
1 Introduction

The following discussions derived from the conference article by Shen and
Faghih-Naini (2017, accepted for oral presentation) are provided for review
process. It is shown that the governing equations of the locally linear 7D-NLM
are identical to those in the coupled system with three identical masses and
three different springs.

2 Seven-dimensional Non-dissipative Lorenz Model

This section describes the governing equations for the seven-dimensional non-
dissipative Lorenz model (7D-NLM) and the corresponding locally linear 7D-
NLM. We will then compare the 7D-NLM and a coupled system with three
identical masses and three different springs.

The 7D-NLM can be obtained by removing the dissipative terms of the 7D
(dissipative) LM (7DLM; Shen, 2016), as follows:

dX

dτ
=���−σX + σY, (1)

dY

dτ
= −XZ + rX −��Y , (2)

dZ

dτ
= XY −XY1 −��bZ, (3)

dY1
dτ

= XZ − 2XZ1 −���d0Y1, (4)

dZ1

dτ
= 2XY1 − 2XY2 −���4bZ1, (5)

dY2
dτ

= 2XZ1 − 3XZ2 −���d0Y2, (6)

dZ2

dτ
= 3XY2 −���9bZ2. (7)

The same approach has been used to derive the 3D-NLM and 5D-NLM (e.g.,
Faghih-Naini and Shen, 2017). The dissipative terms are indicated by the terms
with a crossout symbol. As discussed in Shen (2016), (X,Y, Z, Y1, Z1, Y2, Z2)
represent the amplitude of the Fourier modes. We refer to (X,Y, Z) as the
primary modes, (Y1, Z1) as the secondary modes, and (Y2, Z2) as the tertiary
modes. τ is dimensionless time. The two parameters (σ, r) are the Prandtl
number and the normalized Rayleigh number (or the heating parameter), re-
spectively. Detailed information regarding these parameters and ignored terms
is provided in Shen (2016). On the right-hand side of the above equations, there
are the linear heating term (rX) and the nonlinear force terms (e.g., −XZ and
XY ).

Applying a perturbation method, which represents the total field (A) as a
sum of the reference state (Ac) and perturbation (A′), i.e., A = Ac + A′, we



transform Eqs. (1-7) to the following equations:

dX ′

dτ
= σY ′, (8)

dY ′

dτ
= (r − Zc)X

′ −XcZ
′ − FN(X ′Z ′), (9)

dZ ′

dτ
= (Yc − Y1c)X

′ +XcY
′ −XcY

′
1 + FN(X ′Y ′ −X ′Y ′1), (10)

dY ′1
dτ

= (Zc − 2Z1c)X
′ +XcZ

′ − 2XcZ
′
1 + FN(X ′Z ′ − 2X ′Z ′1), (11)

dZ ′1
dτ

= (2Y1c − 2Y2c)X
′ + 2XcY

′
1 − 2XcY

′
2 + FN(2X ′Y ′1 − 2X ′Y ′2). (12)

dY ′2
dτ

= (2Z1c − 3Z2c)X
′ + 2XcZ

′
1 − 3XcZ

′
2 + FN(2X ′Z ′1 − 3X ′Z ′2), (13)

dZ ′2
dτ

= 3Y2cX
′ + 3XcY

′
2 + FN(3X ′Y ′2). (14)

As discussed in Shen (2014) and Faghih-Naini and Shen (2017), the flag FN
is introduced to perform linear simulations (FN = 0) or nonlinear simulations
(FN = 1). Equations (1-7) are referred to the 7D-NLM V1 and Eqs. (8-14) are
referred to the 7D-NLM V2. The 7D-NLM V1 and V2 should produce identical
results with the same initial conditions except when round-off errors become
different in the runs using different models. The V2 with FN=0 is also called
the locally linear 7D-NLM, which can be used for the linear stability analysis.

2.1 A comparison with the coupled system with three springs

Choosing FN = 0 and (Yc, Zc, Y1c, Z1c, Y2c, Z2c) = (0, r, 0, r2 , 0,
r
3 ), we can ob-

tain:
d2Y ′

dτ2
= −Xc

d2Z ′

dτ2
= −X2

c (Y ′ − Y ′1) (15)

from Eqs. (9-10),

d2Y ′1
dτ2

= Xc
d2Z ′

dτ2
− 2Xc

d2Z ′1
dτ2

= X2
c (Y ′ − 5Y ′1 + 4Y ′2) (16)

from Eqs. (10-12),

d2Y ′2
dτ2

= 2Xc
d2Z ′1
dτ2

− 3Xc
d2Z ′2
dτ2

= X2
c (4Y ′1 − 13Y ′2) (17)

from Eqs. (12-14).

Previously, we have shown that the locally linear 3D-NLM and 5D-NLM
have the governing equations that are identical to the systems with one spring
and two springs, as shown in Figures 1a and 1b, respectively. For a comparison
with the 7D-NLM, we present the governing equations for the coupled system
with three identical masses and three different springs, as shown in Figure 1c.

d2x1
dτ2

= −k1(x1 − x2) (18)



d2x2
dτ2

= −k2(x2 − x3) − k1(x2 − x1) (19)

d2x3
dτ2

= −k3x3 − k2(x3 − x2) (20)

The top, middle, and bottom springs have spring constants of k3, k2, k1, re-
spectively. Here, the top spring is attached to the ceiling on one end and to
the top mass on the other end. The upper (low) end of the middle spring is
attached to the top (bottom) mass. For the bottom spring, its upper end is
attached to the middle mass. x1(τ), x2(τ) and x3(τ) are the displacements of
the centers of masses from equilibrium. By choosing x1 = Y ′, k1 = X2

c , x2 =
Y ′1 , k2 = 4X2

c , x3 = Y ′2 and k3 = 9X2
c , we show that Eqs. (18-20) are identical

to Eqs. (15-17), respectively. In other words, the above coupled system with
three springs is identical to the locally linear 7D-NLM. Note that for each of
uncoupled one-mass-one-spring systems, the frequency of the oscillatory mo-
tion is either Xc, 2Xc, or 3Xc. By comparisons, in section 3.1, we will show
that the above system have three frequencies, but they are different from the
values of Xc, 2Xc, or 3Xc. More importantly, these frequencies are incom-
mensurate, leadning a quasi-periodic solution. As the 7DLM (or 7D-NLM)
is derived by properly selecting new modes to extend the nonlinear feedback
loop of the 5DLM (or 5D-NLM), we will discuss how the extended nonlinear
feedback loop introduces two additional pair of downscaling and upscaling pro-
cesses to produce an additional temporal oscillatory mode that is coupled with
existing two temporal oscillatory modes.
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Figure 1: Systems with one mass and one spring (a), two masses and two springs (b) and three masses and
three springs (c). Three masses are identical, i.e., m1 = m2 = m3. Three spring constants k1, k2 and k3 are
selected as X2

c , 4X
2
c , and 9X2

c , respectively. It is shown that the governing equations for the above systems in
panels (a)-(c) are identical to those for the locally linear 3D-NLM, 5D-NLM, and 7D-NLM, respectively. This
comparison illustrates how the nonlinear feedback loop and its extension enabled by a proper selection of high
wavenumber modes can produce recurrent (i.e., periodic or quasi-periodic) solutions.




