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Abstract. In this study, we discuss the role of the linear heating term and nonlinear terms associated

with a nonlinear feedback loop in the energy cycle of the three-dimensional (X–Y –Z) non-

dissipative Lorenz model (3D-NLM), where (X,Y,Z) represent the solutions in the phase space.

Using trigonometric functions, we first present the closed-form solution of the nonlinear equation

d2X/dτ2 + (X2/2)X = 0 without the heating term (i.e., rX), (where τ is a non-dimensional time5

and r is the normalized Rayleigh number), a solution that has not been previously documented. Since

the solution of the simplfied 3D-NLM is oscillatory (wave-like) and since the nonlinear term (X3)

is associated with the nonlinear feedback loop, here, we suggest that the nonlinear feedback loop

may act as a restoring force. When the heating term is considered, the system yields three critical

points. A linear analysis suggests that the origin (i.e., the trivial critical point) is a saddle point10

and that the other two non-trivial critical points are stable. Here, we provide an analysis for three

types of solutions that are associated with these critical points. Two of the solutions represent closed

curves that travel around one non-trivial critical point or all three critical points. The third type of

solution, appearing to connect the stable and unstable manifolds of the saddle point, is called the

homoclinic orbit. Using the solution that contains one non-trivial critical point, here, we show that15

the competing impact of the nonlinear restoring force and the linear (heating) force determines the

partitions of the averaged available potential energy from the Y and Z modes. Based on the energy

analysis, an energy cycle with four different regimes is identified. The cycle is only half of a “large”

cycle, displaying the wing pattern of a glasswinged butterfly. The other half cycle is antisymmetric

with respect to the origin. The two types of oscillatory solutions with either a small cycle or a20

large cycle are orbitally stable. As compared to the oscillatory solutions, the homoclinic orbit is not

periodic because it "takes forever" to reach the origin. Two trajectories with starting points near the

homoclinic orbit may be diverged because one moves with a small cycle and the other moves with
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a large cycle. Therefore, the homoclinic orbit is not orbitally stable. In a future study, dissipation

and/or additional nonlinear terms will be included in order to determine how their interactions with25

the original nonlinear feedback loop and the heating term may change the periodic orbits (as well as

homoclinic orbits) to become quasi-periodic orbits and chaotic solutions.

1 Introduction

It has been fifty years since Lorenz published his breakthrough modeling study (Lorenz, 1963)

that changed our views on the predictability of weather and climate (Solomon et al., 2007).30

The model has been extensively investigated by researchers in various fields including earth

science, engineering, mathematics, philosophy, and physics (e.g., Gleick, 1987; Sprott, 2003;

Jordan and Smith, 2007; Anthes, 2011; Hirsch et al., 2013; Strogatz , 2015). Lorenz’s model with

three Fourier modes, which represents the solution to the 2-D Rayleigh–Benard equation (Saltzman,

1962; Lorenz, 1963), is known as the three-dimensional Lorenz model (3DLM). In this paper, we35

use 3D-NLM to refer to the non-dissipative version of the model that is introduced later in the text.

The scientific community agrees that weather is chaotic, with a finite predictability, and that

the source of chaos is nonlinearity. Since the degree of nonlinearity is finite within the 3DLM,

the impact of increased nonlinearity on system solutions and/or their stability has been studied

using generalized LMs with additional Fourier modes (e.g., Curry, 1978; Curry et al., 1984;40

Howard and Krishnamurti, 1986; Hermiz et al., 1995; Thiffeault and Horton, 1996; Musielak et al.,

2005; Roy and Musielak, 2007a). As compared to the 3DLM, some of the generalized LMs have

suggested larger Rayleigh number values (or heating parameters) for the onset of chaos, while others

have indicated smaller values. This discrepancy may be attributed to different mode truncations (e.g.,

Curry et al., 1984; Thiffeault and Horton, 1996; Roy and Musielak, 2007a, b, c; Shen, 2014, 2015,45

2016) that lead to different degrees of nonlinearity and different systems whose energy may or may

not be conserved (e.g., Roy and Musielak, 2007a).

Among studies using generalized LMs, the pioneering study of Prof. Curry (Curry et al., 1984)

suggested that chaotic responses disappeared when sufficient modes are included. Recent studies

by Prof. Musielak and his colleagues (Musielak et al., 2005; Roy and Musielak, 2007a, b, c)50

have examined the transition to chaos and the fractal dimensions of generalized LMs, and have

emphasized the importance of proper mode truncation in energy conservation. More recent studies

(Shen, 2014, 2015, 2016) have discussed the importance of proper Fourier mode selection in

extending the nonlinear feedback loop of the 3DLM. The feedback loop, which consists of the

two nonlinear terms of the 3DLM, includes a pair of downscale and upscale transfer processes55

associated with the Jacobian function of the partial differential equation, discussed in Sect. 2. As

previously suggested, the original feedback loop may help stabilize the solution for 1< r < 24.74

within the 3DLM. The extended nonlinear feedback loop in high-dimensional LMs can provide
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negative nonlinear feedback that produces non-trivial stable critical points when r < 42.9 within a

five-dimensional LM and when r < 116.9 within a seven-dimensional LM. Based on the above,60

it has been hypothesized that a system’s stability can be improved further with additional modes

that can provide negative nonlinear feedback. While the importance of an increased degree of

nonlinearity with more Fourier modes has been discussed in recent studies, the competing role of

the nonlinear terms with the linear (heating) term and/or dissipative terms deserves to be examined

in order to ascertain the conditions under which nonlinear processes may lead to stable or chaotic65

solutions.

Roupas (2012) and others have indicated that the 3DLM in the dissipative limit, which is referred

to as the 3D-NLM, contains two conserved quantities that represent the conservation of (KE + PE)

and (KE + APE), respectively. Here, KE, PE, and APE are the domain-averaged kinetic energy,

potential energy, and available potential energy, respectively. These two quantities, (KE + PE) and70

(KE + APE), are related to the Nambu Hamiltonians (Nambu, 1973; Nevir and Blender, 1994;

Floratos, 2011; Roupas, 2012; Blender and Lucarini, 2013). As a result of conservation properties,

the collective impact of the nonlinear feedback loop and the linear (heating) term may effectively act

as a “restoring” force. The simplicity of the 3D-NLM enables an examination of how the nonlinear

feedback loop and the linear (heating) term work together to produce oscillatory solutions (in the75

phase space). In this work, we address this issue in conjunction with how the available potential

energy is partitioned amongst two different Fourier modes, Y and Z, where Z is included in order

to enable the nonlinear feedback loop.

The paper is organized as follows: In Sect. 2, we present the governing equations and the 3D-

NLM, introduce the nonlinear feedback loop, and derive the energy conservation laws. In Sect. 3,80

we illustrate the role of the nonlinear feedback loop (with r = 0) in acting as a restoring force.

With inclusion of the heating term, as well as the nonlinear feedback loop, we present a linear

stability analysis for the three critical points and then discuss three types of solutions using analytical

and numerical methods. The solutions include two types of oscillatory solutions and the so-called

homoclinic orbit (Jordan and Smith, 2007; Sprott, 2003). An energy cycle with four regimes is85

analyzed based on the tendency of KE and the partition of APE at different scales (i.e., either Y

or Z). Concluding remarks are provided at the end. Appendix A discusses the derivation of the

3D-NLM, and Appendix B presents a closed-form solution to the system with r = 0 using elliptic

functions (e.g., Davis, 1960). Appendix C discusses the equations and initial conditions that are used

to obtain the solution of the homeclinic orbit.90
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2 Governing equations and the non-dissipative Lorenz model

The following governing equations for a 2D (x,z), Boussinesq flow are introduced in order to derive

the non-dissipative Lorenz model (3D-NLM) and to calculate its kinetic and potential energy:

∂

∂t
∇2ψ =−J(ψ,∇2ψ) + gα

∂θ

∂x
+✟✟✟
ν∇4ψ, (1)

∂θ

∂t
=−J(ψ,θ) +

∆T
H

∂ψ

∂x
+✘✘✘
κ∇2θ, (2)95

where ψ is the streamfunction that yields u=−ψz and w = ψx that represent the horizontal and

vertical velocity perturbations, respectively, and θ is the temperature perturbation. ∆T represents

the temperature difference between the bottom and top boundaries. The constants, g, α, ν, and κ

denote the acceleration of gravity, the coefficient of thermal expansion, the kinematic viscosity, and100

the thermal diffusivity, respectively. The Jacobian of two arbitrary functions is defined as J(A,B) =

(∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x). The crossout symbol indicates the negligence of a term in

the dissipationless limit. Equations (1) and (2), with the dissipative terms, were first used in Saltzman

(1962) and Lorenz (1963).

The non-dissipative Lorenz model (3D-NLM) is written as:105

dX
dτ

= σY, (3)

dY
dτ

=−XZ + rX, (4)

dZ
dτ

=XY. (5)

Here, (X,Y,Z) represent the amplitude of the Fourier modes. τ = κ(1+ a2)(π/H)2t is the110

dimensionless time. a is the ratio of the vertical scale of the convection cell to its horizontal scale.

H is the domain height, and 2H/a represents the domain width. σ = ν/κ is the Prandtl number,

and r =Ra/Rc is the normalized Rayleigh number or the heating parameter. Ra is the Rayleigh

number,Ra = gαH3∆T/νκ, andRc is the critical value for the free-slip Rayleigh–Benard problem,

Rc = π4(1+ a2)3/a2. The “forcing” terms on the right-hand side of Eqs. (4) and (5) are referred to115

as the linear force, or the heating term (rX), and the nonlinear force terms (−XZ and XY ). Note

that as a result of scale selection in the original Lorenz model, the appearance of σY comes from

gα ∂θ
∂x , which is not associated with the dissipative terms. Appendix A provides detailed derivations.

The 3D-NLM is integrated forward in time using the fourth-order Runge–Kutta scheme. Without

a loss of generality, only three different values of the normalized Rayleigh number, r (r = 0, r = 25,120

and r = 45) are used, while keeping other parameters, including σ = 10 and a= 1/
√

2, constant.

A dimensionless time interval (△τ ) of 0.01 is used and the total number of time steps is 10 000,

giving a total dimensionless time (τ ) of 100. A smaller △τ is used to improve accuracy. In this

study, unless stated otherwise, the initial conditions (ICs) are as follows:

(X,Y,Z) = (0,1,0). (6)125
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These settings were used in order to examine the stability of the 5DLM and 6DLM in Shen

(2014, 2015), who also discussed the dependence of the solution on different r and σ. To illustrate

the unique features of solutions, a very small time step and/or different ICs are used, including

(X,Y,Z) = (±ǫ,0,0), (0,±ǫ, ,0), and (2
√
σr,0,2r). The first IC is used for showing solutions with

a small cycle, and the second is used for discussing solutions with a big cycle. The third IC is used130

to perform a numerical simulation for the homoclinic orbit (Jordan and Smith, 2007; Sprott, 2003).

2.1 The nonlinear feedback loop and energy conservation laws

Nonlinear terms in the 3D-NLM (and 3DLM) have been shown to result from the Jacobian term,

J(ψ,θ), in Eq. (2). The nonlinear interaction of two wave modes via the Jacobian term can generate

or impact a third wave mode through a downscale (or upscale) transfer process. The subsequent135

upscale (or downscale) transfer process associated with the third wave mode can provide feedback

to the incipient wave mode(s). As illustrated in Shen (2014), XY and −XZ, respectively, represent

the downscale and upscale transfer processes that form a nonlinear feedback loop. When new modes

are properly included, the feedback loop can be extended. In the following subsections, we discuss

the role of the 3D-NLM nonlinear feedback loop in the energy conservation and partition of available140

potential energy, which, in turn, helps produce oscillatory solutions.

The domain-averaged kinetic energy (KE), the potential energy (PE), and the available potential

energy (APE) are defined as follows (e.g., Thiffeault and Horton, 1996; Blender and Lucarini, 2013;

Shen, 2014, 2015):

KE =
1
2

2H/a∫

0

H∫

0

(u2 +w2)dzdx, (7)145

PE =−
2H/a∫

0

H∫

0

gα(zθ)dzdx, (8)

APE =−gαH
2∆T

2H/a∫

0

H∫

0

(θ)2dzdx. (9)

Through straightforward derivations, we obtain the following:

KE =
Co

2
X2, (10)150

PE =−CoσZ, (11)

APE =−Co

2
σ

r
(Y 2 +Z2), (12)

where Co = π2κ2
(

1+a2

a

)3

. APE is non-positive (i.e., APE≤ 0), since any perturbation reduces the

energy transformable to KE.155
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Equations (10) and (11) lead to:

KE + PE = Co

(
X2

2
−σZ

)
= C1, (13)

while Eqs. (10) and (12) yield:

KE + APE =
Co

2

(
X2− σ

r
(Y 2 +Z2)

)
= C2. (14)160

With Eqs. (3)–(5), the time derivative for both Eqs. (13) and (14) is zero, so these two equations

describe energy conservation. Both C1 and C2 are constants and are determined by the initial

conditions. Thus, if we express Z and Y 2 as functions of X , they are single valued. To facilitate our

discussions, the contribution to APE from an individual mode is defined as APEI =−CoσI
2/2r,165

where I = Y or Z; therefore, APE = APEY + APEZ . Note that Eqs. (13) and (14) are related

to the two Nambu Hamiltonians, C =−X2/2+σZ and H = Y 2/2+Z2/2− rZ (Nambu, 1973;

Nevir and Blender, 1994; Floratos, 2011; Roupas, 2012; Blender and Lucarini, 2013).

From the initial conditions in Eq. (6), we have C1 = 0 and C2/Co =−σ/2r, the latter of which

is −0.2 for r = 25 and −0.11 for r = 45. Figure 1 provides the time evolution of the conserved170

quantities: (KE + PE) and (KE + APE) in Eqs. (13) and (14) from the 3D-NLM. At a larger r (e.g.,

r = 45), a finer△τ is required to improve the numerical accuracy of simulated total energy (Fig. 1c).

In this study, to facilitate discussions and unless stated otherwise, either C1 or C2 is assumed to be

zero.

3 Discussions175

In this section, we discuss the competing role of the nonlinear terms and the linear forcing term in

the transient solutions and the energy cycle of the 3D-NLM. From Eqs. (3), (4), and (13), we obtain

d2X

dτ2
+M2X = 0, (15a)

and180

M2 =
X2

2
−

(
σr+

C1

Co

)
. (15b)

The three terms on the right-hand side of Eq. (15b) represent the impact of nonlinearity, the

linear (heating) force, and the initial conditions, respectively. Their competing impacts (i.e., their

differences) determine the sign of M2, and, thus, the characteristics of the solution. Based on the185

relative magnitude of the initial state that may lead to (σr+C1/Co)≤ 0 or > 0, two types of

solutions can be identified (Roupas, 2012). In this study, we focus on the case with 0≤ (σr+C1/Co)

by using C1 = 0 in Sect 3.2 and C1/Co =X2
o/2 in Sect 3.3, where Xo is the initial value of X . To

understand the role of the nonlinear terms (i.e., the nonlinear feedback loop), we begin discussions

by solving the solution to the equation that contains no nonlinear terms.190
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3.1 Solutions of the linear system without the nonlinear feedback loop

By assuming no nonlinear terms, we can begin with two equations: dX/dτ = σY and dY/dτ = rX

and only one conservation law, as follows:

KE + APE =
Co

2

(
X2− σ

r
Y 2

)
= C2. (16)

195

This linear case yields M2 =−σr, and Eq. (15) becomes d2X/dτ2−σrX = 0. A local analysis

suggests that the origin, the only critical point in the linear system, is a saddle point. After

straightforward derivations, the solution is:

X =X1e
−√σrτ +X2e

+
√

σrτ , (17)

where X1 and X2 are constant coefficients. The origin (X,Y ) = (0,0) is a saddle point, and200

the trajectory is hyperbolic with solutions exhibiting exponential growth and decay. The initial

condition, which determines dX/dY (= σY/rX), can help select the proper mode(s). For example,

(X,Y ) = (
√
σ/r,1) only provides the growing mode with (X1,X2) = (0,

√
σ/r), while (X,Y ) =

(
√
σ/r,−1) leads to the decaying mode with (X1,X2) = (

√
σ/r,0). The former and latter display

the properties of unstable and stable manifolds, respectively (Ide et al., 2002). For the nonlinear205

case, a “current” state (i.e., ICs) may vary with time. Therefore, either mode may appear at different

stages. For example, as shown with the homoclinic orbit in Sect. 3.3, a trajectory with an initial

point of (X,Y,Z) = (2
√
σr,0,2r) may approach the origin at a decay rate of

√
σr, while a trajectory

beginning near the origin may depart at a growth rate of
√
σr. Based on Eqs. (16) and (17), although

the time change of (KE + APE) remains zero, the KE produced using only the linear (heating) force210

has no upper limit. Such an outcome could violate the linear assumption, and, thus, nonlinearity

should be included.

3.2 Nonlinear solutions and the nonlinear restoring force for r = 0

Here, we examine the impact of nonlinear terms using a special case with r = 0 and (X,Y,Z) =

(0,1,0), leading to M2 =X2/2. Thus, Eq. (15) becomes:215

d2X

dτ2
+
X2

2
X = 0. (18)

As compared to the case with r 6= 0 in Eqs. (13) and (14), the energy conservation laws obtained

using r = 0 are:

X2

2
−σZ = 0, (19)220

Y 2 +Z2 = 1, (20)

which, in turn, lead to:

Y 2 +
X4

4σ2
= 1. (21)

225
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Solutions to the above equation can be obtained as follows:

X2 = 2σ sin(φ), (22a)

Y = cos(φ), (22b)

Z = sin(φ), (22c)230

where the phase function, φ, can be determined from Eqs. (18) and (22a) and is written as:

φ=

τ∫

0

Xdτo, (23a)

which can also be displayed as:

φ=

τ∫

0

τ∫

0

σY dτ1dτ2. (23b)235

To illustrate the solution’s characteristics, Eqs. (22b) and (23b) are solved using the following

iterative method:

Yn = cos(φn), n= 0,1,2 . . .N (24a)

φn+1 =

τ∫

0

τ∫

0

σYndτ1dτ2, (24b)240

where N is the number of iterations. Over a period of time, an initial guess for the phase function

is given as φ0(τ) = τ . We insert the first phase function, φ0, into Eq. (24a) to obtain Y0. We then

calculate the next phase function, φ1, using Y0 and Eq. (24b). The integral in Eq. (24b) is calculated

using the trapezoidal rule. We then repeat the above calculations N times. Numerical results using245

N = 100 are provided in Fig. 2. The phase function (Fig. 2a) oscillates with time and varies between

0 and π, consistent with Eq. (22a) as a result of sin(φ)≥ 0. Therefore, the solution to Eq. (18) is

oscillatory instead of growing or decaying exponentially (as shown in Figs. 2b and c). The nonlinear

term in Eq. (18) may be viewed as a nonlinear restoring force. Such a suggestion is consistent with

the view (Shen, 2014) that the pair of nonlinear terms (−XZ and XY ), leading to the nonlinear250

term (X2/2), can form a nonlinear feedback loop within the 3DLM. When σ = 10 is replaced by

σ = 20, an oscillatory solution with a different period is obtained, as shown in Fig. 2d. As a result

of the simple method for integral calculation, a fine △τ may be required in order to obtain accurate

solutions, as indicated by the red and green lines for the results obtained using △τ = 0.0001 and

0.01, respectively (see Fig. 2a).255

To verify the integral form of the solutions in Eqs. (24a) and (24b), the numerical solutions

of the 3D-NLM using r = 0 (e.g., Eqs. 3–5) are provided in Fig. 3. In panel (a), the blue “dot”

indicates the initial temporal evolution of the phase function that is calculated by performing a time

integration of X using Eq. (23a), where X is obtained from the 3D-NLM; and the red line indicates
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the phase function calculated using Eqs. (24a) and (24b). Both are in good agreement. The simulated260

trajectories in the X–Y and X–Z sections are elliptic and parabolic (Figs. 3b and c), respectively,

consistent with the analytical relationships in Eqs. (21) and (19), respectively. Figure 3d provides the

time evolution of oscillatory Y (red) and X (blue), consistent with the results provided in Figs. 2b

and c, respectively. As indicated in Appendix B, the oscillatory characteristics of the solution can

also be illustrated using elliptic functions.265

3.3 Closed form solutions near a non-trivial critical point for r 6= 0

In the previous sections, we used Eq. (15) to illustrate the individual impact of the linear (heating)

force and the nonlinear feedback loop using cases withM2 < 0 andM2 ≥ 0, respectively, neither of

which changes the sign during the integration. Here, using the initial condition (X,Y,Z) = (Xo,0,0)

and 0<Xo, we consider a more general case with M2 = (X2/2−σr−X2
o/2), whose sign may270

vary during the time integration depending on the relative magnitude of the nonlinearity and the

linear (heating) force. M2 has two zeros at X =±Xt, where Xt is defined as
√

2σr+X2
o . These

are called turning points. Based on an analysis using the WKB approximation (Bender and Orszag,

1978), there appears to be a growing or decaying solution for |X|<Xt and an oscillatory (wave-

like) solution for |X|>Xt. The former is largely impacted by the linear (heating) force while the275

latter is impacted by the nonlinear restoring force. Additional analyses are provided below.

To understand the stability of solutions, below, we present a local analysis by linearizing the

system with respect to a non-trivial critical point. Using Eqs. (3-5), we first solve for the non-trivial

critical point which is (Xc,Yc,Zc) = (Xc,0, r). Here, Xc can be any constant and is selected as

the value of the turning point using the justification presented below. From Eqs. (3) and (15), the280

3D-NLM system can be written as:

dX/dτ = σY, (25)

dY/dτ =−M
2

σ
X. (26)

The two equations, with an initial condition of (X,Y ) = (X0,0), lead to three critical points, (Xc,285

Yc) at (0,0) and (±
√

2σr+X2
0 , 0). Note that the non-trivial critical points ±Xc are turning points

due to M = 0 in Eq. 15b.

Next, each of the total fields is decomposed into its basic part and perturbation, as follows:

V = Vc +V ′, (27)

where V indicates the total fields (X,Y,Z), Vc represents the basic state obtained from the solution290

of the critical point, and V ′ is a perturbation that measures the departure from the critical point.

Using the above equation, the linearized system corresponding to the nonlinear system from Eqs.

3-5 is:

ds

dt
=As, (28)

9
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where s= (X ′,Y ′,Z ′) and the matrix A that is evaluated at the non-trivial critical point is written295

as:

A=




0 σ 0

0 0 −Xc

0 Xc 0


 , (29)

The above system with Eqs. (28-29) yields eigenvalues of 0 and±iXc, suggesting that the non-trivial

critical point (Xt,0, r) for the linearized system is a stable node as a center. The other non-trivial300

critical point (-Xt,0, r) shares the same features. One important feature is the dependence of the

solution’s period (2π/Xc) on the initial condition (Xo). Next, to illustrate its periodicity, we present

a closed form solution for the nonlinear system.

Equations (13-14), with the initial conditions (X,Y,Z) = (Xo,0,0), lead to the following two

equations:305
X2

2
−σZ =

X2
o

2
, (30)

rX2−σ(Y 2 +Z2) = rX2
o . (31)

Using the same procedures as those provided in Sect. 3.2 (for r = 0), the following closed-form

solutions (for r 6= 0) are obtained:310

Y = rsin(φ), (32a)

Z =−rcos(φ) + r, (32b)

X2 = 2σ(r− rcos(φ)) +X2
o , (32c)315

φ=
∫
Xdτ. (32d)

Equations (32c) and (32d) are iteratively computed in order to determine the value of φ that is used

to calculate the solutions of X , Y , and Z. Note that because X2
t = 2σr+X2

o , Eqs. (32a) and (32c)

lead to:320 (
X2−X2

t

2σ

)2

+Y 2 = r2. (33)

Since r ≥ rcos(φ), X2 is always positive in Eq. (32c). Without a loss of generality, X =

+
√

2σ(r− rcos(φ)) +X2
o is first discussed, yielding a minimum of Xmin =Xo and a maximum

of Xmax =
√

4σr+X2
o . In a similar manner, given an initial condition of (X,Y,Z) = (−Xo,0,0),

X has a maximum of −Xo and a minimum of −
√

4σr+X2
o . Note that the average of X2

min and325

X2
max is equal to 2σr+X2

o , which is equal to X2
t .

Applying the initial conditions (X,Y,Z) = (
√

2σr,0,0) that yield Xc =Xt = 2
√
σr (≈ 31.62),

Figure 4 shows the closed form solutions obtained using Eq. (32), as well as numerical solutions of

the 3D-NLM obtained using Eqs. (3-5). The results are in good agreement. For any positive Xo, a

trajectory beginning with (X,Y,Z) = (Xo,0,0) is a closed curve. An oscillatory (closed) trajectory330
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associated with a center is orbitally stable (Jordan and Smith, 2007). In Sect. 3.4, the time varying

energy cycle in Eq. (32) will be analyzed. Next, we discuss the solutions in (32) for the special case

of Xo = 0.

When considering a solution that begins with and ends at the saddle point, initial conditions of

(X,Y,Z) = (0,0,0) are required. At the saddle point, the time derivatives of the 3D-NLM in Eqs.335

(3-5) are zero. Therefore, numerically, only zero solutions for X,Y , and Z are possible. Obtaining

a non-trivial solution can be attempted by initially adding a small perturbation (i.e., (X,Y,Z) =

(ǫ,0,0)) and then performing numerical integrations. A similar approach can be applied in Eq. (32)

to obtain an approximate solution. Here, we provide an initial guess for φ, φ(τ) = τ , over a target

period in Eq. (32d). We then calculate X using Eq. (32c) and φ using Eq. (32d) through iterations.340

Figure 5 displays the solutions determined using Eq. (32). The time evolution of Y is provided in Fig.

5a and suggests that Y increases slowly with time, reaches a maximum at τ ≈ 2.3, and then decreases

with time to its minimum. The X-Y plot in Fig. 5b appears reasonable and is later compared to the

analytical solution. In Fig. 5a, the evolution seems "periodic" but displays some irregularities that

are different from those obtained using Xo 6= 0. This case is further analyzed using the following345

analytical solution, as well as the numerical solutions in Sect. 3.5.

From Eq. (C3) of Appendix C, the "second" half of the homoclinic orbital solution can be obtained

as follows:

X(τ) =
4
√
σr

e
√

σrτ + e−
√

σrτ
, (34a)

350

Y (τ) =−4r
e
√

σrτ − e−
√

σrτ

(
e
√

σrτ + e−
√

σrτ
)2 , (34b)

Z(τ) =
X2(τ)

2σ
. (34c)

When t→∞, the above solution approaches the origin. Note that a special point on the solution

trajectory is (X,Y,Z) = (2
√
σr,0,2r). Therefore, the "second" half of the solution in Eq. (34)355

describes the trajectory that begins at (X,Y,Z) = (2
√
σr,0,2r) and that moves forward in time

toward the origin, as shown in lighblue in Fig. 5b. The special point provides an alternative IC

for the numerical integration of the 3D-NLM required to simulate (qualitatively) the homoclinic

orbit, discussed with numerical results later. When t→∞, X(τ)≈ 4
√
σre−

√
σrτ and Y (τ)≈

−4re−
√

σrτ , yielding X/Y =−
√
σ/r. These features are the same as those for the linear (stable)360

solution with a heating term, as outlined in Sect. 3.1. As the system is invariant under t→−t and

y→−y (Strogatz , 2015), the solution (X(τ),−Y (τ),Z(τ)) in backward time, which represents

the "first" half of the solution, displays the trajectory that begins at the origin and then moves to the

point (X,Y,Z) = (2
√
σr,0,2r). The total solution that connects the stable and unstable manifolds

of the saddle point is called the homoclinic orbit. However, the trajectory "takes forever" to reach365

the saddle point (as t→∞), and is, therefore, not a periodic solution. As a result, the "periodicity"

of closed-form solutions with Xo = 0, as provided in Figure 5, is spurious, suggesting a numerical
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error. Unique features of the homoclinic orbit within the analytical solution, as well as the closed-

form solution, will be further explored using numerical solutions below.

3.4 An energy cycle of solutions with r 6= 0370

Here, we analyze the time evolution of energy along the homoclinic orbit and apply it to nearby

trajectories with a small energy cycle. In Eq. (36), Y 2 ≥ 0 leads to |X| ≤ 2
√
σr, which yields

a maximum of X (Xm = 2
√
σr) at Y = 0, denoted by Ym = 0. Taking the partial derivative of

Eq. (36) with respect to X indicates that Y has extrema when X =±
√

2σr =±Xt. At X =±Xt,

Z = r and Y =±r from Eqs. (13) and (14), respectively, and, thus, APEY =APEZ , in other words375

equal contributions to APE from the Y andZ modes. Furthermore, Eq. (36) suggests that Y 2 initially

increases in association with the increase in X2 but later decreases in association with an increase

in X4. The former is consistent with the linear case in Eq. (16), while the latter is consistent with

the simplified nonlinear case in Eqs. (19) and (20). The distribution of Y as a function of X (i.e.,

Eq. 36), with the aforementioned four points, is provided in Fig. 6. The energy cycle: 1) begins at380

point A; 2) goes through B, C, and D; and 3) returns back to A. The segment from point P to

point Q is designated as Leg P–Q, where P and Q are either one of the following: A(X,Y ) =

(0,0), B = (Xt,Yt), C = (Xm,Ym), or D = (Xt,−Yt). Point A is a saddle point as discussed in

Sect. 3.1, (Xt,Yt) = (
√

2σr,r), and (Xm,Ym) = (2
√
σr,0). The energy cycle is referred to as a

small (energy) cycle. Here, it should be noted that the homoclinic orbit is not periodic, and that385

a small energy cycle may appear within the oscillatory trajectories that move close to, but do not

pass through, the saddle point. In the discussion provided in the next section, the analysis discussed

above is inter-compared to the numerical solutions obtained from the 3D-NLM.

3.5 Numerical solutions with r 6= 0

In this section, we first discuss the numerical solutions with small cycles that were analyzed in the390

previous section, and then present the numerical solutions with large cycles that move around the

three critical points. The former are obtained using ICs of (X,Y,Z) = (±1,0,0), while the latter are

simulated with ICs of (X,Y,Z) = (0,±1,0). Since the features of solutions (e.g., homoclinic orbits)

require a high level of numerical accuracy, for Fig. 7, we perform numerical integrations using a very

small time step of△τ = 10−5 but for a shorter period of time (τ = 4). Figure 7a displays oscillatory395

solutions with small cycles, each of which moves around one of the non-trivial critical points. Figure

7b displays the two oscillatory solutions with a large cycle, moving around all three critical points.

The two solutions share the same orbit. The numerical result of the "homoclinic orbit" is shown in

Fig. 7c. Fig. 7d shows the evolution of these solutions. While the evolution of energy described by

the small or big (energy) cycle will be analyzed later, we first discuss the results of "homoclinic400

orbit".

12

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-40, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 23 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



The special features of the "homoclinic orbit" are illustrated using numerical simulations with

ICs of (X,Y,Z) = (2
√
σr,0,2r). Here, the "second" half of the orbital solution with X > 0 and

Y < 0 is a focus. As indicated by the green line in Figs. 7c-7d, the solution Y decreases and then

increases along the homoclinic orbit. Nearly zero values of Y in Fig. 7d suggest that the homoclinic405

trajectory approaches the saddle point and "remains" close to the saddle point for a long period

of time, as indicated by a comparison between the homoclinic orbit solution (in green) and the

oscillatory solutions (in lightblue and red). Between τ = 0 and τ = 1.7 in Fig. 7d, the numerical

solution in green represents the "second" half of the homoclinic orbit. In Fig. 7c, the corresponding

trajectory in the X-Y phase space that appears in the region with positive values of X compares well410

with the analytical solution in Fig. 5b. Near the saddle point, (X,Y,Z) are near zero. Therefore, it is

easy for numerical errors (e.g., associated with rounding or truncation) to introduce non-zero forcing

to drive the flow. When this occurs, the trajectory moves into a region that has negative values of X,

and moves around a non-trivial critical point, as shown in Fig. 7c. This move is inconsistent with the

analytical solution. However, it is challenging to avoid this type of error since △τ is already very415

small, 10−5. Avoiding this type of error may be more complicated in a higher-dimensional space

(e.g., the 5DLM), which is beyond the scope of this study.

The above discussion suggests that the homoclinic orbit separates some trajectories that "encircle"

a non-trivial critical point from other trajectories that move around the three critical points.

Therefore, the homoclinic trajectory that connects the stable and unstable manifolds of the saddle420

point may be viewed as a separatrix. Two different points that are initially near but not on the

homoclinic path will be on periodic orbits that depart from one another, suggesting diverged

trajectories. Using the results of Figure 7 as an example, two trajectories, simulated with initial

conditions (X,Y,Z) = (1,0,0) and (0,−1,0) and shown with red and lightblue lines, display

"repeated" divergence and convergence. (The two trajectories may give rise to "periodic" divergence425

and convergence if the ratio of their periods is a rational number.) Therefore, while each of the

oscillatory trajectories is orbitally stable, the homoclinic orbit is not. Note that this type of solution

dependence on ICs is different from that of a chaotic attractor in dissipative systems (e.g., the

3DLM). Next, we analyze the energy cycle of the oscillatory solutions.

Using the selected ICs, Fig. 8a shows the large cycle that includes two “small cycles” that are anti-430

symmetric with respect to the saddle point A. The large cycle resembles the wing of a glasswinged

butterfly. The right-hand side of the wing displays the same (or comparable) characteristics as those

of the cycle in Fig. 6, while the left-hand side wing is antisymmetric with respect to the origin (i.e.,

the saddle point). While the trajectories inX–Y andX–Z are shown in Figs. 8a and 8b, respectively,

the distribution of APEY and APEZ as a function of X is provided in Fig. 8c. Here, APEY and435

APEZ represent averaged available potential energy from the Y and Z modes, respectively. From

the perspective of the APE partition, the APEY (red) dominates in Leg A–B (D–A) while APEZ

dominates in Leg B–C (C–B) where nonlinearity is stronger. Alternatively, KE is predominantly
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converted from APEY when X2 is small, and is largely converted from APEZ when X2 is large.

Therefore, inclusion of the Z mode can lead to the oscillatory solution by enabling the partition440

of APE on different scales at different stages (i.e., linear and nonlinear stages). More detailed

analysis of the energy cycle is provided later. Here, we briefly discuss the impact of different initial

conditions.

In Fig. 8a, a solution may move "around" the saddle point and the two stable critical points, and its

trajectory defines the large cycle. With a different initial condition, a solution may go around one of445

the non-trivial stable points (±
√

2σr+X2
0 , 0), and its trajectory forms a small cycle. For example,

Fig. 8d displays results using three different ICs including X0 =
√

2σr,
√

2σr + 15, and
√

2σr +

30 as shown with black, blue, and red lines, respectively. The three vertical green lines indicate the

locations of the corresponding stable critical points at Xc =
√

2σr+X2
0 . Solutions in Figs. 8a and

8d suggest that the larger the value of (initial) Xo is, the further the trajectory may move away from450

the saddle point. When an initial Xo is distant from zero (i.e., the saddle point), nonlinearity may

become dominant as compared to the (linear) heating term. The corresponding solutions (e.g., the

blue curve in Fig. 8d) become more symmetric with respect to the green line that passes through the

nontrivial stable critical point. As discussed using Fig. 4 in Sect. 3.3, oscillatory solutions with small

cycles can be described by the closed-form solutions in Eq. (32).455

Figure 9 provides the time evolution of APEY and APEZ for the solutions in Figs. 8a-8c. The

energy cycle: 1) begins near point A, at A+ = (0,0+) to be specific; 2) goes through B, C, and

D; and 3) returns back to A, (i.e., A− = (0,0−)). In Leg A–B, where the linear (heating) force

dominates, the solution X grows gradually with {KE ↑, APEY ↓, APEZ ↓} and |APEY |> |APEZ |.
The upper arrow (↑) and the down arrow (↓) are, respectively, used to indicate an increase and460

decrease. In LegB–C (orC–D), where the nonlinear restoring force becomes dominant, the solution

X increases (or decreases) rapidly with {KE ↑, APEY ↑, APEZ ↓} (or {KE ↓, APEY ↓, APEZ ↑})

and |APEY |< |APEZ |. In Leg D–A, solution X decays slowly with {KE ↓, APEY ↑, APEZ ↑}
and |APEY |> |APEZ |. Once the trajectory returns back to point A−, it may experience another

small cycle, going to B−, C−, and D− and returning back to point A+. Here, B− = (−Xt,−Yt),465

C− = (−Xm,Ym), and D− = (−Xt,Yt). The two “small cycles” form the large cycle, and the time

evolution of energy is the same for both wings.

4 Concluding remarks

More than 50 years ago using his forced, dissipative model, Lorenz showed that chaos may appear

in the presence of nonlinearity, suggesting that nonlinearity may be the source of chaos. In this470

study, using the non-dissipative Lorenz model (3D-NLM), we discussed how nonlinearity may act

as a restoring force to produce oscillatory solutions. We first presented the closed-form solution

of the nonlinear equation d2X/dτ2 + (X2/2)X = 0, which is derived from the 3D-NLM with r =
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0. The corresponding solution is oscillatory (wave-like) and the nonlinear term (X2) is associated

with the nonlinear feedback loop. Therefore, we suggest that the nonlinear feedback loop may act475

as a restoring force. The closed-form solution obtained using a trigonometric function (Eq. 22a)

compares well with the closed-form solution obtained using an elliptic function (Eq. B9); and the

simplicity of the former effectively illustrates the fundamental role of nonlinearity in producing

oscillatory solutions. While a heating term is considered, a linear analysis shows a saddle point at

the origin and two non-trivial stable points at (Xc,Yc,Zc) = (±Xt,0, r). Here ±Xt depends on the480

product of σ and r, as well as the initial conditions. Additionally, three types of solutions could be

obtained. Two of the solutions display periodic movement around one non-trivial critical point or all

three critical points. The corresponding trajectories are orbitally stable. The third type of solution is

the so-called homoclinic orbit. Two of the trajectories, beginning at points near the homoclinic orbit,

may be diverged, displaying the dependence of the solutions on the initial conditions. The homoclinic485

orbit is not orbitally stable. Note that this solution dependence is different from that associated with

a chaotic attractor in a dissipative system that includes two unstable non-trivial critical points.

The homoclinic orbit connects the stable and unstable manifolds of the saddle point, but it is not a

periodic solution. However, the time evolution of energy along the homoclinic orbit can qualitatively

depict the energy evolution for trajectories that move around a non-trivial critical point. From the490

perspective of an energy partition, inclusion of the Z mode within the 3D-NLM not only introduces

additional APE to be transferred to KE, but it also limits KE to be finite, as compared to the linear

system. We illustrated that the relative impact of the nonlinear restoring force and the linear (heating)

force determines the partition of the averaged available potential energy associated with the Y and

Z modes, denoted as APEY and APEZ , respectively. Based on the energy analysis, an energy495

cycle with four different regimes could be identified with the following four points: A(X,Y ) =

(0,0), B = (Xt,Yt), C = (Xm,Ym), and D = (Xt,−Yt). With the initial perturbation, (X,Y,Z) =

(0,1,0), (Xt,Yt) = (
√

2σr,r), and (Xm,Ym) = (2
√
σr,0). The energy cycle may: 1) begin at (near)

point A; 2) go through B, C, and D; and 3) return back to A. |APEY |< |APEZ | appears when

solutions are strongly nonlinear (i.e., in Legs B-C and C-D), suggesting that inclusion of the Z mode500

can enable the partition of APE on different scales, leading to nonlinear solutions. Since point A is

a saddle point, the “cycle” is only half of a large cycle, representing one wing of the glasswinged

butterfly. A summary of the energy cycle and the large cycle is provided near the end of Sect. 3.

In summary, the nonlinear feedback loop alone may act as a restoring force and the heating term

alone can produce a saddle point within the 3D-NLM. The nonlinear feedback loop and the heating505

term collectively lead to three critical points and three types of solutions. The existence of the

homoclinic orbit and two types of oscillatory solutions indicates the importance of the nonlinearity

(i.e., the nonlinear feedback loop) and suggests the appearance of diverged trajectories. This type of

solution dependence on ICs will be examined and compared with the one associated with a chaotic

attractor in the 3DLM and high-dimensional LMs in a future study.510
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Appendix A: Derivations of Eq. (3)

In this section, we describe the procedures used to derive Eq. (3). As discussed in Shen (2014a),

the nonlinear advection term in Eq. (1) does not explicitly appear within the Lorenz model.520

Therefore, Eq. (1) can be written as follows:

∂

∂t
∇2ψ = gα

∂θ

∂x
. (A1)

Using the M1−M3 of Shen (2014a), ψ and θ can be represented as:

ψ = C1XM1, (A2)
525

θ = C2 (YM2−ZM3) . (A3)

Here, C1 and C2 are defined in Eq. (9) of Shen (2014a). Next, the left- and right-hand side terms of

Eq. A1 are expressed using M1−M3, respectively, as follows:

∂

∂t
∇2ψ =−C1

(
l2 +m2

) dX
dt
M1, (A4)

530

gα
∂θ

∂x
= C2Y gα(−

√
2)lsin(lx)sin(mz) =−C2Y gαlM1. (A5)

Here, l and m, as defined in Shen (2014), represent the horizontal and vertical wavenumbers,

respectively. Substituting Eqs. A4 and A5 into Eq. A1, we have:

dX

dt
=

gαl

l2 +m2

C2

C1
Y. (A6)

We define a time scale (To) as:535

To = (1+ a2)
π2

H2
, (A7)

and obtain:

l2 +m2 = (1+ a2)
π2

H2
= To. (A8)

The term H represents the domain height, and a is the ratio of the vertical scale of the convection

cell to its horizontal scale, (i.e., a= l/m). With Eq (9) in Shen (2014a), the right-hand side of Eq.540

A6 becomes:

gαl

l2 +m2

C2

C1
Y =

H2

π2(1+ a2)
gαπa

H

a

κ(1+ a2)
∆T
π

Rc

Ra
Y = ν(1+ a2)

π2

H2
= νToY. (A9)
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With Eq. A9, Eq. A6 becomes:
dX

dt
= νToY. (A10)

The above equation then becomes Eq. (3), dX/dτ = σY, when τ = κTot is assumed.545

Appendix B: A closed-form solution for r = 0 using elliptic functions

Nonlinear dynamics have been widely studied using solutions to the nonlinear Duffing equation.

The Duffing equation that governs certain damped and driven (i.e., dissipative and forced) oscillatory

motions (Bender and Orszag, 1978; Jordan and Smith, 2007; Wikipedia) is given by:

d2X

dτ2
+ δ

dX

dτ
+αX +βX3 = γcos(ωτ), (B1)550

where δ, α, β, γ, and ω are constants. When δ = γ = 0 and α=−σr and β = 1/2, Eq. B1 appears

in the form of the 3D-NLM (Eq. 15). While an exact solution to the general form of the Duffing

equation may not have been determined, closed-form, approximated, or numerical solutions have

been documented in the literature. In this section, we discuss how closed-form solutions to the special

case of the non-dissipative and unforced Duffing equation (i.e., δ = α= γ = 0 and β = 1/2) can be555

obtained and expressed in terms of elliptic functions (Davis, 1960).

The incomplete elliptic integral of the first kind, F (φ,k), is written as:

u= F (φ,k) =

φ∫

0

dθ√
1− k2sin2θ

. 0< k2 < 1. (B2)

The elliptic functions of the Jacobi are defined as the inverse of the elliptic integral, as follows:

sn(u,k) = sinφ, cn(u,k) = cosφ. (B3)560

The elliptic functions have the following properties:

sn(0) = 0, cn(0) = 1, sn2u+ cn2 = 1, (B4)

and their derivatives can be obtained as follows:

d2

du2
sn(u) = 2k2sn3(u)− (1+ k2)sn(u), (B5)

and565
d2

du2
cn(u) = (2k2− 1)cn(u)− 2k2cn3(u). (B6)

Equations B4 and B5 can be helpful for obtaining a solution to the equation d2X/dτ2 +X3/2 = 0

(i.e., Eq. 18). Using Eq. B5 and k2 =−1, the solution can be written as:

X =D1sn(
D1

2
τ + θ1,k

2 =−1). (B7)

Through Eq. B6 and k2 = 1/2, the solution becomes:570

X =D2cn(
D2√

2
τ + θ2,k

2 = 1/2). (B8)

17

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-40, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 23 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



Here, D1, D2, θ1, or θ2 are constants and are determined from the initial

conditions. θ1 or θ2 can be expressed in terms of complete elliptic integrals of

the first kind, K(k) = F (π/2,k2 = 1/2)∼ 1.8541, which is calculated using Matlab

(http://www.mathworks.com/help/matlab/ref/ellipke.html). Additionally, as a result of the definition575

of the elliptic integral (e.g., Eq. B2) and/or validity of the numerical algorithms for the elliptic

functions, k2 may not be equal to −1. Therefore, only Eq. B8 is discussed below. In this study, the

IC with X(0) = 0 and Y (0) = 1 (i.e., d
dτX(0) = σ)) leads to the following solution with θ2 = 3K

and D2 =
√

2σ:

X =
√

2σcn(
√
στ + 3K,k2 = 1/2). (B9)580

Figure B1 displays solutions obtained from Eq. 22a (Fig. B1-a) and Eq. B9 (Fig. B1-b) and their

differences (Fig. B1-d). The solutions are very close. This comparison confirms the validity of

the method for obtaining closed-form solutions for the 3D-NLM with r = 0 using elementary

trigonometric functions (Fig. 2) that are used to illustrate the role of nonlinearity in producing

oscillatory solutions. For the case of α 6= 0 (i.e., r 6= 0), similar procedures can be applied using585

Eq. B5 or B6 in order to obtain closed-form solutions. The procedures are beyond the scope of the

present study.

Appendix C: Equations for the solution of the homoclinic orbit

Here, we present equations that are used for obtaining an analytical solution that begins and ends at

the saddle point. Equations (13-14) with the ICs (X,Y,Z) = (0,0,0) become:590

X2

2
−σZ = 0, (C1)

X2− σ

r
(Y 2 +Z2) = 0, (C2)

which lead to:

Y 2 =
1
σ2

(
σrX2− X4

4

)
, (C3)595

Using the above with Eq. (3) yields:

dX

dτ
=±

√
σrX2− X4

4
. (C4)

The term X4 in Eq. (C4) can be shown to be equivalent to the term X3 in Eq. (15) that is associated

with the nonlinear feedback loop. Without this term, the system (in Eq. C4 or 15) becomes linear.

Applying the method described in Chapter 3 of Jordan and Smith (2007), we obtain an analytical600

solution to the nonlinear system in Eq. (C3) that begins and ends at the saddle point (0,0,0), which

are shown in Eqs. (34a-34c).

18

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-40, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 23 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



References

Anthes, R.: Turning the tables on chaos: is the atmosphere more

predictable than we assume?, UCAR Magazine, spring/summer, available at:605

https://www2.ucar.edu/atmosnews/opinion/turning-tables-chaos-atmosphere-more-predictable-we-assume-0

(last access: 6 May 2011), 2011.

Bender, C. M. and Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill,

New York, 593 pp., 1978.

Blender, R. and Lucarini, V.: Nambu representation of an extended Lorenz model with viscous heating, Physica610

D, 243, 86–91, 2013.

Curry, J. H.: Generalized Lorenz systems, Commun. Math. Phys., 60, 193–204, 1978.

Curry, J. H., Herring, J. R., Loncaric, J., and Orszag, S. A.: Order and disorder in two- and three-dimensional

Benard convection, J. Fluid Mech., 147, 1–38, 1984.

Davis, H. T., 1960: Introduction to Nonlinear Differential and Integral Equations. U.S. Atomic Energy615

Commission, September, 1960. 566pp.

Floratos, E.: Matrix quantization of turbulence, Int. J. Bifurcat. Chaos, 22, 1250213,

doi:10.1142/S0218127412502136, 2012.

Gleick, J.: Chaos: Making a New Science, Penguin, New York, 360 pp., 1987.

Hermiz, K. B., Guzdar, P. N., and Finn, J. M.: Improved low-order model for shear flow driven by Rayleigh–620

Benard convection, Phys. Rev. E, 51, 325–331, 1995.

Hirsch, M., S. Smale, and R. L. Devaney, 2013: Differential Equations, Dynamical Systems, and an Introduction

to Chaos. 3rd edition. Academic Press, 432 pp.

Howard, L. N. and Krishnamurti, R. K.: Large-scale flow in turbulent convection: a mathematical model, J.

Fluid Mech, 170, 385–410, 1986.625

Ide, K., Small, D., and Wiggins, S.: Distinguished hyperbolic trajectories in time-dependent fluid flows:

analytical and computational approach for velocity fields defined as data sets, Nonlin. Processes Geophys.,

9, 237–263, doi:10.5194/npg-9-237-2002, 2002.

Jordan and Smith: Nonlinear Ordinary Differential Equations. An Introduction for Scientists and Engineers. 4th

edition. Oxford University Press, New York, 560pp, 2007.630

Lorenz, E.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller Jr., H. L. (Eds.):

Climate Change 2007: The Physical Science Basis, Cambridge University Press, 996 pp., 2007.

Musielak, Z. E., Musielak, D. E. and Kennamer, K. S.: The onset of chaos in nonlinear dynamical systems

determined with a new fractal technique, Fractals, 13, 19–31, 2005.635

Nambu, Y.: Generalized Hamiltonian dynamics, Phys. Rev. D, 7, 2403, doi:10.1103/PhysRevD.7.2405, 1973.

Nevir, P. and Blender, R.: Hamiltonian and Nambu representation of the non-dissipative Lorenz equations,

Beitraege zur Physik der Atmosphaere, 67, 133–140, 1994.

Roupas, Z.: Phase space geometry and chaotic attractors in dissipative nambu mechanics, J. Phys. A-Math.

Theor., 45, 195101, doi:10.1088/1751-8113/45/19/195101, 2012.640

Roy, D. and Musielak, Z. E.: Generalized Lorenz models and their routes to chaos. I. energy-conserving vertical

mode truncations, Chaos Soliton. Fract., 32, 1038–1052, 2007a.

19

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-40, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 23 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



Roy, D. and Musielak, Z. E.: Generalized Lorenz models and their routes to chaos. II. Energy-conserving

horizontal mode truncations, Chaos Soliton. Fract., 31, 747–756, 2007b.

Roy, D. and Musielak, Z. E.: Generalized Lorenz models and their routes to chaos. III. Energy-conserving645

horizontal and vertical mode truncations, Chaos, Solitons and Fractals, 33, 1064–1070, 2007c.

Saltzman, B.: Finite amplitude free convection as an initial value problem, J. Atmos. Sci., 19, 329–341, 1962.

Shen, B.-W.: Nonlinear feedback in a five-dimensional Lorenz model, J. Atmos. Sci., 71, 1701-1723. doi:

http://dx.doi.org/10.1175/JAS-D-13-0223.1, 2014.

Shen, B.-W.: Nonlinear Feedback in a Six-dimensional Lorenz Model. Impact of an additional heating term.650

Nonlin. Processes Geophys., 22, 749-764, doi:10.5194/npg-22-749-2015, 2015.

Shen, B.-W.: Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a

seven-dimensional Lorenz model. Nonlin. Processes Geophys., 23, 189-203, doi:10.5194/npg-23-189-2016,

2016.

Sprott, J. C., 2003: Chaos and Time-Series Analysis. Oxford University Press. 528pp. The numerical method is655

briefly discussed on http://sprott.physics.wisc.edu/chaos/lyapexp.htm.

Strogata, S. H.: Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and

Engineering. Westpress view, Boulder, CO, 513 pp, 2015.

Thiffeault, J.-L. and Horton, W.: Energy-conserving truncations for convection with shear flow, Phys. Fluids, 8,

1715–1719, 1996.660

20

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-40, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 23 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



0 2 4 6 8

0
5

10
15

20

(a)          X2=2σsin(φ)               

Time (tau)
0 2 4 6 8

0
5

10
15

20

(b)    X2=2σcn2( στ+3K)

Time (tau)

0 2 4 6 8

0
5

10
15

20

(c)     solutions in (a) and (b)

Time (tau)
0 2 4 6 8

−
0.

6
−

0.
2

0.
2

0.
6

(d)            differences      

Time (tau)

Figure B1: A comparison of the nonlinear oscillatory solutions using r = 0 in Eqs. (22a) and (B9), expressed
using an elementary trigonometric function and an elliptic function, respectively. (a) The solution of Eq. (22a)
in red. (b) The solution of Eq. (B9) in blue. (c) Both of the solutions in (a) and (b). (d) Differences of the two
solutions.
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Figure 1: The time evolution of (KE+PE) and (KE+APE) from the 3D-NLM and 5D-NLM. Panels (a) and (b)
are provided for r = 25 and r = 45, respectively. Results obtained from the 5D-NLM are presented in order to
show the dependence of solutions on the spatial resolutions. In comparison with panel (b), panel (c) shows the
dependence of solutions on the temporal resolution using △τ = 0.0001. All of the fields are normalized using the
constant Co (=π2κ2( 1+a2

a )3).
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Figure 2: Closed-form solutions obtained from Eqs. 24ab using r = 0 and the iterative method. (a) The
phase function(φ) with △τ = 0.01 (green) and △τ = 0.0001 (red) (Eq. 24b). (b) Y = cos(φ) (Eq. 22b). (c)
X2 = 2σsin(φ) (Eq. 22a). (d) The phase function using a different value of σ (=20).
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Figure 3: Numerical solutions obtained from the 3D-NLM (Eqs. 3-5) using r=0. (a) A comparison of the phase
functions that are calculated from numerical solutions of the 3D-NLM (blue dot) and closed-form solutions of
Eqs. 24ab (red). (b) X-Y plot. (c) X-Z plot. (d) The time evolution of X (blue) and Y (red).
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Figure 4: Closed-form solutions obtained from Eqs. 32cd using r = 25 and Xo =
√

2σr and the iterative method.
(a) A comparison of the closed-form solution (r ∗ sin(φ)) from Eq. 32b and the numerical solution of Y from the
3D-NLM. (b) X-Y plot. Closed-form solutions are displayed using black lines and numerical solutions obtained
from the 3D-NLM are shown with blue dots. The green line passes through the corresponding critical points at
(Xc, Yc) = (

√
2σr + X2

o , 0).
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Figure 5: Closed-form solutions with Xo = 0 and the analytical solution of the homoclinic orbit. (a) The closed-
form solution (r ∗ sin(φ)) of Eq. 32b. (b) The X-Y plot for the closed-form solutions of Eq. (32) (black) and
the analytical solutions of the homoclinic orbit using Eq. (38) (lightblue). The green line passes through the
corresponding critical points at (Xc, Yc) = (

√
2σr + X2

o , 0).
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Figure 6: An energy cycle in the 3D non-dissipative Lorenz model (3D-NLM), as shown in the X-Y plot. The four
points for the selected ICs are identified, as follows: A(X,Y)=(0,0), B=(

√
2σr, r), C=(2

√
σr, 0), and D=(

√
2σr,

-r). (σ, r)=(10, 25). The energy cycle: 1) begins near the saddle point A, at A = (0+, 0) to be specific; 2) goes
through B, C, and D; and 3) returns near A. KE increases as APE decreases along the upper curve (Legs A-B
and B-C), and KE decreases as APE increases along the lower curve (Legs C-D and D-A). From a perspective
of potential energy partitioning, |APEY | ≥ |APEZ | in Legs A-B and D-A where the linear force dominates, and
|APEY | ≤ |APEZ | in Legs B-C and C-D where the nonlinear restoring force dominates.
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Figure 7: Three types of solutions associated with different ICs from the 3D-NLM (Eqs. 3-5) with △τ = 10−5

and τ = 4. (a) Oscillatory solutions with small cycles. (b) Oscillatory solutions with large cycles. (c) A numerical
solution for the homoclinic orbit. (d) The time evolution of the simulated homoclinic orbit (green), and oscillatory
solutions with a small cycle (red) and a large cycle (lightblue). Panels (c-d) indicate that the homoclinic trajectory
begins at (X, Y, Z) = (2

√
σr, 0, 2r), approaches the origin, and remains near the saddle point for a much longer

period of time as compared to the oscillatory solutions. Note that as a result of accumulated numerical error,
the ”simulated orbit” travels around the saddle point, moves to the other side in panel (c), and is no longer the
original homoclinic orbit.
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Figure 8: Solutions obtained from the 3D-NLM (Eqs. 3-5). (a) X-Y plot. (b) X-Z plot. (c) X-APE plot. The
black, red, and blue lines show normalized −KE, APEY , and APEZ , respectively. Green lines are plotted at
X = ±Xt = ±
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Figure 9: Time evolution for the KE and APE in the 3D-NLM (Eqs. 13-14). Black open circles display KE. Red,
blue, and green lines indicate −APEY , −APEZ , and KE + APE, respectively. All of the fields are normalized
by Co. The gray line is plotted at a value of σr/2, which is equal to −APEY /Co and −APEZ/Co at X = Xt.
These panels show that the solutions are oscillatory and periodic.
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