and standardized to zero mean and unit norm. The algorithm starts with empty 

coefficients ෝ݉ଵ, ෝ݉ଶ, … ෝ݉௞ ൌ 0 and the residual is set to ݎ ൌ ݀ െ ݀̅ where ݀̅ ൌ ∑ ݀௜ ܰ⁄
௡
௜ୀଵ . The algorithm starts 10 

with finding the variable most correlated with the response, say ݉ෝ௜. The value of ݉ෝ௜ (which is zero) is continuously 

dragged towards its least squares coefficient ഥ݉ ௜; the amount of residual is continuously decreasing. This 

continuous dragging is stopped as soon as the correlation of a new variable like ෝ݉௝ with the evolving residual 

catches up with the correlation of the current variable ෝ݉ ௜. This continuous dragging of values for the two 

coefficients ෝ݉ ௜ and ෝ݉௝ towards their least squares coefficient is continued until the correlation of a third variable 15 

like ෝ݉ ௟ with the residual equals the correlation of the joint variables ෝ݉ ௜ and ෝ݉௝ with the current residual. After ݂ 

steps, ݂ variables are non-zero and the rest are still zero. This process is continued until all necessary variables, 

say ݇, are included in the model and the full least squares solution is reached at minሺ݇, ݊ െ 1ሻ. 

The geometrical interpretation of the LARS is depicted in figure 1 based on which the name “least angle” is 

specified. For each variable, the LARS estimate ෝ݉  gradually approaches the least squares estimate ഥ݉  but does not 20 

reach it. This geometry applies to the Lasso too. 

In fact, Lasso, and Forward Stagewise Linear Regression are variants of the LARS algorithm. LARS is always 

faster than the least squares solution. The computational time for LARS is the same as the least squares solution 

solving for the same number of variables. The LARS and Lasso are similar in term of efficiency but the Lasso 

takes a bit longer in some cases. LARS, Lasso, and Stagewise Will finally reach the least squares solution but 25 

Lasso and Forward Stagewise take more steps to finish such that Lasso stays between the other two. 

3.2 ILS-DLA Algorithm 

PCA (Zou et al., 2006), Generalized PCA (Vidal et al., 2005), MOD (Cheng, 2015; Elad, 2010), K-SVD (Aharon 

et al., 2006b; Bryt and Elad, 2008; Rubinstein et al., 2013 and 2008; Skretting and Engan, 2011a), ODL (Mairal 

et al., 2009), ILS-DLA (Engan et al., 2007; Skretting and Engan, 2011b), and RLS-DLA (Skretting and Engan, 30 

2011a and 2010) are among the training algorithms that can be employed to adopt the matrix coefficients to the 

images in the training set. The idea of iterative least squares dictionary learning algorithm (ILS-DLA) is proposed 

by Engan et al. (2007). In fact, the ILS-DLA method is similar to the MOD and RLS-DLA methods. The concept, 

formulation, and the algorithm of the ILS-DLA is the same as the MOD and the difference is only in the dictionary 

structure and the constraints that are applied on the problem. The ILS-DLA solves for the sparse approximation 35 

problem according to the internal structure of the dictionary. The dictionary matrix is blocked into a definite 
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number of submatrices which are either blocky or overlapping. The difference between the ILS-DLA and the MOD 

is that in the MOD, the whole dictionary is updated to be used along with the entire corresponding coefficients and 

the entire training set in a single inversion step; whereas in the ILS-DLA, the dictionary is structured and for each 

block inside the dictionary, the corresponding data and coefficients are involved in the inversion step to update for 

the block dictionary. This block dictionary is consistent over the whole dictionary. Therefore, in each inversion 5 

step, the process of dictionary update is reduced to updating a very smaller dictionary corresponding to a block. 

On the other hand, the RLS-DLA is quite different in the sense that it starts with an initial dictionary and it updates 

the dictionary at each step by introducing a new training vector to the set. In the RLS-DLA the dictionary is updated 

recursively and no matrix inversion is involved. Therefore, in the RLS-DLA no internal structuring of the 

dictionary is taking place. In a sense, the ILS-DLA stands in the middle of the MOD and RLS-DLA matrix. 10 

Engan et al. (2007) discuss the ILS-DLA family of methods under three categories: unconstrained block based 

dictionaries, unconstrained overlapping dictionaries, and constrained. 

3.2.1 Unconstrained block based dictionaries 

For each subset of data, i.e. signals ࢊ௟, the corresponding weights are given by ࢓௟ and they are related by a 

dictionary matrix ࡳ ∈ Թ௡ൈ௞ (݇ ൐ ݊) defined as	ࢊ௟ ൌ ݈ ௟, for࢓ࡳ ൌ 1, 2, … ,  ௔௨௚ as the 15ࢊ Defining matrix .ܮ

augmentation of the training vectors ࢊ௟ and the coefficient matrix ࢓௔௨௚ to be the augmentation matrix for of the 

coefficient vectors ࢓௟ corresponding to ࢊ௟, for the whole data set we can write ࢊ௔௨௚ ൌ  ௔௨௚, as the following࢓௔௨௚ࡳ

 
 

                                                                         (12) 
 

Matrix ࡳ௔௨௚ is the augmentation of matrices ࡳ. The optimization problem for finding the coefficients ࢓௔௨௚, i.e. 

the sparse coding step, is given as 

argmin
ೠ೒ೌ࢓,ࡳ

ฮࢊ௔௨௚ െ ࡲ௔௨௚ฮ࢓௔௨௚ࡳ
ଶ
		ݎ݋			 argmin

ೠ೒ೌ࢓,ࡳ

ฮࢊ௔௨௚ െ ࡲ௔௨௚ฮ࢓ࡳ
ଶ
௟‖଴࢓‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ							 ൌ  ∀݈                    (13) 20				଴ݏ

where ‖. ‖ி indicate the Frobenius norm, ‖. ‖଴ represent the cardinality, and ‖. ‖ express the Euclidean norm. 

Solving for the coefficients ࢓௔௨௚ is an iterative solution and sparse coding techniques like ORMP, LARS, and 

their variants can be used to obtain the coefficients. The ILS-DLA is developed to solve the optimization problem 

stated in Eq. (13) which is an error minimization with sparsity constraints or equivalent to Eq. (13) but with 

additional constraints. 25 

The ILS-DLA algorithm for unrestricted bock based dictionaries is in fact reduced to the method of optimal 

direction (MOD) for which the algorithm can be written as below. Note that the matrix inversion in Eq. (16) is 

usually affordable (pose no problem) if the dictionary columns are normalized and a sufficiently large training set 

is used to train the dictionary. 

 30 
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Having the set of data, ࢊ௔௨௚ ൌ ൛ࢊ௝ൟ௝ୀଵ
௅

 

Defining an initial dictionary, ࡳ଴ 
Set ݅ݎݐ ൌ 0 
The sparse coding step: 

Finding the coefficient matrix, ࢍ࢛ࢇ࢓
ሺ௜ሻ , by solving for the optimization problem as 

                                  argmin
ೠ೒ೌ࢓

ฮࢊ௔௨௚ െ ࡲ௔௨௚ฮ࢓ሺ௜ሻࡳ
ଶ
௟‖଴࢓‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ							 ൌ  ∀݈                                    (14)				଴ݏ

using the ORMP method 
The dictionary update step: 

Having the coefficient matrix, ࢓௔௨௚
ሺ௜ሻ , obtained from the previous step, the dictionary is updated by solving for 

the optimization problem 

                                   argmin
ࡳ

ฮࢊ௔௨௚ െ ௔௨௚࢓ࡳ
ሺ௜ሻ ฮ

ࡲ

ଶ
                                                                                           (15) 

using an inversion step as 

ሺ௜ାଵሻࡳ                                    ൌ ௔௨௚࢓௔௨௚൫ࢊ
ሺ௜ሻ ൯

்
ቂ࢓௔௨௚

ሺ௜ሻ ൫࢓௔௨௚
ሺ௜ሻ ൯

்
ቃ
ିଵ

                                                                (16) 

The dictionary columns should to be normalized 
Set ݅ݎݐ ൌ ݎݐ݅ ൅ 1 
 

The ILS-DLA algorithm, after (Engan et al., 2007; Skretting and Engan, 2011b)  

3.2.2 Unconstrained overlapping dictionaries 

Rather than block based matrices, overlapping matrices are also widely appear in signal processing. The ILS-DLA 

procedure to solve for unconstrained overlapping dictionary matrices follows the same path as the block based 

matrices but the setting is different. The major dictionary matrix ࡳ௔௨௚ is composed of overlapping submatrices 5 

ࡳ ൌ ሾࡳଵ  ௉ሿ் asࡳ	…

 
 

                                                                       (17) 
 

and illustrated schematically in figure 1. By substituting Eq. (17) into Eq. (12), the following system of equations 

is achieved 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵࡳ 	 	 	 	 	 	

ଶࡳ ଵࡳ 	 	 	 	 	

ଷࡳ
⋮

௉ିଵࡳ
	௉ࡳ
		
		
	

ଶࡳ
ଷࡳ
⋮

௉ିଵࡳ
௉ࡳ
		
		
	

ଵࡳ
ଶࡳ
ଷࡳ
⋮

௉ିଵࡳ
	௉ࡳ
		
	

	
⋱
⋱
⋱
⋱
⋱
⋱
		
	

	
	
ଵࡳ
ଶࡳ
ଷࡳ
⋮

௉ିଵࡳ
	௉ࡳ
	

	
		
ଵࡳ
ଶࡳ
ଷࡳ
⋮

௉ିଵࡳ
௉ࡳ
	

	
		
	
ଵࡳ
ଶࡳ
ଷࡳ
⋮

௉ିଵࡳ
௉ࡳ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሾ௡ሺ௅ሻሿൈൣ௞൫௅ିሺ௉ିଵሻ൯൧

ۏ
ێ
ێ
ێ
ۍ

ଵ࢓
ଶ࢓
ଷ࢓
⋮

௅ି௉࢓
ےା૚ࡼ௅ି࢓

ۑ
ۑ
ۑ
ې

௞൫௅ିሺ௉ିଵሻ൯

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵࢊ
ଶࢊ
ଷࢊ
⋮

௅ିଵࢊ
௅ࢊ ے

ۑ
ۑ
ۑ
ۑ
ې

௡ሺ௅ሻ

                 (18) 

The schematic in figure 1 is helpful in understanding how the sizes of the matrices are obtained. The corresponding 10 

optimization problem is written as (compare to Eq. (13)) 
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argmin
࢓,ࡳ

ฮࢊ െ ࡲฮ࢓௔௨௚ࡳ
ଶ
	ݎ݋		 argmin

࢓,ࡳ
ࢊ‖ െ ࡲ‖࢓ࡳ

ଶ ௟‖଴࢓‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ							 ൌ  ଴                                                    (19)ݏ

and ࡳ௔௨௚ is structured as in the Eq. (17); and ࡳ ൌ ሾࡳଵ ࡳ ௉ሿ் whereࡳ	… ∈ Թே௉ൈ௄ and  ࡳ௣ ∈ Թ௡ൈ௞ for ݌ ൌ 1,… , ܲ. 

For every block and its corresponding weight and signal data, the following setting holds 

෩௟ࢊ ൌ ∑ ௟ି௣࢓௣ାଵࡳ
૚ିࡼ
ୀ૙࢖ 	⟹	

ۏ
ێ
ێ
ێ
ۍ
ଵࢊ
⋮
࢒ࢊ
⋮
ے௅ࢊ
ۑ
ۑ
ۑ
ې
்

ൌ ൦

ଵࡳ
ଶࡳ
⋮
௉ࡳ

൪

்

൦

ଵ࢓ … 					௟࢓ … ௅࢓						

૙࢓ … 			௟ିଵ࢓ … ௅ିଵ࢓				

⋮
ଵିሺ௉ିଵሻ࢓

⋮
…

⋮
௟ିሺ௉ିଵሻ࢓

⋮
…

⋮
௅ିሺ௉ିଵሻ࢓

൪                                   (20) 

which is a generalization of the system of Eq. (18). In fact, the coefficients with negative indices principally do 5 

not exist, i.e. equal to zero. The corresponding system of equations is written for the whole blocks of the 

submatrices and their corresponding coefficients and signal data. Note that Eq. (18) and Eq. (20) are equivalent 

(refer to Appendix A to review an example). 

According to Eq. (20), we can write ்ࢊ ൌ ෥࢓்ࡳ  and for convenience we change notation by writing ࢊ෩ ൌ ෥࢓෩ࡳ  

where matrix ࢓෥  is block Toeplitz matrix. Based on the above, the ILS-DLA algorithm for the unconstrained block 10 

based matrices can be rewritten as 

argmin
ೠ೒ೌ࢓

ฮࢊ෩ െ ෥࢓	෩௜ࡳ ฮ
ࡲ

ଶ
௟‖଴࢓‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ							 ൌ  ∀݈                                                                                        (21)				଴ݏ

for sparse coding step which uses a suboptimal vector selection algorithm or matching pursuit method to obtain 

௔௨௚࢓ ௜ (and thus࢓
௜ ); and the dictionary update step can be written as 

argmin
ࡳ

ฮࢊ෩௔௨௚ െ ෥࢓෩ࡳ ௔௨௚
௜ ฮ

ࡲ

ଶ
                                                                                                                                       (22) 15 

to obtain ࡳ෩ሺ௜ାଵሻ (and thus ࡳ௔௨௚
ሺ௜ାଵሻ) using the following inversion step 

෩ሺ௜ାଵሻࡳ ൌ ෥࢓෩௔௨௚൫ࢊ ௔௨௚
ሺ௜ሻ ൯

்
ቂ࢓෥ ௔௨௚

ሺ௜ሻ ൫࢓෥ ௔௨௚
ሺ௜ሻ ൯

்
ቃ
ିଵ

                                                                                                         (23) 

Again, the dictionary columns need to be normalized at each step. 

As it can be noticed, for each iteration in the ILS-DLA, the process of dictionary update is taking place block by 

block by using an inversion step; this is unlike the MOD method in which the entire data set, dictionaries, and 20 

coefficients is inverted for in a single inversion step. 

3.2.3 Constrained dictionaries 

Constrains are usually applied on 2D and 3D signal data to restrict the problem from getting very expensive and 

time-consuming. For dictionaries with linear constraints, ࡳ࡭ ൌ  the optimization problem of the sparse coding ,࢈

step is written as 25 

argmin
࢓,ࡳ

ฮࢊ െ ࡲฮ࢓௔௨௚ࡳ
ଶ
௟‖଴࢓‖	݋ݐ	ݐ݆ܾܿ݁ݑݏ							 ൌ ଴ܶ				ܽ݊݀	ࡳ࡭ ൌ  (24)                                                                           ࢈
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which is similar to Eq. (13) with additional constraint. The general dictionary	ࡳ௔௨௚ is structured as in Eq. (17). 

Matrix ࡳ௔௨௚ is an overlapping matrix as in figure 1 and ࡳ is defined ࡳ ൌ ሾࡳଵ  ௉ሿ். Having these settings, theࡳ	…

dictionary updating optimization problem for step 2 becomes 

argmin
ࡳ

ฮࢊ௔௨௚ െ ௔௨௚࢓ࡳ
ሺ௜ሻ ฮ

ࡲ

ଶ
ࡳ࡭		݋ݐ	ݐ݆ܾܿ݁ݑݏ						 ൌ  (25)                                                                                            ࢈

which follows the same setting as in the case of unconstrained overlapping dictionaries. Looking into the design 5 

of Eq. (20) where ்ࢊ ൌ ෥࢓்ࡳ , one could equivalently write ሺ்ࢊሻ் ൌ ሺ࢓்ࡳ෥ ሻ் and have ࢊ ൌ ෥࢓  ,therefore ;ࡳ்

another setting for Eq. (25) is to write 

argmin
ࡳ

ฮࢊ െ࢓௔௨௚
ሺ௜ሻ ฮࡳ	

ࡲ

ଶ
ࡳ࡭		݋ݐ	ݐ݆ܾܿ݁ݑݏ						 ൌ  (26)                                                                                                ࢈

The above setting is generated by the augmentation over the coefficients, instead of the dictionaries and writing 

 ௔௨௚ as a block diagonal Toeplitz matrix having 10࢓
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ې

                                                                                                                   (27) 

where ࢓௔௨௚
ሺ࢏ሻ ∈ Թ௡௅ൈ࢑࢔௉. 

Engan et al. (2007) solve the Eq. (26) by using the Lagrange polynomial; they give the final answer to be 

ࡳ ൌ ቀ࢓௔௨௚
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 (28)                                                                               ்ߣ்࡭
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ࢊ െ  15 (29)                                                                 ࢈

where ߣ is the Lagrange multiplier. 

Another case discussed by Engan et al. (2007) is when a large overlapping dictionary, ࡳ௔௨௚ with ࡳ ∈ Թ௡௉ൈ௞ is 

defined as the multiplication of a smaller overlapping dictionary, ࢄ௔௨௚ with ࢄ ∈ Թ௡௉ൈ࢔ (figure 1a, Eq. (17)), and 

a block based dictionary, ࢅ௔௨௚ with ࢅ ∈ Թ௡ൈ௞ (figure 1b, Eq. (12)), given by ࡳ௔௨௚ ൌ  ௔௨௚. Theࢅ	௔௨௚ࢄ

approximated signals ࢊ෩ are represented as ࢊ෩ ൌ ࢓௔௨௚ࡳ ൌ ௔௨௚ࡳ) ࢓௔௨௚ࢅ	௔௨௚ࢄ ∈ Թ௡௅ൈ௞௅, ࢄ௔௨௚ ∈ Թ௡௅ൈ௡௅, and 20 

௔௨௚ࢅ ∈ Թ௡௅ൈ௞௅). 

Consequently, the optimization problem of Eq. (19), i.e. the sparse coding step, changes into 

argmin
࢓,ࡳ

ฮࢊ െ ࡲฮ࢓௔௨௚ࡳ
ଶ
ൌ argmin

࢓,ࢅ,ࢄ
ฮࢊ െ ࡲฮ࢓௔௨௚ࢅ	௔௨௚ࢄ

ଶ
,௔௨௚ࢄ	݋ݐ	ݐ݆ܾܿ݁ݑݏ			 ,௔௨௚ࢅ ௟‖଴࢓‖	݀݊ܽ ൌ  ଴                (30)ݏ

By defining a suitable ࢄ௔௨௚ and fixing it through the iteration process, a suitable ࢅ௔௨௚ can be found to minimize 

the optimization problem. Having ࢓ሺ࢏ሻ coefficients obtained from the sparse coding step, the optimization problem 25 

for dictionary updating can be written as 

argmin
ೠ೒ೌࢅ

ฮࢊ െ ሻฮ࢏ሺ࢓௔௨௚ࢅ	௔௨௚ࢄ
ࡲ

ଶ
 ௔௨௚                                                                                             (31)ࢅ	݋ݐ	ݐ݆ܾܿ݁ݑݏ						
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This optimization problem is solved as for the unconstrained block based dictionaries. Note that since ࢄ௔௨௚	 is 

known, we can weigh the signal vectors, ࢊ, by ࢄ௔௨௚ିଵ  and rewrite Eq. (31) as 

argmin
ೠ೒ೌࢅ

ฮࢊ െ ࢓௔௨௚ࢅ	௔௨௚ࢄ
ሺ࢏ሻฮ ൌ argmin

ೠ೒ೌࢅ
ฮࢄ௔௨௚ିଵ ࢊ െ ࢓௔௨௚ࢅ

ሺ࢏ሻฮ  ௔௨௚                                        (32)ࢅ	݋ݐ	ݐ݆ܾܿ݁ݑݏ								

Therefore, instead of ࢓, the weighted vector/matrix ࢄ௔௨௚ିଵ  .will be the input to the minimization problem ࢊ

As it can be seen, in functionality, the idea of defining the dictionary matrix as a multiplication of an overlapping 5 

and a block based matrix resembles the idea of the input-adaptive approach where we defined the dictionary as a 

multiplication of a fixed non-adaptive base dictionary, ࣘ, with an adaptive learning dictionary, ࡿ, defining ࡳ ൌ

 .ࡿࣘ

The ILS-DLA algorithm can be used in an image compression scheme to produce sparsely represented images.  

The process of image compression/decompression consists of two stages of an offline ILS-DLA training algorithm 10 

and an online image encoding/decoding process. In this scheme, the image is first partitioned into smaller patches 

and the mean DC value is subtracted from each patch. The non-zero elements of the patches are then quantized by 

a uniform quantizer and entropy (and also AC and Huffman) coded. The resultant patches are used to train the 

dictionary by the ILS-DLA algorithm. The discrete cosine transform (DCT) is used as the fixed dictionary matrix. 

Other alternatives include LOT and ELT methods. The final trained dictionary would be a matrix like ࡿ which is 15 

a dictionary specifically trained for the images in the training set by the offline ILS-DLA algorithm. The 

coefficients of matrix ࡿ are then quantized and reshaped. Multiplication of the fixed implicit dictionary (i.e. DCT, 

ࣘ) and the sparse explicit dictionary (ࡿ) will result into an input-adaptive matrix ࡳ) ࡳ ൌ  The order recursive .(ࡿࣘ

matching pursuit (ORMP) is used for sparse coding. 

4 Results 20 

Results of this study are multifold. The 3D cube seismic data is deterministically inverted and AI, porosity, and 

saturation cubes are obtained. The spectral decomposition cube was generated and studied. Two reality-based 

permeability models were selected from the spectral decomposition cube based on which, many MPS realizations 

were generated using different MPS methodologies. Different dictionary learning algorithms were used to train 

content-specific dictionaries based on the training set of generated MPS realizations. Different sparse coding 25 

methods were utilized to reconstruct the final sparsity-based compressed image model. Statistics are given to 

indicate the goodness of the sparsity-based compressed reconstructed image model comparing to the training set 

of MPS generated realizations. Physical structure resemblance to the true models and fluid flow characteristics are 

considered as criteria to evaluate the sparsity-based compressed reconstructed image model. 

The AI profile (figure 3b) contains very important fluid and rock properties information about the reservoir. On 30 

the AI profile, the position for the set of fractures are indicated by the red colors which possess low acoustic 

impedance and suggest that the fracture sets are carrying the injected gas along the structure. Between these fracture 

sets, which are indicated by red colors, there is a band of blue color along the structure. This band of high acoustic 

impedance can be correlated with the non-fractured zone at the crest of the anticline. On the left of the AI profile, 

the deltaic depositional system is detected to diverge through the center of the field. 35 
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The porosity profile corresponding to the AI profile indicates that the difference in pressure behavior of the western 

part from the center and eastern parts are due to porosity change. Looking back into the AI profile approves that 

the porosity change from west to the center of the reservoir is due to the change in the depositional system. This 

change of depositional systems causes a drop of porosity by a value of almost 5% from a mean value of 11-12% 

typical for carbonates to a mean value of 16-17% typical for consolidated fine sandstone. Further study of the 5 

porosity cube approves a double-layered reservoir which is compatible with reservoir engineering data. Based on 

the porosity cube, the petrophysical setting of the reservoir is indicated to be a layering of two porous intervals 

interbedded within three upper, middle, and lower intact layers. 

Studying the saturation profile, further approves that the reservoir is double layered and water-edged. This finding 

is also compatible with reservoir pressure and production data. The inversion results have been recently approved 10 

by drilling a well into the lower layer and producing petroleum. Another very important feature detected in the 

inverted saturation cube is the feature corresponding to the gas finguring effect (figure 4) which can also be highly 

correlated with the features observed on the acoustic impedance section. The two tongues of the injected gas can 

be correlated with the positions of the conjugate fracture sets distributed along the structure. Furthermore, the non-

gaseous zone in the middle of the two tongues corresponds to the non-fractured part of the crest which is also 15 

observed on the AI profile (figure 3b). 

The spectral decomposition profile (figure 3a) represents a descent depiction of the delta system on the western 

part of the reservoir. It also illustrates the conjugate fracture systems which are spread in parallel along the anticline 

on both sides of the anticline crest. As it is evident in the figure, the area at the crest is non-fractured. The interpreted 

features on the spectral decomposition section is compatible with those on the AI section (figure 3b) and the 20 

injected gas finguring (figure 4). 

The above interpretations are provided to emphasize that the selected models utilized as basis for training images 

must represent the reality of the field and must be highly validated by any types of available data. Accordingly, a 

porosity section (figure 5a) is selected from the porosity profile extracted from the seismic cube. Furthermore, two 

permeability models are selected based on the features observed in the spectral decomposition profile (figures 5b 25 

and 5d). 

Deterministic reservoir characterization methods will result in a single most likely model. The model obtained by 

deterministic processes might not be the best possible model. Stochastic processes, e.g. stochastic inversion, are 

used to generate a limited set of equally probable models. The stochasticity and diversity of models obtained by 

methods like stochastic inversions are not usually enough to manipulate and generate a large set of models which 30 

can adequately represent almost every possible models of the desired property. The best remedy to this problem is 

to use multiple-point statistics methods and generate a large set of realizations based on realistic training images. 

In this paper the attempt is to use MPS methods to generate large sets of realizations and to show these training 

sets of realizations can be used to obtain a single sparsity-based compressed image model which is similar to the 

true image model in physical structure and outperforms the majority of the population sample regarding the fluid 35 

flow characteristics criteria. Mentioning the condition of physical similarity to the true image is very important 

because the physical structure of the MPS realizations are diverse and they might not be even similar to the true 

image model. 
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Accordingly, the MPS methods are used to generate a large number of stochastic models. A few number of DisPat-

generated realizations are randomly selected from the set of 3000 population sample and are depicted in figures 6 

and 7 for based on fracture system (figure 5b) and delta system training images (figure 5d), respectively. The 

generated stochastic MPS realizations are equally probable. In order to introduce most stochasticity within the 

models, there is no data conditioning applied on the process of generating the MPS realizations. 5 

These sets of DisPat-generated realization models are used as training sets to learn the dictionary by ILS-DLA 

method with LARS. Each image will contribute to the sparse approximation process represented in Eq. (1) as a 

column vector in ݉. The columns of the trained dictionary are called atoms and will form the basis to sparsely 

represent signals and images. Figures 8a and 8b illustrate a number of 56 atoms of the dictionaries trained over the 

set of stationary fracture system and non-stationary delta system MPS realizations, respectively. 10 

The sparsity-based compressed image model reconstructed by training the dictionary using ILS-DLA method 

(Engan et al., 2007; Skretting and Engan, 2011b) with LARS (Efron et al., 2004; Hastie et al., 2009) over the 

training set of stationary fracture system realizations generated by the DisPat MPS algorithm (Honarkhah, 2011) 

is illustrated in figure 9a. Figure 9c depicts the difference between the reconstructed and the original image. As it 

can be seen in the difference picture (figure 9c), the difference is random and it does not show any special structure 15 

which is indicative for good quality of the reconstructed image. Furthermore, the maximum and minimum 

difference values are not high and general difference value remains around zero (note the background color). Same 

interpretations can be given for figures 9b and 9d corresponding to the nonstationary delta system. 

Rather than the overall physical structure of the reconstructed images, the fluid flow properties of the reconstructed 

images are also considered as further criteria to check for the goodness of reconstructed image. The MRST 20 

MATLAB code (Lie, 2015) is used to calculate the production and pressure change at the observation well by time 

and sketch their profile. The production and pressure profiles for the sparsity-based compressed fractured system 

image model are sketched against the production and pressure profiles of the original model. Production of the 

injected fluid is increasing by time at the observation well and its pressure is declining. The production profiles for 

the reconstructed stationary fracture system model (figure 10a) and the reconstructed nonstationary delta system 25 

model (figure 10b) show almost perfect match to the production profile of the original images. The pressure 

profiles of the reconstructed images are also sketched against the original images (figures 10c and 10d). For both 

production and pressure profiles, the errors are calculated and used as criteria for goodness of fit, i.e. history-

matching. 

The workflow explained in this paper is performed 48 times for different settings of experiments. For each 30 

experiment three different parts are considered, i.e. the generation of MPS realizations, dictionary training, and the 

sparse coding. In terms of methodology, the experiments follow a one-at-a-time design which means that each 

experiment is different from other experiments by the utilized methodology for one of the three parts. For two 

types of stationary and nonstationary training images (figures 5b and 5d), a total number of 48 experiments were 

set up based on a one-at-a-time design in the methodologies. 35 

In specific, six training sets were used for the experiments among which four training sets are generated by the 

DisPat, FilterSim, and SNESim MPS methods based on the fracture system training image (figure 5b). The two 

other sets are generated by DisPat and FilterSim MPS methods based on the delta system training image (figure 
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5d). Each training set contains 3000 generated realizations and for every single realization, the production and 

pressure errors are calculated against the original models and these errors have been used as criteria for goodness 

of the model. 

Rather than using different training images (i.e. the stationary fracture system and the nonstationary delta system) 

and utilizing different MPS methods to generate the realizations, a number of eight different sparse approximation 5 

methods were used to generate the final sparsity-based compressive reconstructed image model. These eight 

different methods are considered by combining different dictionary learning algorithms with different sparse 

coding methods. 

The results of the total number of 48 experiments are plotted in figure 11. Each point corresponds to one 

experiment. The horizontal axis indicates the production superiority of the resultant sparsity-based compressed 10 

model reconstructed based on the specific setting of the problem in that experiment. Likewise, the vertical axis 

indicates the pressure superiority. The superiority index for each axis is calculated based on the error of fit for the 

reconstructed model against the true model (i.e. the original images, figures 5b and 5d) in a population sample of 

3000 realizations used as training set in that specific experiment. For example, if the production profile of the 

reconstructed sparsity-based compressed image model in one experiment shows 98% of superiority, it means that 15 

the error of the production profile of that reconstructed image is less than the error of production profile of 98% of 

the realizations in that training set. Note that the errors are calculated against the production profile of the true 

image which is used as basis to generate the population sample (i.e. the 3000 realizations used as training set in 

that specific experiment). 

Considering the total 48 experiments, the results are shown to be very encouraging. It is very interesting to note 20 

that out of 48 performed experiments, 54.17% of the total sparsity-based compressed models fall in the area of 

95%-95% superiority to the population samples (note that the first 95% corresponds to the probability in production 

superiority and the second one corresponds to the probability in pressure superiority or vice versa), 89.58% of the 

sparsity-based compressed models fall in the area of 90%-90%, and 95.83% fall in the area of 85%-85%.  

Specifically considering the setting of experiment discussed in this paper, the results indicate superiority of the 25 

sparsity-based compressed model image over 97.08% of the total MPS realizations generated based on the 

stationary fracture image. The same comparison for the nonstationary image of the deltaic system indicate a 

superiority over 94.41% of the total number of MPS realizations. 

5 Discussions 

We have practiced the sparsity-based compressive reservoir characterization and modeling algorithm which is able 30 

to manipulate the model images and reveal a close translation of the true model. The resultant sparsity-based 

compressed model is neither the true model nor it is guaranteed that it is the best possible model among a large 

data set. What it can be claimed is that our setting of experiments, applied on our set of MPS realizations generated 

based on training images (shown in figures 5a and 5d) and using different sparse approximation methods, illustrate 

that the resultant sparsity-based compressed model image outperform 90% of the MPS generated realizations by 35 

89.58% probability and 85% of the MPS realizations by 95.83% probability. 
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The sparsity-based compressive reservoir characterization and modeling workflow integrates the multiple-point 

statistics modeling from the geostatistics with the dictionary learning, sparse approximation, and image 

compression from the image processing and works on the input data to result in sparsity-based compressed model 

images. The quality controlling is performed by passing the whole MPS realizations along with the sparsity-based 

compressed resultant models through the reservoir simulation and the pressure drop and production profiles are 5 

used as criteria for goodness of models. The input data to this workflow is the seismic inverted 3D cubes (Acoustic 

Impedance, porosity, and water saturation), seismic spectral decomposition 3D cube, seismic interpretation data, 

production data, and the well logs. This workflow is applied on semi-industrial model images in the gas injection 

area of an Iranian Asmari reservoir due to the importance of the subject and to illustrate the effectiveness of the 

sparsity-based compressive workflow in a complex reservoir. 10 

5.1 The case study reservoir, complexities, and uncertainties 

The case study for this research is an Iranian oilfield located southwest of Iran. The Asmari reservoir is the main 

producing layer in this oilfield and two types of matrix and fracture porosities are considered in the simulation 

models for this reservoir. It is believed that the reservoir is communicating along the crest of the reservoir through 

the open fracture networks. 15 

At the time of this study, 20 wells were drilled across the reservoir. Suitable distribution of the wells has provided 

an appropriate bank of information gathered from the entire reservoir. The gas is injecting into the reservoir from 

well No. 8 since 2005 and from well No. 3 since 2010 for pressure maintenance. The acquisition of the single 

component 3D seismic data was conducted during the years of 2009 and 2010. The results from deterministic 

inversion of seismic data indicate early breakthrough of the injected gas observed in two wells on both sides of the 20 

injection well No. 8 (figure 4) which is also proven by production data (i.e. GOR and pressure). Two scenarios are 

considered for this evidence: existence of high porosity high permeability sandstone layers, and longitudinal 

fracture systems at the crest that provide pressure and fluid flow communication across the reservoir. Results from 

spectral decomposition (figure 3a) and acoustic impedance inversion (figure 3b) are in favor of this latter 

assumption and in order to verify it at an industrial scale, reliable fracture and lithological models are required. 25 

The pressure behavior of the western part of the reservoir is different from the central and eastern parts. The 

spectral decomposition of 3D seismic data establishes a deltaic depositional system for the western part of the 

reservoir and it also evidences that the genesis of the reservoir rock for the western part is different from the rest 

of the reservoir. Accordingly, the discussed Asmari reservoir is a complicated reservoir which is deltaic in west 

and it is fractured carbonates with interbeds of sandstone elsewhere (figure 3a and 3b). The most probable scenario 30 

explaining the early breakthrough of gas in the observation wells is to consider the extension of the conjugate 

fractures at the crest from center to the east. 

In figure 3b, the accumulation of the red color (low AI) is where the fracture networks are located. As it is 

illustrated, two parallel fracture networks are identified and in the middle, there is a non-fractured zone. A fault is 

joining into the northern fracture set from the northwest of the reservoir. Looking closer to the low AI feature, it 35 

is clearly noticed that low AI features are linear and parallel but not continuous; these features are mostly 

recognizable as fractures. Whereas in the west, branches of the deltaic system diverging from west to east (left 

quarter of the picture) are quite recognizable. 
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5.2 Uncertainty and Stochasticity 

As the cumulative production of the Iranian oil reservoirs increase, switching to secondary and tertiary oil recovery 

methods proves a necessity. Few of the southern oilfields are already under secondary recovery methods among 

which gas injection is the most popular. The success of pressure maintenance scenarios for a reservoir, e.g. gas 

injection, relies on our knowledge about the reservoir properties. These properties are either dynamic or static. 5 

Seismic data interpretation qualitatively characterize the reservoir, for example the reservoir structure and the 

existence and form of the faults. The 3D cube seismic data for the reservoir under study was interpreted using a 

commercial software and the well log and vertical seismic profiling data were utilized as the inputs to perform 

such a task. No effective fault was interpreted hitting the WOC boundary of the reservoir. Thorough interpretation 

of the faults is important especially when the case of gas injection in considered. The injected gas can find its way 10 

out of the reservoir structure through the faults that reach the surface which is the case of an adjacent reservoir. 

Along with qualitative properties, quantitative properties also exist, e.g. porosity and permeability. Having seismic 

attributes as variables, the porosity distribution in the reservoir can be obtained by linear or nonlinear transforms 

and constraining to porosity data at well locations. The 3D cube porosity distribution was obtained using a multi-

attribute transform. 15 

Finding the permeability distribution in the reservoir is always more difficult and more uncertain because unlike 

porosity, no conventional well log measures the permeability in a well interval. Consequently, the permeability is 

an estimation of the porosity which is itself uncertain. On the other hand, permeability does not always have a 

direct relation with the porosity; for example, in carbonate reservoirs, permeability of a layer is directly related to 

the number and direction of open fractures and it does not necessarily follow the porosity trend. Furthermore, 20 

matrix porosity is a syndepositional property related to the rock genesis and usually changes gradually across the 

reservoir, whereas tectonic-related fractures are usually post-depositional and the changes can be abrupt and 

unpredictable. A thin bed of shale can completely separate a layer from the reservoir. Unlike porosity, there is 

another constraint on quantifying the permeability, i.e. the well test data. The well test data record the amount of 

production for different reservoir intervals due to an implied pressure drop and a permeability value is specified 25 

for the tested interval according to the Darcy equation. In the commercial simulation model, both matrix and 

fracture porosities are included, however, in our semi-industrial simulation model the seismic driven porosity 

distribution was considered (figure 5a) which can be interpreted as the consequent of both types of porosities. 

In order to simulate fluid flow in the reservoir rock, hydraulic units are considered to transform the fluid through 

the reservoir rock. To determine the number of hydraulic units and specify their properties, microscopic core 30 

studies and some well log data are needed. These rock properties are considered to be constant under a specific 

rock type and hence, the hydraulic units are different from each other because their properties differ. Therefore, 

rock type definition and their lateral and vertical distribution in the reservoir is another crucial step in reservoir 

simulation. In the presence of a high porosity high permeability sand layer, the injected gas will break early through 

this specific hydraulic unit and the gas injection objectives are not well provided. Same scenario will take place in 35 

case of an open fracture network providing a convenient pressure communication and fluid flow across the 

reservoir. 3C seismic data are the least necessity for recognizing lithology and fracture network in the reservoir 

extent using seismic data. The 3D seismic data of the studied well is single component. Core studies and image 

logs interpretation supply the main data input to building a reliable fracture network. Very few image logs and 
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core sections were available from the reservoir under study and therefore the information to build a proper fracture 

network was poor. 

The uncertainty is intrinsically related to measurements and reservoir modeling is no exception. To study 

uncertainty in reservoir modeling, determining the effective parameters and providing the statistical information 

about these parameters are the prerequisites (Caers, 2011). In order to include, quantify, and report the uncertainty, 5 

suitable modeling methods should be selected and conducted. As the main source of information in the extent of 

the reservoir, seismic data should be inverted stochastically and based on reliable geostatistical information from 

the reservoir (Castro, 2007; Wu, 2007). For a reservoir, different models with similar or dissimilar uncertainties 

can give the same response and hence, more constraining information are required. 4D seismic data provide spatial 

constraints mostly on the fluid content and transport in the reservoir, which is missing for the studied reservoir. 10 

This type of data is especially practical for studying the motion of the gas injection front and its adherence to the 

high structure, the fracture network directions, and the high porosity high permeability layers. 

5.3 MPS realizations 

A fracture and lithological model based only on the well data is quite uncertain as the wells are sparsely distributed 

in the reservoir. Geostatistics is the technique to spread the well properties from well locations to the extent of the 15 

reservoir. Two-point geostatistics are based on linear changes between two points in the space (variogram). Two-

point geostatistical methods do not generate satisfactory models for complex reservoirs. Multiple-point statistics 

methods are able to generate more realistic models because it accounts for the changes from a point to different 

directions simultaneously. Among the current MPS methods, the pattern-based ones are known to have the best 

performance. SimPat (Arpat, 2005), FilterSim (Zhang, 2006), Direct Sampling (Mariethoz and Renard, 2010), 20 

DisPat (Honarkhah, 2011), and WaveSim (Chatterjee et al., 2012) are the well-known pattern-based MPS methods. 

These algorithms stochastically reproduce the extracted patterns from the training images which are provided based 

on prior information about the reservoir. The location-independency of the training images along with the 

stochasticity of the pattern-based MPS algorithm will result in generating different models which are equally 

probable. The advances made in the DisPat algorithm has facilitated modeling a stationary fracture network (figure 25 

5b) or nonstationary deltaic system (figure 5d) based on training images and soft and hard data integration. 

There are further expectations from the MPS in contribution with the field of reservoir engineering and the 

reservoir simulation in specific. As a specific case, new achievements in the nonstationary image modeling through 

segmenting the training images into stationary subregions could be correlated with sectoring the reservoir extent 

based on pressure and production data and eventually providing a better reservoir history-matching. In our 30 

example, the reservoir depositional system is a combination of a deltaic and a carbonate ramp system. It is expected 

that the new MPS methods like DisPat can model such a complex depositional system reliably and the pressure 

and production data meet this differentiation of the depositional systems. 

For our set of experiments, two training images were selected from the 3D spectral decomposition seismic cube 

representing the fracture network (figure 5b) and the delta system (figure 5d). The fracture network was considered 35 

stationary whereas the delta system was assumed nonstationary. The two images were used as input to the DisPat 

MPS algorithm and a large set of stochastic realizations were generated for each case. The MPS simulation was 

not conditioned by any hard or soft data to introduce more stochasticity into the realization models. Therefore, the 
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MPS realizations which are utilized as training sets for dictionary training in the sparse approximation procedures, 

are generated based on the training images under pure stochasticity with no conditioning. 

5.4 Applying sparse approximation on the MPS realizations 

An image is an assembly of information and data redundancy. Information and data are not the same concept; in 

fact, information is conveyed by the data. Different amounts of data might transfer the same amount of information. 5 

Some part of data might contain no related information or repeat the same scope of information. This concept is 

referred to as data redundancy. Coding, interpixel, and psychovisual are the three sources of data redundancy. 

Image compression methods are designed to eliminate the data redundancy and they are either lossy or lossless 

(Gonzalez and Woods, 2002). Reducing the unnecessary details of the model images generated by the MPS 

methods as inputs to the reservoir simulation preserves the quality of the results while reducing the computational 10 

time. Compressing a model without losing the fundamental information but reducing the dispensable details in an 

almost lossless manner (Gonzalez and Woods, 2002) will accelerate reservoir simulation especially for complex 

systems. Reservoir model upscaling can also be substituted by lossy compression (Gonzalez and Woods, 2002) if 

the amount of data loss is observed and controlled. 

As it has been noted, signals can be sparsely represented or approximated by the dictionaries. These dictionaries 15 

can be either fixed and predetermined, e.g. DCT and wavelet transforms, or be trained by a training set using 

dictionary training methods like MOD (Cheng, 2015; Elad, 2010), K-SVD (Aharon et al., 2006b; Bryt and Elad, 

2008; Rubinstein et al., 2013 and 2008; Skretting and Engan, 2011a), ODL (Mairal et al., 2009), ILS-DLA (Engan 

et al., 2007; Skretting and Engan, 2011b), and RLS-DLA (Skretting and Engan, 2011a and 2010). The trained 

dictionaries can learn from the MPS realizations as the input training set (figures 6 and 7) to the sparsity-based 20 

compression scheme to generate a single sparsity-based compressed model image which is in turn an input to the 

reservoir simulation (figure 9a and 9b). 

Reviewing the workflow applied on the case study, the spectral decomposition cube (figure 3a) was used as the 

source to extract a basis for the fracture network stationary training image and a basis for the deltaic system 

nonstationary training image (figures 5b and 5d). The DisPat algorithm was utilized to create a large set of MPS 25 

realizations for each training image (figures 6 and 7). The dictionaries were trained on the generated MPS 

realizations using the ILS-DLA algorithm and the trained dictionaries (figures 8a and 8b) were used with the LARS 

method in a sparsity-based image compression scheme to generate a single sparsity-based compressed model 

image. Each realization along with the two resultant sparsity-based compressed model images (figures 9a and 9b) 

were used as input models to the reservoir simulation and the production and pressure history of each model were 30 

compared with the main true model images for comparison (figure 10) (Lie, 2015). 

5.5 The sparsity-based compressed model 

The sparsity-based compressive reservoir characterization and modeling workflow is applied on several sets of 

stationary and nonstationary generated DisPat, FilterSim, and SNESim MPS realizations. The sparsity-based 

compression scheme was applied on these training sets using different available dictionary training methods. The 35 

statistical information from simulation models for each compressed model image is illustrated in figure 11. For 

each model image, two criteria are considered for comparison, the production and pressure. The horizontal axis is 
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the percentage of superiority of the sparsity-based compressed model image in terms of production and compared 

to the model images in the population sample. The vertical axis indicate the same but in terms of pressure. It is 

encouraging to note that out of 48 performed experiments, 54.17% of the total sparsity-based compressed models 

fall in the area of 95%-95% (upper 5%) superiority to the population samples, 89.58% in the area of 90%-90% 

(upper 10%), and 95.83% in the area of 85%-85% (upper 15%). It is even more encouraging to note that each 5 

single point in figure 11 is referred to different methods of sparsity-based image compression. In setting up each 

experiment, three different methodologies are involved, i.e. MPS methods, dictionary learning algorithms, and 

sparse coding methods. In each part, there are a few parameters that can be set and optimize to achieve the best 

resultant sparsity-based compressed image model. The parameter optimization is not performed for any of the 48 

number of experiments and therefore, results improvements are quite expecting in these regards too. It is highly 10 

expected that more encouraging results would be achieved if same sparse approximation method is repeatedly 

applied on MPS realizations generated from various training images. Another important point to note is that, the 

generated MPS realizations are quite stochastic, that is, no hard or soft data constraint is applied on the images and 

accordingly, the authors expect even more encouraging results if any constraint is applied on the MPS algorithms 

to generate the realizations. 15 

When the criteria of production and pressure history-match is considered, the results of the current experiment, i.e. 

applying the ILS-DLA dictionary training algorithm with LARS sparse coding method on DisPat-generated MPS 

realizations, for the stationary fracture image indicate the superiority of  the sparsity-based compressed model 

image over 97.08% of the total MPS realizations. This means that for a total number of 3000 MPS realizations, 

only 88 realizations result in a better history-match. The same comparison for the nonstationary image of the deltaic 20 

system indicate a superiority over 94.41% of the total number of MPS realizations, i.e. 167 MPS realizations out 

of 3000 are superior in history-match. 

It would be interesting to check for the superiority of the resultant sparsity-based compressed model if a set of bad 

model images are used as training set to the sparse approximation algorithm. Basically, it is interesting to check if 

there exists at least one model in the population sample which outperforms the sparsity-based compressed model 25 

image in case of using a set of bad model images. In other words, the task would be to check if it is possible that 

the sparsity-based compressed model image outperforms the whole population sample. If not so, how can we 

invent new algorithms in order to achieve such model? This issue is even more interesting when noting that the 

process of vector selection in the sparse approximation scheme is a random process which means that the chance 

of selecting a good model/vector for sparse approximation is limited. Therefore, suitable vectors or models, i.e. 30 

the MPS realizations for which the pressure and production criteria are better than the sparsity-based compressed 

model and form a low percentage of the population sample, have limited chance to be selected by the sparse coding 

step to form a base for reconstructing the sparsity-based compressed model. In a sense, we can loosely conclude 

that the goodness of a sparsity-based compressed model is mostly relying on the inferior MPS realization models, 

which form the majority, rather than relying on the superior MPS realization models, that form a low fraction 35 

minority. Further experiments are needed to verify such claim which are subjects of future studies. 
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6 Conclusions 

The sparsity-based compressed reservoir characterization and modeling workflow is introduced, presented, and 

applied on semi-industrial scale models from a gas injection case Iranian Asmari reservoir. This workflow is set 

to achieve a close translation of an unknown true model from a set of models which are assumed as alterations of 

the true model. The main blocks of this workflow is the multiple-point statistics modeling and the sparse 5 

approximation algorithms. The former algorithm generates the set of alterations of true model which are used by 

the latter algorithm to produce the final sparsity-based compressed model images. 

Extracting the properties of porosity and saturation from the deterministically inverted seismic data of the oilfield 

under study, along with discovering a new potential hydrocarbon layer interval (which was later confirmed by a 

drilled well) and defining its extents, obviated the structural complexity of this reservoir. This study approved the 10 

presence of sandstone interbeds in the Asmari carbonate reservoir and found that the overall fall in porosity is 

responsible for different behavior of the pressure drop in the western part of the reservoir. The saturation 

distribution based on deterministic inversion of the seismic data was able to detect the front of the injected gas. 

Findings are also consistent with pressure data and the oil components in the observation wells. 

The geologic complexities in the Asmari reservoir of  this oilfield, noting as the presence of sandstone interbeds 15 

in the carbonate reservoir, the existence of a connected and communicating fracture network at and along the crest, 

and the deltaic system of the western part of the reservoir, makes the fluid flow simulation history-matching of 

this reservoir a difficult task. Some of these problems refer to the incomplete studies and lack of information but 

some others are related to the intrinsic incapability of the current algorithms in building realistic static reservoir 

models. Accordingly, the DisPat algorithm was used to produce a set of realizations for the two training images of 20 

the fracture network and the deltaic system because of its capabilities in hard and soft data integration at different 

resolution levels and its new nonstationary image modeling techniques. 

The DisPat MPS algorithm was used to generate a set of stochastic realizations based on the fracture network 

stationary training image. A similar set of realizations was generated for the deltaic system nonstationary training 

image. A 2D injection model was tested on both images and the simulation results were set as the basis for 25 

comparison. Same scenario was run for each individual MPS realizations of both sets of stationary and 

nonstationary images and the population sample for the history-matching simulation results were formed. The ILS-

DLA trained dictionaries were used in a sparsity-based image compression scheme and the resultant compressed 

images for both stationary and nonstationary sets were run into the reservoir simulation process for history-

matching. Based on the stationary fracture network MPS realizations population samples, the resultant sparsity-30 

based compressed model image is superior to 97.08% of the MPS realizations; for the nonstationary deltaic system 

MPS realizations population samples this number is 94.41%. 

Reservoir engineers are proposing the existence of high porosity high permeability sandstone interbeds for 

witnessing the finguring feature of the injected gas. Whereas, studying the acoustic impedance and spectral 

decomposition 3D seismic cubes along with noting the fact of having a very few number of image logs recorded 35 

in the field, the overall conclusion would be that a communicating open fracture network along the crest is more 

probable to be accounted for the observed gas finguring feature. 
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Appendix A 5 

This example is provided to illustrate how the Eq. (20) is equivalent to the Eq. (18). For ܲ ൌ 4 and ܮ ൌ 10, and 

following Eq. (18) we would have the following system of equations 
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For our example, using Eq. (20) we would get 10 
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Figure 1: Geometrical interpretation of the LARS algorithm; ݉ଵ, ݉ଶ, and ݉ଷ are the variables; ݑଵ, ݑଶ, and ݑଷ 
are the norm for each variable; ഥ݉ଵ, ഥ݉ଶ, and ഥ݉ଷ are the least squares solution corresponding to each variable. ෝ݉ଵ, 

ෝ݉ଶ, and ෝ݉ଷ are corresponding LARS solutions. After Efron et al. (2004). 

 5 

 

(a) (b) 

Figure 2: schematic of (a) non-overlapping matrix ࡳ௔௨௚ as in Eq. (3); (b) the overlapped matrix ࡳ௔௨௚ as in Eq. 
(7) 
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(a) (b)

 

Figure 3: (a) Spectral decomposition of the Asmari reservoir; (b) The acoustic impedance image corresponding 
to (a) 

 5 

 

 

Figure 4: The gas finguring feature from the injection well No. 8 
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(a) 

 

(b) (d) 

(c) (e) 

Figure 5: (a) Porosity distribution for the simulation model; (b) stationary fracture network training image; (c) 
permeability distribution corresponding to (a) for the simulation model; (d) nonstationary deltaic training image; 

(e) permeability distribution corresponding to (d) for the simulation model 
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Figure 6: Few randomly selected DisPat MPS generated realizations for the stationary fracture network training 

image 

 

 
 

     

 
 

     

   
Figure 7: Few randomly selected DisPat MPS generated realizations for the nonstationary deltaic system training 

image 5 

(a) (b) 

 
Figure 8: (a) Few atoms from the ILS-DLA-LARS trained dictionary for the fracture network training images; 

(b) Same for the deltaic system training images 
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(a) (b) 

 
(c) (d) 

 
Figure 9: (a) The sparsity-based compressed permeability model for fracture network using ILS-DLA dictionary 
training with the LARS; (b) Same for deltaic system; (c) Difference between the compressed and the main model 

for the fracture network; (d) Same for the deltaic system 

(a) (b) 

 
(c) (d) 

 
Figure 10: (a) Production profile at the observation well for the sparsity-based compressed fracture network 
model and its comparison with the main model; (b) Same for the deltaic system; (c) Pressure profile at the 

observation well for the compressed fracture network model and its comparison with the main model; (d) Same 
for the deltaic system 
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Figure 11: Results of other sets of experiments providing support for this study. The exaggerated red-filled 
circles indicate the results presented in this paper. 
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