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Abstract: Understanding the errors caused by spatial scale transformation in Earth observations and simulations requires a 10 

rigorous definition of scale. These errors are also an important component of representativeness errors in data assimilation. 

Several relevant studies have been conducted, but the theory of the scale associated with representativeness errors is still not 

well developed. We addressed these problems by reformulating the data assimilation framework using measure theory and 

stochastic calculus. First, measure theory is used to propose that the spatial scale is a Lebesgue measure with respect to the 

observation footprint or model unit, and the Lebesgue integration by substitution is used to describe the scale transformation. 15 

Second, a scale-dependent geophysical variable is defined to consider the heterogeneities and dynamic processes. Finally, the 

structures of the scale-dependent errors are studied in the Bayesian framework of data assimilation based on stochastic calculus. 

All the results were presented on the condition that the scale is one-dimensional, and the variations in these errors depend on 

the differences between scales. This new formulation provides a more general framework to understand the representativeness 

error in a nonlinear and stochastic sense and is a promising way to address the spatial scale issue. 20 

1 Introduction 

 The spatial scale in Earth observations and simulations refers to the observation footprint or model unit in which a 

geophysical variable is observed or modelled (scale is used below as an abbreviation for spatial scale). Scale is traditionally 

defined in terms of distance, which is not adequate both because distance is a one-dimensional quantity while scale generally 

refers to a two- or three-dimensional space and because the scale may change in a very complicated manner (for example, 25 

from an irregular observation footprint to a square observation footprint). Generally, the scale is not explicitly expressed in the 

dynamics of a geophysical variable, partially because a rigorous definition of scale is difficult to find, except for an intuitive 
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conception (Goodchild and Proctor, 1997) and certain qualitative classifications of scale (Vereecken et al., 2007). This reflects 

the complexity of scale and consequently requires a more rigorous mathematical conceptualization of scale. 

 The scale transformation of a geophysical variable may result in significant errors (Famiglietti et al., 2008; Crow et al., 2012; 

Gruber et al., 2013; Hakuba et al., 2013; Huang et al., 2016; Li and Liu, 2016; Ran et al., 2016). These errors are mainly caused 

by the strong spatial heterogeneities (Miralles et al., 2010; Li, 2014) and irregularities (Atkinson and Tate, 2000) that are 5 

associated with geophysical variables across different scales, and are also closely related to dynamic variations, e.g., in 

hydrological (Giménez et al., 1999; Vereecken et al., 2007; Merz et al., 2009; Narsilio, et al. 2009), soil (Ryu and Famiglietti, 

2006; Lin et al., 2010) and ecological (Wiens, 1989) processes. How to elucidate the scale transformation by developing 

mathematical tools has yet to be fully addressed. 

 Data assimilation could be an ideal tool to explore the scale transformation because it presents a unified and generalized 10 

framework in Earth system modelling and observation (Talagrand, 1997). Geophysical data are typically observed by various 

Earth observations; thus, updating the observation data in a data assimilation system may result in scale transformations 

between the observation space and system state space. If observation operator is strongly nonlinear and complex, the errors 

caused by the scale transformation are even more serious (Li, 2014). An important concept that is related to the scale 

transformation in data assimilation is “representativeness error”, which is associated with the inconsistency in the spatial and 15 

temporal resolutions between states, observations and operators (Lorenc, 1986; Janjić and Cohn, 2006; van Leeuwen, 2014; 

Hodyss and Nichols, 2015) and the missing physical information that is related to a numerical operator compared to the ideal 

operator (van Leeuwen, 2014), such as the discretization of a continuum model or neglect of necessary physical processes. 

The representativeness error and instrument error make up the observation error of data assimilation. Under the Gaussian 

assumption, they are independent of each other (Lorenc, 1995; van Leeuwen, 2014). This study will not consider the instrument 20 

error when formulating the scale transformation in data assimilation. 

 Recently, approaches have been developed to assess the representativeness error. Janjić and Cohn (2006) studied the 

representativeness error by treating system state as the sum of resolved and unresolved portions. Bocquet et al. (2011) used a 

pair of operators, namely, restriction and prolongation, to connect the relationship between the finest regular scale and a coarse 

scale, and determined the representativeness error using a multi-scale data assimilation framework. van Leeuwen (2014) 25 
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considered two complicated cases, i.e., conducting the observation vector in a finer resolution compared with system state 

vector and assimilating the retrieved variables. Their solutions were formulated using an agent in observation or state space, 

and a particle filter was proposed to treat the nonlinear relationship between observations, states and retrieved values. Hodyss 

and Nichols (2015) also estimated the representativeness error by investigating the difference between the truth and the 

inaccurate value that is generated by forecasting model. 5 

 Although these approaches explored the structure of the representativeness error and offered various solutions, 

improvements are still necessary to investigate the exact expression of the errors caused by scale transformation in data 

assimilation. The authors believe that these approaches are optimal in linear systems but may not be suitable when observations 

are heterogeneous and sparse, or when operators are nonlinear between states and observations, although the general equations 

in the nonlinear case were given.Without taking heterogeneities and nonlinear operators into account, the representativeness 10 

error cannot be fully understood. However, heterogeneity varies depending on the situation and is difficult to formulate in a 

general theoretical study.  

 Data assimilation studies based on stochastic processes (Apte et al., 2007; Miller, 2007) or a stochastic dynamic model 

(Miller et al., 1999; Eyink et al., 2004) have been proposed recently. Compared to deterministic models, stochastic data 

assimilation is more applicable in an integrated and time-continuous theoretical study (Bocquet et al., 2010) and creates an 15 

infinite sampling space of the system state (Apte et al., 2007). Although the theorems of calculus that are based on stochastic 

processes (or stochastic calculus) are different from those of ordinary calculus, these advantages suggest that stochastic data 

assimilation offers a more general framework to study scale transformation. 

We attempt to explore the mathematic definitions of scale and scale transformation, and then formulate the errors caused by 

the scale transformation on stochastic data assimilation in a general theoretical study. The next section introduces the basic 20 

concepts and theorems of measure theory, stochastic calculus and data assimilation. In Sect. 3, we present the definitions of 

scale and scale transformation. The posterior probability of system state is also reformulated by scale transformation in a 

stochastic data assimilation framework. In the final section, the contributions and deficiencies of this study are discussed. 

2 Basic knowledge 

 The scale greatly depends on the geometric features of a certain observation footprint or model unit. The model unit is a 25 

specified subspace where a geophysical variable evolves in the model space; it could be a point, a rectangular grid, or an 

irregular unit such as a response unit (watershed, landscape patch, etc.). We offer a solution in which the definition of scale 
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uses measure theory and the expression of a geophysical variable as a stochastic process uses stochastic calculus. Therefore, 

we first introduce several basic concepts of measure theory and stochastic calculus. 

2.1 Measure theory 

 Let 𝛺 be an arbitrary non-empty space. ℱ is a σ-algebra (or σ-field) of subsets of 𝛺 that satisfies the following conditions: 

(i) 𝛺 ∈ ℱ, and the empty set 𝛷 ∈ ℱ; 5 

(ii) 𝐴 ∈ ℱ implies that its complementary set 𝐴𝑐 ∈ ℱ; 

(iii) 𝐴1, 𝐴2, ⋯ ∈ ℱ implies their union 𝐴1 ∪ 𝐴2 ∪ ⋯ ∈ ℱ. 

 A set function 𝜇 of ℱ is called a measure if it satisfies the following conditions: 

(1) 𝜇(𝐴) ∈ [0, ∞) and 𝜇(𝛷) = 0; 

(2) If 𝐴1, 𝐴2, ⋯ ∈ ℱ  is any disjoint sequence and  ⋃ 𝐴𝑘
∞

𝑘=1
∈ ℱ , 𝜇  is countably additive such that  𝜇(⋃ 𝐴𝑘

∞

𝑘=1
) =

10 

∑ 𝜇(𝐴𝑘)∞
𝑘=1 . 

 If 𝜇(𝛺) = 1, 𝜇 can be replaced by the probability measure 𝑝, and if 𝜇 is finite, 𝑝 can be calculated as 𝑝(𝐴) = 𝜇(𝐴) 𝜇(𝛺)⁄ . 

The triples (𝛺, ℱ, 𝜇) and (𝛺, ℱ, 𝑝) are the measure space and probability measure space, respectively. 

 Let 𝛺 be the set of real numbers 𝑅 and σ-algebra ℬ be Borel algebra, which is generated by all closed intervals in 𝑅. Then, 

∀ 𝐴 = [𝑎, 𝑏] ∈ 𝐵 , a Lebesgue measure on 𝑅 is defined as 𝐼(𝐴) = 𝑏 − 𝑎. Intuitively, the Lebesgue measure on 𝑅 coincides 15 

with the length. 

 An n-dimensional Lebesgue volume is defined to measure the standard volumes of the subsets in 𝑅𝑛 based on 𝐼𝑛(𝐴) =

∏ (𝑏𝑘 − 𝑎𝑘)𝑛
𝑘=1 , where 𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘, 𝑘 = 1,2, ⋯ , 𝑛]  is an n-dimensional regular cell in  𝑅𝑛 . The n-dimensional 

Lebesgue volume is an ordinary volume, such as length (n=1), area (n=2) and volume (n=3).  

 Next, the outer measure is defined as  𝑚𝑛(𝐴) = inf{∑ 𝐼𝑛(𝐴𝑖)
+∞
𝑖=1 } , where  inf{∙}  is the infimum,  𝐴𝑖 = [𝑥: 𝑎𝑖,𝑘 ≤ 𝑥𝑘 ≤

20 

𝑏𝑖,𝑘 , 𝑘 = 1,2, ⋯ , 𝑛] is the n-dimensional regular cell in 𝑅𝑛, and 𝐴 ⊆ ⋃ 𝐴𝑖
+∞

𝑖=1 . Thus, if 𝐴 is any subset of 𝑅𝑛, one can collect 

many sets of n-dimensional regular cells {𝐴𝑖} to cover 𝐴. Among them, the outer measure denotes the set whose union has the 

smallest n-dimensional Lebesgue volume.  
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 Actually the outer measure does not match the two conditions of a measure, but one can define the outer measure 𝑚𝑛  as a 

Lebesgue measure on measure spaces (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛), where ℒ𝑛 is the Lebesgue σ-algebra of 𝑅𝑛. The construction of the 

Lebesgue σ-algebra is based on the Caratheodory condition (Bartle, 1995, definition 13.3). Fortunately, almost all of the 

observation footprints and model units are finite and closed, therefore they are Lebesgue measurable. This consequently 

ensures that the Lebesgue measure 𝑚𝑛 is a measure and the triple (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is a measure space. The Lebesgue measure of 5 

a Lebesgue measurable subset in 𝑅𝑛 also coincides with its volume. 

 The n-dimensional Lebesgue integral in (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is ∫ 𝑓𝑑𝑚𝑛 , where 𝑓 is a real function on 𝑅𝑛. The Lebesgue integral 

can be further denoted by ∫ 𝑓𝑑𝑚𝑛 = ∫ 𝑓(𝑥)𝑑𝑥, where 𝑥 ∈ 𝑅𝑛 and 𝑥 = (𝑥1, ⋯ , 𝑥𝑛). 

 In the two-dimensional case (𝑛 = 2), the Lebesgue integral is 

∬𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝐴

, 10 

where 𝐴 ∈ ℒ2. Next, we consider the Lebesgue integration by substitution on 𝑅2. Let 𝑇(𝑥1, 𝑥2) = [𝑡1(𝑥1, 𝑥2), 𝑡2(𝑥1, 𝑥2)] =

[𝑦1, 𝑦2] be a one-to-one mapping of a subset  𝑋 onto another subset  𝑌  on  𝑅2 . Assuming that 𝑇  is continuous and has a 

continuous partial derivative matrix 𝑇𝑥 = (
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
), then 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= ∬ 𝑓(𝑇(𝑥1, 𝑥2))|𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2
𝑋

, 15 

where the Jacobian determinant |𝐽(𝑥1, 𝑥2)| = det 𝑇𝑥 = |
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
|. If 𝑇 is linear, the integral reduces to 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= |𝐽(𝑥1, 𝑥2)| ∬ 𝑓(𝑇(𝑥1, 𝑥2))𝑑𝑥1𝑑𝑥2
𝑋

. 

 By doing so, any observation footprint or model unit can be regarded as a Lebesgue measurable subset in a two-dimensional 

space 𝑅2. 

 Additional details regarding measure theory can be found in the literature (for example, Billingsley, 1986; Bartle, 1995). 

2.2 Stochastic calculus 20 

 We then introduce some necessary concepts and theorems of stochastic calculus without proofs; their detailed derivations 

can be found in the literature (Itô, 1944; Karatzas et al., 1991; Shreve, 2005). 
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 Stochastic calculus is defined for ordinary integrals with respect to stochastic processes. One of the simplest stochastic 

processes defined on (𝛺, 𝐹, 𝑝) is Brownian motion 𝑊.  It is characterized as follows: 

1) 𝑊(0) = 0. 

2) ∀𝑡1 > 𝑠1 ≥ 𝑡2 > 𝑠2 ≥ 0, the increments 𝑊(𝑡1) − 𝑊(𝑠1) and 𝑊(𝑡2) − 𝑊(𝑠2) are independent. 

3) ∀𝑡 > 𝑠 ≥ 0, 𝑊(𝑡) − 𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠). 5 

 The last two conditions represent that  ∀𝑡2 > 𝑠2 ≥ 𝑡1 > 𝑠1 ≥ 0 , 𝑊(𝑡2) − 𝑊(𝑠2) and 𝑊(𝑡1) − 𝑊(𝑠1)  are independent 

Gaussian random variables.  

 Stochastic calculus based on Brownian motion produces an Ito process. The differential form of the time-dependent Ito 

process is 

𝑑𝐼 = 𝜑(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡),   (1) 10 

where 𝜑(𝑡), 𝜎(𝑡) and 𝑊(𝑡) are the drift rate, volatility rate and Brownian motion, respectively. The integral form of Eq. (1) 

is 

𝐼(𝑡) = 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
+ ∫ 𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
.  (2) 

 Theorem 1: For any Ito process defined as in Eq. (1), the quadratic variation that is accumulated on the interval [0, 𝑡] is 

 [𝐼, 𝐼](𝑡) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑡

0
,   (3) 15 

and the drift of Eq. (1) is 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
. 

 As distinguishing features of stochastic calculus, the quadratic variation and drift can be regarded as stochastic versions of 

the variance and expectation, respectively. That is, the variance and expectation are instances of their stochastic counterparts 

within a certain integral path. Therefore, rather than being constants, the quadratic variation and drift are given in terms of 

probability.   20 

 Theorem 2 (Ito's Lemma): If the partial derivatives of function 𝑓(𝑢, 𝑥), viz. 𝑓𝑢(𝑢, 𝑥)，𝑓𝑥(𝑢, 𝑥) and 𝑓𝑥𝑥(𝑢, 𝑥), are defined 

and continuous. If 𝑡 ≥ 0, we have 

𝑓(𝑡, 𝑥(𝑡)) = 𝑓(0, 𝑥(0)) + ∫ 𝑓𝑢(𝑢, 𝑥(𝑢))𝑑𝑢 +
𝑡

0
∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
+ ∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜑(𝑢)𝑑𝑢

𝑡

0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑥(𝑢))𝜎2(𝑢)𝑑𝑢

𝑡

0  .    (4) 

 Ito's Lemma is typically used to build the differential of a stochastic model with Ito processes. In this study, Ito's Lemma is 25 

applied to study the scale-dependent relationship between the observation and state and the errors caused by scale 

transformation. 

2.3 Traditional formulation of data assimilation in the Bayesian theorem framework 

 We use the well-accepted Bayesian theorem of data assimilation (Lorenc, 1995; van Leeuwen, 2015) to investigate its time- 

and scale-dependent errors. State and observation are first assumed to be one-dimensional. 30 

 A nonlinear forecasting system can be described by 
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𝑋(𝑡𝑘) = 𝑀𝑘−1:𝑘(𝑋(𝑡𝑘−1)) + 𝜂(𝑡𝑘),  (5) 

where 𝑀𝑘−1:𝑘(⋅), 𝑋(𝑡𝑘) and 𝜂(𝑡𝑘) represent a nonlinear forecasting operator that transits the state from the discrete time 𝑘 −

1 to 𝑘, the state with prior probability distribution function (PDF) 𝑝(𝑋), and the model error at time 𝑘, respectively.  

 If a new observation is available at time 𝑘, the observation system is given by 

𝑌𝑜(𝑡𝑘) = 𝐻𝑘(𝑋(𝑡𝑘)) + 𝜀(𝑡𝑘),  (6) 5 

where 𝐻𝑘(⋅), 𝑌𝑜(𝑡𝑘) and 𝜀(𝑡𝑘) represent the nonlinear observation operator, true observation with prior PDF 𝑝(𝑌), and 

observation error at time 𝑘, respectively. 

 Previous studies (e.g., Janjić and Cohn, 2006; Bocquet et al. 2011) described the origins of the components of 𝜀(𝑡𝑘) and 

𝜂(𝑡𝑘), such as white noise, the discretization error of a continuum model, the errors that are caused by missing physical 

processes, and the scale-dependent bias. In this study, we assume that both forecasting and observation operators are perfect 10 

models; thus, errors caused by missing physical processes are discarded.  

 According to Bayesian theory, the posterior PDF of the state based on the addition of a new observation into the system is 

𝑝(𝑋|𝑌) = 𝑝(𝑌|𝑋)𝑝(𝑋) 𝑝(𝑌)⁄ ,  (7) 

where 𝑝(𝑋|𝑌) is the posterior PDF that presents the PDF value of state 𝑋 given an available observation 𝑌. 𝑝(𝑌|𝑋) is a 

likelihood function, which is the probability that an observation is 𝑌 given a state 𝑋. 𝑝(𝑋) and 𝑝(𝑌) are the prior PDF values 15 

of the state and observation, respectively. Here, 𝑝(𝑋) is supposed to be known and 𝑝(𝑌) is a normalization constant (van 

Leeuwen, 2014). The aim of data assimilation is equivalent to finding the posterior PDF 𝑝(𝑋|𝑌). 

3 Reformulation of scale transformation in data assimilation framework 

3.1 Definition of scale 

 We define the scale based on the measure theory that was introduced in Sect. 2. The relationship between Lebesgue measure 20 

in (𝑅2, ℒ2, 𝑚2) and scale is first introduced by the following measures of Earth observations.  

(i) Measure of a single-point observation: When the observation footprint is very small and homogeneous, we assume that 

its footprint approaches zero, and its measure is accordingly zero under the condition of the Lebesgue measure.  

(ii) Measure along a line: The measure is a one-dimensional Lebesgue measure. 

(iii) Measure of a rectangular pixel (for example, remote sensing observation): ∀𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘 , k = 1,2], it is a 25 

two-dimensional Lebesgue volume, i.e., 𝜇𝑖𝑖𝑖(𝐴) = 𝐼2(𝐴) = ∏ (𝑏𝑘 − 𝑎𝑘)2
𝑘=1 . 
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(iv) Measure of a footprint-scale observation: The footprint is any bounded closed domain 𝐴, which is not necessary to be 

regular rectangles, but can also be circles or ellipses. We use Lebesgue measure on 𝑅2 , i.e., 𝜇𝑖𝑣(𝐴) = 𝑚2(𝐴) =

inf {∑ 𝐼2(𝐴𝑖)
+∞

𝑖=1
}, where 𝐴𝑖 = [𝑥: 𝑎𝑖,𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑖,𝑘 , 𝑘 = 1,2] and 𝐴 ⊆ ⋃ 𝐴𝑖

+∞

𝑖=1 . Clearly, measures (i)~(iii) are special 

cases of the measure of a footprint-scale observation. 

 All of the above measures depend mainly on the shape and size of 𝐴. The Lebesgue measure on 𝑅2 coincides with the area; 5 

thus, the Lebesgue integral of 𝜇𝑖𝑣(𝐴) is ∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1.  

 Now, we can generalize the above examples by defining the scale as the Lebesgue measure with respect to the observation 

footprint. This definition can also be extended to a certain model unit. Thus, for any subset 𝐴 ∈ ℒ2, the scale is 𝑠 = 𝑚2(𝐴) =

∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1. From a geometric perspective, the measure function 𝑚2(∙) refers to the shape of 

the subset, and the scale further indicates its size.  10 

 We represent the scale as 𝑠, and let 𝑠0 = 𝑚0
2(𝐴0) = ∬ 𝑑𝑥1𝑑𝑥2𝐴0

= 1 be the standard scale, where 𝐴0 = [𝑥: 0 ≤ 𝑥𝑘 ≤

1, 𝑘 = 1,2] is the unit square in 𝑅2. The standard scale can be regarded as a basic unit of scale. It presents a standard reference 

by which one can make a quantitative comparison between different scales. The standard scale is also the origin of scales that 

lets scales vary similarly to other physical quantities, such as time. 

 We can further define scale transformation. For  ∀𝐴1, 𝐴2 ∈ ℒ2 , if there are two different scales, 𝑠1 = 𝑚2(𝐴1) =15 

∬ 𝑑𝑥1𝑑𝑥2𝐴1
 and  𝑠2 = 𝑚2(𝐴2) = ∬ 𝑑𝑦1𝑑𝑦2𝐴2

, then we can obtain  𝑠2 = ∬ 𝑑𝑦1𝑑𝑦2𝐴2
= ∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴1

 based on 

Lebesgue integration by substitution, where the Jacobian matrix 𝐽(𝑥1, 𝑥2) represents the geometric transformation from 𝐴1 

to 𝐴2. In particular, if 𝐽(𝑥1, 𝑥2) = 𝑑𝑖𝑎𝑔(𝜉, 𝜉), 𝜉 ∈ 𝑅, which also indicates that the geometric transformation is linear, then the 

following expression is valid based on Lebesgue integration by substitution: 

𝑠2 = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2
𝐴1

= 𝜉2𝑠1, (8)
 20 

where 𝑠1 and 𝑠2 represent the change of the one-dimensional rule. 

 If two scales follow the one-dimensional rule, they are geometrically similar. This rule simplifies scale as a one-dimensional 

variable that corresponds to the scale transformations between most remote sensing images with various spatial resolutions. 

For example, ∀𝐴 = [𝑥: 𝑎 ≤ 𝑥𝑘 ≤ 𝑏, 𝑘 = 1,2], where 𝐴 and the unit square 𝐴0 are geometrically similar, and the scale 𝑠 =
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𝜇𝑖𝑖𝑖(𝐴)  can be expressed by the one-dimensional rule of scale transformation: 𝑠 =  𝜇𝑖𝑖𝑖(𝐴) = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2𝐴0
=

(𝑏 − 𝑎)2𝑠0. For another example, let 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴  be the scale of a disc footprint 𝐴 with radius 𝑟. The mapping function 

between 𝐴  and 𝐴0 is 𝑇(𝑥1, 𝑥2) = [𝑟𝑥1 cos(2𝜋𝑥2) , 𝑟𝑥1 sin(2𝜋𝑥2) ; 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 1] = [𝑦1, 𝑦2] , and the Jacobian 

determinant  |𝐽(𝑥1, 𝑥2)| = |
𝑟 cos(2𝜋𝑥2) −2𝜋𝑟𝑥1 sin(2𝜋𝑥2)

𝑟 sin(2𝜋𝑥2) 2𝜋𝑟𝑥1 cos(2𝜋𝑥2)
| = 2𝜋𝑟2𝑥1 . Therefore, 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴

=

∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴0
= 𝜋𝑟2𝑠0, which is equal to its area. However, 𝑠0 and 𝑠 do not obey the one-dimensional rule because 5 

the Jacobian matrix is not diagonal. 

 Layer 1 in Figure 1 shows the relationship between the Lebesgue measure and scale. The measure space 𝛺 =

[𝑥: 0 ≤ 𝑥𝑘 ≤ 4, 𝑘 = 1,2] is regularly divided by the unit square 𝐴0. Let scales 𝑠𝐶1 = 𝑚𝐶1
2 (𝐶1), 𝑠𝐶2 = 𝑚𝐶2

2 (𝐶2) and 𝑠𝐶3 =

𝑚𝐶3
2 (𝐶3) be the Lebesgue measures of disc observation footprints 𝐶1, 𝐶2 and 𝐶3, respectively. Then, 𝑚𝐶1

2 (∙) = 𝑚𝐶2
2 (∙) =

𝑚𝐶3
2 (∙) because they are the same Lebesgue measure functions. That is, if {𝐴𝑖} is the set with the smallest volume that 10 

covers 𝐶1, then similar sets {𝐴𝑖 + 2} and {𝐴𝑖 × 3 + 2} can be used (with the origin located in the upper-left corner) to cover 𝐶3 

and 𝐶2 with the smallest volumes, respectively. Here, 𝐴𝑖 + 2 = [𝑥𝑖: 𝑥𝑖,𝑘 + 2, 𝑥𝑖,𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2] and 𝐴𝑖 × 3 + 2 = [𝑥𝑖: 𝑥𝑖,𝑘 ×

3 + 2, 𝑥𝑖,𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2], which proves that functions 𝑚𝐶1
2 (∙), 𝑚𝐶2

2  (∙)and 𝑚𝐶3
2 (∙) collect the desired set based on the same 

scheme; therefore, they are identical. Additionally, 𝑠𝐶2 = 𝑚𝐶2
2 (𝐶2) = ∑ 𝐼2(𝐴𝑖 × 3 + 2) is much larger than𝑠𝐶1 =  𝑚𝐶1

2 (𝐶1) =

 ∑ 𝐼2(𝐴𝑖) and 𝑠𝐶3 =  𝑚𝐶3
2 (𝐶3) =  ∑ 𝐼2(𝐴𝑖 + 2). Therefore, the scale of 𝐶2 is not equal to the two other scales because the 15 

volumes of their subsets are different. However, their scales are governed by one-dimensional rules because their measures 

are identical and the Jacobian matrices between them are diagonal.  
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Figure 1. Diagram of the relationships among a Lebesgue measure, scale and geophysical variable 

3.2 Stochastic variables in data assimilation  

 Instead of using Eqs. (5) and (6), which are discrete in time, we use Ito process-formed expressions with the one-dimensional 

infinitesimals 𝑑𝑠 and 𝑑𝑡 to formulate a continuous-time (or continuous-scale) state and observation. 5 

 A geophysical variable can be regarded as a real function 𝑉(𝑠, 𝑡), and it maps the space (𝑅2, ℒ2, 𝑚2) onto 𝑅, where 𝑠 is the 

scale, 𝑠 = 𝑚2(𝐴), 𝐴 ∈ ℒ2, and 𝑡 is the time. In n-dimensional data assimilation, a geophysical variable 𝑉 is related to an 

element of state vector 𝑋 at a specific scale 𝑠 and time 𝑡.  

 In Figure 1, Layer 2 presents a heterogeneous geophysical variable in the entire region. If we aggregate Layer 2 into Layer 

1 and let each pixel intensity be the value for a geophysical variable in that pixel, then the measure space 𝛺 is heterogeneous. 10 

A geophysical variable represents a spatial average in a specific observation footprint with a specific scale. Therefore, the 

geophysical variables in 𝐶1 and 𝐶3 are not equal because their observation footprints are different, and the geophysical 

variables in 𝐶2 and 𝐶3 are also different because the scale changes. The former introduces that the geophysical variables vary 

with the location, and the latter states that the geophysical variables are scale-dependent.   

 If the statistical properties of the geophysical variable are available, we can construct an explicit stochastic equation for it. 15 

We introduce the time-dependent Ito process Eq. (1) to define the geophysical variable process: 

𝑑𝑉 = 𝑝(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡).   (9) 

Similarly, the geophysical variable is supposed to evolve via a stochastic process, for which the dynamic process and 

uncertainty are allowed to vary with scale,  

𝑑𝑉 = 𝜑(𝑠)𝑑𝑠 + 𝜎(𝑠)𝑑𝑊(𝑠),   (10) 20 

where 𝜑(𝑠) and 𝜎(𝑠) are the scale-based drift rate and volatility rate, respectively. The geophysical variable is a probabilistic 

process with respect to scale and thus has scale-dependent errors, where the scale should shift forward or backward based on 

the condition that the scale follows the one-dimensional rule.   
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 Eq. (9) can be regarded as a continuous-time version of Eq. (5), i.e., the estimation of the state is equal to the integral of Eq. 

(9) over a time interval. Here, 𝑝(𝑡) indicates the physical process with respect to time, and 𝑞(𝑡) is the error only caused by the 

evolution of time; thus, model error 𝜂 in Eq. (5) contains more parts than 𝑞(𝑡). Eq. (10) implies that the value and variance of 

a geophysical variable may change if the scale changes. The formulation of 𝜑(𝑠) should consider the spatial heterogeneities 

and physical process variations among different scales, which together constitute the deterministic part of a geophysical 5 

variable. However, neither of them is well understood in a general theoretical study. Therefore, 𝜑(𝑠) is conceptualized in Eq. 

(10). Particularly, if the study region is homogeneous, then the values of a variable that are observed at the same place are 

identical between the large scale and fine scale, and 𝜑(𝑠) can be left out. Due to the integral over the space of Brownian motion, 

𝜎(𝑠) is the stochastic part, meaning that scale transformation produces uncertainties.   

  The state in the forecasting step can be expressed by Eq. (9) because only time is involved. In the analysis step of data 10 

assimilation, the state does not pertain to time, and we assume that the scale has a quantifiable effect on the errors in this step; 

thus, both the states and observations can be defined by Eq. (10).  

3.3 Expression of scale transformation in a stochastic data assimilation framework 

First, we provide the following lemma. 

 Lemma 1: For ∀𝑠0 > 0 , let 𝑊∗(0) = 𝑊(𝑠0) − 𝑊(𝑠0), … , 𝑊∗(𝑠) = 𝑊(𝑠0 + 𝑠) − 𝑊(𝑠0) ; then, 𝑊∗(𝑠), 𝑠 ≥ 0  is a 15 

Brownian motion.    

 Remark on Lemma 1: Obviously, 𝑊∗ is Brownian motion because 𝑊∗(0) = 0 and the increments [𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] 

are equal to [𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖)]. Therefore, 𝐸[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 0 and 𝑉𝑎𝑟[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 𝑠𝑖+1 −

𝑠𝑖. 

 Note that in the definition of Brownian motion, the parameter starts at zero. However, the scale is realistically greater than 20 

zero, which means that it cannot be directly applied in Brownian motion. Therefore, Lemma 1 is logical because it implies that 

𝑊(𝑠), 𝑠 ≥ 𝑠0 is an equivalent expression of 𝑊∗(𝑠), 𝑠 ≥ 0. Therefore, beginning with the standard scale, the Brownian motion 

and stochastic calculus with respect to scale can be further developed. 

 In the following content, we use Brownian motion with a parameter that starts at 𝑠0  to define the scale-dependent 

geophysical variables; therefore, the classic expressions above are changed. According to Lemma 1, Eq. (3) is given by 25 

 [𝐼, 𝐼](𝑠) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑠

𝑠0
.  (11) 

Additionally, the integral form of Eq. (10) is 

 𝑉(𝑠) = 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠

𝑠0

𝑠

𝑠0
 ,  (12) 

where 𝑉0 = 𝑉(𝑠0), and the drift of Eq. (12) is  

 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢
𝑠

𝑠0
 . 30 
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Similarly, Eq. (4) becomes 

𝑓(𝑠, 𝑉(𝑠)) = 𝑓(𝑠0, 𝑉(𝑠0)) + ∫ 𝑓𝑢(𝑢, 𝑉(𝑢))𝑑𝑢
𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜑(𝑢)𝑑𝑢

𝑠

𝑠0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑉(𝑢))𝜎2(𝑢)𝑑𝑢

𝑠

𝑠0
. 

 Now, we make the following assumptions. 

 Assumption 1: The scale transformations between the state and observation spaces of data assimilation obey the one-5 

dimensional rule as defined in Sect. 3.1. 

 Assumption 2: In the forecasting step, the model unit equals the scale of the state space, and both of them are constant.  

 Assumption 3: In the analysis step, the state, observation and observation operator are scale dependent. Only one 

observation is added into the data assimilation system at a time. 

 In assumption 1, the one-dimensional rule ensures that scale changes in a sense of geometrical similarity (for example, from 10 

a larger square observation footprint to a smaller square observation footprint, or from 𝐶2 to 𝐶3 as presented in Figure 1). 

Therefore, based on assumption 1, scale only varies in one-dimensional space, meaning that the corresponding scale 

transformation is an integral over one-dimensional space. 

 Assumption 2 indicates that the model unit and state scale are supposed to be the same and both invariant in space and time. 

Thus, there is no scale transformation in the forecasting step; Thus, Eq. (9) can adequately describe this step. 15 

 Based on assumption 3, the analysis step is related to the scale. The scale transformation is only involved in the process of 

mapping the state vector from state space to observation space. According to Eq. (10), the state and observation in the analysis 

step are 

 𝑑𝑋 = 𝜑𝑋(𝑠)𝑑𝑠 + 𝜎𝑋(𝑠)𝑑𝑊(𝑠) (13) 

and  20 

 𝑑𝑌 = 𝜑𝑌(𝑠)𝑑𝑠 + 𝜎𝑌(𝑠)𝑑𝑊(𝑠), (14) 

where 𝜑𝑋 (𝑠), 𝜎𝑋(𝑠), 𝜑𝑌
(𝑠) and 𝜎𝑌(𝑠) represent the scale-dependent drift rates and volatility rates of state 𝑋 and observation 

𝑌, respectively. 𝜑(𝑠) also implies the heterogeneities and physical processes from standard scale to a specific scale, which 

may be hard to formulate. 𝜎(𝑢) can be regarded as the stochastic perturbation with respect to scale. Therefore, according to 

Eq. (12), a state is 𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑋

𝑠0

𝑠𝑋

𝑠0
 in the state space and 𝑋(𝑠𝑌) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 +

𝑠𝑌

𝑠025 

∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑌

𝑠0
 in the observation space. These formulas prove that the value of state varies with the changes of scale. 

  Based on the above discussion, the integral forms of the state are 

 𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝜑𝑋(𝑠)𝑑𝑠
𝑠𝑋

𝑠0
+ ∫ 𝜎𝑋(𝑠)𝑑𝑊(𝑠)

𝑠𝑋

𝑠0
 . (15) 

For the observation, we have 

 𝑌(𝑠𝑌) = 𝑌0 + ∫ 𝜑𝑌(𝑠)𝑑𝑠
𝑠𝑌

𝑠0
+ ∫ 𝜎𝑌(𝑠)𝑑𝑊(𝑠)

𝑠𝑌

𝑠0
  (16) 30 
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In Eq. (15) and Eq. (16), the time 𝑡 is omitted, and 𝑠𝑋 , 𝑠𝑌 , 𝑋0  and 𝑌0  represent the scale of the state space, scale of the 

observation space, state in 𝑠0 and observation in  𝑠0, respectively. 

 The Bayesian equation of data assimilation (Eq. (7)) produces the posterior PDF 𝑝(𝑋|𝑌)  that is associated with the 

likelihood function 𝑝(𝑌|𝑋) and the distributions of the state and observation. In addition, under the condition that the variances 

exist, assumption 1 states that the scales vary in one-dimensional space, which results in  5 

 𝑋~𝑁 (𝑋0 + ∫ 𝜑𝑋(𝑠)𝑑𝑠
𝑠𝑋

𝑠0
, ∫ 𝜎𝑋

2(𝑠)𝑑𝑠
𝑠𝑋

𝑠0
)  (17) 

  and 𝑌~𝑁 (𝑌0 + ∫ 𝜑𝑌(𝑠)𝑑𝑠
𝑠𝑌

𝑠0
, ∫ 𝜎𝑌

2(𝑠)𝑑𝑠
𝑠𝑌

𝑠0
).  (18) 

Eq. (17) and Eq. (18) are the prior PDFs of state and observation with respect to scale in state space and observation space, 

respectively. These two prior PDFs are introduced into the Bayesian theorem that is reformulated by scale.  

 Then, we calculate the posterior PDF. 10 

The scale-dependent observation operator is 𝐻(𝑠, 𝑥), which suggests that the observation operator and its parameters are both 

susceptible to the scale. If 𝐻(𝑠, 𝑥) is defined, its continuous partial derivatives are 𝐻𝑠(𝑠, 𝑥), 𝐻𝑥(𝑠, 𝑥) and 𝐻𝑥𝑥(𝑠, 𝑥). In line 

with Ito’s Lemma, we get an estimation of observation in the observation space (the notations (𝑢, 𝑋(𝑢)) and (𝑢) were omitted, 

i.e., 𝐻𝑠 = 𝐻𝑠(𝑠, 𝑥), 𝜎𝑋 = 𝜎𝑋(𝑢), etc.) 

𝐻(𝑠𝑌 , 𝑋(𝑠𝑌)) 15 

= 𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠
𝑠𝑌

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥𝜎𝑋

𝑠𝑌

𝑠0
𝑑𝑊(𝑢) + ∫ 𝐻𝑥𝜑𝑋𝑑𝑢

𝑠𝑌

𝑠0
+

1

2
∫ 𝐻𝑥𝑥

𝑠𝑌

𝑠0
𝜎𝑋

2𝑑𝑢  

= 𝐻(𝑠0, 𝑋0) + ∫ [𝐻𝑠 + 𝐻𝑥𝜑𝑋 +
1

2
𝐻𝑥𝑥𝜎𝑋

2]
𝑠𝑌

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥𝜎𝑋

𝑠𝑌

𝑠0
𝑑𝑊(𝑢).  (19)  

Assumption 1 suggests that the observation and state spaces have the same probability measure; thus, the Brownian motions 

in these two spaces are equivalent. Eq. (19) can also be rewritten by replacing 𝑠0 with 𝑠𝑋, namely 𝐻(𝑠𝑌 , 𝑋(𝑠𝑌)) =

𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) + ∫ (𝐻𝑠 + 𝐻𝑥𝜑𝑋 +
1

2
𝐻𝑥𝑥𝜎𝑋

2)
𝑠𝑌

𝑠𝑋
𝑑𝑢 + ∫ 𝐻𝑥𝜎𝑋

𝑠𝑌

𝑠𝑋
𝑑𝑊(𝑢), and then we obtain 20 

𝑌(𝑠𝑌) − 𝐻(𝑠𝑌 , 𝑋(𝑠𝑌)) = 𝑌(𝑠𝑌) − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) + ∫ (𝐻𝑠 + 𝐻𝑥𝜑𝑋 +
1

2
𝐻𝑥𝑥𝜎𝑋

2)
𝑠𝑌

𝑠𝑋
𝑑𝑢] + ∫ (−𝐻𝑥𝜎𝑋)

𝑠𝑌

𝑠𝑋
𝑑𝑊(𝑢).  (20)  

 Equation (20) can be regarded as an Ito process, and its drift is 

 𝑌(𝑠𝑌) − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) + ∫ (𝐻𝑠 + 𝐻𝑥𝜑𝑋 +
1

2
𝐻𝑥𝑥𝜎𝑋

2) 𝑑𝑢
𝑠𝑌

𝑠𝑋
].   (21) 

 The last integral term in Eq. (21) is the difference in the first-order differential observation operator between the state scale 

𝑠𝑋  and the observation scale 𝑠𝑌 . This term illustrates that the mapping process should consider not only the observation 25 

operator but also the first-order differential term when state is mapped to the observation space. The former is typically 

determined from the literature, whereas the latter was derived in this study for the first time. This result prompted us to further 

consider the first-order differential of the observation operator when calculating the representativeness error. 

 The quadratic variation of Eq. (20) is 

 ∫ 𝐻𝑥
2𝜎𝑋

2𝑑𝑢
𝑠𝑌

𝑠𝑋
.  (22) 30 
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 This equation suggests that the uncertainty in the observation error includes the change in the observation operator from 

scale 𝑠𝑋 to 𝑠𝑌. Therefore, Eq. (21) and Eq. (22) can be combined to produce 

𝑝(𝑌|𝑋) = 𝑁 (𝑌(𝑠𝑌) − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) + ∫ (𝐻𝑠 + 𝐻𝑥𝜑𝑋 +
1

2
𝐻𝑥𝑥𝜎𝑋

2) 𝑑𝑢
𝑠𝑌

𝑠𝑋
] , ∫ 𝐻𝑥

2𝜎𝑋
2𝑑𝑢

𝑠𝑌

𝑠𝑋
) .  (23) 

 Based on Eqs. (17), (18) and (23), 𝑝(𝑌|𝑋), 𝑝(𝑋) and 𝑝(𝑌) are stochastic functions that depend on the scale; thus, the 

posterior PDF of the state is scale-dependent as well.  5 

 In particular, if 𝑌 is a direct observation, which means that the observation is of the same physical quantity and scale as the 

state, and for simplicity, assume that 𝑋 is only influenced by scale-dependent Gaussian noises, viz. 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠) = 𝑋0 +

∫ 𝑑𝑊(𝑠)
𝑠

𝑠0
. Then the result becomes  

  𝑌(𝑠𝑌) − 𝑋(𝑠𝑌) = 𝑌(𝑠𝑌) − 𝑋(𝑠𝑋) − ∫ 𝑑𝑊(𝑢)
𝑠𝑌

𝑠𝑋
 (24) 

 and 𝑝(𝑌|𝑋) = 𝑁{𝑌(𝑠𝑌) − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} . (25) 10 

 In Eq. (24), the integral ∫ 𝑑𝑊(𝑢)
𝑠𝑌

𝑠𝑋
 can be regarded as the noise based on the increment of Brownian motion with respect 

to scale, and its expectation equals zero.  

 The significance of Eqs. (20)~(25) is that the effect of scale on the posterior PDF can be determined quantitatively. In 

addition to the model error and instrument error (both were not introduced explicitly in this study because they have little 

influence on the error caused by scale transformation), a new type of error in data assimilation was discovered in the analysis 15 

step. The expectation of the posterior PDF may vary with the scale of the state space if 𝑌 is an indirect observation, and the 

variance of the drift depends on the difference between 𝑠𝑌 and 𝑠𝑋 (based on Eq. (22)). In addition, if 𝑌 is a direct observation 

and 𝑋 is only influenced by scale-dependent Gaussian noises (Eq. (24) and Eq. (25)), the expectation of the posterior PDF is 

the difference between 𝑌 and 𝑋, and the variance is equal to the increment of Brownian motion with respect to the scale. 

Additionally, if the results are not derived from assumption 1, i.e., the scale varies randomly, the posterior PDF is more 20 

complex because the Jacobian matrix in the Lebesgue integration of scale transformation is arbitrary.  

3.4 Example: the stochastic radiative transfer equation (SRTE) 

 To explicitly show how the stochastic scale transformations impact assimilation, we introduce an illustrative example based 

on the scales presented in Figure 1. Assume that in the analysis step, the state has the standard scale 𝑠0, whose observation 

footprint is the unit square 𝐴0.  If the scale of observation space is 𝑠𝐶1 and its observation footprint is the disc 𝐶1, then the 25 

Jacobian matrix of the transformation between the scales of the state space and observation space is not diagonal according to 
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the statements in Sect. 3.1, leading the two scales to not obey the one-dimensional rule and be against assumption 1. However, 

if the scales of state space and observation space are 𝑠𝐶3 and 𝑠𝐶2, respectively, assumption 1 is met, and it can be determined 

that 𝑠𝑋 = 𝑠𝐶3 =
𝜋

4
𝑠0 and 𝑠𝑌 = 𝑠𝐶2 =

9𝜋

4
𝑠0 . 

 Now the scales of state space and observation space obey the one-dimensional rule, and we further presume that the measure 

space 𝛺 in Figure 1 is free of spatial heterogeneities and dynamic process variations depending on scale. Consequently, the 5 

drift rate 𝜑(𝑠) = 0. If the value of state in the standard scale is denoted as 𝑋0 and assuming that 𝜎(𝑠) = 1, then the prior PDF 

of state is 𝑋~𝑁 (𝑋0,
𝜋

4
𝑠0 − 𝑠0) according to Eq. (17). It should be noted that 

𝜋

4
𝑠0 − 𝑠0 is not a real number and is only used to 

indicate the variation when the scale changes.  

 If 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠), the observation has the same physical quantity as the state, and according to Eq. (25), the likelihood 

function is 𝑝(𝑌|𝑋) = 𝑁{𝑌(𝑠𝑌) − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} = 𝑁{𝑌(𝑠𝑌) − 𝑋(𝑠𝑋), |𝑠𝐶2 − 𝑠𝐶3|} = 𝑁 {𝑌(𝑠𝑌) − 𝑋(𝑠𝑋), |
9𝜋

4
𝑠0 −

𝜋

4
𝑠0|}.  10 

 To formulate the likelihood function in the case that the observation is different from the state, the SRTE will be employed 

in the following text. The SRTE is a stochastic integral-differential equation that describes the radiative transfer phenomena 

through a stochastically mixed immiscible media. Scientists have developed analytical or numerical methods for finding the 

stochastic moments of the solution, such as the ensemble averaged and the variance of the radiation intensity (Pomraning, 

1998; Shabanov et al., 2000; Kassianov et al., 2011). 15 

 Consider the general expression of the SRTE (leaving out the scattering and emission), 

−𝜇
𝑑𝐼(𝜏)

𝑑𝜏
= −𝐼(𝜏) ,    (26) 

where 𝐼(𝜏), 𝜇 and 𝜏 are the radiation intensity, coefficient of radiation direction and optical depth, respectively.  

 To tie into more substantial random optical properties of the transfer media, such as absorption and scattering, the optical 

depth 𝜏 is assumed to be stochastic. This suggests that the optical depth is a scale-dependent Ito process and can be expressed 20 

as 

𝑑𝜏(𝑠) = 𝜑𝜏(𝑠)𝑑𝑠 + 𝜎𝜏(𝑠)𝑑𝑊(𝑠),   (27). 

This causes the radiation intensity to depend on scale. 

 The analytical solution of Eq. (26) is 𝐼(𝜏) = 𝐼0𝑒
𝜏

𝜇⁄ , where 𝐼0 = 𝐼(𝜏(𝑠0)). 

 SRTE can be considered as a concrete instance of a stochastic observation operator by defining 𝐻(𝑠, 𝑥(𝑠)) = 𝐼(𝑥) = 𝐼0𝑒
𝑥

𝜇⁄ . 25 

Therefore, 𝐻𝑠(𝑠, 𝑥(𝑠)) = 0, 𝐻𝑥(𝑠, 𝑥(𝑠)) =
1

𝜇
𝐼0𝑒

𝑥
𝜇⁄
 and 𝐻𝑥𝑥(𝑠, 𝑥(𝑠)) =

1

𝜇2 𝐼0𝑒
𝑥

𝜇⁄
. Based on Ito's Lemma, 
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 The radiation intensity is a scale-dependent Ito process. The difference between Eq. (28) and the general Ito process is that 

there is a primitive function 𝐼(𝜏(𝑠)) in the integral term. Therefore, the uncertainty of the radiation intensity is more complex 

because it is related to both the change of scale and the primitive function. 

 Integrating both sides of Eq. (28) yields the general solution of the radiation intensity, 5 

 
2

22

( ) ( ) ( )
( ) exp ( )

s s s
I s C ds dW s    


  

    
       

   
  ,   (29) 

where the constant 𝐶 ∈ 𝑅. Eq. (29) further indicates that 𝐼(𝜏(𝑠)) is a scale-dependent Ito process.  

 Considering that the optical depth 𝜏 is the state, the radiation intensity 𝐼 is the observation and 𝐼(𝜏(𝑠)) is the observation 

operator, the results in Sect. 3.3 could easily be applied here. For example, Eq. (20) and Eq. (23) become 

𝑌(𝑠𝑌) − 𝐻(𝑠𝑌 , 𝑋(𝑠𝑌)) = 𝐼(𝜏(𝑠𝑌)) − 𝐼(𝜏(𝑠𝑋)) − ∫
1

𝜇2
(

𝜎𝜏
2

2𝜇
+ 𝜑𝜏 +

𝜎𝜏
2𝐼(𝜏)

2𝜇2
) 𝐼2(𝜏)𝑑𝑢

𝑠𝑌

𝑠𝑋
− ∫

𝜎𝜏

𝜇2 𝐼2(𝜏)𝑑𝑊(𝑢)
𝑠𝑌

𝑠𝑋
,  (30) 10 

𝑝(𝑌|𝑋) = 𝑁 (𝐼(𝜏(𝑠𝑌)) − 𝐼(𝜏(𝑠𝑋)) − ∫
1

𝜇2 𝐼2(𝜏) (
𝜎𝜏

2

2𝜇
+ 𝜑𝜏 +

𝜎𝜏
2𝐼(𝜏)

2𝜇2
) 𝑑𝑢

𝑠𝑌

𝑠𝑋
, ∫

𝜎𝜏
2

𝜇4 𝐼4(𝜏)𝑑𝑢
𝑠𝑌

𝑠𝑋
).  (31) 

Then, the posterior PDF of the data assimilation can be determined by Eq. (27), (29) and (31). 

4 Discussion & conclusions 

4.1 Discussion 

 Our study offered a stochastic data assimilation framework to formulate the errors that are caused by scale transformations. 15 

The necessity of the methodology, the difference from previous works by other investigators, and the advantages and 

limitations of this study are discussed as follows. 
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 The reasons that the methodology focuses on a stochastic framework are as follows. First, the stochastic data assimilation 

framework is essentially consistent with the concepts of scale and scale transformation; both are associated with corresponding 

measure spaces (𝛺, ℱ, 𝜇). Therefore, it is natural to regard the state space and observation space as two different measure 

spaces, and each element of state (or observation) vector can be seen as a geophysical variable that maps the state (or 

observation) measure space onto 𝑅. Correspondingly, as the integrals of random processes with respect to random processes, 5 

stochastic calculus was ultimately adopted. Second, using stochastic calculus can also formulate the errors caused by scale 

transformations. The study proceeds with and improves the understanding of representativeness error in terms of scale. The 

results did not only prove the conventional point that the uncertainties of these errors mainly depend on the differences between 

scales but also indicated that the first-order differential of the nonlinear observation operator should be incorporated in 

representativeness error. Third, the error caused by scale transformation was presented in a general form. The drift and 10 

quadratic variation of error were formulated by Eq. (21) and Eq. (22), respectively, and both defined the probability distribution 

space of 𝑝(𝑌|𝑋) . Last, stochastic calculus can be extended to meet a general scale transformation and formulate the 

corresponding representativeness error, which was unattainable in previous work. For example, if the scale changes randomly, 

say, from an irregular footprint to another irregular footprint, the stochastic equation can offer a multiple integral to present 

this type of scale transformation, such as 𝑉(𝑥, 𝑦) = 𝑉0 + ∫ ∫ 𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑋

𝑋0

𝑌

𝑌0
+ ∫ ∫ 𝜎(𝑥, 𝑦)𝑑𝑊1(𝑥)𝑑𝑊2(𝑦)

𝑋

𝑋0

𝑌

𝑌0
, where 𝑊1(𝑥) 15 

and 𝑊2(𝑦) are two independent Brownian motions. 

 The significant innovation of this work is as follows. We developed a more rigorous formulation of the scale and scale 

transformation based on Lebesgue measure, which places the related concepts in a rigorous mathematical framework and then 

provides a new understanding of the errors caused by scale transformation. In addition, due to the Ito process-formed state and 

observation, a stochastic data assimilation framework was proposed by considering the nonlinear operators, heterogeneity of 20 

a geophysical variable and a general Gaussian representativeness error. The scale transformation is also nonlinear if the one-

dimensional rule is not applied. Additionally, Ito process-formed state and observation offer the drift rate (i.e., 𝜑(𝑠) in Eq. 

(10)) to formulate the heterogeneity associated with scale transformation. It also permits the representativeness error to be 

general Gaussian in this framework. If all the integrands in Eq. (13) and Eq. (14) are nonlinear functions instead of constants, 

then these two equations can be integrated over the field of Brownian motion, and state and observation are the general 25 

Gaussian processes of scale. Based on these functions, the representativeness error is a general Gaussian process.  

 As a theoretical exploration towards scale transformation and stochastic data assimilation, there is still much room for 

improvement. First, we reduced the scale transformation by the one-dimensional rule, and let the variables in data assimilation 

evolve regularly according to assumptions 1~3; thus, only the ideal result was investigated. Therefore, an in-depth and 

comprehensive exploration should be conducted in the future to describe other situations in the real world. However, the use 30 

of either an arbitrary scale transformation or the geophysical variable without ignoring the drift rates will obtain lengthy results. 

Therefore, the second improvement focuses on how to make the formulation more concise. Last, noting that all the results in 
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our framework were given in terms of probability, it is necessary to implement real-world applications of these theoretical 

results, such as introducing some concrete dynamic models to formulate the Ito process-formed geophysical variable of scale. 

4.2 Conclusions 

 In this study, we mainly addressed two basic problems associated with scale transformation in Earth observation and 

simulation. First, we produced a mathematical formalism of scale and scale transformation by employing measure theory. 5 

Second, we demonstrated how scale transformation and its associated errors could be presented in a stochastic data assimilation 

framework. 

 We revealed that the scale is the Lebesgue measure with respect to the observation footprint or model unit. The scale is 

related to the shape and size of a footprint, and scale transformation depends on the spatial change between different footprints. 

We then defined the geophysical variable, which further considers the heterogeneities and physical processes. A geophysical 10 

variable consequently expresses the spatial average at a specific scale.  

 We formulated the expression of scale transformation and investigated the error structure that is caused by scale 

transformation in data assimilation using basic theorems of stochastic calculus. The formulations explicate that the first-order 

differential of the nonlinear observation operator should be considered in representativeness error, and the uncertainty of 

representativeness error is directly associated with the difference between scales. A concrete physical models (SRTE) was 15 

introduced to demonstrate the results when observation operator is nonlinear. 

 This work conducted a theoretical exploration of formulating the errors caused by scale transformation in a stochastic data 

assimilation framework. We hope that the stochastic methodology can benefit the study of these errors.  

5 Notation 

5.1 Basic notations 20 

𝛺  Non-empty space  

ℱ  σ-algebra 

𝜇  Measure 

𝑑𝑉  Variable process 

𝑊(𝑠)  Brownian motion 25 

(𝛺, ℱ, 𝜇)  Measure space 

𝐼𝑛  N-dimensional Lebesgue volume 

𝑚𝑛  Lebesgue measure or an outer measure on 𝑅𝑛  

ℒ𝑛   Lebesgue σ-algebra of 𝑅𝑛 

∫ 𝑓𝑑𝑚𝑛  Lebesgue integral 30 
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|𝐽(∙)|  Jacobian determinant   

5.2 New notations 

Notation Name Explanation Index 

𝒔 Scale 
The observation footprint or model unit to observe or 

model a geophysical variable 

Sect. 1 & 

Sect. 3.1 

𝑨𝟎 Unit square in 𝑅2  Sect. 3.1 

𝒔𝟎 Standard scale A Lebesgue integral where 𝐴0 is the unit area Sect. 3.1 

 One-dimensional rule Two scales are geometrically similar Eq. (8) 

𝑽 Geophysical variable Estimation of a variable at a specific scale Sect. 3.2 

𝒅𝑿 State process Ito process-formed state Eq. (13) 

𝒅𝒀 Observation process Ito process-formed observation Eq. (14) 

𝑿𝟎 State at 𝑠0  Eq. (15) 

𝒀𝟎 Observation at 𝑠0  Eq. (16) 

𝒔𝑿 Scale of state space  Eq. (15) 

𝒔𝒀 Scale of observation space  Eq. (16) 
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