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Abstract: The understanding of uncertainties in Earth observations and simulations has been hindered by the spatial scale 10 

issue. In addition, errors that are caused by spatial scale transformation are an important component of representativeness 

errors in data assimilation. Several relevant studies have been conducted, but these errors still exceed the abilities of current 

theory because of the associated nonlinearity. Thus, we attempt to address these problems. First, the measure theory is used to 

propose a mathematical definition such that the spatial scale is the Lebesgue measure with respect to the observation footprint 

or model unit. Then, Lebesgue integration by substitution is used to describe the scale transformation. Second, a scale-15 

dependent variable is defined to further consider the heterogeneities. Finally, the structures of scale-dependent errors in 

nonlinear and general Gaussian senses are studied in the Bayesian framework of data assimilation based on stochastic calculus. 

If we restrict the scale to be one-dimensional, the variation in this type of error is proportional to the difference between scales. 

This new methodology can expand the understanding and treatment of the representativeness error in data assimilation and 

may be able to address the spatial scale issue. 20 

1 Introduction 

Scientists have devoted considerable attention to understanding uncertainties in Earth observations and simulations. However, 

uncertainties that are caused by spatial scale transformations have yet to be fully addressed. Here, the spatial scale refers to the 

observation footprint or model unit in which a geophysical parameter can be measured or evaluated. Empirical studies have 

been conducted only recently. Studies have found that the uncertainty increases with increases in the difference between spatial 25 

scales (Famiglietti et al., 2008; Crow et al., 2012; Gruber et al., 2013; Hakuba et al., 2013; Huang et al., 2016; Li and Liu, 

2016; Ran et al., 2016). This uncertainty that is associated with the spatial scale (for brevity, the term “scale” is used to refer 

to the spatial scale below) results in significant errors in understanding geophysical parameters. 
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 The scale issue is mainly derived from the strong spatial heterogeneities (Miralles et al., 2010; Li, 2014) and irregularities 

(Atkinson and Tate, 2000) that are associated with geophysical parameters across different scales, and both the spatial 

heterogeneities and irregularities vary nonlinearly with scale. In addition, the scale issue is closely related to dynamic process 

variations in land surface systems, which include hydrology (Giménez et al., 1999; Vereecken et al., 2007; Merz et al., 2009), 

soil science (Ryu and Famiglietti, 2006; Lin et al., 2010), radiative transfer (Jacquemoud et al., 2009) and ecology (Wiens, 5 

1989).   

 A mathematic conceptualization of scale is extremely important to study Earth observations and simulations. However, 

traditionally, scale is not explicitly expressed in geosystem dynamics and its measurement. A rigorous definition of scale is 

difficult to find, except for an intuitive conception (Goodchild and Proctor, 1997) and certain qualitative classifications of 

scale (Vereecken et al., 2007). This gap partially reflects the complexity of this problem and requires corresponding 10 

mathematical tools to elucidate the “scale”.  

 Data assimilation presents Earth system modelling and observation in a unified and generalized framework (Talagrand, 

1997) and therefore is an ideal tool to explore scale transformation. In the forecasting operators of data assimilation, scale and 

associated uncertainties exist in forcing data and parameters, which are typically collected by various Earth observation 

techniques or from data products; therefore, scale mismatch may arise between them. Furthermore, this problem is even more 15 

common between the model units and observation footprints of measurements because both the forecasting and observation 

operators in data assimilation are likely strongly nonlinear and complex (Li, 2014). The scale issue cannot be properly treated 

using traditional linear rules in Earth observations and simulations. The forecasting and observation operators of a data 

assimilation system are typically deterministic models. Recently, nonlinear dynamic models that were based on stochastic 

differential equations (SDEs), such as the stochastic Lorenz model (Miller et al., 1999; Eyink et al., 2004), have been studied 20 

in assimilation. A data assimilation study that was based on stochastic processes (Miller, 2007; Apte et al., 2007) has also been 

proposed. Compared to deterministic models, data assimilation that is based on stochastic models is more applicable in an 

integrated and time-continuous theoretical study (Bocquet et al., 2010), and creates an infinite sampling space of the system 

state (Apte et al., 2007). However, the theorems of calculus that are based on stochastic processes (or stochastic calculus) are 

different from those of ordinary calculus. Scale transformations between different components of data assimilation must be 25 
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reformulated in a stochastic manner to fully present the random and nonlinear geosystem dynamics and observations in a multi-

scale data assimilation framework. 

 An important concept that is related to scale in data assimilation is “representativeness error”, which is associated with the 

inconsistency in spatial and temporal resolutions between states, observations and operators (Janjić and Cohn, 2006; Hodyss 

and Nichols, 2015), and missing physical information that is related to numerical operator compared to the ideal operator (van 5 

Leeuwen, 2014), such as the discretization of a continuum model or neglect of necessary physical processes. The first source 

of representativeness error is related to scale. According to the above discussion, scale issue produces effects on the land 

surface dynamic process, so we argue that the second is also partly associated with the scale variations in physical processes. 

Thus, the scale issue is a universal phenomenon in the study of Earth observations and simulations and inevitably results in 

representativeness error. 10 

 Recently, approaches have been developed to assess representativeness error. Janjić and Cohn (2006) treated states as the 

sum of resolved and unresolved portions. This resulted in observation error was the sum of the measurement error and 

representativeness error. Bocquet et al. (2011) used a pair of operators, namely, restriction and prolongation, to connect the 

relationship between the finest regular scale and a coarse scale, and determined the scale-dependent representativeness error 

using a multi-scale data assimilation framework. van Leeuwen (2014) considered two complicated cases. In one, the 15 

observations had a finer resolution than the model. In the other, the retrieved variables, which represented different dynamic 

processes, were assimilated. Their solutions were formulated using an agent variable in observation or model space, and a 

particle filter was proposed to treat the nonlinear relationship between observations, states and retrieved values. Hodyss and 

Nichols (2015) also estimated the representativeness error based on the concept that the main cause of this error is the 

difference between the truth and the inaccurate value that is forecasted by the model. 20 

 Overall, these approaches explored the structure of representativeness error and offered various solutions. However, 

improvements can still be made. The authors believe that these approaches are optimal in linear systems, but may not be 

suitable when observations are heterogeneous and sparse and thus cannot be averaged to fit model units at a relatively coarse 

scale, or when operators are nonlinear between states and observations. In previous studies, the forecasting and observation 

operators, maps of the resolutions of different variables and models were assumed to be linear. Representativeness error is 25 
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unavoidable, even if micro-scale observations are averaged over a larger area (van Leeuwen, 2014; Li and Liu, 2016), partly 

because of the heterogeneity of geophysical parameter. However, heterogeneity varies situationally and is difficult to formulate 

in an integrated study. We can use semivariogram to quantify the heterogeneity of a geophysical parameter in a special region 

at a special time, but have no idea how to generalize this result to the entire region and time. We believe that the solution to 

this problem should begin with an integrated study of all the random evolutions of a parameter in its probability distribution 5 

space. Meanwhile, data assimilation also stresses an integrated understanding of the probability distribution function (PDF) of 

the model space, which results in an estimation of the first and second moments (data value and error information). 

 In this study, we attempt to explore the mathematic definition of scale and how scale transformation influences the errors in 

data assimilation. The next section introduces the basic concepts and theorems of measure theory and stochastic calculus. In 

Sect. 3, we present some essential concepts, such as scale, scale transformation and variable, which form the basis for the 10 

subsequent study. In Sect. 4, we establish a Bayesian description of data assimilation with time- and scale-dependent stochastic 

processes and investigate the effect of scale transformations on the posterior probability of the state. In the final section, the 

contribution of this study is presented in light of previous work. Comments and future work are also summarized. 

2 Basic knowledge 

As mentioned above, the scale greatly depends on the geometric features of a certain observation footprint or model unit. We 15 

offer a solution in which the definition of scale must use the measure theory and the expression of geophysical parameter as a 

stochastic process must use stochastic calculus. Therefore, we first introduce several basic concepts of measure theory and 

stochastic calculus. 

2.1 Measure theory 

 Let 𝛺 be an arbitrary nonempty space. ℱ is a σ-algebra (or σ-field) of subsets of 𝛺 that satisfies the following conditions: 20 

(i) 𝛺 ∈ ℱ, and the empty set 𝛷 ∈ ℱ; 

(ii) 𝐴 ∈ ℱ implies that its complementary set 𝐴𝑐 ∈ ℱ; 

(iii) 𝐴1, 𝐴2, ⋯ ∈ ℱ implies their union 𝐴1 ∪ 𝐴2 ∪ ⋯ ∈ ℱ. 
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 A set function 𝜇 of ℱ is called a measure if it satisfies the following conditions: 

(1) 𝜇(𝐴) ∈ [0, ∞) and 𝜇(𝛷) = 0; 

(2) If 𝐴1, 𝐴2, ⋯ ∈ ℱ  is any disjoint sequence and  ⋃ 𝐴𝑘
∞

𝑘=1
∈ ℱ , 𝜇  is countably additive such that  𝜇(⋃ 𝐴𝑘

∞

𝑘=1
) =

∑ 𝜇(𝐴𝑘)∞
𝑘=1 . 

 If 𝜇(𝛺) = 1, 𝜇 can be replaced by the probability measure 𝑃, and if 𝜇 is finite, 𝑃 can be calculated as 𝑃(𝐴) = 𝜇(𝐴) 𝜇(𝛺)⁄ . 5 

The triples (𝛺, ℱ, 𝜇) and (𝛺, ℱ, 𝑃) are the measure space and probability measure space, respectively. 

 Let 𝛺 be the set of real numbers 𝑅 and σ-algebra ℬ be Borel algebra, which is generated by all closed intervals in 𝑅. Then 

∀ 𝐴 = [𝑎, 𝑏] ∈ 𝐵 , a Lebesgue measure on 𝑅 is defined as 𝐼(𝐴) = 𝑏 − 𝑎. Intuitively, the Lebesgue measure on 𝑅 actually 

coincides with length. 

 An n-dimensional Lebesgue volume is defined to measure the standard volumes of subsets in 𝑅𝑛  based on 𝐼𝑛(𝐴) =10 

∏ (𝑏𝑘 − 𝑎𝑘)𝑛
𝑘=1 , where 𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘, 𝑘 = 1,2, ⋯ , 𝑛]  is an n-dimensional regular cell in  𝑅𝑛 . The n-dimensional 

Lebesgue volume is an ordinary volume, such as length (n=1), area (n=2) and volume (n=3).  

 Generally, a Lebesgue measure on 𝑹𝒏 assumes that 𝐴 is any subset of 𝑅𝑛. First, we define the outer measure as 𝑚𝑛(𝐴) =

inf{∑ 𝐼𝑛(𝐴𝑖)
+∞
𝑖=1 }, where inf{∙} is the infimum, 𝐴𝑖 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘 , k = 1,2, ⋯ , n] is the n-dimensional regular cell in 𝑅𝑛, 

and 𝐴 ⊆ ⋃ 𝐴𝑖
+∞

𝑖=1 . Thus, if 𝐴 is any subset of 𝑅𝑛, one can collect many sets of n-dimensional regular cells {𝐴𝑖} to cover 𝐴. 15 

Among them, the outer measure denotes the set whose union has the smallest n-dimensional Lebesgue volume.  

 Both 𝐼(𝐴) and 𝐼𝑛(𝐴) are measures because they satisfy the two conditions of a measure. However, the outer measure 𝑚𝑛(𝐴) 

is not a measure because it is not countably additive. Fortunately, almost all the observed footprints and model units are finite 

and closed; therefore, as an alternative, one can define the outer measure 𝑚𝑛 as a Lebesgue measure on measure 

spaces (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛), where  ℒ𝑛 is the Lebesgue σ-algebra of 𝑅𝑛. The Lebesgue measure of any subset in 𝑅𝑛  also coincides 20 

with its volume. 

 The n-dimensional Lebesgue integral in (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is ∫ 𝑓𝑑𝑚𝑛 , where 𝑓 is a real function on 𝑅𝑛. The Lebesgue integral 

can be further denoted by ∫ 𝑓𝑑𝑚𝑛 = ∫ 𝑓(𝑥)𝑑𝑥, where 𝑥 ∈ 𝑅𝑛 and 𝑥 = (𝑥1, ⋯ , 𝑥𝑛). 

 In the two-dimensional case (𝑛 = 2), the Lebesgue integral is 
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∬𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝐴

, 

where 𝐴 ∈ ℒ2. Next, we consider the Lebesgue integration by substitution on 𝑅2. Let 𝑇(𝑥1, 𝑥2) = [𝑡1(𝑥1, 𝑥2), 𝑡2(𝑥1, 𝑥2)] =

[𝑦1, 𝑦2] be a one-to-one mapping of a subset  𝑋 onto another subset  𝑌  on  𝑅2 . Assuming that 𝑇  is continuous and has a 

continuous partial derivative matrix 𝑇𝑥 = (
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
), then 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= ∬ 𝑓(𝑇(𝑥1, 𝑥2))|𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2
𝑋

, 

where the Jacobian determinant  |𝐽(𝑥1, 𝑥2)| = |det 𝑇𝑥| = |
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
|. If 𝑇 is linear, the integral reduces to 5 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= |𝐽(𝑥1, 𝑥2)| ∬ 𝑓(𝑇(𝑥1, 𝑥2))𝑑𝑥1𝑑𝑥2
𝑋

. 

 Additional details regarding measure theory can be found in the literature (for example, Billingsley, 1986; Bartle, 1995). 

2.2 Stochastic calculus 

We have incorporated some necessary concepts and theorems of stochastic calculus. All the classic theorems have been 10 

introduced without proofs; their detailed derivations can be found in the literature (Itô, 1944; Karatzas et al., 1991; Shreve, 

2005). 

 Compared to ordinary differential and integral calculus, stochastic calculus is defined for integrals of stochastic processes 

with respect to stochastic processes, such as Brownian motion. Brownian motion is one of the simplest stochastic processes. 

The Brownian motion 𝑊 that is defined on a probability measure space (𝛺, 𝐹, 𝑃) is characterized as follows: 15 

1) 𝑊(0) = 0. 

2) ∀𝑡 > 𝑠 ≥ 0, the increments 𝑊(𝑡) − 𝑊(𝑠) are independent. 

3) ∀𝑡 > 𝑠 ≥ 0, 𝑊(𝑡) − 𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠). 

 The last two conditions represent that  ∀𝑡2 > 𝑠1 > 𝑡1 > 𝑠1 ≥ 0 , 𝑊(𝑡2) − 𝑊(𝑠2) and 𝑊(𝑡1) − 𝑊(𝑠1)  are independent 

Gaussian random variables. Additionally, Brownian motion is based on a probability measure space, so 𝑊 is related to the 20 

probability measure 𝑃. 

The differential form of the time-dependent Ito process is 

𝑑𝐼 = 𝜑(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡),   (1) 

where 𝜑(𝑡), 𝜎(𝑡) and 𝑊(𝑡) are the transition probability, volatility and Brownian motion, respectively. The integral form of 

Eq. (1) is 25 

𝐼(𝑡) = 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
+ ∫ 𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
.  (2) 
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Theorem 1: For any Ito process defined as in Eq. (1), the quadratic variation that is accumulated on the scale interval [0, 𝑡] 

is  

 [𝐼, 𝐼](𝑡) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑡

0
,   (3) 

and the drift of Eq. (1) is 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
. 

 As distinguishing features of stochastic calculus, quadratic variation and drift can be regarded as stochastic versions of 5 

the variance and expectation, respectively. That is, the variance and expectation are instances of their random variable 

counterparts within a certain integral path. Therefore, rather than being constants, quadratic variation and drift are given in 

terms of probability. The quadratic variation is expressed by the second-order variation of a stochastic process, which 

consequently is 0 in a continuous differentiable random variable. Equation (3) relies on the volatility 𝜎2(𝑢); thus, the quadratic 

variation varies with the integration path. In addition, a general expression occurs when the integral path is random; that is, 10 

Eq. (2) is the curvilinear integral 𝐼(𝑡) = 𝐼(0) + ∫
𝐿

𝜑(𝑢)𝑑𝑢 + ∫
𝐿

𝜎(𝑢)𝑑𝑊(𝑢), where 𝐿 is an arbitrary path from 0 to 𝑡. 

 Theorem 2 (Ito's Lemma): If the partial derivatives of function 𝑓(𝑢, 𝑥), viz. 𝑓𝑢(𝑢, 𝑥)，𝑓𝑥(𝑢, 𝑥) and 𝑓𝑥𝑥(𝑢, 𝑥) are defined 

and continuous, and if 𝑡 ≥ 0, we have 

𝑓(𝑡, 𝑥(𝑡)) = 𝑓(0, 𝑥(0)) + ∫ 𝑓𝑢(𝑢, 𝑥(𝑢))𝑑𝑢 +
𝑡

0
∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
+ ∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜑(𝑢)𝑑𝑢

𝑡

0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑥(𝑢))𝜎2(𝑢)𝑑𝑢

𝑡

0  .    (4) 15 

 Ito's Lemma is typically used to build the differential of a stochastic model with Ito processes. In this section, Ito's Lemma 

is applied to study the scale-dependent relationship between the observation operator and state, as well as the uncertainties that 

are caused by scale in the analysis step. 

3 Reformulation of scale transformation in data assimilation framework 

3.1 Definition of scale 20 

 We define the scale based on the measure theory that was introduced in section 2. The following measures of Earth 

observations are considered to connect the Lebesgue measure in (𝑅2, ℒ2, 𝑚2) and scale. 

(i) Measure of a single point measurement: When the observation footprint is very small and homogeneous, we assume 

that its footprint approaches zero and its measure is accordingly zero under the condition of the Lebesgue measure. 

However, in the real world, the volume of the observation footprint is not zero; thus, any single point measurement 25 

with an absolute zero measure is just an ideal assumption. 

(ii) Measure in a line: The measure is a one-dimensional Lebesgue measure. 
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(iii) Measure of a rectangular pixel (for example, remote sensing observation): ∀𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘 , k = 1,2], it is a 

two-dimensional Lebesgue volume, i.e., 𝜇𝑖𝑖𝑖(𝐴) = 𝐼2(𝐴) = ∏ (𝑏𝑘 − 𝑎𝑘)2
𝑘=1 . 

(iv) Measure of a footprint measurement: The observed space of a footprint measurement is any bounded closed domain 𝐴, 

most of which are not regular rectangles, such as circles or ellipses. We use Lebesgue measure on 𝑅2, i.e., 𝜇𝑖𝑣(𝐴) =

𝑚2(𝐴) = inf {∑ 𝐼2(𝐴𝑖)
+∞

𝑖=1
}, where 𝐴𝑖 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘, 𝑘 = 1,2] and 𝐴 ⊆ ⋃ 𝐴𝑖

+∞

𝑖=1 . Obviously, measure (i)~(iii) 5 

are the special cases of the measure of a footprint measurement. 

 Actually, all the above measures mainly depend on the shape and size of 𝐴. The Lebesgue measure on 𝑅2 coincides with 

the area, so the Lebesgue integral of 𝜇𝑣(𝐴) is ∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1.  

 Now, we can generalize the above examples by defining the scale as the Lebesgue measure with respect to the observation 

footprint. This definition can also be extended to a certain model unit, which could be a point, a rectangular grid, or an irregular 10 

unit such as a response unit (watershed, land cover patch and so on). Thus, for any subset 𝐴 ∈ ℒ2, the scale is 𝑠 = 𝑚2(𝐴) =

∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1. From a geometric perspective, the measure function 𝑚2(∙) refers to the shape of 

the subset, and the scale further indicates its size.  

 We represent the scale as 𝑠, and let 𝑠0 = 𝑚0
2(𝐴0) = ∬ 𝑑𝑥1𝑑𝑥2𝐴0

= 1 be the standard scale, where 𝐴0 = [𝑥: 0 ≤ 𝑥𝑘 ≤

1, 𝑘 = 1,2] is a unit interval in 𝑅2. 15 

 We can further define scale transformation. For  ∀𝐴1, 𝐴2 ∈ ℒ2 , if there are two different scales, 𝑠1 = 𝑚2(𝐴1) =

∬ 𝑑𝑥1𝑑𝑥2𝐴1
 and  𝑠2 = 𝑚2(𝐴2) = ∬ 𝑑𝑦1𝑑𝑦2𝐴2

, then we can obtain  𝑠2 = ∬ 𝑑𝑦1𝑑𝑦2𝐴2
= ∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴1

 based on 

Lebesgue integration by substitution, where the Jacobian matrix 𝐽(𝑥1, 𝑥2) represents the geometric transformation from 𝐴1 

to 𝐴2. In particular, if 𝐽(𝑥1, 𝑥2) = 𝑑𝑖𝑎𝑔(𝜉, 𝜉), 𝜉 ∈ 𝑅, which also indicates that the geometric transformation is linear, then the 

following expression is valid based on Lebesgue integration by substitution: 20 

𝑠2 = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2
𝐴1

= 𝜉2𝑠1, (5)
 

where 𝑠1 and 𝑠2 represent a one-dimensional rule change. 

 If two scales follow the one-dimensional rule, they are geometrically similar. This rule simplifies scale as a one-dimensional 

variable that corresponds to the scale differences between most remote sensing images with various spatial resolutions. For 
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example, ∀𝐴 = [𝑥: 𝑎 ≤ 𝑥𝑘 ≤ 𝑏, 𝑘 = 1,2], where 𝐴 and the unit interval 𝐴0 are geometrically similar, and the scale 𝑠 = 𝜇𝑖𝑖𝑖(𝐴) 

can be expressed by the one-dimensional rule of scale transformation:𝑠 =  𝜇𝑖𝑖𝑖(𝐴) = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2𝐴0
= (𝑏 − 𝑎)2𝑠0. 

For another example, let 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴  be a disc measure, where  𝐴 is a disc observation footprint with radius 𝑟. The mapping 

function between 𝐴  and 𝐴0 is 𝑇(𝑥1, 𝑥2) = [𝑥1 cos 𝑥2 , 𝑥1 sin 𝑥2 ; 0 ≤ 𝑥1 ≤ 𝑟, 0 ≤ 𝑥2 ≤ 2𝜋] = [𝑦1, 𝑦2] , and the Jacobian 

determinant  |𝐽(𝑥1, 𝑥2)| = |
cos 𝑥2 −𝑥1 sin 𝑥2

sin 𝑥2 𝑥1 cos 𝑥2
| = 𝑥1 . Therefore, 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴

= ∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴0
= 𝜋𝑟2

, which is 5 

equal to its area. However, 𝑠0 and 𝑠 do not obey one-dimensional rule because the Jacobian matrix is not diagonal. 

 Figure 1 shows the relationship between the Lebesgue measure and scale. The measure space 𝛺 = [𝑥: 0 ≤ 𝑥𝑘 ≤ 4, 𝑘 = 1,2] 

is regularly divided by the unit interval  𝐴0 . Let 𝑚𝐶1
2 , 𝑚𝐶2

2  and 𝑚𝐶3
2  be the Lebesgue measures of disc 

measurements  𝐶1,  𝐶2 and 𝐶3 , respectively, and let  𝑚𝐷1
2  and 𝑚𝐷2

2 be the Lebesgue measures of diamond 

measurements 𝐷1 and 𝐷2. Then, 𝑚𝐶1
2 = 𝑚𝐶2

2 = 𝑚𝐶3
2  because they are the same function. That is, if {𝐴𝑖} is the set with the 10 

smallest volume that covers 𝐶1, then similar sets {𝐴𝑖 + 2} and {𝐴𝑖 × 3 + 2} can be used (with the origin located in the upper-

left corner) to cover 𝐶3 and 𝐶2 with the smallest volumes, respectively. Here, 𝐴𝑖 + 2 = [𝑥: 𝑥𝑘 + 2, 𝑥𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2] and 𝐴𝑖 ×

3 + 2 = [𝑥: 𝑥𝑘 × 3 + 2, 𝑥𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2]., which proves that 𝑚𝐶1
2 , 𝑚𝐶2

2  and 𝑚𝐶3
2  collect the desirable set based on the same 

scheme, so they are identical. Additionally, ∑ 𝐼2(𝐴𝑖 × 3 + 2) is much larger than ∑ 𝐼2(𝐴𝑖). Therefore, the scale of 𝐶2 is not 

equal to the two other scales because the volumes of their subsets are different. However, their scales are governed by one-15 

dimensional rules because their measures are identical and the Jacobian matrices between them are diagonal. Similarly, 𝑚𝐷1
2 =

𝑚𝐷2
2 ; although their scales are different, they obey a one-dimensional rule. 
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Figure 1. Diagram of the Relationships among a Lebesgue Measure, Scale and Variable 

3.2 Stochastic variables in data assimilation  

We introduce the widely accepted Bayesian theorem of data assimilation (Lorenc, 1995; van Leeuwen, 2015) to investigate its 

time- and scale-dependent errors. We assume that both the state vector and observation vector are one-dimensional (in the 5 

following text, we use “state” and “observation” for brevity). In Sect. 3.4, the results are extended to n-dimensional state 

vectors and observation vectors. 

 Consider a nonlinear forecasting system that is described by 

𝑋(𝑡𝑘) = 𝑀𝑘−1:𝑘(𝑋(𝑡𝑘−1)) + 𝜂(𝑡𝑘),  (6) 

where  𝑀𝑘−1:𝑘(⋅), 𝑋(𝑡𝑘) and 𝜂(𝑡𝑘) represent a nonlinear forecasting operator that transits the state from the discrete time 𝑘 −10 

1to 𝑘, the state with prior PDF  𝑝(𝑋), and the model error at time 𝑘, respectively. In addition, if a new observation is available 

at time 𝑘, the observation system is given by 

𝑌𝑜(𝑡𝑘) = 𝐻𝑘(𝑋(𝑡𝑘)) + 𝜀(𝑡𝑘),  (7) 

where 𝐻𝑘(⋅), 𝑌𝑜(𝑡𝑘) and 𝜀(𝑡𝑘) represent the nonlinear observation operator, true observation with prior PDF 𝑝(𝑌), and 

observation error at time 𝑘, respectively. 15 

 Previous studies (e.g., Janjić and Cohn, 2006; Bocquet et al. 2011) discovered the components of 𝜀(𝑡𝑘) and 𝜂(𝑡𝑘), such as 

white noise, the discretization error of a continuum model, the errors that are caused by missing physical processes, and scale-

dependent bias. In this study, we assume that both forecasting and observation operators are derived from a perfect model, so 

the discretization errors and errors that are caused by missing physical processes are discarded.  

 According to Bayesian theory, the posterior PDF of the state based on the addition of a new observation into the system is 20 

𝑝(𝑋|𝑌) = 𝑝(𝑌|𝑋)𝑝(𝑋) 𝑝(𝑌)⁄ ,  (8) 
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where 𝑝(𝑋|𝑌) is the posterior PDF that presents the PDF value of state 𝑋 given an available observation 𝑌. 𝑝(𝑌|𝑋) is a 

likelihood function, which is the probability that an observation is 𝑌 given a state 𝑋. 𝑃(𝑋) and 𝑃(𝑌) are the prior PDF values 

of the state and observation, respectively. Here, 𝑃(𝑋) is supposed to be known and 𝑃(𝑌) is a normalisation constant (van 

Leeuwen, 2014). The aim of data assimilation is equivalent to finding the posterior PDF 𝑝(𝑋|𝑌). 

 Instead of using Eq. (6) and (7), which are discrete in time, we use Ito process-formed expressions with the one-dimensional 5 

infinitesimals 𝑑𝑠 and 𝑑𝑡 to formulate a continuous-time (or scale) state and observation. 

 Let a real function 𝑉(𝑠, 𝑡) be the variable if it maps the space (𝑅2, ℒ2, 𝑚2) onto 𝑅, where 𝑠 is the scale, 𝑠 = 𝑚2(𝐴), 𝐴 ⊂

𝑅2, and 𝑡 is the time. A variable is an estimation of a geophysical parameter at a specific scale 𝑠 and time 𝑡. 

 In Figure 1, let the each pixel intensity is the estimator of a geophysical parameter in each pixel, then this parameter is 

heterogeneous in the entire region. A variable represents an ensemble average in a specific observation footprint with a specific 10 

scale. Therefore, the variables 𝐶1 and 𝐶3 are not equal because their observation footprints are different, and the variables 

𝐶2 and 𝐶3 are also different because the scale changes. The former introduces the variables that vary with location, and the 

latter states that the variables are scale-dependent. Therefore, from an Earth observation perspective, a variable is a nonlinear 

and heterogeneous mapping function of observation footprints onto 𝑅 at a given scale. 

 The dynamic process of the variable clearly depends on time, and we further assume that the variable varies with scale in 15 

view of the scale issue. Furthermore, assuming that the variable is random both in time and scale is reasonable because of the 

uncertainties in Earth observations and simulations. Therefore, if the statistical properties of the variable are available, we can 

construct an explicit stochastic equation for the variable. 

 We introduce the time-dependent Ito process Eq. (1) to define the variable process: 

𝑑𝑉 = 𝑝(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡).   (9) 20 

Similarly, the variable is supposed to evolve via a stochastic process, for which the dynamic process and uncertainty are 

allowed to vary with scale:  

𝑑𝑉 = 𝜑(𝑠)𝑑𝑠 + 𝜎(𝑠)𝑑𝑊(𝑠),   (10) 

where 𝜑(𝑠) and 𝜎(𝑠) are the scale-based transition probability and volatility, respectively. The variable is a probabilistic 

process with respect to scale and thus has scale-dependent errors. 25 

 First, time is one dimensional and unidirectional, but the scale can shift forward or backward based on the condition that the 

scale follows the one-dimensional rule. Second, Eq. (10) implies that the value and variance of a variable may change if the 

scale changes. As discussed in Sect. 1, evaluating the heterogeneity in an integrated study is more difficult than in a special 

case study. However, in Eq. (10), one can track a special scale path to obtain the quadratic variation and drift, which indicate 

the heterogeneity of the variable.  30 

 Comparing Eq. (6) and Eq. (9) shows that 𝑀𝑘−1:𝑘(⋅) and 𝜂(𝑡𝑘) are associated with 𝑝(𝑡) and 𝑞(𝑡). The variables in a data 

assimilation forecasting model can be expressed by Eq. (9). In the analysis step of data assimilation, the state does not pertain 
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to time, and we assume that the scale has a quantifiable effect on the uncertainties in this step; thus, both the states and 

observations can be defined by Eq. (10). We will try to use this assumption in the following sections. 

3.3 Expression of scale transformation in a data assimilation framework 

First, we provide the following lemma. 

 Lemma 1: For ∀𝑠0 > 0 , let 𝑊∗(0) = 𝑊(𝑠0) − 𝑊(𝑠0), … , 𝑊∗(𝑠) = 𝑊(𝑠0 + 𝑠) − 𝑊(𝑠0) ; then, 𝑊∗(𝑠), 𝑠 ≥ 0  is a 5 

Brownian motion.  

 Proof. First,  𝑊∗(0) = 𝑊∗(𝑠0) − 𝑊∗(𝑠0) = 0.  ∀𝑠𝑖+1 > 𝑠𝑖 ≥ 0, 𝑖 = 1,2,3, … , 𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖) = [𝑊(𝑠0 + 𝑠𝑖+1) −

𝑊(𝑠0)] − [𝑊(𝑠0 + 𝑠𝑖) − 𝑊(𝑠0)] = 𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖), which suggests that the increments [𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] 

are equal to [𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖)] and are independent Gaussian distributed. Therefore, 𝑊∗(𝑠), 𝑠 ≥ 0 is a Brownian 

motion, with 𝐸[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 0 and 𝑉𝑎𝑟[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 𝑠𝑖+1 − 𝑠𝑖 .  10 

 Remark on Lemma 1: This Lemma is practical because the scale is greater than zero, which does not fit the definition of 

Brownian motion, whereby the parameter should start at zero. The standard scale 𝑠0 is associated with zero in Lemma 1; thus, 

it is logical to let 𝑠 = 0 in 𝑊∗(𝑠). Lemma 1 further implies that 𝑊(𝑠), 𝑠 ≥ 𝑠0 is an equivalent expression of 𝑊∗(𝑠), 𝑠 ≥ 0.  

 In the following content, we use Brownian motion with a parameter that starts at 𝑠0 to define the scale-dependent variables; 

therefore some classic expressions above should be changed. According to Lemma 1, Eq. (3) is given by 15 

 [𝐼, 𝐼](𝑠) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑠

𝑠0
.  (11) 

Additionally, the integral form of the Eq. (10) is as follows: 

 𝑉(𝑠) = 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠

𝑠0

𝑠

𝑠0
 ,  (12) 

where 𝑉0 = 𝑉(𝑠0) and the drift of Eq. (12) is  

 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢
𝑠

𝑠0
 . 20 

Similarly, Eq. (4) becomes 

𝑓(𝑠, 𝑉(𝑠)) = 𝑓(𝑠0, 𝑉(𝑠0)) + ∫ 𝑓𝑢(𝑢, 𝑉(𝑢))𝑑𝑢
𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜑(𝑢)𝑑𝑢

𝑠

𝑠0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑉(𝑢))𝜎2(𝑢)𝑑𝑢

𝑠

𝑠0
. 

Now, we make the following assumptions. 

 Assumption 1: The measures of the state and observation in data assimilation obey the one-dimensional rule as defined in 25 

Sect. 3.1. 

 Assumption 2: In the forecasting step, the model unit equals the scale of the state, and both are constant.  

 Assumption 3: In the analysis step, the state, observation and observation operator are scale dependent. Only one 

observation is added into the data assimilation system at a time, and the states and observations at different times are scale 

independent. 30 
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 Considering assumption 2, the forecasting step is explicitly free of scale; thus, Eq. (9) can adequately describe this step.

 Based on assumption 3, the analysis step is related to the scale; thus, some basic definitions should be presented in advance. 

According to Eq. (10), the state and observation in the analysis step are as follows: 

 𝑑𝑋 = 𝜑𝑋(𝑠)𝑑𝑠 + 𝜎𝑋(𝑠)𝑑𝑊(𝑠) (13) 

and  5 

 𝑑𝑌 = 𝜑𝑌(𝑠)𝑑𝑠 + 𝜎𝑌(𝑠)𝑑𝑊(𝑠), (14) 

where 𝜑𝑋 (𝑠), 𝜎𝑋(𝑠), 𝜑
𝑌
(𝑠) and 𝜎𝑌(𝑠) represent the scale-dependent transition probabilities and volatilities of state 𝑋and 

observation 𝑌, respectively.  

 Assumption 3 implies that the scales of the state and observation are invariant when observational information is added in 

the analysis step. For simplicity, assume the scale-based transition probabilities of the state and observation do not exist, which 10 

leads to 𝜑
𝑋
(𝑠) = 0 and 𝜑

𝑌
(𝑠) = 0. And assuming that the noises are Gaussian, we have 𝜎𝑋(𝑠) = 𝜎𝑌(𝑠) = 1. 

 Based on the above discussion, the differential and integral forms of the state are 

 𝑑𝑋 = 𝑑𝑊(𝑠) and (𝑠𝑋) = 𝑋0 + ∫ 𝑑𝑊(𝑠)
𝑠𝑋

𝑠0
 . (15) 

For the observation, we have 

 𝑑𝑌 = 𝑑𝑊(𝑠) and  𝑌(𝑠𝑌) = 𝑌0 + ∫ 𝑑𝑊(𝑠)
𝑠𝑌

𝑠0
  (16) 15 

In Eq. (15) and Eq. (16), the time 𝑡 is omitted, and 𝑠𝑋, 𝑠𝑌, 𝑋0 and 𝑌0 represent the scale of the state, scale of the observation, 

state in 𝑠0 and observation in  𝑠0, respectively. 

 The Bayesian equation of data assimilation (Eq. (8)) produces the posterior PDF 𝑝(𝑋|𝑌)  that is associated with the 

likelihood function 𝑝(𝑌|𝑋)  and the distributions of the state and observation. Theorem 1 and Eqs. (15)~(16) yield 

𝑋~𝑁 (𝑋0, ∫ 𝑑𝑠
𝑠𝑋

𝑠0
) and 𝑌~𝑁 (𝑌0, ∫ 𝑑𝑠

𝑠𝑌

𝑠0
) under the condition that the variances exist. In addition, assumption 1 states that the 20 

scales vary in one-dimensional space, which results in  

 𝑋~𝑁(𝑋0, 𝑠𝑋 − 𝑠0)  (17) 

  and 𝑌~𝑁(𝑌0, 𝑠𝑌 − 𝑠0).  (18) 

Thus, the last point is to calculate 𝑝(𝑋|𝑌). 

 The scale-dependent observation operator is 𝐻(𝑠, 𝑋(𝑠)), which suggests that the observation operator and its parameters 25 

are both susceptible to the scale. If 𝐻(𝑠, 𝑋(𝑠))  is defined, its continuous partial derivatives are 𝐻𝑠(𝑠, 𝑥) , 𝐻𝑥(𝑠, 𝑥)  and 

𝐻𝑥𝑥(𝑠, 𝑥). In line with Ito’s Lemma, we have 

𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) = 𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) +

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢  

 = 𝐻(𝑠0, 𝑋0) + ∫ [𝐻𝑠(𝑢, 𝑋(𝑢)) +
1

2
𝐻𝑥𝑥(𝑢, 𝑋(𝑢))]

𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢).  (19)  

 Assumption 1 suggests that the observation and model spaces have the same probability measure; thus, the Brownian 30 

motions in these two spaces are equivalent. Let Eq. (16) − Eq. (19), and we obtain 
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𝑌(𝑠𝑌) − 𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) 

= 𝑌0 + ∫ 𝑑𝑊(𝑢)
𝑠𝑌

𝑠0
− [𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) +

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] 

= 𝑌0 − 𝐻(𝑠0, 𝑋0) + ∫ 𝑑𝑊(𝑢) − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) − 𝐻(𝑠0, 𝑋(𝑠0))] −
𝑠𝑌

𝑠0

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢 − ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) 

= 𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] + {∫ 𝑑𝑊(𝑢)

𝑠𝑌

𝑠0
− ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢)}.  (20) 

 Equation (20) can be regarded as an Ito process, and its drift is 5 

 𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢].   (21) 

 The integral term in Eq. (21) is the difference in the first-order differential observation operator between the state scale 

𝑠𝑋  and the standard scale 𝑠0. This term illustrates that the mapping process should consider not only the observation operator 

but also the first-order differential term when state is mapped to the observational space. The former is typically determined 

from the literature, whereas the latter was derived in this study for the first time. This result prompted us to further consider 10 

the first-order differential of the observation operator when calculating the observation error. 

 The quadratic variation of Eq. (20) is 

 (𝑠𝑌 − 𝑠0) + ∫ 𝐻𝑥
2(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢.  (22) 

 This equation suggests that the uncertainty in the observation error includes both the difference between scales 𝑠𝑌 and 𝑠0 

and the change in the observation operator from scale 𝑠𝑋 to 𝑠0. Therefore, Eq. (21) and Eq. (22) can be combined to produce 15 

 𝑝(𝑌|𝑋) = 𝑁 (𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] , (𝑠𝑌 − 𝑠0) + ∫ 𝐻𝑥

2(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠0
𝑑𝑢) . (23) 

 Based on Eqs. (17), (18) and (23), 𝑝(𝑌|𝑋), 𝑝(𝑋) and 𝑝(𝑌) are stochastic functions that depend on the scale; thus, the 

posterior PDF of the state is scale dependent as well.  

 In particular, if 𝑌 is a direct measurement, which means the observation is of the same physical quantity and scale as the 

state, viz. 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠). The result becomes  20 

 𝑌(𝑠𝑌) − 𝑋(𝑠𝑋) = {
𝑌0 − 𝑋(𝑠𝑋) + 𝑊(𝑠𝑌) − 𝑊(𝑠𝑋), 𝑠𝑌 > 𝑠𝑋

𝑌0 − 𝑋(𝑠𝑋) + 𝑊(𝑠𝑋) − 𝑊(𝑠𝑌), 𝑠𝑋 > 𝑠𝑌
  (24) 

 and 𝑃(𝑌|𝑋) = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} . (25) 

 The quadratic variation in Eq. (22) can be further described by the scale from 𝑠𝑋 to 𝑠𝑌. Under the condition that 𝑠𝑌 > 𝑠𝑋  

and because 𝑊(𝑠𝑌) − 𝑊(𝑠𝑋) and 𝑊(𝑠𝑋) − 𝑊(𝑠0) are independent, the quadratic variation of Eq. (20) is 

 𝑠𝑌 − 𝑠𝑋 + ∫ [1 − 𝐻𝑥(𝑢, 𝑋(𝑢))]
2

𝑑𝑢
𝑠𝑋

𝑠0
. (26) 25 

 Similarly, if 𝑠𝑋 > 𝑠𝑌, the quadratic variation of Eq. (20) is 

 ∫ (1 − 𝐻𝑥(𝑢, 𝑋(𝑢)))
2

𝑑𝑢
𝑠𝑌

𝑠0
+ ∫ 𝐻𝑥

2(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠𝑌
𝑑𝑢.  (27) 

 The significance of Eqs. (20)~(27) is that the effect of scale on the posterior PDF can be determined quantitatively. In 

addition to the model error and measurement error, a new type of error in data assimilation was discovered in the analysis step. 
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The expectation of the posterior PDF may vary with the scale of the state if 𝑌 is an indirect measurement of 𝑋, and the variance 

of the drift depends on the difference between 𝑠𝑌 and 𝑠𝑋 (based on Eq. (26) and Eq. (27)) or among 𝑠0, 𝑠𝑌 and 𝑠𝑋 (based on 

Eq. (22)). In addition, if 𝑌 is a direct measurement of 𝑋 (Eq. (24) and Eq. (25)), the expectation of the posterior PDF is the 

difference between 𝑌  and 𝑋 , and the variance is equal to the increment of Brownian motion with respect to the scale. 

Additionally, if the results are not derived from assumption 1, i.e., the measure varies randomly, the posterior PDF is more 5 

complex because its integral path is an arbitrary curve. 

 However, a problem still exists. If the initial state is not at the scale of the forecasting operator, the corresponding error 

should also be considered. Similarly, if the forecasting operator 𝑀(𝑠, 𝑋(𝑡, 𝑠))  has continuous partial 

derivatives 𝑀𝑠(𝑠, 𝑥), 𝑀𝑥(𝑠, 𝑥) and 𝑀𝑥𝑥(𝑠, 𝑥), then according to Ito’s Lemma, we have 

 
𝑀(𝑠, 𝑋(𝑠)) = 𝑀(𝑠𝑜 , 𝑋0) + ∫ 𝑀𝑠(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠

𝑠0
+

1

2
∫ 𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠

𝑠0

   = 𝑀0 + ∫ [𝑀𝑠(𝑢, 𝑋(𝑢)) +
1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))] 𝑑𝑢

𝑠

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠

𝑠0

.(28) 10 

 Assume that the initial state is 𝑋(𝑠𝑖), where 𝑠𝑖 is its scale, and 𝑋(𝑠𝑋) is the ideal initial state in the model space that is related 

to 𝑋( 𝑠𝑖). Then, 𝑋(𝑠𝑋) has the same scale  𝑠𝑋 as the forecasting operator. From Eq. (28) we obtain the error: 

 

𝑀(𝑠𝑋 , 𝑋(𝑠𝑖)) − 𝑀(𝑠𝑋 , 𝑋(𝑠𝑋))

    = 𝑀0 + ∫ 𝑀𝑠(𝑢, 𝑋(𝑢))𝑑𝑢
𝑠𝑋

𝑠0
+ ∫

1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠𝑖

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠𝑖

𝑠0

    − [𝑀0 + ∫ 𝑀𝑠(𝑢, 𝑋(𝑢))𝑑𝑢
𝑠𝑋

𝑠0
+ ∫

1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠𝑋

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠𝑋

𝑠0
]

    = ∫
1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠𝑖

𝑠𝑋
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠𝑖

𝑠𝑋

, (29) 

where 𝑀(𝑠𝑋 , 𝑋(𝑠𝑖)) and 𝑀(𝑠𝑋 , 𝑋(𝑠𝑋)) denote the next states that are associated with the true initial state and the ideal initial 

state, respectively. Based on Eq. (29), the error is an Ito process with a transition probability as the second-order differential 15 

forecasting operator, and a volatility as the first-order differential forecasting operator. Both of these operators are integrated 

from 𝑠𝑋 to 𝑠𝑖.  

3.4 Extension to n-dimensional data assimilation  

In the above discussion, we assumed that only one variable existed in data assimilation. However, numerous states typically 

exist. This section further introduces the product spaces to extend the one-dimensional data assimilation to n dimensions. 20 

 Assume that the independent states 𝑋𝑘 are the variables of the measure spaces (𝛺𝑘, ℱ𝑘, 𝜇
𝑘
), 𝑘 = 1,2, … , 𝑛, and (𝛺𝑛, ℱ𝑛) is 

the product space, where 𝛺𝑛 = ∏ 𝛺𝑘
𝑛
𝑘=1   and ℱ𝑛 = ∏ ℱ𝑘

𝑛
𝑘=1  . According to Fubini’s theorem (Billingsley, 1986), only one 

product measure 𝜇𝑛  in (𝛺𝑛, ℱ𝑛) exists, such that 𝜇𝑛(∏ 𝐴𝑘
𝑛
𝑘=1 ) = ∏ 𝜇

𝑘
(𝐴𝑘)𝑛

𝑘=1 , where 𝐴𝑘 ∈ ℱ𝑘.  



16 

 

 We define the state vector 𝑋𝑛 = (𝑋1, 𝑋2, … , 𝑋𝑛)𝑇  as a variable vector of the product measure space (𝛺𝑛, ℱ𝑛, 𝜇𝑛). In 

particular, if all the scales obey the one-dimensional rule, we have 

𝜇𝑛 (∏ 𝐴𝑘

𝑛

𝑘=1

) = ∏ 𝜉𝑘
2𝜇0(𝐴𝑘)

𝑛

𝑘=1

= (∏ 𝜉𝑘

𝑛

𝑘=1

)

2

𝜇0
𝑛 (∏ 𝐴𝑘

𝑛

𝑘=1

). 

This expression proves that the product measure also obeys a one-dimensional rule. However, the above results may not hold 

without the assumption that the states 𝑋𝑘are independent. 5 

 As discussed in Sect. 2.1, the Lebesgue measure 𝑚2 is a measure and the triple (𝑅2, ℒ2, 𝑚2) is a measure space. Therefore 

the above extension is reasonable in our study. 

 This analysis of a single state can also be applied to finite multiple states in the product measure space.  

 4 Summary & Discussion 

4.1 Summary 10 

In this study, we mainly addressed two basic problems. First, we produced a mathematical formalism of scale. Second, we 

demonstrated how scale transformation could be evaluated in a data assimilation framework. Instead of using empirical and 

qualitative expressions, we employed measure theory and stochastic calculus to define the scale and the evolutions of errors 

with respect to scale in data assimilation. 

 The first problem began with an introduction to measure theory. We revealed that the scale is the Lebesgue measure with 15 

respect to the observation footprint or model unit. Scale is related to the shape and size of a space, and scale transformation 

depends on the spatial change between different scales. The definition of scale transformation is as important as that of scale. 

This definition was described using a Jacobian matrix and could be further simplified using the one-dimensional rule to suit 

stochastic calculus. This simplification is reasonable for a large portion of Earth observation data, including remote sensing 

data, because the scale transformations of those data are geometrically similar. However, an in-depth and comprehensive 20 

exploration should be conducted in the future to describe other situations in the real world. We then defined the variable, which 

further considers the heterogeneities of geophysical parameters. A variable consequently expresses the ensemble average of a 

geophysical parameter at a specific scale.  

 For the second problem, we reformulated the expression of scale transformation and investigated the error structure that is 

caused by scale transformation in data assimilation using basic theorems of stochastic calculus. The new error further supported 25 

previous qualitative knowledge that the observation error is highly related to changes in scale. Understanding the uncertainty 

of data assimilation based on separating the scale-dependent error from other errors is beneficial. The results can be derived 

from the one-dimensional simplification of scale transformation, and the variables in data assimilation evolve regularly based 

on assumptions 1-3. However, these situations may be more complex in the real world.  
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4.2 Discussion 

 Our approach is different from previous work in the literature that studied representativeness error (e. g. Bocquet et al., 2011; 

van Leeuwen, 2014; Hodyss and Nichols, 2015). The basic concept of these studies was to assume that a relationship exists 

between different variables or operators, and then the relationship was introduced in the Bayesian expression of data 

assimilation to find the corresponding representativeness error.  5 

 Compared to previous work, our study is significant both in employing rigorous mathematical knowledge and in a more 

general framework. We contributed the scale transformation to the relationship between model and observation spaces, so we 

developed the mathematical formalisms of scale and the scale transformation. The definition of scale is central to this 

framework. We treated scale variations similarly to time variations, and stochastic calculus-based data assimilation was 

conducted with respect to scale.  10 

 Our work presents a general framework that benefits the study of data assimilation in a nonlinear and general Gaussian 

sense. Both the forecasting and observation operators of data assimilation are strongly nonlinear, and the state and observation 

are generally associated with different geophysical parameters. Therefore, the relationship between them is not linear. We used 

the nonlinear transformation of scale and stochastic calculus to illustrate this relationship. 

 Another advantage is that we considered the heterogeneity of geophysical parameter and a general Gaussian 15 

representativeness error, which were included in the reformulation of state and observation. In Sect. 3, both the state and 

observation with respect to the scale were understood in the Ito sense. Thus, stochastic process offers an infinite probability 

space of continuous scale paths, and indicates a promising approach to track a specific path to investigate how heterogeneous 

observations vary with scale. Our study also permits the representativeness error to be general Gaussian. In Eq. (13) and Eq. 

(14), we let  𝜑𝑋(𝑠) = 0 , 𝜑𝑌(𝑠) = 0  and 𝜎𝑋(𝑠) = 𝜎𝑌(𝑠) = 1for simplicity, which caused the state and observation to be 20 

Gaussian. However, if all the integrands in Eq. (13) and Eq. (14) are nonlinear functions instead of constants, which makes 

these two equations integral over the field of Brownian motion, then the state and observation are the general Gaussian 

processes with respect to scale. These terms finally results in a general Gaussian representativeness error. Note that all the 

results in our framework were given in terms of probability, not specific values. 

 We further continued and improved the representativeness error expression in data assimilation. The nonlinear error that 25 

was caused by scale transformation was given in Eq. (23). If we assume that the observation operator and the relationship 

between the state and observation are linear and expand 𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) in Eq. (20) in observation space, i.e., let 𝑠0 = 𝑠𝑌, then 

Eq. (23) becomes  𝑃(𝑌|𝑋) = 𝑁{𝑌(𝑠𝑌) − 𝐻(𝑠𝑌 , 𝑋(𝑠𝑌)), |𝑠𝑌 − 𝑠𝑋|} . Here, we further denote the covariance of 

representativeness error as the scale difference between the observation and model space |𝑠𝑌 − 𝑠𝑋|. Similarly, Eq. (29) can 

also be reduced to 𝑀(𝑠𝑋 , 𝑋(0, 𝑠𝑖)) − 𝑀(𝑠𝑋 , 𝑋(0, 𝑠𝑋)) = |𝑊(𝑠𝑖) − 𝑊(𝑠𝑋)| under the linearity assumption, which proves that 30 

the error that is associated with the initial state greatly depends on the Brownian motion increment from scale mismatching. 
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4.3 Next step 

 We conducted an integrated study that considered both the geometric transformation of an observation footprint and the 

variation in geophysical parameters. This integrated study included all possible situations and predictably conformed to each 

scale-related case study. That is, a case study could be considered a particular solution to a stochastic calculus equation, for 

which the scales and scale-dependent Brownian motions evolved in distinct integral paths. Therefore, the stochastic calculus 5 

equation provided an infinite space with respect to the variable process 𝑉(𝑡), and a case study represented a sampling in this 

space, whose performance depended on its integral path. 

 This study conducted a theoretical exploration. However, applying the above theoretic work to real-world data assimilation 

is challenging. Studies on scale-related errors still require further improvements. 

5 Notation 10 

5.1 Basic notations 

𝛺  Observational region 

ℱ  σ-algebra 

𝜇  Measure 

𝑑𝑉  Variable process 15 

𝑊(𝑠)  Brownian motion 

(𝛺, ℱ, 𝜇)  Measure space 

𝐼𝑛  N-dimensional Lebesgue volume 

𝑚𝑛  Lebesgue measure or an outer measure on 𝑅𝑛  

ℒ𝑛   Lebesgue σ-algebra of 𝑅𝑛 20 

∫ 𝑓𝑑𝑚𝑛  Lebesgue integral 

|𝐽(∙)|  Jacobian determinant   

(𝛺𝑛, ℱ𝑛)  Product space 

5.2 New notations 

Notation Name Explanation Index 

𝒔 Scale 
The observation footprint or model unit to measure or evaluate 

a geophysical parameter 

Sect. 1 & 

Sect. 3.1 

𝑨𝟎 Unit interval in 𝑅2  Sect. 3.1 

𝒔𝟎 Standard scale A Lebesgue integral of 𝐴0 is the unit area Sect. 3.1 
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 One-dimensional rule Two scales are geometrically similar Eq. (5) 

𝑽 Variable Estimation of a geophysical parameter at a specific scale Sect. 3.2 

𝒅𝑿 State process State in the sense of the Ito process Eq. (13) 

𝒅𝒀 Observation process Observation in the sense of Ito process Eq. (14) 

𝑿𝟎 State in 𝑠0  Eq. (15) 

𝒀𝟎 Observation in 𝑠0  Eq. (16) 

𝒔𝑿 Scale of state  Eq. (15) 

𝒔𝒀 Scale of observation  Eq. (16) 
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