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Abstract. We discuss applications of a recently developed method for model reduction based on linear response theory of

weakly coupled dynamical systems. We apply the weak coupling method to simple stochastic differential equations with slow

and fast degrees of freedom. The weak coupling model reduction method results in general in a non-Markovian system, we

therefore discuss the Markovianization of the system to allow for straightforward numerical integration. We compare the

applied method to the equations obtained through homogenization in the limit of large time scale separation between slow5

and fast degrees of freedom. We numerically compare the ensemble spread from a fixed initial condition, correlation functions

and exit times from a domain. The weak coupling method gives more accurate results in all test cases, albeit with a higher

numerical cost.

1 Introduction

Many models of physical systems are too complex to be solved analytically, or even numerically if a large range of temporal and10

spatial scales is involved. For some high-dimensional dynamical systems it is however possible to derive lower-dimensional

reduced models (Givon et al., 2004; Huisinga et al., 2003). The reduced model is easier to solve analytically and faster to

integrate numerically, while still preserving some of the essential characteristics of the full system. This line of research lies

at the heart of many applications, for example in molecular dynamics (Hijón et al., 2009; Lu and Vanden-Eijnden, 2014) and

climate modeling (Lucarini et al., 2014; Imkeller and Von Storch, 2001; Palmer and Williams, 2009).15

The derivation of a reduced model is possible, for example, in the presence of a time scale separation between slow resolved

and fast unresolved variables, as is assumed in the homogenization method (Pavliotis and Stuart, 2008). This method applies

to slow-fast systems of the form

ẋ = f0(x,y) +
1

ε
f1(x,y)

ẏ =
1

ε2
g1(x,y) +

1

ε
β(y)ξ(t), (1)20

in the limit of infinite time scale separation ε→ 0, where ξ denotes a standard Brownian motion (i.e. the equations should be

considered equivalent to a stochastic integral in the Itô interpretation) (Khas’minskii, 1963; Papanicolaou, 1976). It is evident

1



from the dynamical equation that the y variables evolve on a faster time scale than the x variables. For finite values of ε

there is an intricate feedback between the evolution of the x and y variables. The situation simplifies in the limit of ε→ 0

where the slow variables do not evolve on the time scales on which y strongly fluctuates. As a result, the slow dynamics

converges to a stochastic evolution, where the effect of y is completely replaced by statistical quantities related to the motion

of y for a fixed value of x. On a more technical note, the precise expression for the quantities entering in the reduced dynamics5

can be easily obtained through an expansion in ε of the backward Kolmogorov equation (the adjoint of the Fokker-Planck

equation) ∂tv(x,t) = (L0 +L1/ε+L2/ε
2)v(x,t) corresponding to the slow-fast dynamics (where L0 = f0∂x, L1 = f1∂x and

L2 = g1∂y + (β/2)∂2
y) (Pavliotis and Stuart, 2008).

The method of homogenization has found a great number of applications in different fields of physics and mathematics

(Pavliotis and Stuart, 2008). Many physical systems, however, do not feature a time scale separation. As an example, the10

climate system has variability on many different temporal (and spatial) scales, but no clear spectral gaps can be identified

(Mitchell, 1976). This creates fundamental difficulties in the theoretical investigation of climate dynamics and in the con-

struction of climate models. As a result, approximate equations are used for dealing with scales of motions belonging to a

range of scales of interest, and numerical models are able to resolve explicitly only a fractions of the full range of scales. The

dynamics taking place on scales that are too small and/or fast to be resolved need to be parametrized. Consider the case of15

convective motion in the Earth’s atmosphere. Convective clouds are significant for the climate, yet can only be resolved at a

spatial resolution of 10–100 m (Sakradzija et al., 2015), whereas climate models only resolve scales of the order of 100 km

(Intergovernmental Panel on Climate Change, 2013). Unresolved convective motion however features a so-called “gray zone”,

a range of time scales overlapping with the dynamical time scales of the resolved large scale flow (Sakradzija et al., 2015),

therefore homogenization can not be applied. It is a formidable challenge to derive dimension reduction methods that do not20

require a time scale separation. One should underline that when facing a lack of time scale separation, we would like to be able

to construct self-adaptive parametrizations as opposed to empirical ones, so that when the resolution of a numerical model is

changed we do not need to redo the exercise of fitting a reduced model.

Going beyond the familiar setting of infinite time scale separation requires a novel approach to the derivation of closed

equation for the reduced system. Recently, we have developed a model reduction technique that does not rely on the presence25

of such a separation (Lucarini et al., 2014; Wouters and Lucarini, 2012; Wouters and Lucarini, 2013). The alternative method

for model reduction makes use of a weak coupling approach, in which response theory (Ruelle, 2009, 1997) is used to derive

a closure. The systems of interest follow a dynamics determined by

ẋ = εψx(x,y) + fx(x)

ẏ = εψy(x,y) + gy(y), (2)30

where x is the variable of interest. Exploiting the weak coupling form of this equation, response theory can be employed to

expand expectation values of x-dependent observable under the invariant measure in orders of ε. This expansion yields a series

in terms of ε, reminiscent of the Dyson series in scattering theory, each representing a sequence of interactions between the x

and y subsystems, corresponding to a certain Feynman diagram (Maggiore, 2005).
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The truncation of this series up to a given order yields an approximation of the response of the x subsystem to the coupling

to the y subsystem. More importantly, it allows to determine the statistical quantities of the y system that dictate this response.

The first order correction to the dynamics of the x system can be written as the expectation value ε
∫

dyψx(x,y)ρy(y), where

ρy is the invariant density of the uncoupled ẏ = gy(y) dynamics. At second order two correction terms appear, one due to

double ψx interactions from y to x, determined by a correlation function of the uncoupled y dynamics, and a feedback term,5

determined by a response function of the uncoupled y dynamics. This knowledge can then be exploited to derive a surrogate

dynamics for x that reproduces the effect of the coupling of x to y up to second order in ε. This theory has been originally

developed assuming that the uncoupled systems are Axiom A dynamical systems. This assures, thanks to properties such as

structural stability, the existence of linear and higher order response (Ruelle, 1998, 1997). The theory can, however, be equally

applied in the case where the uncoupled dynamics is stochastic, the only needed requirement being to have a physical measure10

(an ergodic measure is called physical if for a set of initial conditions of nonzero Lebesgue measure the temporal average of a

typical observable converges to the spatial average over this measure). Interestingly, the results obtained using response theory

match what one can derive by constructing a perturbative expansion of the dynamics of the system using the Mori-Zwanzig

projection method (Wouters and Lucarini, 2013).

Previously, we have proposed a surrogate dynamical equation for the x variable that introduces an ε-dependent perturbing15

term to the dynamics fx to match the response of the statistics of the full system. The perturbing term contains a non-Markovian

memory term and a correlated noise, with the memory kernel and correlation functions depending on the statistics of the

uncoupled dynamics ẏ = gy . In a recent study of the applicability of the weak coupling approach to a simple ocean-atmosphere

system, the method has been shown to give a good result for sufficiently weak coupling between the ocean and the atmosphere

(Demaeyer and Vannitsem, 2016), even if it is clear that a systematic investigation of the performance of the weak coupling20

approach is indeed still needed.

We remark that Chekroun et al. (2015a, b) have recently proved that, indeed, constructing reduced order models entails

introducing deterministic, stochastic and memory correction to the dynamics of the variables of interest.

Here we will apply and extend the weak coupling approach of (Wouters and Lucarini, 2012; Wouters and Lucarini, 2013) for

the development of parameterizations for various stochastic triad models. Triad interactions arise from quadratic nonlinearities25

with energy conserving properties (see e.g. Gluhovsky and Tong (1999)). The triad models considered here appear in applica-

tions of the homogenization technique to construction of parameterizations in climate modeling (see e.g. Majda et al. (2001,

2002); Franzke et al. (2005); Franzke and Majda (2006); Dolaptchiev et al. (2013b, a)). The non-Markovian memory kernel in

the weak coupling approach will be calculated for these simple stochastic multiscale models and approximated by a Markovian

stochastic process, in order to allow for easier numerical implementation. The systems we investigate can be written in both30

the weak coupling form of (2) and the slow-fast form of (1), therefore direct comparison is possible and will be performed on a

number of metrics, namely initial ensemble spread, correlation functions and exit times from an interval. We intend our results

to be of relevance for providing sound foundations for stochastic parametrizations in weather and climate models (Palmer and

Williams, 2009; Franzke et al., 2015; Berner et al., 2016).
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2 The additive triad

The first model we look at is the stochastically forced additive triad. This system is a low-dimensional model that has non-linear

interactions reminiscent of those occurring between the Fourier modes of a fluid flow. It is stochastically forced to mimic the

interaction with further unresolved modes. The system has three variables, one slow variable x and two fast variables y1 and

y2. The fast dynamics is dominated by two independent Ornstein-Uhlenbeck processes. The dynamical equations for this triad5

are

dx

dt
= B(0)y1y2

dy1

dt
= B(1)xy2−

γ1

ε
y1 +

σ1√
ε
ξ1(t)

dy2

dt
= B(2)xy1−

γ2

ε
y2 +

σ2√
ε
ξ2(t) . (3)

By scaling the time by powers of ε, this process is of the form (1) with f0 = 0 and also of the form (2), with fx = 0. The10

processes ξi are independent Brownian motions in the Itô sense. Here and below a differential equation featuring a Brownian

motion will be interpreted as the equivalent stochastic integral. In addition, we require
∑
iB

(i) = 0, which guarantees energy

conservation in the case γi = σi = 0.

2.1 Homogenization

On the time scale t, when increasing the time scale separation 1/ε to infinity, we have trivial dynamics of the averaged equations15

˙̄x=B(0)〈y1y2〉ρOU = 0 where ρOU is the Gaussian invariant measure of the fast Ornstein-Uhlenbeck process generated by

taking B(i) = 0 for i= 1,2,3. In the setting of homogenization, one looks at the convergence of the distribution of paths on a

longer time scale. The time is scaled to the diffusive time scale θ = εt and on this longer diffusive time scales deviations from

the averaged dynamics develop.

By expanding the backward Kolmogorov equation for the slow-fast system in orders of ε, a Kolmogorov equation for only20

the slow variables can be derived (see (Pavliotis and Stuart, 2008)). The dynamical equation corresponding to this Kolmogorov

equation is in this case a one-dimensional Ornstein-Uhlenbeck process (Majda et al., 2002)

∂x

∂θ
= Cmx+

√
2A0ξ(θ) , (4)

where

Cm =
B(0)

γ1 + γ2

(
B(1) σ

2
2

2γ2
+B(2) σ

2
1

2γ1

)
25

A0 =
B(0)2

γ1 + γ2

σ2
1

2γ1

σ2
2

2γ2
.

See Fig. 1 for an illustration of the homogenization principle for the additive triad (3). The mean and variance of the triad

converge to those of the Ornstein-Uhlenbeck process (4) for small ε.
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Figure 1. Convergence to the homogenized equations for the additive triad (3) in θ = εt time scale. The red solid and dash-double-dotted

lines show the analytically calculated mean and 2σ intervals respectively for an ensemble evolving according to the homogenized equation

(4) from an initial condition x=−5. The blue dashed and dotted lines show the mean and 2σ intervals for a 10000 member ensemble of

the additive triad (3) for ε= 0.5 from an initial condition (x,y1,y2) = (−5,0,0) with B(0) =−0.75, B(1) =−0.25, B(2) = 1, γ1 = 1/δ,

σ1 =
√

2/δ, γ2 = 1 and σ2 =
√
2 with δ = 0.75. The green dash-dotted line and the green shaded area show the same for ε= 0.125.

2.2 Weak coupling limit

We will now discuss the weak coupling method as described in (Wouters and Lucarini, 2012; Wouters and Lucarini, 2013).

By rescaling the time as τ = ε−1t we can write the stochastically forced additive triad equation (3) as a two-dimensional

Ornstein-Uhlenbeck system weakly coupled non-linearly to a trivial zero-gradient x system:

dx

dτ
= εψx(y1,y2)5

dy1

dτ
= εψy,1(x,y)− γ1y1 +σ1ξ1(τ)

dy2

dτ
= εψy,2(x,y)− γ2y2 +σ2ξ2(τ) . (5)

with ψx(y1,y2) =B(0)y1y2 and ψy(x,y) = (B(1)xy2,B
(2)xy1)T . The stochastic parametrization derived in (Wouters and

Lucarini, 2012; Wouters and Lucarini, 2013) is given by a non-Markovian equation

dx̃

dτ
= εη(τ) + ε2

∞∫
0

dsR(s, x̃(τ − s)) , (6)10
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where the the memory kernelR(s, x̃) and first two moments of the stochastic process η(τ) are derived using the weak coupling

method to the following statistics of the uncoupled y Ornstein-Uhlenbeck dynamics:

〈η(τ)〉 = 0

C(τ) := 〈η(0)η(τ)〉 = 〈ψx(y1,y2)ψx(y1(τ),y2(τ))〉ρOU (7)

R(τ,x) = 〈ψy(x,y1,y2).∇yψx(y1(τ),y2(τ))〉ρOU . (8)5

where the evolution of y1 and y2 into y1(τ) and y2(τ) are taken to be the uncoupled Ornstein-Uhlenbeck dynamics dyi/dτ =

−γiyi +σiξi. We have for the case of the additive triad (3)

C(τ) = (B(0))2〈y1(0)y1(τ)〉〈y2(0)y2(τ)〉ρOU = (B(0))2 exp(−(γ1 + γ2)τ)
σ2

1

2γ1

σ2
2

2γ2
(9)

and

R(τ,x) =B(0)B(1)x〈y2(0)(∂y1y1(τ))y2(τ)〉ρOU10

+B(0)B(2)x〈y1(0)y1(τ)(∂y2y2(τ))〉ρOU

=xB(0) exp(−(γ1 + γ2)τ)

(
σ2

2

2γ2
B(1) +

σ2
1

2γ1
B(2)

)
. (10)

2.2.1 Markovian parametrization

Due to the identical time-scale γ1 + γ2 in both memory and noise correlation, the memory equation (6) can be transformed to

a Markovian parametrization. We want to find a parametrizing two level Markovian dynamical system of the form15

dz1

dτ
= εC1z2

dz2

dτ
= −γz2 +σzξ(τ) + εC2z1 . (11)

such that the second order response of this system to changes in ε is the same as the response of (6). In other words, we want

to determine the parameters C1, C2, γ and σz in (11) such that the correlation and memory functions of the fast equation in

(11) are equal to (9) and (10) respectively. The correlation function C(τ) and memory function R(τ,z1) of the fast equation of20

(11) are

C(τ) = 〈(C1z2(0))(C1z2(τ))〉= C2
1e
−γτ σ

2
z

2γ
(12)

R(τ,z1) = 〈(C2z1)∂z2(C1z2(τ))〉= C1C2z1e
−γτ , (13)
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where the evolution of z2 to z2(τ) is now given by dz2/dτ =−γz2 +σzξ(τ). By equating these functions to their counterparts

in (9) and (10) we see that by choosing

C1 = B(0)

C2 =
σ2

2

2γ2
B(1) +

σ2
1

2γ1
B(2) = β2B

(1) +β1B
(2)

γ = γ1 + γ25

σ2
z = 2

σ2
1

2γ1

σ2
2

2γ2
(γ1 + γ2) = 2β1β2γ

the reduced z1 dynamics of the parametrized dynamical system (11) in the weak coupling method are of the same form as

those of the stochastic triad (3).

This Markovian reduced equation (11) is in fact a reformulation of the non-Markovian equation (6). To see this, we write an

explicit solution for z2 in function of the history of z1 and ξ as10

z2(τ) = e−γτz2(0) +

τ∫
0

dt′(σzξ(t
′) + εC2z1(t′))e−γ(τ−t′) .

This solution can then be inserted into (11), to obtain

dz1

dτ
= εC1e

−γτz2(0) + εC1

τ∫
0

dt′(σzξ(t
′) + εC2z1(t′))e−γ(τ−t′) , (14)

which agrees with (6), the first two terms being an Ornstein-Uhlenbeck process with the required correlation plus a memory

term with the required memory kernel.15

This Markovian formulation allows for a straightforward numerical implementation of the parametrization, compared to the

non-Markovian equation (6) which requires one to store the history of the process in memory.

A comparison of the performance of the two model reductions is show in Figure 2. Shown are the spread of an ensemble

initiated at a fixed value for the slow variables x= z1 =−5 and the autocorrelation function of the slow variables. The weak

coupling method clearly gives better results.20

By correctly rescaling time and taking the limit of ε→ 0 in the Markovian parametrization (11) one can furthermore verify

that in this limit it converges to the homogenization of the original triad equation (4).

3 The slowly oscillating additive triad

The additive triad as specified in (3) can be generalized to allow for an additional interaction between the y variables on the

slow time scale that is independent of x. The dynamical equations for this slowly oscillating triad are25

dx

dt
= B(0)y1y2

dy1

dt
= B(1)y2x−

γ1

ε
y1 +ωy2 +

σ1√
ε
ξ1(t)

dy2

dt
= B(2)xy1−

γ2

ε
y2−ωy1 +

σ2√
ε
ξ2(t) . (15)
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Figure 2. Left: comparison of the ensemble spread for the original additive triad system for ε= 0.25 from an initial condition (−5,0,0) (the

ensemble mean is the blue dashed line, 2σ interval the blue shaded area), the two-level Ornstein-Uhlenbeck process from the weak coupling

method (11) from an initial condition (−5,0) (ensemble mean: red dash-dotted line, 2σ interval: red dash-dot-dotted lines) and the one-level

Ornstein-Uhlenbeck process from homogenization (4) from x=−5 (ensemble mean: green solid line, 2σ interval: dotted lines)

Right: comparison of the autocorrelation functions of the slow variable 〈x(t)x(0)〉 in the full triad for ε= 0.5 (blue dash-dotted line),

〈z1(t)z1(0)〉 in the weak coupling model (green solid line) and 〈x(t)x(0)〉 for the homogenized equation (red dashed line).

Both plots use parameter values B(0) =−0.75, B(1) =−0.25, B(2) = 1, γ1 = 1/δ, σ1 =
√

2/δ, γ2 = 1 and σ2 =
√
2 with δ = 0.75, the

ensemble size is 1000.

3.1 Homogenization

The homogenized equation is similar to the one for the additive triad (3) (see (4)), with an added constant forcing Cr in the

reduced SDE

∂x

∂θ
= Cmx+Cr +

√
2A0ξ(t) (16)

Cr =
B(0)

γ1 + γ2
ω

(
σ2

2

2γ2
− σ2

1

2γ1

)
.5

3.2 Weak coupling limit

The coupling functions ψx and ψy are now

ψx(y) = B(0)y1y2

ψy(x,y) = x

 B(1)y2

B(2)y1

+ω

 y2

−y1

 .
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The correlation function (7) of the coupling to x, determining the correlations of the parametrization noise σ is

〈ψx(y)ψx(y(τ))〉 = B(0)2
〈y1(0)y1(τ)〉〈y2(0)y2(τ)〉

= B(0)2
exp(−(γ1 + γ2)τ)

σ2
1

2γ1

σ2
2

2γ2
.

The response function (8) of ψx to ψy , determining the memory kernel of the parametrization, is similar to the one for the addi-

tive triad (see (10)), with an added exponential function, the integral of which gives the same constant Cr of the homogenized5

equations

R(τ,x) = 〈ψy(x,y)∂yψx(y(τ))〉

= exp(−γτ)(D1x+D0)

D1 = B(0)

(
B(1) σ

2
2

2γ2
+B(2) σ

2
1

2γ1

)
= γCm

D0 = ωB(0)

(
σ2

2

2γ2
− σ2

1

2γ1

)
= γCr .10

Combined, this then results in the following non-Markovian parametrized equations

dx̃

dτ
= εη(τ) + ε2

∞∫
0

dsR(s, x̃(τ − s))

= εη(τ) + ε2

∞∫
0

ds exp(−γs)(D1x̃(τ − s) +D0)

= εη(τ) + ε2

∞∫
0

ds exp(−γs)x̃(τ − s) + ε2Cr . (17)

3.2.1 Markovian parametrization15

The non-Markovian equation (17) can again be Markovianized by a two-level Ornstein-Uhlenbeck process of the form
dz1

dτ
= εC1z2

dz2

dτ
= −γz2 +σzξ(t) + ε(C2z1 +C3) . (18)

The corresponding correlation and memory terms are

C(τ) = C2
1e
−γτ σ

2
z

2γ
(19)20

R(τ,z1) = C1e
−γτ (C2z1 +C3) . (20)

We can therefore take

C3 = D0/C1

= ω

(
σ2

2

2γ2
− σ2

1

2γ1

)
.

In the limit ε→ 0 in the Markovian parametrization (18) we again recover the homogenized equations (16).25
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3.3 Exit times

When comparing initial ensemble spread and autocorrelation functions for the slow variable of this system with the weak

coupling parametrization (18) and the homogenized system (16), the results are similar to those presented for the additive triad

above. Additionally, here we perform a comparison of a rare event statistic, the first exit time of the slow variable from an

interval [−1,1] when the slow variable is initialized at 0.5

ε 0.5 0.25 0.125

homogenization 0.403 0.184 0.0982

weak coupling 0.205 0.0839 0.0589
Table 1. The relative error on the mean exit time |E1(τ)−E0(τ)|/E0(τ) where E0(τ) is the mean exit time from [−1,1] of the full triad

system (15) and E1(τ) is the mean exit time of the parametrized systems (18) and (16), with B(0) =−0.75, B(1) =−0.25, B(2) = 1,

ω = 0.25, γ1 = 1/δ, σ1 =
√

2/δ, γ2 = 1 and σ2 =
√
2 with δ = 0.75. These values are calculated from 1000 independent trials.

.

ε 0.5 0.25 0.125

homogenization 0.420 0.217 0.115

weak coupling 0.232 0.0814 0.0395
Table 2. The relative error on the standard deviation of the exit times |σ1(τ)−σ0(τ)|/σ0(τ) where σ0(τ) is the standard deviation of exit

times from [−1,1] of the full triad system (15) and σ1(τ) is the standard deviation of exit times of the parametrized systems (18) and (16).

Parameters are chosen as in Table 1. These values are calculated from 1000 independent trials.

The results in Tables 1 and 2 show that the statistics of exit times are significantly better approximated in the weak coupling

parametrization.

4 The rapidly oscillating additive triad

A further generalization of the additive triad (3) is to introduce an interaction between the y variables on the fast time scale

(Dolaptchiev et al., 2013a). The dynamical equations for the rapidly oscillating triad are10

dx

dt
= B(0)y1y2

dy1

dt
= B(1)y2x−

γ1

ε
y1 +

ω

ε
y2 +

σ1√
ε
ξ1(t)

dy2

dt
= B(2)xy1−

γ2

ε
y2−

ω

ε
y1 +

σ2√
ε
ξ2(t) . (21)
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Note the difference in scaling on the oscillatory terms ωyi compared to (15). The invariant measure of the fast system is a

correlated Gaussian measure ρ(y) = exp(−yT (2S)−1y)/Z determined by

ΓS+ (ΓS)T = ΣTΣ

with

Γ =

 γ1 −ω
ω γ2

5

and

Σ =

 σ1 0

0 σ2

 .

Homogenization leads to a solvability condition on the system (21), whereby the mean of B(0)y1y2 under the fast process

has to equal zero. This condition is fulfilled if either ω = 0 or σ2
1/γ1 = σ2

2/γ2. The homogenized equation is now given by

ẋ = γωx+
√

2Aωξ(t) (22)10

with

γω = bB(1)S22 + 2(aB(1) + cB(2))S12 + bB(2)S11 (23)

Aω = B(0)(3aS11S12 + b(S11S22 +S2
12) + 3cS22S12) (24)

b =
B(0)(

ω2

γ1
+ ω2

γ2
+ γ1 + γ2

)
a = (−ω/2γ1)b15

c = (ω/2γ2)b .

4.1 Weak coupling

The coupling functions of (21) have the following form

ψx(y1,y2) =B(0)y1y2 (25)

ψy(x,y1,y2) = x(B(1)y2,B
(2)y1)T . (26)20

The correlation function 〈ψx(y1,y2)ψx(y1(t),y2(t))〉 appearing in the weak coupling expansion can again be calculated

explicitly. Solutions of the fast Ornstein-Uhlenbeck system ẏ =−Γy+ Σξ can be written as

yi(t) = [e−Γty(0)]i +

t∫
0

dτ [e−Γ(t−τ)Σξ(τ)]i .

11



Inserting this expression into the autocorrelation function gives

Cω(t) := 〈ψx(y1,y2)ψx(y1(t),y2(t))〉= (B(0))2〈y1(0)y2(0)y1(t)y2(t)〉

= (B(0))2
(

[e−Γt]11[e−Γt]21(3S11S12)

+
(
[e−Γt]11[e−Γt]22 + [e−Γt]12[e−Γt]21

)
(S11S22 + 2S2

12)

+ [e−Γt]12[e−Γt]22(3S22S12)
)

5

+ (B(0))2R12

t∫
0

dτ1dτ2 〈[e−Γ(t−τ1)Σξ(τ1)]1[e−Γ(t−τ2)Σξ(τ2)]2〉 ,

since the noise ξ is white and has zero mean.

The memory term Rω(τ,x) can be calculated by performing integration by parts on the response function, resulting in a

fluctuation-dissipation type expression:

Rω(τ,x) =

〈(
−∇.(ρψy)

ρ

)
ψx(τ)

〉
10

= B(0)x
〈(
B(1)[S−1]12y

2
2(0) + (B(1)[S−1]11 +B(2)[S−1]22)y1(0)y2(0) +B(2)[S−1]12y

2
1(0)

)
y1(τ)y2(τ)

〉
4.1.1 Markovian parametrization

Guided by the Markovian form of the previous triad systems, we again want to derive a Markovian parametrization with a

reduced one-level Ornstein-Uhlenbeck system as the fast component:

ż1 = εC1z215

ż2 = εC2z1− γz2 +σzξz(t) . (27)

In this case, there is no exact match between the auto-correlation and response functions of this Markovian system and the non-

Markovian weak coupling parametrization. The choice of the parametrization parameters is therefore not exactly determined

and one needs to choose a parametrization such that the auto-correlation and response functions of the coupling function in the

fast component of the full system are approximated in some sense. A further restriction comes from the fact that in the limit20

ε→ 0 the limiting path distribution of the full system is determined by the homogenized equation (22) and we therefore want

to retain this limiting behaviour in the parametrized system. To have this limiting property, we have the following constraints

on the parameters in (27)

C2
1σ

2
z

2γ2
= Aω

C1C2

γ
= γω ,25

where Aω and γω are the forcing and friction parameters obtained through homogenization (see (23)-(24)). With the remaining

free parameters we can match the response and correlation functions in a more precise manner, for example by matching the

12



values of these functions at time t= 0. In this way, we get

C2 =
Ry(0)

C1

γ = Cω(0)

and

σ2
z =

2γCω(0)

C2
1

,5

where Ry =Rω/x. This leaves the parameter C1 undetermined. With the above choice of C2, γ and σz , the memory and

correlation functions of the system (27) no longer depend on C1. The weak coupling method therefore can not give further

guidance in determining its value. The numerical results presented here appear to be insensitive to the choice of C1. The results

presented here are for a value the case where we take C1 =B(0).

A simulation of the ensemble spread from a fixed initial condition is shown in Figure 3. It demonstrates that the weak10

coupling parametrization (27) outperforms the homogenized reduced system (22). A longer simulation (not plotted here) shows

that over time the difference between the methods decreases and all three system relax to nearly the same invariant measure.

4.2 Exit times

The same experiment on exits from an interval has been performed as described in Section 3.3. The results are displayed in

Table 3. As before, the weak coupling reduced system gives a much better result when compared to the homogenized system.15

ε 0.5 0.25 0.125

homogenization 0.534 0.262 0.118

weak coupling 0.322 0.127 0.0619
Table 3. The relative error on the mean exit time |E1(τ)−E0(τ)|/E0(τ) where E0(τ) is the mean exit time from [−1,1] of the full triad

system (21) and E1(τ) is the mean exit time of the parametrized systems (22) and (27). The parameters are the same as those used for Fig.

3. These values are calculated from 1000 independent trials.

ε 0.5 0.25 0.125

homogenization 0.583 0.286 0.118

weak coupling 0.362 0.109 0.0503
Table 4. The relative error on the standard deviation of the exit times |σ1(τ)−σ0(τ)|/σ0(τ) where σ0(τ) is the standard deviation of exit

times from [−1,1] of the full triad system (21) and σ1(τ) is the standard deviation of exit times of the parametrized systems (22) and (27).

The parameters are the same as those used for Fig. 3. These values are calculated from 1000 independent trials.

13



θ

Figure 3. Left: comparison of the ensemble spread for the original oscillating triad system (21) for ε= 0.25 from an initial condition (-1,0,0)

(the ensemble mean is the blue dashed line, 2σ interval the blue shaded area), the two-level Ornstein-Uhlenbeck process from the weak

coupling method (27) from an initial condition (-1,0) (ensemble mean: red dash-dotted line, 2σ interval: red dash-dot-dotted lines) and the

one-level Ornstein-Uhlenbeck process from homogenization (22) from x=−5 (ensemble mean: green solid line, 2σ interval: dotted lines)

B(0) =−0.75,B(1) =−0.25,B(2) = 1, ω = 1/12, γ1 = 1/δ, σ1 =
√

2/δ, γ2 = 1 and σ2 =
√
2 with δ = 0.75. The ensemble size is 4000.

Right: cumulative histograms of exit times from [−1,1] for the rapidly oscillating triad (21) with ε= 0.5, the homogenized equation (22)

and the two-level Ornstein-Uhlenbeck process from the weak coupling method (27), calculated from 1000 independent trials..

5 The multiplicative triad

A final type of interactions is given by the multiplicative triad equations (Majda et al., 2002)

dx1

dt
= B(1)x2y

dx2

dt
= B(2)x1y

dy

dt
= B(3)x1x2−

γm
ε
y+

σm√
ε
ξ(t) , (28)5

which describes the interplay between two x modes and a stochastically forced single y mode. In the absence of forcing

and dissipation energy conservation is satisfied if
∑
iB

(i) = 0. In the system (28) the y mode can be eliminated directly by

integrating the last equation of (28)

y(t) = e−
γm
ε ty(0) +

t∫
0

dt′
(
σm√
ε
ξ(t′) +B(3)x1(t′)x2(t′)

)
e−

γm
ε (t−t′) .
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Inserting this result in the equations for the x variables, one obtains

d

dt

 x1(t)

x2(t)

 =

 B(1)x2(t)

B(2)x1(t)

{e− γmε ty(0) +
∫ t

0
dt′
(
σm√
ε
ξ(t− t′) +B(3)x1(t− t′)x2(t− t′)

)
e−

γm
ε t′
}
. (29)

Note that the first two term on the righthand side. result from a Ornstein-Uhlenbeck process with zero mean and stationary

time autocorrelation function given by σ2
m

2γm
e−

γm
ε t.

5.1 Weak coupling5

The coupling functions for the multiplicative triad read

ψx(x,y) = (B(1)x2y,B
(2)x1y)T ,

ψy(x) =B(3)x1x2 .

The coupling terms in the x equations are separable

ψx,i(x,y) = aiψ
′
x,1,i(x)ψ′x,2,i(y) (30)10

with 〈ψ′x,2,i(y)〉ρOU = 0, where

a1 =B(1) , ψ′x,1,1(x) = x2 , ψ′x,2,1(y) = y ,

a2 =B(2) , ψ′x,1,2(x) = x1 , ψ′x,2,2(y) = y .

The resulting parametrization in the weak coupling approach (Wouters and Lucarini, 2012; Wouters and Lucarini, 2013) reads

dxi
dτ

= εaiψ
′
x,1,iηi(τ) + ε2

∞∫
0

dsRi(s,x(τ − s)) , (31)15

with a noise term ηi with zero mean and correlation given by

〈ηi(0)ηj(τ)〉= 〈ψ′x,2,i(y)ψ′x,2,j(y(τ))〉ρOU =
σ2
m

2γm
e−γmτ .

The memory kernel has the form

Ri(s,x) = 〈ψy(x,y) · ∇yψx,i(x(s),y(s))〉ρOU ,

R(s,x) =B(3)x1x2e
−γs

 B(1)x2(s)

B(2)x1(s)

20

Thus (31) can be written as

d

dτ

 x1(τ)

x2(τ)

 =

 B(1)x2(τ)

B(2)x1(τ)

{σ(τ) +
∫∞

0
dsB(3)x1(τ − s)x2(τ − s)e−γms

}
, (32)

15



which is exactly the same result as in (29), if we rescale time and assume as initial condition x1(t) = x2(t) = 0 for t < 0. In this

case the weak coupling approach recovers exactly the full model. The original three component system was reduced to a two

component non-Markovian system but there is no efficiency gain using the parametrization since the corresponding Markovian

system is again a three component one.

5.2 Homogenization5

Introducing a longer time scale θ = ε2τ in (32) and taking the limit ε→ 0 one recovers the homogenization result in Stra-

tonivich formulation

d

dθ

 x1

x2

=
B(3)

γ
x1x2

 B(1)x2

B(2)x1

+
σm
γm

 B(1)x2

B(2)x1

ξ(θ) . (33)

The latter corresponds to an Itô stochastic differential equation of the form

d

dθ

 x1

x2

=
B(3)

γ
x1x2

 B(1)x2

B(2)x1

+
σ2
m

2γ2
m

B(1)B(2)

 x1

x2

+
σm
γm

 B(1)x2

B(2)x1

ξ(θ) . (34)10

An extensive numerical comparison of the statistics of the multiplicative triad and of the homogenized model has been per-

formed in (Majda et al., 2002). It demonstrates a good agreement on various quantities such as autocorrelation functions up to

values of ε= 0.4. For details we refer to (Majda et al., 2002).

6 Conclusions

In this work we have worked out a first application of the weak coupling response method of (Wouters and Lucarini, 2012;15

Wouters and Lucarini, 2013) to a multiscale stochastic system. By the choice of system we were able to perform both homog-

enization and the weak coupling reduction on this system, thereby allowing for direct comparison between the two reduction

methods.

The response method yields a non-Markovian equation, making it cumbersome to integrate numerically. We have demon-

strated here that for the systems studied the non-Markovian equation can be further reduced to a Markovian equation. Even20

with this further reduction the system gives a better match to the original system than the homogenized equations.

In the case of the additive triads (3), the system (11) that is obtained through the Markovianization procedure is of interme-

diate complexity, between the full system (3) and the homogenized limit (4). In the systems studied here, the retention of a

fast time scale in the reduced system means that the reduction in simulation complexity is modest (one variable instead of two

and a linear coupling instead of a nonlinear one). In the case of the multiplicative triad (28) the weak coupling parametriza-25

tion recovers exactly the full model and there is no efficiency gain. In many applications of practical relevance, however, the

number of degrees of freedom of the unresolved variables is considerably larger than those of the slow variables of interest. A

reduction to a system of one or a few variables will constitute a significant reduction in complexity in this case. This approach

can be compared to the superparametrization approach to convection, where convection is parametrized by a model that is still
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dynamical in nature, yet significantly simpler than the full convective motion (Randall et al., 2003; Grooms and Majda, 2013,

2014).

The methodology discussed here provides a framework for deriving rather then heuristically constructing (stochastic) pa-

rameterizations for multiscale systems, even if further investigations are indeed needed; see the promising results by Demaeyer

and Vannitsem (2016).5
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