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Abstract 1 

 2 

The Ensemble Kalman Filter is a widely used ensemble-based assimilation 3 

method, which estimates the forecast error covariance matrix using a Monte Carlo 4 

approach that involves an ensemble of short-term forecasts. While the accuracy of the 5 

forecast error covariance matrix is crucial for achieving accurate forecasts, the 6 

estimate given by the EnKF needs to be improved using inflation techniques. 7 

Otherwise, the sampling covariance matrix of perturbed forecast states will 8 

underestimate the true forecast error covariance matrix because of the limited 9 

ensemble size and large model errors, which may eventually result in the divergence 10 

of the filter. 11 

In this study, the forecast error covariance inflation factor is estimated using a 12 

generalized cross-validation technique. The improved EnKF assimilation scheme is 13 

tested on the atmosphere-like Lorenz-96 model with spatially correlated observations, 14 

and is shown to reduce the analysis error and increase its sensitivity to the 15 

observations. 16 

Key words: data assimilation; ensemble Kalman filter; forecast error inflation; 17 

analysis sensitivity; cross validation 18 
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1. Introduction 1 

 2 

For state variables in geophysical research fields, a common assumption is that 3 

systems have a “true” underlying state. Data assimilation is a powerful mechanism 4 

for estimating the true trajectory based on the effective combination of a dynamic 5 

forecast system (such as a numerical model) and observations (Miller et al. 1994). 6 

Data assimilation provides an analysis state that is usually a better estimate of the 7 

state variable because it considers all of the information provided by the model 8 

forecasts and observations. In fact, the analysis state can generally be treated as the 9 

weighted average of the model forecasts and observations, while the weights are 10 

approximately proportional to the inverse of the corresponding covariance matrices 11 

(Talagrand 1997). Therefore, the performance of a data assimilation method relies 12 

significantly on whether the error covariance matrices are estimated accurately. If this 13 

is the case, the assimilation can be accomplished with the rapid development of 14 

supercomputers (Reichle 2008), although finding the appropriate analysis state is a 15 

much difficult problem when the models are nonlinear. 16 

The ensemble Kalman filter (EnKF) is a practical ensemble-based assimilation 17 

scheme that estimates the forecast error covariance matrix using a Monte Carlo 18 

method with the short-term ensemble forecast states (Burgers et al. 1998; Evensen 19 

1994). Because of the limited ensemble size and large model errors, the sampling 20 

covariance matrix of the ensemble forecast states usually underestimates the true 21 

forecast error covariance matrix. This finding indicates that the filter is over reliant on 22 
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the model forecasts and excludes the observations. It can eventually result in the 1 

divergence of the filter (Anderson and Anderson 1999; Constantinescu et al. 2007; 2 

Wu et al. 2014).  3 

The covariance inflation technique is used to mitigate filter divergence by 4 

inflating the empirical covariance in EnKF, and it can increase the weight of the 5 

observations in the analysis state (Xu et al. 2013). In reality, this method will perturb 6 

the subspace spanned by the ensemble vectors and better capture the sub-growing 7 

directions that may be missed in the original ensemble (Yang et al. 2015). Therefore, 8 

using the inflation technique to enhance the estimate accuracy of the forecast error 9 

covariance matrix is increasingly important. 10 

A widely used inflation technique involves multiplying the forecast error matrix 11 

by inflation factor, which must be chosen appropriately. In early studies, researchers 12 

usually tuned the inflation factor by repeated assimilation experiments and selected 13 

the estimated inflation factor according to their experience and prior knowledge 14 

(Anderson and Anderson 1999). However, such methods are very empirical and 15 

subjective. It also seems quite unreasonable to use the same inflation factor during all 16 

the assimilation procedure. Too small or too large an inflation factor will cause the 17 

analysis state to over rely on the model forecasts or observations, and can seriously 18 

undermine the accuracy and stability of the filter.  19 

In later studies, the inflation factor can be estimated online based on the 20 

innovation statistic (observation-minus-forecast; (Dee 1995; Dee and Silva 1999)) 21 

with different conditions. Moment estimation can facilitate the calculation by solving 22 
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an equation of the innovation statistic and its realization (Li et al. 2009; Miyoshi 2011; 1 

Wang and Bishop 2003). Maximum likelihood approach can obtain a better estimate 2 

of the inflation factor than moment approach, although it must calculate a high 3 

dimensional matrix determinant (Liang et al. 2012; Zheng 2009). Bayesian approach 4 

assumes a prior distribution for the inflation factor but is limited by spatially 5 

independent observational errors (Anderson 2007, 2009). This study seeks to address 6 

the estimation of the inflation factor from the perspective of cross validation (CV).  7 

The concept of CV was first introduced for linear regressions (Allen 1974) and 8 

spline smoothing (Wahba and Wold 1975), and it represents a common approach that 9 

can be applied to estimate tuning parameters in generalized additive models, 10 

nonparametric regressions and kernel smoothing (Eubank 1999; Gentle et al. 2004; 11 

Green and Silverman. 1994; Wand and Jones 1995). Usually, the data are divided into 12 

subsets some of which are used for modelling and analysis while others for 13 

verification and validation. The most widely used technique removes only one data 14 

point and uses the remainder to estimate the value at this point to test the estimation 15 

accuracy, which is also called the leave-one-out cross validation (Gu and Wahba 16 

1991). 17 

The basic motivation behind CV is to minimize the prediction error at the 18 

sampling points. The generalised cross validation (GCV) is a modified form of 19 

ordinary CV, that has been found to possess several favourable properties and is more 20 

popular for selecting tuning parameters (Craven and Wahba 1979). For instance, Gu 21 

and Wahba applied the Newton’s method to optimize the GCV score with multiple 22 
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smoothing parameters in a smoothing spline model (Gu and Wahba 1991). Wahba 1 

(1995) briefly reviewed the properties of the GCV and conducted an experiment to 2 

choose smoothing parameters in the context of variational data assimilation schemes 3 

with numerical weather prediction models. Zheng and Basher also applied the GCV 4 

in a thin-plate smoothing spline model of spatial climate data to deal with South 5 

Pacific rainfalls (Zheng and Basher 1995). The GCV criterion has a rotation-invariant 6 

property that is relative to the orthogonal transformation of the observations and is a 7 

consistent estimate of the relative loss (Gu 2002). 8 

This study proposes a new method for choosing the inflation factor using GCV. 9 

The suitability of this choice is assessed using a statistic known as the analysis 10 

sensitivity, which apportions uncertainty in the output to different sources of 11 

uncertainty in the input (Saltelli et al. 2004; Saltelli et al. 2008). In the context of 12 

statistical data assimilation, this quantity describes the sensitivity of the analysis to 13 

the observations, which is complementary to the sensitivity of the analysis to model 14 

forecasts (Cardinali et al. 2004; Liu et al. 2009). 15 

This study focuses on a methodology that can be potentially applied to 16 

geophysical applications of data assimilation in the near future. This paper consists of 17 

four sections. The conventional EnKF scheme is summarized and the improved EnKF 18 

with GCV inflation scheme is proposed in Section 2; the verification and validation 19 

processes are conducted on an idealized model in Section 3; the discussions are 20 

presented in Section 4 and conclusions are given in Section 5. 21 

 22 
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 1 

2. Methodology 2 

 3 

2.1. EnKF algorithm 4 

For consistency, a nonlinear discrete-time dynamical forecast model and linear 5 

observation system can be expressed as follows (Ide et al. 1997):  6 

  t a

1 1  i i i iMx x η , (1) 7 

 
o t

i i i i y H x ε , (2) 8 

where i represents the time index;  
T

t t t t

,1 ,2 ,x , x ,..., xi i i i nx  represents the 9 

n-dimensional true state vector at the i-th time step;  
T

a a a a

1 1,1 1,2 1,x , x ,..., xi i i i n   x  10 

represents the n-dimensional analysis state vector, which is an estimate of 
t

1ix ; 11 

1iM  represents a nonlinear dynamical forecast operator such as a numerical weather 12 

prediction model;  
T

o o o o

,1 ,2 ,y , y ,..., y
ii i i i py  represents a ip -dimensional observation 13 

vector; iH  represents the observation operator matrix; and iη  and iε  represent 14 

the forecast and observation error vectors, which are assumed to be time-uncorrelated, 15 

statistically independent of each other and have mean zero and covariance matrices 16 

iP  and iR , respectively. The EnKF assimilation result is a series of analysis states 17 

a

ix  that is an accurate estimate of the corresponding true states 
t

ix  based on the 18 

information provided by iM
 
and 

o

iy . 19 

Suppose the perturbed analysis state at a previous time step 
a(j)

1ix  has been 20 

estimated (1 j m   and m is the ensemble size), the detailed EnKF assimilation 21 

procedure is summarized as the following forecast step and analysis step (Burgers et 22 
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al. 1998; Evensen 1994). 1 

Step 1. Forecast step. 2 

The perturbed forecast states are generated by running dynamical model 3 

forward: 4 

  f(j) a(j)

1 1i i iM  x x . (3) 5 

The forecast state 
f

ix  is defined as the ensemble mean of 
f(j)

ix , and the forecast 6 

error covariance matrix is initially estimated as the sampling covariance matrix of 7 

perturbed forecast states: 8 

   
T

f(j) f f(j) f

1

1

1

m

i i i i i

jm 

  

P x x x x . (4) 9 

Step 2. Analysis step. 10 

The analysis state is estimated by minimizing the following cost function: 11 

        
T T

f 1 f o 1 o( ) i i i i i i i iJ       x x x P x x y H x R y H x , (5) 12 

which has the analytic form 13 

  
1

a f T T

i i i i i i i i i



  x x PH H PH R d , (6) 14 

where 15 

 
o f

i i i i d y H x  (7) 16 

is the innovation statistic (observation-minus-forecast residual). To complete the 17 

ensemble forecast, the perturbed analysis states are calculated using perturbed 18 

observations (Burgers et al. 1998): 19 

    
1

a(j) f(j) T T '(j)

i i i i i i i i i i



   x x PH H PH R d ε , (8) 20 

where 
'(j)

iε  is a normally distributed random variable with mean zero and covariance 21 
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matrix iR . Here,  
1

T

i i i i



H PH R  can be easily calculated using the 1 

Sherman-Morrison-Woodbury formula (Golub and Loan 1996; Liang et al. 2012; 2 

Tippett et al. 2003). Finally, set 1 i i , return to Step 1 for the model forecast at 3 

the next time step and repeat until the model reaches the last time step N . 4 

 5 

2.2. Influence matrix and forecast error inflation 6 

The forecast error inflation procedure should be added to any ensemble-based 7 

assimilation scheme to prevent the filter from diverging (Anderson and Anderson 8 

1999; Constantinescu et al. 2007). Multiplicative inflation is one of the commonly 9 

used inflation techniques, and it adjusts the initially estimated forecast error 10 

covariance matrix iP  to i i P  after estimating the inflation factors i  properly. 11 

In this study, a new procedure for estimating multiplicative inflation factors i  12 

is proposed based on the following GCV function (Craven and Wahba 1979) 13 
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d R I A R d

I A

, (9) 14 

where 
ipI  is the identity matrix with dimension i ip p ; 

1/2

i


R  is the square root 15 

matrix of iR ; and  16 

  
1

1/2 T 1/2( )
ii p i i i i i i 



  A I R H PH R R  (10) 17 

is the influence matrix (see Appendix for details). 18 

The inflation factor i  is estimated by minimizing the GCV (Eq. (9)) as an 19 

objective function, and it is implemented between Steps 1 and 2 in Section 2.1. Then, 20 

the perturbed analysis states are modified to  21 
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1

a(j) f(j) T T '(j)

i i i i i i i i i i i i 


   x x PH H PH R d ε . (11) 1 

The flowchart of the EnKF equipped with the proposed forecast error inflation based 2 

on the GCV method is shown in Figure 1. 3 

 4 

2.3. Analysis sensitivity  5 

In the EnKF, the analysis state (Eq. (6)) is a weighted average of the observation 6 

and forecast. That is: 7 

  a o f

i i i n i i i  x K y I K H x  (12) 8 

where  
1

T T

i i i i i i i



 K PH H PH R  is the Kalman gain matrix and nI  is the identity 9 

matrix with dimension n n . Then, the normalized analysis vector can be expressed 10 

as follows: 11 

  a 1/2 1/2 o 1/2 1/2 f

ii i i i i i i p i i i i

   y R H K R y R I H K R y  (13) 12 

where 
f 1/2 f

i i i i

y R H x  is the normalized projection of the forecast on the 13 

observation space. The sensitivities of the analysis to the observation and forecast are 14 

defined by Eq. (14) and (15), respectively: 15 

 

a
o 1/2 T T 1/2

o

i
i i i i i

i


 


y
S R K H R

y
, (14) 16 

  
a

f 1/2 T T 1/2

f i

i
i i p i i i

i


  


y
S R I K H R

y
, (15) 17 

which satisfy 
o f

ii i p S S I . 18 

The elements of the matrix 
o

iS  reflect the sensitivity of the normalized analysis 19 

state to the normalized observations; its diagonal elements are the analysis 20 

self-sensitivities and the off-diagonal elements are the cross-sensitivities. On the 21 
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other hand, the elements of the matrix 
f

iS  reflect the sensitivity of the normalized 1 

analysis state to the normalized forecast state. The two quantities are complementary, 2 

and the GCV function can be interpreted as minimizing the normalized forecast 3 

sensitivity because the inflation scheme will increase the observation weight 4 

appropriately. 5 

In fact, the sensitivity matrix 
o

iS  is equal to the influence matrix iA  (see 6 

Appendix B for detailed proof), whose trace can be used to measure the “equivalent 7 

number of parameters” or “degrees of freedom for the signal” (Gu 2002; Pena and 8 

Yohai 1991). Similarly, the sensitivity matrix 
o

iS  can be interpreted as a 9 

measurement of the amount of information extracted from the observations (Ellison 10 

et al. 2009). Trace diagnostics can be used to analyse the sensitivities to observations 11 

or forecast vectors (Cardinali et al. 2004). The Global Average Influence (GAI) at the 12 

i-th time step is defined as the globally averaged observation influence: 13 

 

oTr( )i

i

GAI
p


S

, (16) 14 

where ip  is the total number of observations at the i-th time step. 15 

In the conventional EnKF, the forecast error covariance matrix iP  is initially 16 

estimated using a Monte Carlo method with short-term ensemble forecast states. 17 

However, because of the limited ensemble size and large model errors, the sampling 18 

covariance matrix of perturbed forecast states usually underestimate the true forecast 19 

error covariance matrix. This will cause the analysis to over rely on the forecast state 20 

and exclude useful information from the observations. This is captured by the fact 21 

that the GAI values are rather small for the conventional EnKF scheme. Adjusting the 22 
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inflation of the forecast error covariance matrix alleviates this problem to some extent, 1 

as will be shown in the following simulations. 2 

 3 

2.4 Forecast ensemble spread and analysis RMSE 4 

The spread of the forecast ensemble at the i-th step is defined as follows: 5 

 
2

f f

,

1

1
Spread

( 1)

m

i j i

jn m 

 

 x x . (17) 6 

Roughly speaking, the forecast ensemble spread is usually underestimated for the 7 

conventional EnKF, which also dramatically decreases until the observations 8 

ultimately have an irrelevant impact on the analysis states. The inflation technique 9 

can effectively compensate for the underestimation of the forecast ensemble spread, 10 

and thereby can improve the assimilation results. 11 

In the following experiments, the “true” state 
t

ix  is non-dimensional and can 12 

be obtained by a numerical solution of partial differential equations. In this case, the 13 

distance of the analysis state to the true state can be defined as the analysis 14 

root-mean-square error (RMSE), which is used to evaluate the accuracy of the 15 

assimilation results. The RMSE at the i-th time step is defined as follows: 16 

  
2

a t

, ,

1

1
RMSE x x

n

i k i k

kn 

  . (18) 17 

where 
a

,x i k  and 
t

,x i k  are the k-th components of the analysis state and true state at 18 

the i-th time step. In principle, a smaller RMSE indicates a better performance of the 19 

assimilation scheme. 20 

 21 
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 1 

3. Numerical Experiments 2 

 3 

The proposed data assimilation scheme was tested using the Lorenz-96 model 4 

(Lorenz 1996) with model errors and a linear observation system as a test bed. The 5 

performances of the assimilation schemes described in Section 2 were evaluated via 6 

the following experiments. 7 

 8 

3.1. Dynamical forecast model and observation systems 9 

The Lorenz-96 model (Lorenz 1996) is a quadratic nonlinear dynamical system 10 

that has properties relevant to realistic forecast problems and is governed by the 11 

equation: 12 

 1 2 1( )k
k k k k

d
F

dt
     

X
X X X X , (19) 13 

where 1,2, ,40k  . The cyclic boundary conditions 1 1K X X , 0 KX X , and 14 

1 1K X X  were applied to ensure that Eq. (19) was well defined for all values of k. 15 

The Lorenz-96 model is “atmosphere-like” because the three terms on the right-hand 16 

side of Eq. (19) are analogous to a nonlinear advection-like term, a damping term, 17 

and an external forcing term. The model can be considered representative of an 18 

atmospheric quantity (e.g., zonal wind speed) distributed on a latitude circle. 19 

Therefore, the Lorenz-96 model has been widely used as a test bed to evaluate the 20 

performance of assimilation schemes in many studies (Wu et al. 2013). 21 

The true state is derived by a fourth-order Runge-Kutta time integration scheme 22 
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(Butcher 2003). The time step for generating the numerical solution was set at 0.05 1 

non-dimensional units, which is roughly equivalent to 6 hours in real time assuming 2 

that the characteristic time-scale of the dissipation in the atmosphere is 5 days 3 

(Lorenz 1996). The forcing term was set as F = 8, so that the leading Lyapunov 4 

exponent implies an error-doubling time of approximately 8 time steps and the fractal 5 

dimension of the attractor was 27.1 (Lorenz and Emanuel 1998). The initial value was 6 

chosen to be k FX  when 20k   and 20 1.001FX . 7 

In this study, the synthetic observations were assumed to be generated by 8 

adding random noises that were multivariate-normally distributed with mean zero and 9 

covariance matrix iR  to the true states. The frequency was every 4 time steps, which 10 

can be used to mimic daily observations in practical problems, such as satellite data. 11 

The observation errors were assumed to be spatially correlated, which is common in 12 

applications involving remote sensing and radiance data. The variance of the 13 

observation at each grid point was set to 
2

o 1  , and the covariance of the 14 

observations between the j-th and k-th grid points was as follows: 15 

    min ,402

o, 0.5
j k j k

i j k 
  

 R . (20) 16 

 17 

3.2. Assimilation scheme comparison 18 

Because model errors are inevitable in practical dynamical forecast models, it is 19 

reasonable to add model errors to the Lorenz-96 model in the assimilation process. 20 

The Lorenz-96 model is a forced dissipative model with a parameter F that controls 21 

the strength of the forcing. Modifying the forcing strength F changes the model 22 
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forecast states considerably. For values of F that are larger than 3, the system is 1 

chaotic (Lorenz and Emanuel 1998). To simulate model errors, the forcing term for 2 

the forecast was set to 7, while using F=8 to generate the “true” state. The initially 3 

selected ensemble size was 30. 4 

The Lorenz-96 model was run for 2000 time steps, which is equivalent to 5 

approximately 500 days in realistic problems. The synthetic observations were 6 

assimilated at every grid point and every 4 time steps using the conventional EnKF, 7 

the constant inflated EnKF and the improved EnKF schemes for comparisons. The 8 

time series of estimated inflation factors are shown in Figure 2. It can be seen that, 9 

the estimated inflation factors vary between 1 and 6 in most instances, although the 10 

values smaller than 1 are estimated in several assimilation time steps. The median of 11 

the estimated inflation factors was 1.88, which was used as the inflation factor in the 12 

constant inflated EnKF scheme. Since the median is a robust and highly efficient 13 

statistic of the central tendency, this can ensure a relative fair comparison between the 14 

constant inflated EnKF and the improved EnKF schemes. 15 

The forecast ensemble spread of the conventional EnKF, constant inflated 16 

EnKF and improved EnKF are plotted in Figure 3. For the conventional EnKF, 17 

because the forecast states usually shrink together, the forecast ensemble spread was 18 

quite small and had a mean value of 0.36. The mean spread value of the improved 19 

EnKF was 3.32, which was larger than that of the constant inflated EnKF (3.25). 20 

These findings illustrate that the underestimation of forecast ensemble spread can be 21 

effectively compensated for by the two EnKF schemes with forecast error inflation 22 
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and that the improved EnKF is more effective than the constant inflated EnKF. 1 

To evaluate the analysis sensitivity, the GAI statistics (Eq. (16)) were calculated, 2 

and the results are plotted in Figure 4. The GAI value increases from 10% for the 3 

conventional EnKF to 30% for the improved EnKF, indicating that the latter relies 4 

more on the observations. This finding is important because the observations can play 5 

a significant role in combining the results with the model forecasts to generate the 6 

analysis state. In addition to small fluctuations, the mean GAI value of the constant 7 

inflated EnKF was 27.80%, which was smaller than that of the improved EnKF. 8 

To evaluate the analysis estimate accuracy, the analysis RMSE (Eq. (18)) and 9 

the corresponding values of the GCV functions (Eq. (9)) were calculated and plotted 10 

in Figures 5 and 6, respectively. The results illustrate that the analysis RMSE and the 11 

values of the GCV functions decrease sharply for the two EnKF with forecast error 12 

inflation schemes. However, the GCV function and the RMSE values of the improved 13 

EnKF were about 15% smaller than those of the constant inflated EnKF, indicating 14 

that the online estimate method performs better than the simple multiplicative 15 

inflation techniques with a constant value. The variability of the analysis RMSE was 16 

consistent with that of the GCV function for the EnKF with the forecast error 17 

inflation scheme. The correlation coefficient of the analysis RMSE and the value of 18 

the GCV function at the assimilation time step were approximately 0.76, which 19 

indicates that the GCV function is a good criterion to estimate the inflation factor. 20 

The ensemble analysis state members of the conventional EnKF, constant 21 

inflated EnKF and improved EnKF are shown in Figure 7, and the results indicate the 22 
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uncertainty of the analysis state to some extent. The true trajectory obtained by the 1 

numerical solution is also plotted. It illustrates that a larger difference occurred 2 

between the true trajectory and the ensemble analysis state members for the 3 

conventional EnKF than for the improved EnKF and constant inflated EnKF. In 4 

addition, the analysis state was more consistent with the true trajectory for the 5 

improved EnKF than that for the constant inflated EnKF. Therefore, the GCV 6 

inflation can lead to a more accurate analysis state than the simple constant inflation. 7 

The time-mean values of the forecast ensemble spread, the GAI statistics, the 8 

GCV functions and the analysis RMSE over 2000 time steps are listed in Table 1. 9 

These results illustrate that the forecast error inflation technique using the GCV 10 

function performs better than the constant inflated EnKF, which can indeed increase 11 

the analysis sensitivity to the observations and reduce the analysis RMSE.  12 

 13 

3.3 Influence of ensemble size and observation number 14 

Intuitively, for any ensemble-based assimilation scheme, a large ensemble size 15 

will lead to small analysis errors; however, the computational costs are high for 16 

practical problems. The ensemble size in the practical land surface assimilation 17 

problem is usually several tens of members (Kirchgessner et al. 2014). The 18 

preferences of the proposed inflation method and the constant inflation method with 19 

respect to different ensemble sizes (10, 30 and 50) were evaluated, and the results are 20 

listed in Table 1. It shows that for each scheme, using a 10-member ensemble 21 

produced a threefold increase in the analysis RMSE, while using a 50-member 22 
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ensemble reduced the analysis RMSE by 20% relative to the analysis RMSE obtained 1 

using a 30-member ensemble. The forecast ensemble spread increased slightly from a 2 

10-member ensemble to a 50-member ensemble. The GAI and GCV function values 3 

changed sharply from a 10-member ensemble to a 30-member ensemble, and they 4 

became relatively stable from a 30-member ensemble to a 50-member ensemble. 5 

Ensembles less than 10 were unstable, and no significant changes occurred for 6 

ensembles greater than 50. Considering the computational costs for practical 7 

problems, a 30-member ensemble may be necessary to estimate statistically robust 8 

results.  9 

To evaluate the preferences of the inflation method with respect to different 10 

numbers of observations, synthetic observations were generated at every other grid 11 

point and for every 4 time steps. Hence, a total of 20 observations were performed at 12 

each observation step in this case. The assimilation results with ensemble sizes of 10, 13 

30 and 50 are listed in Table 2, which shows that the GAI values were larger than 14 

those with 40-observations in all assimilation schemes. This finding may be related to 15 

the relatively small denominator of the GAI statistic (Eq. (16)) in the 20-observation 16 

experiments. The forecast ensemble spread does not change much but the GCV 17 

function and the RMSE values increase greatly in the 20-observation experiments 18 

with respect to those in the 40-observation experiments, which illustrates that more 19 

observations will lead to less analysis error. 20 

 21 

 22 
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4. Discussions  1 

 2 

4.1 Performance of the GCV inflation  3 

Accurate estimates of the forecast error covariance matrix are crucial to the 4 

success of any data assimilation scheme. In the conventional EnKF assimilation 5 

scheme, the forecast error covariance matrix is estimated as the sampling covariance 6 

matrix of the ensemble forecast states. However, limited ensemble size and large 7 

model errors often cause the matrix to be underestimated, which produces an analysis 8 

state that over relies on the forecast and excludes observations. This can eventually 9 

cause the filter to diverge. Therefore, the forecast error inflation with proper inflation 10 

factors is increasingly important.  11 

The use of multiplicative covariance inflation techniques can mitigate this 12 

problem to some extent. Several methods have been proposed in the literature, and 13 

each has different assumptions. For instance, the moment approach can be easily 14 

conducted based on the moment estimation of the innovation statistic. The maximum 15 

likelihood approach can obtain a more accurate inflation factor than the moment 16 

approach, but requires computing high dimensional matrix determinants. The 17 

Bayesian approach assumes a prior distribution for the inflation factor but is limited 18 

to spatially independent observational errors. In this study, the inflation factor was 19 

estimated based on cross-validation and the analysis sensitivity was detected. The 20 

estimated inflation factor by minimizing the GCV function is not affected by the 21 

observation unit and can optimize the analysis sensitivity to the observation. 22 
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In fact, the CV method can evaluate and compare learning algorithms and 1 

represents a widely used statistical method. In this study, the CV concept was 2 

adopted for the inflation factor estimation in the improved EnKF assimilation scheme 3 

and was validated with the Lorenz-96 model. The assimilation results showed that 4 

inflating the conventional EnKF using the factor estimated by minimizing the GCV 5 

function can indeed reduce the analysis RMSE. Therefore, the GCV function can 6 

accurately quantify the goodness of fit of the error covariance matrix. The values of 7 

the GCV function obviously decreased in the proposed approach compared the 8 

conventional EnKF and constant inflated EnKF schemes. The analysis RMSE of the 9 

proposed approach was also much smaller than those of the conventional EnKF and 10 

constant inflated EnKF schemes, which suggests that the GCV criterion works well 11 

for estimating the inflation factor. 12 

The analysis sensitivities in the proposed approach and in the conventional 13 

EnKF scheme were also investigated in this study. The time-averaged GAI statistic 14 

increases from about 10% in the conventional EnKF scheme to about 30% using the 15 

proposed inflation method. This illustrates that the inflation mitigates the problem of 16 

the analysis depending excessively on the forecast and excluding the observations. 17 

The relationship of the analysis state to the forecast state and the observations are 18 

more reasonable. 19 

 20 

4.2 Computational cost 21 

The highest computational cost when minimizing the GCV function is related 22 
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to calculating the influence matrix ( )i A . Since the matrix multiplication is 1 

commutative for the trace, the GCV function can be easily re-expressed as follows:  2 

 
   

  

1 1
T T T

2
1

T

( )

Tr

i i i i i i i i i i i i

i

i i i i i

p
GCV

 




 



 


 
  

d H PH R R H P H R d

H PH R R

. (21) 3 

Because both the numerator and denominator of the GCV function are scalars, the 4 

inverse matrix is needed only in  
1

T

i i i i


H PH R , which can be effectively 5 

calculated using the Sherman-Morrison-Woodbury formula. Furthermore, the inverse 6 

matrix calculation and the multiplication process are also indispensable for the 7 

conventional EnKF (Eq. (6)). Essentially, no additional computational burden is 8 

associated with the improved EnKF for the inverse matrix. Therefore, the total 9 

computational costs of the improved EnKF are feasible. 10 

For the Lorenz-96 experiments in this study, the conventional EnKF, constant 11 

inflated EnKF and proposed improved EnKF assimilation schemes were conducted 12 

using R language on a computer with Intel Core i5 CPU and 8 GB RAM. The 13 

running times with different observation numbers and ensemble sizes were listed in 14 

Tables 1 and 2. It shows that for each assimilation scheme, the computational cost 15 

increases as the ensemble size grows. For the fixed observation number and ensemble 16 

size, the conventional EnKF, which does not involve the forecast error inflation, has 17 

the least running time but at a cost of losing assimilation accuracy. The proposed 18 

EnKF scheme is about 15% smaller in analysis RMSE, but only about 5% longer in 19 

running time than the constant inflated EnKF scheme. For the operational 20 

meteorological/ocean models, the most computational cost is in the ensemble model 21 
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integrations (Ravazzani et al. 2016). Therefore, the proposed EnKF scheme does not 1 

significantly increase computational cost. 2 

 3 

4.3 Notes  4 

It is worth noting that the inflation factor is assumed to be constant in space in 5 

this study, which may be not the case in realistic assimilation problems. Forcing all 6 

components of the state vector to use the same inflation factor could systematically 7 

overinflate the ensemble variances in sparsely observed areas, especially when the 8 

observations are unevenly distributed. In the presence of sparse observations, the 9 

state that is not observed can be improved only by the physical mechanism of the 10 

forecast model, although this improvement is limited. Therefore, a multiplicative 11 

inflation may not be sufficiently effective to enhance the assimilation accuracy. In 12 

this case, the additive inflation and the localization technique can be applied to 13 

further improve the assimilation quality in the presence of sparse observations 14 

(Miyoshi and Kunii 2011; Yang et al. 2015). 15 

 16 

 17 

5. Conclusions 18 

 19 

In this study, the approach for using GCV as a metric to estimate the covariance 20 

inflation factor was proposed. In the case studies conducted in Section 3, the 21 

observations were relatively evenly distributed and the assimilation accuracy could 22 
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indeed be improved by the forecast error inflation technique. These findings provide 1 

insights on the methodology and validation of the Lorenz-96 model and illustrate the 2 

feasibility of our approach. In the near future, methods of modifying the adaptive 3 

procedure to suit the system with unevenly distributed observations and applying to 4 

more sophisticated dynamic and observation systems will be investigated. 5 

 6 

Appendix A 7 

From Eq. (2), the normalized observation equation can be defined as follows: 8 

 
o 1/2 t

i i i i i

 y R H x ε , (A1) 9 

where 
o 1/2 o

i i i

y R y  is the normalized observation vector and ~ ( , )i Nε 0 I ; 
ipI  is 10 

the identity matrix with the dimensions i ip p . Similarly, the normalized analysis 11 

vector is 
a 1/2 a

i i i i

y R H x  and the influence matrix iA  relates the normalized 12 

observation vector to the normalized analysis vector, thereby ignoring the normalized 13 

forecast state in the observation space (Gu 2002): 14 

  a 1/2 f o 1/2 f

i i i i i i i i i

   y R H x A y R H x . (A2) 15 

Because the analysis state 
a

ix  is given by Eq. (5), the influence matrix iA  can be 16 

verified as follows: 17 

  
1

1/2 T 1/2

ii p i i i i i i



  A I R H PH R R . (A3) 18 

If the initial forecast error covariance matrix is inflated as described in Section 2.2, 19 

then the influence matrix is treated as the following function of   20 

  
1

1/2 T 1/2( )
ii p i i i i i i 



  A I R H PH R R , (A4) 21 

The principle of CV is to minimize the estimated error at the observation grid 22 
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point. Lacking an independent validation data set, a common alternative strategy is to 1 

minimize the squared distance between the normalized observation value and the 2 

analysis value while not using the observation on the same grid point, which is the 3 

following objective function: 4 

   
2

o 1/2 a[k]
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1

1
( )
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i i k i i i k
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V
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  y R H x , (A5) 5 

where 
a[k]

ix  is the minima of the following “delete-one” objective function: 6 
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    x x P x x y H x R y H x . (A6) 7 

The subscript –k indicates a vector (matrix) with its k-th element (k-th row and 8 

column) deleted. Instead of minimizing Eq. (A6) ip  times, the objective function 9 

(Eq. (A5)) has another more simple expression (Gu 2002): 10 
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where ,k ka  is the element at the site pair (k, k) of the influence matrix ( )i A . Then, 12 

,k ka  is substituted with the average ,

1

1 1
Tr( ( ))

ip

k k i

ki i

a
p p




 A  and the constant is 13 

ignored to obtain the following GCV statistic (Gu 2002): 14 
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Appendix B 17 

The sensitivities of the analysis to the observation are defined as follows: 18 
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a
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o

i
i i i i i

i


 


y
S R K H R

y
, (B1) 1 

Substitute the Kalman gain matrix  
1

T T

i i i i i i i



 K PH H PH R  into 
o

iS , then:  2 
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 i A  (B2) 8 

Therefore, the sensitivity matrix 
o

iS  is equal to the influence matrix iA . 9 
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References 1 

Table 1. Time-mean values of the forecast ensemble spread, GAI statistics, GCV 2 

functions and analysis RMSE over 2000 time steps, as well as the running times 3 

(second) for different assimilation schemes. The observation number is 40 and the 4 

ensemble size is selected as 10, 30 and 50, respectively. 5 

 6 

Scheme 
Ensemble 

Size 
Spread GAI GCV RMSE 

Running 

Time 

Conventional 

EnKF 

10 0.23 4.56% 36.38 4.50 70.73 

30 0.36 10.78% 31.14 4.01 215.92 

50 0.41 13.58% 25.21 3.52 346.69 

Constant 

inflated EnKF 

10 3.15 4.78% 35.91 4.38 77.41 

30 3.25 27.48% 5.56 1.41 238.25 

50 3.27 19.67% 5.03 1.14 384.63 

Improved 

EnKF 

10 3.26 5.24% 35.56 3.74 81.31 

30 3.32 29.21% 3.29 1.10 251.06 

50 3.45 35.63% 2.30 0.88 405.68 
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Table 2. Same as in Table 1 but for 20 observations. 1 

 2 

Scheme 
Ensemble 

Size 
Spread GAI GCV RMSE 

Running 

Time 

Conventional 

EnKF 

10 0.41 10.77% 33.64 4.85 67.75 

30 0.59 20.92% 22.89 4.10 181.27 

50 0.68 26.41% 14.97 3.29 295.92 

Constant 

inflated EnKF 

10 3.03 11.73% 33.39 4.64 71.22 

30 3.18 30.07% 17.12 3.92 203.64 

50 3.27 39.51% 12.74 3.37 322.29 

Improved EnKF 

10 3.33 13.25% 32.17 4.39 74.84 

30 3.36 35.09% 14.99 3.46 213.81 

50 3.48 41.28% 5.19 2.86 339.41 

  3 
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Figure captions 1 

Figure 1. Flowchart of the proposed assimilation scheme. 2 

Figure 2. Time series of the estimated inflation factors by minimizing the GCV 3 

function. The median of the estimated inflation factors is 1.88. 4 

Figure 3. Forecast ensemble spread of the conventional EnKF (black line), the 5 

constant inflated EnKF (red line) and the improved EnKF (blue line) for the 6 

Lorenz-96 experiment with 40-observation and 30-ensemble member. The constant 7 

multiplicative inflation factor is set as 1.88. 8 

Figure 4. GAI statistics of the conventional EnKF (black line), the constant inflated 9 

EnKF (red line) and the improved EnKF (blue line) for the Lorenz-96 experiment 10 

with 40-observation and 30-ensemble member. The constant multiplicative inflation 11 

factor is set as 1.88.  12 

Figure 5. Analysis RMSE of the conventional EnKF (black line), the constant inflated 13 

EnKF (red line) and the improved EnKF (blue line) for the Lorenz-96 experiment 14 

with 40-observation and 30-ensemble member. The constant multiplicative inflation 15 

factor is set as 1.88.  16 

Figure 6. GCV function values of the conventional EnKF (black line), the constant 17 

inflated EnKF (red line) and the improved EnKF (blue line) for the Lorenz-96 18 

experiment with 40-observation and 30-ensemble member. The constant 19 

multiplicative inflation factor is set as 1.88.  20 

Figure 7. Ensemble analysis state members of the conventional EnKF (black line), the 21 

constant inflated EnKF (red line) and the improved EnKF (blue line) for the 22 



29 

Lorenz-96 experiment with 40-observation and 30-ensemble member. The constant 1 

multiplicative inflation factor is set as 1.88. The green line refers to the true trajectory 2 

obtained by the numerical solution. 3 
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 1 

Figure 1. Flowchart of the proposed assimilation scheme. 2 
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 1 

Figure 2. Time series of the estimated inflation factors by minimizing the GCV 2 

function. The median of the estimated inflation factors is 1.88. 3 
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 1 

Figure 3. Forecast ensemble spread of the conventional EnKF (black line), the 2 

constant inflated EnKF (red line) and the improved EnKF (blue line) for the 3 

Lorenz-96 experiment with 40-observation and 30-ensemble member. The constant 4 

multiplicative inflation factor is set as 1.88. 5 
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 1 

Figure 4. GAI statistics of the conventional EnKF (black line), the constant inflated 2 

EnKF (red line) and the improved EnKF (blue line) for the Lorenz-96 experiment 3 

with 40-observation and 30-ensemble member. The constant multiplicative inflation 4 

factor is set as 1.88. 5 
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 1 

Figure 5. Analysis RMSE of the conventional EnKF (black line), the constant inflated 2 

EnKF (red line) and the improved EnKF (blue line) for the Lorenz-96 experiment 3 

with 40-observation and 30-ensemble member. The constant multiplicative inflation 4 

factor is set as 1.88. 5 
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 1 

Figure 6. GCV function values of the conventional EnKF (black line), the constant 2 

inflated EnKF (red line) and the improved EnKF (blue line) for the Lorenz-96 3 

experiment with 40-observation and 30-ensemble member. The constant 4 

multiplicative inflation factor is set as 1.88. 5 
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 1 

Figure 7. Ensemble analysis state members of the conventional EnKF (black line), the 2 

constant inflated EnKF (red line) and the improved EnKF (blue line) for the 3 

Lorenz-96 experiment with 40-observation and 30-ensemble member. The constant 4 

multiplicative inflation factor is set as 1.88. The green line refers to the true trajectory 5 

obtained by the numerical solution. 6 
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