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Abstract.  Crustal thickness is an important factor affecting lithosphere structure and therefore deep 

geodynamics. In this paper, we propose to apply deep learning neural networks called stacked sparse 10 

auto-encoder to obtain crustal thickness for eastern Tibet and western Yangtze craton. Firstly taking 

phase and group velocities simultaneously as input and theoretical crustal thickness as output, we 

construct twelve deep neural networks trained by 70,000 and tested by 30,000 theoretical models. We 

then invert observed phase and group velocities by these twelve neural networks. Based on test errors 

and misfits with other crustal thickness models, we select the optimized one as crustal thickness for 15 

study areas. Compared with other ways detected crustal thickness such as seismic wave reflection and 

receiver function, we conclude that deep learning neural network is a promising, believable and 

inexpensive tool for geophysical inversion. 

1 Introduction 

Tibetan plateau is an example of a large orogenic plateau formed as a result of Euro-Asian 20 

continent and Indian continent collision. The morphology of the region along the eastern margin of the 

Tibetan plateau, adjacent to the strong rigid crustal basement of the Sichuan basin, is characterized by 

very steep relief with high mountain ranges and steep peaks (Clark et al., 2004; Burchfiel et al., 1995; 

Zhu et al.,2012). Longmen mountain fault occurred Wenchuan earthquake of 12 May 2008 and Lushan 

earthquake of 20 April 2013 is between  Tibetan plateau and the Sichuan basin. In this paper, we try to 25 

attain crust thickness for eastern Tibet and western Yangtze craton and analysis geodynamic 

implications. As we all know, the more we know the characteristic and composition of crust which is 

an important part of lithosphere, the further we investigate deep earth. Discontinuity between crust and 

mantle called moho discontinuity is an important one for geodynamics such as crustal evolution, 

tectonic activities and so on, in addition to the correcting gravity for the crustal effects, seismic 30 

tomography and geothermal modeling.  The depth of moho or called crust thickness varies greatly over 

small length scales and has significant effects on fundamental mode surface waves(Ueli Meier et 

al.,2007).There are several methods to get moho depth, such as deep seismic sounding profile for china 

continent(Zeng et al.,1995), inverting satellite gravity data to get whole global crust and lithophere 

thickness(Fang et al.,1999), inverting Bouguer gravity and topography data to get moho depth for china 35 

and its  adjants (Huang et al.,2008; Guo et al., 2012),inverting receiver function to get moho depth and 

Possion’s ratio for china continent (Chen et al.,2010;Zhu,2012). Especially, a newest crust model called 

crust1.0 at 1o×1o (Laske et al.,2013; Stolk, et al., 2013) are based on refraction and reflection 

seismology as well as receiver function studies. As a consequence, resolution and consistence among 

different crust models are high in regions with good data coverage and uncomplicated structure but in 40 

regions with poor or no data coverage or complicated structure crustal thickness estimates are largely 

extrapolated. In order to overcome these defaults, another kind of fully non-linear method called neural 

network to put forward to get crustal thickness(Devile et al.,1999;Ueli Meier et al.,2007). 

Dispersion characteristic of surface wave provide a powerful tool to research structure of crust and 

upper mantle. So far phase and group velocity measurements of fundamental mode surface waves are 45 

most commonly used to constrain shear-velocity structure in the crust and upper mantle on a global 

scale (Zhou et al. 2006) or on regional scale (Zhu et al.,2002), while a few works to invert fundamental 

mode surface wave data for global or regional crustal thickness and to present a global or regional 

crustal thickness model(Devile et al.,1999; Ueli Meier et al.,2007; Das & Nolet 2001; Shapiro & 

Ritzwoller ,2002). In this article, we will investigate how to retrieve the crustal thickness for eastern 50 
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Tibet and western Yangtze craton from newest and high-resolution phase and group velocity  maps 

(Xie et al.,2013). As seismology points out that there are many factors affect phase and group velocity, 

and inverting them for discontinuities within the earth forms a non-linear inverse problem(Ueli Meier 

et al.,2007). Because of strong non-linearity between crust thickness and  surface wave dispersion and 

large variance of crust thickness we cannot treat it with a linear inverse problem as Montagner & Jobert 5 

(1988) stated. As periods and method measured differently between  group velocity and phase velocity, 

which the probing depths are different  and measure error are largely independent, the simultaneous 

inversion of group velocity and phase velocity is substantially better than the use of either 

alone(Shapiro & Ritzwoller,2002). We focus on deep learning neural networks instead to solve the 

non-linear inverse problem, inverting crustal thickness from phase and group velocity measurements. 10 

Since strong nonlinear relation among geophysical variables, neural networks have been widely 

used in different geophysical applications well summarized by van der Baan & Jutten (2000) such as in 

electrical impedance tomography(Lampinen &Vehtari ,2001), in seismic processing including trace 

editing, travel time picking, horizon tracking, and velocity analysis. Devilee et al.(1999) were the first 

to use a neural network to invert surface wave velocities for Eurasian crustal thickness in a fully non-15 

linear and probabilistic manner. Ueli Meier et al.(2007) further develop the methods of Devilee et al. 

(1999), then invert surface wave data for global crustal thickness on a 2◦ × 2◦ grid globally using a 

neural network. Although traditional shallow neural network can present nonlinear inverse function, it 

maybe cannot learn or approximate the real inverse function well when the real inverse function is too 

complicated. In contrast, deep learning neural network can overcome this problem since it has powerful 20 

representation abilities and can discover intricate structures in large data sets by using the back-

propagation algorithm to indicate how a machine should change its internal parameters that are used to 

compute the representation in each layer from the representation in the previous layer (LeCun, 

Y.et.al.,2015). 

To the best of our knowledge, we are the first to propose deep learning neural networks to learn and 25 

invert crustal thickness, which reveal crustal thickness is strong nonlinear with respect to phase and 

group velocity. The merits of our methods include: our method is inexpensive because we  require a 

few observed data about phase and group velocities to obtain crustal thickness by using well-trained 

deep learning neural networks. Moreover, our deep learning neural networks train on vast synthetic 

models. Secondly,  since deep learning neural networks can represent complex functions, it is possible 30 

to learn the crustal thickness inverse function precisely. Lastly, our results show changes of the number 

of neurons in each layer have little influence on test errors when the numbers of network layer achieve 

six and test errors are about 2.5e-6 , which indicates deep learning neural networks are robust to neural 

network structures with suitable layer numbers.  

As Ueli Meier et al. (2007) demonstrated that the neural network approach for solving inverse 35 

problems is best summarized by three major steps: (1)forward problem. In this stage we proceed by 

randomly sampling the model space and solve the forward problem for all visited models. (2) designing 

a neural network structure. In this stage taking phase and group velocities as inputs and theoretical   

crustal thickness as outputs we train the deep learning neural networks and get an optimized one.(3) 

inverse problem. Base on trained networks we invert crustal thickness from observed phase and group 40 

velocities. In what follows we first give a short introduction to deep learning neural networks, and 

show how to train deep learning neural networks to model surface wave dispersion based on synthetic 

seismogram, then invert dispersion curves based on the trained networks. Finally we compare our 

crustal model with other crustal thickness models, and discuss the geodynamic implication implied by 

our model.  45 

 

 

2 Deep  Learning Neural Networks 

In geophysics the real inverse function is usually a complicated one with respect to geophysical 

observable variables. Traditional linear inversion modeling the real inverse function as a linear 50 

function can resolve linear relation problems however which depend on data coverage and initial 

models. Usually these linear methods can capture main information about the real inverse function. 

However, they cannot deal with nonlinear inverse functions. Neural network has its origins in 

attempts to find mathematical representations of information processing in biological 

systems(Bishop ,1995). The more deep strength of Artificial Neural Networks (ANNs) is, the more 55 

capabilities learn to infer complex, non-linear, underlying relationships without any a priori 

knowledge of the model(Bengio,2009). Traditional shallow neural network has gained in popularity in 

geophysics this last decade and has been applied successfully to a variety of problems such as well log, 
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interpretation of seismic data, geophysical inversion and so on. Although traditional shallow neural 

network can present nonlinear inverse function, it can only learn the relatively simple inverse function. 

In contrast, deep learning neural network has powerful representation ability and can apply a big 

geophysical observable data to learn and approximate the complicated inverse function well.  

Based on the analysis above, we design deep learning neural network to obtain crustal thickness for 5 

eastern Tibet and western Yangtze craton. Compared with traditional shallow neural networks, deep 

learning neural network allows computational models that are composed of multiple processing layers 

to learn representations of data with multiple levels of abstraction and can learn complex functions.  

The essence of deep learning is building an artificial neural network with deep structures to simulate 

the analysis and interpretation process of human brain for data such as image, speech, text, and so on. 10 

However, many research results suggest that gradient-based training of a deep neural network gets 

stuck in apparent local minima, which leads to poor results in practice. Fortunately, the greedy layer-

wise training algorithm proposed by Hinton et.al 2006  to overcome the optimization difficulty of deep 

networks effectively. The training processing of deep neural networks is divided into two steps. Firstly, 

unsupervised learning methods are employed to pre-train each layer parameters with the output of the 15 

previous layer as the input, giving rise to initialize parameter values. After that, the gradient-based 

method is used to finely tune the whole neural network parameter values with respect to a supervised 

learning criterion as usual. The advantage of the unsupervised pre-training method at each layer can 

help guide the parameters of that layer towards better regions in parameter space (Bengio,2009). There 

are multiple types of deep learning neural network, such as convolutional neural networks, deep belief 20 

net and stacked Sparse Auto-encoders(sSAE). In this paper, we use sSAE to approximate the inverse 

function. The structure of sSAE is stacked by sparse autoencoders to extract abstract features. Here we 

introduce Sparse Auto-encoder briefly, and detailed description of the network training method is given 

by Liu.(2015). 

A typical Sparse Auto-Encoder (SAE) can be seen as a neural network with three layers, as shown 25 

in Figure 1, including one input layer, one hidden layer, and one output layer. The input vector and the 

output vector are denoted by v and v , respectively. The matrix W is associated with the connection 

between the input layer and the hidden layer. Similarly, the matrix W  connects the hidden layer to the 

output layer. The vector b and 𝑏  are the bias vectors associated with the units in the hidden layer and 

the output layer, respectively. The SAE is trained to encode the input vector v into some representation 30 

so that the input can be reconstructed from that representation.  Let f(x) denote the activation function, 

and the activation vector of the hidden layer then is calculated (with an encoder) as: 

z=f(Wv+b),         (1) 

where z is the encoding result and some representation for the input v. The representation z, or code is 

then mapped back (with a decoder) into a construction v  of the same shape as v. The mapping happens 35 

through a similar transformation, e.g.: 

v = 𝑓(𝑊 𝑧 + 𝑏 )                  (2) 

 

 
Figure 1. An auto-encoder with one hidden layer.(Liu et.al.,2015) 40 

  

SAE is an unsupervised learning algorithm which sets the target values to be equal to the inputs and 

constrain output of hidden layer  which are near to zero and most hidden layer are inactive, the cost 

function is expressed as: 
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Jsparse  W, b = J W, b + β  ρlog
ρ

ρ j

+ (1 − ρ)log
1−ρ

1−ρ j

S2
j=1      (3) 

Here J W, b  is cost function without sparsity constrain, β controls the weight of the sparsity penalty 

term, S2 is the number of neurons in the hidden layer, and the index j is summing over the hidden units 

in our network.  ρ j is the average activation of hidden unit j,  ρ is a sparsity parameter, typically a small 

value close to zero. 5 

Further, a stacked Sparse Auto-Encoder (sSAE) is a neural network consisting of multiple layers of 

SAE in which SAE are stacked to form a deep neural network by feeding the representation of the SAE 

found on the layer below as input to the current layer. Using unsupervised pre-training methods, each 

layer is trained as a sSAE by minimizing the error in reconstructing its input which is the output code 

of the previous layer. After all layers are pre-trained,  we add a logistic regression layer on top of the 10 

network, and then train the entire network by minimizing  prediction error  as we would train a 

traditional neural network.  For example, a sSAE with two hidden layers is shown in Figure 2. This 

sSAE is composed of two SAEs.  The first SAE consists of the input layer and the first hidden layer, 

and the representation or code of the input v is h1 = f(W1v + b1). The second SAE comprises of  two 

hidden layers, and the code of h1 is  h2 = f(W2h1 + b2). Each SAE is added to a decoder layer as 15 

shown in Figure 1, and we can then employ unsupervised pre-training methods to train each SAE by 

expression (1). Finally, the matrix W1 , W2  ,bias vector b1  and b1 , are initialized. We then apply 

supervised fine-tuning methods to train entire network.  Since our aim is calculating crustal thickness 

and this is a regression problem, we firstly attach a layer connected fully with last layer of the encoder 

part (the matrix Ws). After that, we train this network as done in a traditional neural network. 20 

 

Figure 2: Stacked Sparse Auto-Encoder with two hidden layers. 

3 Inverting surface wave data for crustal thickness 

In this section, we’ll introduce how to train a sSAE deep learning neural network and invert 

crust thickness based on this trained network. 25 

3.1 data preparation 

      We closely follow the model parametrisation  methodology outlined in de Wit et al. (2014) , which 

is based on PREM and is parametrised on a discrete set of 185 grid points used by Mineos. In addition, 

these models we’ve got show no correlations between physical parameters such as velocity, density, 𝜂 

and attenuation profiles.  As the model parametrisation  methodology mentioned above, we generate 30 

100,000 synthetic models based on  the 1-D reference  models PREM, which are randomly drawn from 

the prior model distribution, also prior ranges for the various parameters in our model are given in 

tables A.2–A.4.of de Wit et al.(2014). We use the Mineos package (Masters et al., 2014) to compute 

phase and group velocity for fundamental mode Rayleigh waves for all 100,000 synthetic 1-D earth 

models. 35 

      As for observation data used in stage of inversion below, it is worth noting that in principle, group 

and phase velocities carry the same information, although group velocities are more sensitive to the 

shallow structure. Since a larger part of the signal is affected by the crustal structure, combination two 

types of data will constrain crustal thickness better  in the presence of noise. The two are related by 

h1 
h2 

y 

W1 

W2 

Ws 

b1 b2 bs 

v 
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𝑈 𝑇 =
𝑐(𝑇)

1+
𝑇

𝑐(𝑇)

𝑑𝑐 (𝑇)

𝑑𝑇

         (4) 

Where U denotes group velocity, C denotes phase velocity and T is period. Based on Rayleigh wave 

phase velocity from ambient noise(Xie et.al,2013), we compute corresponding group velocity 

according(4). 5 

3.2 training sSAE deep learning neural network 

As we all know, using a set of examples of corresponding input–output pairs, artificial neural 

networks can approximate an arbitrary non-linear function to solve the non-linear inverse problem. 

These examples are presented to a network in a so-called training process, during which the free 

parameters of a network are modified to approximate the function of interest(de Wit et al. 2014). Here 10 

adopting sSAE deep learning neural network, we take seismological observations (that is group and 

phase velocity of Rayleigh wave) as input, and get the output of earth structural parameters(that is 

crustal thickness).   

Neural network training is sensitive to the random initialization of the network parameters. 

Therefore, it is common practice to train several neural networks with different initialisations, and 15 

subsequently choose the network which performs best on a given synthetic test data set, and the 

network which performed best on the test set is used to draw inferences from the observed data. After 

trying many times, we find the proportion of training data set to test one is 3:1 is reasonable. We’ve got 

final test errors which may be produced not only by different neural network structure decided by the 

number of inputting neuron, hidden layers and neuron in middle layer, also optional  parameters such 20 

as number of train epochs and size of batch. What’s more, type of activation function, value of learning 

rate, zero masked fraction, and value of non-sparsity penalty can affect final test errors. The table 1 

below gives twelve cases and their corresponding test errors.  

3.3 inverting crust thickness 

Based on our all twelve neural networks, we invert Rayleigh phase velocities and group velocities 25 

(10~37.5mhz) to attain twelve crustal thickness models for eastern Tibet and western Yangtze craton. 

Considering not only the test errors of sSAE networks, also misfits and correlation coefficients of our 

twelve models with crustal thickness models from other research, we select network structure as shown 

in table 1 shown in ※. We find the best fit crustal thickness model from sSAE (Figure 3). We compare 

with same region crustal thickness from receiver function(Zhu J S et al.,2012), and two other global 30 

crustal thickness models, CRUST2.0 from Bassin et al. (2000) and the CUB2 model from 

Shapiro&Ritzwoller (2002)( Figure 4). The correlation coefficients of our model with ZJS, CRUST2.0 

and CUB2 (Figure 5) are shown our model is best correlations with CUB2 and worst with ZJS because 

of model ZJS attained from receiver function has relatively  sparse stations with poor data coverage and 

lower resolution. 35 

Table1 deep learning neural network structures taking in this article 

sSAE Structure 
parameters Error 

×10-6 

CUB2 CRUST2.0 ZJS 

Layers D E F G H G H G H 

[21 50 10 1] 
Layer 1 0.3 

10 1e4 
170.4 

 
7.32 

0.78 

 

7.60 

 

0.79 

 

8.66 

 

0.72 

 Others 0 

[21 50 10 1] 
Layer 1 0.3 

10 1e3 48.36 6.66 
0.76 

 

7.29 

 

0.77 

 

6.62 

 

0.73 

 Others 0 

[21 50 10 1] 
Layer 1 0.3 

10 1e2 
20.09 

 
7.00 

0.75 

 

7.18 

 

0.76 

 

6.02 

 

0.68 

 Others 0 

[21 50 10 1] 
Layer 1 0.3 

100 1e3 73.19 6.58 
0.77 

 

7.88 

 

0.79 

 

7.65 

 

0.73 

 Others 0 

[21 50 10 1]
※
 

Layer 1 0.3 
100 1e2 

8.40 

 
6.62 

0.78 

 

6.70 

 

0.80 

 

6.63 

 

0.69 

 Others 0 

[21 50 10 1] 
Layer 1 0.01 

100 1e2 6.64 6.42 
0.77 

 

6.97 

 

0.81 

 

6.86 

 

0.68 

 Others 0 

[21 10 2 1] 
Layer 1 0.01 

100 1e2 
7.47 

 
7.20 

0.78 

 

7.43 

 

0.78 

 

8.15 

 

0.72 

 Others 0 

[21 100 50 20 1] 
Layer 1 0.5 

100 1e2 4.77 8.07 
0.74 

 

9.87 

 

0.79 

 

9.63 

 

0.63 

 Others 0 

[21 200 50 20 10 Layer 1 0.5 100 1e2 2.73 13.1 0.71 14.8 0.78 16.0 0.63 
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1] Others 0       

[21 200 100 50 

20 10 5 1] 

Layer 1 0.5 
100 1e2 3.33 8.93 

0.77 

 

10.5 

 

0.83 

 

11.6 

 

0.66 

 Others 0 

[21 200 100 50 

20 10 5 1] 

Layer 1 0.5 
100 50 

2.53 

 
12.6 

0.79 

 

13.7 

 

0.85 

 

16.5 

 

0.67 

 Others 0 

[21 50 40 30 20 

10 5 1] 

Layer 1 0.5 
100 50 2.54 12.3 0.77 14.3 0.80 15.2 0.73 

Others 0 

In this article ,we fixed the following four parameters in every situation: A-type of activation 

function(sigma); B-learning rate(1); C- zero masked fraction(0.5). 

various parameters: D-non-sparsity penalty; E-number of epochs; F-batchsize. 

G-RMS misfit of our result with other model; H-correlation coefficient of our result with other model. 

※- selected sSAE neural network structure 5 

    

Figure 3 crustal thickness of western Yangtze craton          Figure 4 crustal thickness of model CUB2 from  

. The black lines in the figure show structure                Shapiro&Ritzwoller (2002) 

 lines. The red dots show seismic events in this region  

from 1975  to 2015, and size of dot demonstrates  10 
size of magnitude from Ms6.0 to Ms8.0.  

These are  same to Figure4    

   

   

Figure 5  (From left to right) The correlation coefficient of our model with ZJS, CRUST2.0 and CUB2 15 

4 Discussion 

On the one hand, we can attain the moho depth and resultant geodynamic implication in research 

region from our result. We find our results are coincidence roughly with model ZJS,CUB2, CRUST2.0 

(Fig.3,Fig.4, Fig.5), and the relatively good correlations of our result with CUB2,CRUST2.0 are shown 

in Fig.5. All have characteristics of  deep crustal thickness in the west of Longmen mountain and 20 
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relatively shallow in the east. Moreover, our results reveal more details: the eastern Tibetan Plateau 

crustal thickness is complex and changes largely with characteristic of  deep west and shallow east. The 

average crust thickness is  about above 60km, especially there is about 70-75km at Qiangtang block,  

under which there is a north dipping moho gradient zone. There is relatively shallow crust at Songpa-

Ganzi block and  is characteristic of decreasing in northwest-southeast orientation. Model CUB2.0 tells 5 

us the crustal thickness of Sichuan basin is about 40km and is relatively smooth, however our model 

reveals there are some changes about crustal thickness in this region, that is crustal thickness is thin 

around Chengdu especially northeastward to Chengdu, in addition there is about 50km thick crust 

under Qinlin-Dabei fold belt, also we can get that crustal thickness of northeast to Sichuan basin  is 

about 45~48km.What’s more, crustal thickness around Xi’an and Ordos basin is shallow about 35km. 10 

Conversely, change of crustal thickness in Sichuan-Yunnan block is sharp, which is 60km in northwest 

and 35km in southeast. All detailed information is consistence with Wang et.al(2010)  who  attained the 

crustal thicknesses estimated by the H-k stacking method based on the broadband tele-seismic data 

recorded at 132 seismic stations in Longmen mountains and adjacent regions( 26°~35°N, 98°~109°E ). 

In addition, compared with the distribution of the epicenters during 1970-2015, great earthquakes in 15 

Sichuan and Yunnan have occurred in brittle upper crust, where moho depth changes sharply as to 

about 10km such as Longmen mountain fault zone where occurred great Ms 8.0 Wenchuan earthquake 

in 2008 and Ms 7.0 Lushan earthquake in 2013. The reason may be that main fault cut moho where 

material in crust and mantle  exchange and accumulating press induce a series of earthquakes 

frequently.  20 

On the other hand, our results show deep learning neural networks can invert crustal thickness 

effectively due to their owning capability to represent complex functions: 

Test errors of deep learning neural network may be influenced by the number of layer in networks 

which shows more layers induce smaller test errors, which we can attain from Table 1 when the 

number of layer in networks adds from three to six, test error decreases from 1.7e-4 to 2.5e-6. In 25 

addition, training parameters as batchsize decrease from 1e4 to 1e3 and test error decreases from 1.7e-4 

to 2.5e-5. Also when epochs increase from 10 to 100, corresponding test error decreases from 2.0e-5 to 

8.4e-6.  

The robustness of deep learning neural networks is strong. When the number of layers in network 

achieves six, changes of the number of neurons in each layer have little influence on test errors which 30 

is about 2.5e-6. 

The neural network structure shown in ※ from table 1 reveals misfits of our model with model 

CUB2, CRUST2.0 ZJS are relatively low with 6.62, 6.70 and 6.63, and corresponding correlation 

coefficients are relatively  high with 0.78, 0.80 and 0.69 respectively, however, test errors is 8.4e-6 and 

is not minimum. This tells us test error may be not the only criterion determining which neural network 35 

is best because small test error may be induced by overfit.  

5 Conclusion and remarks 

Taking use of sSAE deep learning network, we present moho depth map of eastern Tibet and 

western Yangtze craton (Fig.3). The data sets consist of phase velocities of Rayleigh waves from 

Xie(2013) at discrete frequency of  10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, 35.0 mHz 40 

and derived group velocities of  Rayleigh waves at discrete frequency of  10.0, 12.5, 15.0, 17.5, 20.0, 

22.5, 25.0, 27.5, 30.0 mHz.  We conclude that: 

(1)  For all our simulations we use sSAE with different neural network structures which are 

decided by many factors such as the number of layers and neurons in neural networks, optional 

parameters  as the number of epoch and batchsize, type of activation function, values of learning rate 45 

and non-sparsity penalty and so on.  We find that the number of hidden units is not a crucial 

parameter and networks with different number of hidden units give similar results, however batchsize 

is an important factor for results. 

(2)   After invert these twelve networks, different networks produced different results. Compared 

with other crustal thickness models we find network with the smallest test error is not the best result 50 

always. When test errors achieve some value, the misfits are high and  correlation coefficients are low, 

which we think it is maybe caused by overfit. In our future work, we’ll focus on how to resolve this 

problem in using sSAE. 

(3) We present a crustal thickness model for eastern Tibet and western Yangtze craton. Compared 

our model with current knowledge about crustal structure as represented by ZJS,CRUST2.0, CUB2. 55 

The overall agreement with these three models is very good, and agreement is generally better with 

CUB2.  
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(4)   The results are obtained using a neural network approach sSAE which is widely and 

successfully used in pattern recognition . As we all know, geophysics is so complex that we should 

analysis and enhance neural network to apply to these complicated problems. 

 

Acknowledgements. The authors are grateful to Xie for providing the phase velocity maps, and Zhu J S 5 

for making the model available. Our work are funded under Active Fault Study Team of Chengdu 

University of Technology, grant number 10912-KYTD201505.  

References 

Bassin, C., Laske, G. & Masters, G.: The current limits of resolution for surface wave tomography in north 

america, EOS, Trans. Am. geophys.Un., F897,2000. 10 
Bengio Y.:Learning deep architectures for AI, Foundations and trends® in Machine Learning,  2(1): 1-127, 2009. 

Bishop, C.M.: Neural Networks for Pattern Recognition, Oxford University Press, Oxford, UK. 1995. 

Burchfiel B. C., Chen Z., Liu Y. and Royden L. H.: Tectonics of the Longmen Shan and adjacent regions, Central 

China. International Geology Reviews 37: 661–735,1995. 

ChenY., F.Niu  R.Liu.: Crustal strueture beneath China from receiver function analysis, Journal of GeoPhysical 15 
Researeh,115(B3):B03307, 2010. 

Clark M. K., Schoenbohm L. M., Royden L. H.,et.al.: Surface uplift, tectonics, and erosion of eastern Tibet from 

large-scale drainage patterns. Tectonics 23:tc1006, doi:10.1029/2002TC001402,2004. 

Cornford, D., Nabney, I.T. & Bishop, C.M.: Neural network based wind vector retrieval from satellite 

scatterometer data, Neural Computing and Applications, 8, 206–217, 1999. 20 
Das, T.&Nolet, G.: Crustal thickness estimation using high frequency rayleigh waves, Geophys. Res. Lett, 123, 

169–184,2001. 

de Wit, R.W.L., et al.: Bayesian inversion of free oscillations for Earth’s radial (an)elastic structure. Phys. Earth 

Planet. In. http://dx.doi.org/10.1016/j.pepi.2014.09.004,2014. 

Devilee, R., Curtis, A. & Roy-Chowdhury, K.: An efficient, probabilistic neural network approach to solving 25 
inverse problems: inverting surface wave velocities for Eurasian crustal thickness, J. geophys. Res.,104(B12), 

28841–28857,1999. 

Fang J.: Global crustal and lithosphere thickness inverted by using satellite gravity data, Crustal deformation and 

Earthquake, 19,1,26–31 (in Chinese),1999. 

Gao X., Wang W.M, Yao, Z. X.: Crustal structure of China mainland and its adjacent regions. Chinese J . Geophys, 30 
(in Chinese) , 48,3,591-601,2005. 

Guo, L.H., et al.: Preferential filtering method and its application to Bouguer gravity anomaly of Chinese 

continent.Chin. J. Geophys. 55 (12), 4078–4088,2012. 

Hinton, G. E. and Salakhutdinov, R. R.: Reducing the dimensionality of data with neural networks, Science, 

313,5786, 504 - 507, 2006. 35 
Huang J. P., Fu R. S. Xu P., et al: Inversion of gravity and topography data for the crust thickness of  China and its 

adjacency, Acta Seismologica Sinica(in Chinese),28,3,250-258,2006. 

Lampinen, J. & Vehtari, A.: Bayesian approach for neural networks -review and case studies, Neural Networks, 

14(3), 257–274,2001. 

Laske, G., Masters., G., Ma, Z. and Pasyanos, M.: Update on CRUST1.0 - A 1-degree Global Model of Earth's 40 
Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013. 

LeCun, Y., Bengio, Y. and Hinton, G. E. (2015):Deep Learning, Nature, 521, 436-444,2015. 

Masters G., Barmine M.P., Kientz S. Pasadena: Calif. Inst. of Technol., Mineos User's Manual. Computational 

Infrastructure for Geodynamics,2014. 

Masters, G., Barmine, M., Kientz, S., Mineos: User Manual Version 1.0.2. Calif. Inst. of Tech., Pasadena, CA. 45 
2011. 

Montagner, J.-P. & Jobert, N.: Vectorial tomography—ii. Application to the indian ocean, Geophys. J., 94, 309–

344,1988. 

Meier U., Curtis A., Trampert J.: Global crustal thickness from neural network inversion of surface wave data, 

Geophys. J. Int., 169,706-722,2007. 50 
Liu, Q., Hu, X., Ye, M., Cheng, X. and Li, F.: Gas Recognition under Sensor Drift by Using Deep Learning. Int. J. 

Intell. Syst., 30: 907–922. doi: 10.1002/int.21731,2015. 

Shapiro, N. M. and Ritzwoller ,M. H.:Monte-Carlo inversion for a global shear-velocity model of the crust and 

upper mantle，Geophys. J. Int. ,151, 88–105,2002. 

Stolk, et al.: High resolution regional crustal models from irregularly distributed data: application to Asia and 55 
adjacent areas. Tectonophysics, 602, 55–68,2013. 

Teng, J. W., Wang, Q. S., Wang, G. J., et al.: Specific gravity field and deep crustal structure of the ‘Himalayas 

east structural knot’. Chinese J.Geophys, (in Chinese), 49,4,1045-1052,2006. 

van der Baan, M. & Jutten, C.: Neural networks in geophysical applications, Geophysics, 65, 1032–1047,2000. 

Wang C Y,Lou H,Yao Z X,et al:Crustal thicknesses and poisson’s ratios in Longmenshan mountains and adjacent 60 
regions.Quaternary Sciences(in Chinese),30(4):652-661,2010. 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-39, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 2 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



 9 

 

Xie, J., M. H. Ritzwoller, Shen W., Yang Y., Zheng Y., and Zhou L.: Crustal radial anisotropy across Eastern 

Tibet and the Western Yangtze Craton, J. Geophys. Res. Solid Earth, 118, 4226–4252, 

doi:10.1002/jgrb.50296,2013. 

Zeng R. S., Sun W. G. et.al.: The depth of Moho in the mainland of China. Acta Seismologica Sinica(in Chinese), 

17,3,322-327,1995. 5 
Zhang P., Zhu L. B., Chen H. P., Wang Q. D., Yang Y.: Crustal structure in China from teleseismic receiver 

function, Acta Seismologica Sinica,36,5,850-861.doi:10.3969/j.issn.0253-3782.2014.05.009, 2014. 

Zhou,Y., Nolet, G., Dahlen, F.&Laske, G.: Global upper-mantle structure from finite-frequency surface-wave 

tomography, J. geophys. Res.,111, B04304,2006. 

Zhu J. S., Zhao J. M., Jiang X. T. et.al.: Crustal flow beneath the eastern margin of the Tibetan plateau, Earthquake 10 
Science,25,5-6, 469-483, 2012. 

Zhu J.S.,  Cao J. M., Cai X. L. ,et.al.: High resolution surface wave tomography in east asia and west pacific 

marginal seas, Chinese Journal of Geophysics.45,5,646-664, 2002. 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-39, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 2 September 2016
c© Author(s) 2016. CC-BY 3.0 License.


