
Authors’ Responses to the Comments from Editor and Referees 

General reply 

  Based on the comments from editor and referees, we carefully reconsidered our manuscript. There 

are too many revisions such that the structure of the new manuscript is mess. Therefore both the tracked 

and the clean versions were provided to make reading as easy as possible. All the positions we mention 

in this response letter are according to the pages and lines of the clean version. 

 The revisions mainly consist of six parts: 

1. Structure changes. First, we added a new Sect. 2.3 titled “Traditional formulation of data 

assimilation in the Bayesian theorem framework” in the revised manuscript and the corresponding 

text in Sect. 3.2 was removed, because this material is also a basic knowledge of our study. Second, 

according to editor’s suggestion, we added examples to further explain the theoretical results. All 

the examples were organized in the new Sect. 3.4 titled “Examples: the stochastic radiative 

transfer equation (SRTE)”.  

2. Rewriting Sect.1 and Sect. 4. We rewritten the introduction to make the text more concise and 

comprehensible. The advances and scientific problem in our study were clearly presented. The 

title of Sect.4 was change to “Discussion & Conclusions”, and accordingly there are only two 

subsections left. In the revised manuscript, Sect.4.1 titled “Discussion” mainly focused on the 

necessity of methodology, the advantages and limitations of our study, and Sect.4.2 titled 

“Conclusions” restated the major results. 

3. Revisions according to the comments from editor and referees. Detail information can be found 

in the point-by-point responses to editor and referees. 

4. The formulation of scale transformation between the scales of initial state and forecasting operator 

was removed (In the end of Sect. 3.3). This formulation was presented in the previous manuscript. 

After lots of reconsiderations and discussion, we believed that this formulation is not necessary 

to be introduce in this paper because the main scientific problem is to formulate the error in the 



update step, and the error caused by the scale difference between initial state and forecasting 

operator will not have a significant impact on the formulation of the update step. 

5. To make one term in this paper only presents a single object, some similar terms in different fields 

were again clarified. Please check them according to the following form. 

 Terms in this paper Explanation 

1 

Measure 

Measure is a term for measure theory, and Observation is an estimation 

of the value for a geophysical variable.  

“Measurement” have the similar meaning with “Observation’ but may 

be confused with “Measure”, so “Measurement” will not be introduced. 

Also, “measurement error” will be replaced by “instrument error”. 

Observation/Observe 

2 

Footprint 
A footprint is the observation footprint, and space is the measure space 

or state/observation space that a geophysical variable can evolve. We try 

to avoid the use of “field” or “region” to indicate the similar meaning. 
Space 

3 

Variable Variable is the geophysical variable or variable in state vector that can 

be observed by Earth observations. Parameter cannot be observed. In the 

mathematical formula, parameter also refer to the argument of a 

function. Random process indicates the stochastic process or Ito process 

only on the condition that a rigorous mathematical expression is 

involved. 

Parameter 

Random process 

6. Other modifications that are based on the updated cognition on our study can also be found in the 

revised manuscript. 

  



Responses to the Editor’s Comments 

 We thank Dr. Olivier Talagrand once again for taking his valuable time to review our revised 

manuscript and given recognition of the improvement in our study. Based on all the comments from 

editor and referees, we have made major revisions of our manuscript. Here are the point-by-point 

responses to the new comments from editor.  

 

1. “Thinking of the general significance of your paper, I actually think as Editor that it would be useful 

to add a simple illustrative example, which would show explicitly how considering a stochastic 

scale transformation can impact the assimilation and the probability distribution that it produces. 

You have removed the section dealing with the Radiative Transfer Equation (RTE) which was 

included in the previous version of your paper, considering it was not closely tied to the other 

sections of the paper. I do not think it was explicit enough to show the impact on assimilation of a 

stochastic scale transformation, but it could possibly be used, with appropriate modifications, for 

that purpose. Without making it a condition for acceptance of the paper, I think an appropriate 

illustrative example, whether based on the RTE or not, would make the paper more understandable.” 

Response:  

 We agree with you. An example can make our study more understandable. With some modification, 

we first added an example to explain how the scales of system state and observation can obey the one-

dimensional rule based on the scales presented in Figure 1. Then the formula of likelihood function was 

deduced to two different cases. The first one is that the observation is the same physical quantity as the 

state. In the second case, a nonlinear observation operator, i.e., a stochastic radiative transfer equation 

(SRTE) is used as another example. One thing should be noticed in the second case is that we only offered 

the Ito process-formed state, observation and observation operator. These functions can be used to further 

deduce the likelihood function according to Eq. (22). 

Changes in the manuscript: 

 The example with Stochastic Radiative Transfer Equation in the previous manuscript is a little 

complicated. So we reduced its expression. Besides, using the scales presented in Figure 1, we also added 

some more simple examples. Both the simple examples and the example based on SRTE are introduced 

in Sect. 3.4 titled “Examples: the stochastic radiative transfer equation (SRTE)”. 



 

2. P. 5, l. 14, and p. 8, l.5. I suggest to add indices i as follows 

Response:  

 Yes, this makes the formula more clearly. We also add the indices i in the last paragraph of Sect. 3.1. 

 

3. P. 6, l. 17. I presume you mean ∀ t1 > s1 ≥ t2 > s2, the increments W(t1) - W(s1) and W(t2) - W(s2) 

are independent.   

Response: 

 Your suggestion makes the definition easy to understand, so we accept it and revised it in the new 

version. 

 

4. P. 8, l. 15, … a unit interval …  →  … the unit square … 

Response: 

 Thanks for your suggestion. We also revised the other 3 words with the similar problem. 

 

5. Probabilities are denoted p()  in some places  (eq. 8, p. 10 for instance), and P()in other places (p. 

11, ll. 2-4). Please use consistent notations. 

Response: 

 Thanks for your comment. We have made the revision accordingly. 

  



Responses to Referee 1’s Comments 

We thank the anonymous Referee once again for taking his/her valuable time to review our revised 

manuscript and given recognition of the improvement in our study. Here are the point-by-point responses 

to the new suggestions. 

1. Lebesgue measurable subset  

1. On page 5: “Generally a Lebesgue measure on 𝑅𝑛 assumes that A is any subset of 𝑅𝑛." This is not 

true. The σ-algebra ℱ  in the definition of the triplet (𝛺, ℱ, 𝜇)  (line 6 on p5) that defines the 

measure does not include all subsets of 𝑅𝑛. There are subsets of 𝑅𝑛 to which a Lebesgue measure 

cannot be consistently assigned. Construction of these so-called “unmeasurable sets" is described 

in the standard texts, as the authors know. 

2.  Same paragraph: instead of “Thus if A is any subset of 𝑅𝑛, one can collect..." I suggest “for any 

𝐴 ∈ ℱ, one can collect ..." 

3. p5, toward the bottom: “The Lebesgue measure of any subset in 𝑅𝑛 also coincides with its volume." 

Again, there are subsets of 𝑅𝑛 to which a Lebesgue measure cannot be consistently assigned. 

4. p8: “...any bounded closed domain A" As before, A must be Lebesgue measurable. 

5. p11 lines 7-8 instead of “𝐴 ∈ 𝑅𝑛", you want “𝐴 ∈ ℒ2” 

 

Response:  

 Comment 1: Yes, you are right. The expression in here is not rigorous. Here A should be a Lebesgue 

measurable subset of 𝑅𝑛. 

 Comment 2, 3 and 5: Yes, these sentences will be more rigorous based on your suggestions. We have 

made revisions accordingly. 

 Comment 4: Based on my knowledge, a bounded closed domain is Lebesgue measurable. So, I think 

this sentence might be right. Besides, in this sentence, A indicates the observed space of a footprint-scale 

observation, which are Lebesgue measurable. 

Changes in the manuscript:  

 Comment 1. This sentence was removed. To make this statement more clear, in the next paragraph, 

we added some sentences behind the Lebesgue σ-algebra: “The construction of the Lebesgue σ-algebra 



is based on the Caratheodory condition (Bartle, 1995, definition 13.3). Fortunately, almost all of the 

observation footprints and model units are finite and closed, leading them to be Lebesgue measurable. 

This consequently ensures the Lebesgue measure 𝑚𝑛  is a measure and the triple (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is a 

measure spaces.” 

 Comment 2. In this paragraph, if the first sentence was removed, then we only talk about the outer 

measure. I think the definition is valid for the outer measure of an arbitrary subset of 𝑅𝑛, so maybe no 

change is needed in here. 

 Comment 3. This sentence was changed to “The Lebesgue measure of a Lebesgue measurable subset 

in 𝑅𝑛 also coincides with its volume”. 

 Comment 5: “𝐴 ∈ 𝑅2" was changed to “𝐴 ∈ ℒ2” 

 

2. The definition of scale 

 p8, lines 4-5: “We use Lebesgue measure on 𝑅2, i. e., 𝜇𝑖𝑣(𝐴) = 𝑚2(𝐴) = 𝑖𝑛𝑓 {∑ 𝐼2(𝐴𝑖)
+∞

𝑖=1
} where ... 

From a geometric perspective, the measure function refers to the shape of the subset, and the scale 

further indicates the size." OK, I understand that, say, in Figure 1, you mean to say that disks C1, C2 and 

C3 have the same shape, but they have different scales because they are different sizes. But the Lebesgue 

measure is the area, and you have defined it as it is defined in the books. By your definition of m2, 

referring to Figure 1, m2(C2) > m2(C1), but on line 10 you write “m2
C1 = m2

C2= m2
C3 because they are 

the same function." I don't understand this at all. You mention a function you call f but it plays no part 

in the definition of m2. The statement “m2
C1 = m2

C2= m2
C3" is inconsistent with the stated definition of 

m2. 

 I'm guessing that C1, C2 and C3 are examples of footprints. If so, would you please say this explicitly? 

 What, exactly, are the functions associated with C1, C2 and C3? 

Response:  

 I am so sorry that I had not make it much clearer. Your understanding is correct. We defined the scale 

as the Lebesgue measure with respect to the observation footprint, i. e., 𝑠 = 𝑚2(𝐴). Therefore, there are 

two elements in this definition, the Lebesgue measure function 𝑚2(∙) and the observation footprint 𝐴. 

The two scales, 𝑠1 and 𝑠2, are equal to each other happens only when they have the same Lebesgue 

measure functions and the same observation footprints, say, 𝑚𝑠1
2 (∙) = 𝑚𝑠2

2 (∙) and 𝐴𝑠1
= 𝐴𝑠2

. In Figure 



1, 𝑚𝐶1
2 , 𝑚𝐶2

2  and 𝑚𝐶3
2  have the same Lebesgue measure functions, that is, they all refer to a disc 

footprint, so 𝑚𝐶1
2 (∙) = 𝑚𝐶2

2 (∙) = 𝑚𝐶3
2 (∙). Your challenge is reasonable, here we made a mistake that we 

left out the note (∙) in this formula, which misled the readers to believe that the Lebesgue measures of 

disc measurements  𝐶1,  𝐶2 and 𝐶3  are equal in value. Here the Lebesgue measure functions 

𝑚𝐶1
2 (∙), 𝑚𝐶2

2 (∙) and 𝑚𝐶3
2 (∙) are associated with C1, C2 and C3. 

 We introduced the real function f because it is involved in the general definitions of Lebesgue integral 

and Lebesgue integration by substitution. However, f is equal to 1 in the definitions of scale and scale 

transformation because the Lebesgue measure in  𝑅2 is area. At p8, lines 9 and line 12, we have stated 

that 𝑓 ≡ 1. 

 C1, C2 and C3 are indeed the examples of footprints, we have clarified this in the revised manuscript. 

Changes in the manuscript:  

 The formula 𝑚𝐶1
2 = 𝑚𝐶2

2 = 𝑚𝐶3
2  was changed to 𝑚𝐶1

2 (∙) = 𝑚𝐶2
2 (∙) = 𝑚𝐶3

2 (∙) . In addition, we 

revised Fig.1 and removed the diamond observation footprint 𝐷1 and 𝐷2 to make Fig.1 more concise. 

We also added some necessary words in this paragraph to make the explanation of Fig. 1 clearer. Please 

find the detailed information in the new manuscript. 

 

 

  



Responses to Prof. van Leeuwen’s Comments 

We thank Prof. van Leeuwen once again for taking his valuable time to review our revised manuscript 

and provide us some very thoughtful and constructive comments. The point-by-point responses to the 

new suggestions were classified by what these comments focus on. 

 

1. Scale  

1. Abstract: Define the spatial scale issue, Do you mean that models and observations define scale 

differently? Or do you mean that scale is not well defined in general, which then hampers model-

observation comparisons and data assimilation?  

2. P8, 11: scale is defined as an area, so has physical dimension m^2. Typically scale is defined in terms 

of distance. That might be mentioned. 

3. P8, 14: The standard scale depends on the units used, it is a different thing using meters of millimetres. 

Is this a useful definition? Or do you assume that all physical scales have been normalised? Please 

clarify. 

Response:  

The understanding of scale issue and the definitions of scale and scale transformation play an 

important role in our work. If the observation footprints or model units are changed and associated 

variables present heterogeneities, the scale issue is inevitable. However, scale is not well understood 

currently. Defining scale in terms of distance is not adequate because distance is a one-dimensional 

quantity but scale generally refers to a two- or three-dimensional space. We believe the scale is related 

to the shape and size of observation footprint or model unit, so the Lebesgue measure on 𝑅2 was used 

to define it. 

Another reason for defining the scale is values for variables may change with scale in most of Earth 

observations and simulations. Scale may change much complicated (for example, form an irregular 

observation footprint to a square observation footprint), so how to quantify this change must be based on 

a rigorous definitions of scale and scale transformation.  

Therefore, for comment 1, we think that scale is not well defined in general. Meanwhile, in the 

studies of model-observation comparisons or adding a new observation into data assimilation system, the 



transformations between different scales result in remarkable error (also can be seen as a part of 

representativeness error). However, scale transformation was also not fully addressed. 

For comment 2, as we have mentioned, distance is a one-dimensional quantity and unable to meet 

the definition of scale. 

For comment 3, similarly, to use meters of millimetres is more reasonable for one-dimensional scale. 

But the scales that related to Earth observations, simulations and data assimilation should be regarded as 

two-dimensional or three-dimensional. We introduced unit area 𝐴0. The standard scale, defined as the 

area of 𝐴0, is significant because, on the one hand, it is a standard reference, by which one can make a 

quantitative comparison between different scales; on the other hand, the standard scale can be seen as a 

origin if we treat scale similarly to other physical quantities, such as time. Consequently we can develop 

the Brownian motion and stochastic calculus based on scale. Brownian motion and stochastic calculus 

both begin with the standard scale (for example, Lemma 1 and Eq. 12). 

We introduced the standard scale, but that is not necessary to require all physical scales to be 

normalized by standard scale. However, if it is in need of a rigorous formulation of scale-dependent error, 

it’s better to look to standard scale. 

Changes in the manuscript: 

 We revised the manuscript accordingly as follows, 

 For comment 2, In paragraph 1, Sect. 1, we added some text after the first sentence: “Scale is 

traditionally defined in terms of distance, which is not adequate both because distance is a one-

dimensional quantity but scale generally refers to a two- or three-dimensional space, and because scale 

may change much complicated (for example, form an irregular observation footprint to a square 

observation footprint).”. 

 For comment 3, detail explanation was appended after the definition of the standard scale: “The 

standard scale can be regarded as a basic unit of scale in two-dimensions. It presents a standard reference, 

by which one can make a quantitative comparison between different scales. The standard scale is also 

the origin of scales that let scales vary similarly to other physical quantities, such as time.” Additionally, 

after the paragraph on “Remark on Lemma 1”, we added “Therefore, beginning with the standard scale, 

the Brownian motion and stochastic calculus with respect to scale can be further developed.” 



2. Language improvements 

1. P1, 25: ‘increases with the difference’ 

2. P4, 16: ‘the definition of scale uses measure theory’ 

3. P6, 19: typo in first equation: ‘the first s1’ should be ‘s2’. 

4. P10, 16: ‘discovered’ should perhaps be ‘described the origin of’ 

5. P13, 13 Typo in equation (15): X(s_X) = X_0 + … 

Response:  

Thanks for your comments on language improvements. We have made revisions accordingly except 

comment 1, which was replaced by the new introduction. 

 

3. Variables and parameters 

1. P1, 28: parameters are chosen constants in time, variables are varying in time. So I guess the authors 

mean ‘geophysical variables’, or perhaps both. This runs through the whole manuscript.  

2. P2, 14: Parameters cannot be collected. Values for variables can be collected. And they are not 

collected by Earth Observation techniques but by Earth observations. 

3. P11, 7: the definition of ‘variable’ is unconventional and perhaps misleading. An element of state 

vector X is typically called a variable in the data-assimilation literature. Another name would be 

preferable. 

4. P11, 7: What is the exact relation between state vector X and variable V?  

 

Response:  

 Thanks for these comments. It is really helpful that variable and parameter are different and we indeed 

mixed them up. As you stated, the term “geophysical parameter” is usually regarded as a spatial and 

temporal constant, which cannot be observed. But variable changes with space and time, and its value 

can be observed. 

 For comment 3, the term “variable” is a common concept both in geophysics and mathematics. In 

measure theory, it indicates a real-value function on a probability space (𝛺, ℱ, 𝑃) , but in data 

assimilation “variable” means a little differently. Here we in fact defined a general geophysical variable, 



therefore, according to your advice, in the new manuscript, we use geophysical variable instead of 

“variable”. 

 For comment 4, in our study, the V is the stochastic version of an element of state vector X. We try to 

further introduce the mathematical definition of geophysical variable in the sense of measure theory (see 

page 10, line 6 and 7), and then study the Ito process-formed geophysical variable (see Eq. (9) and Eq. 

(10)). 

Changes in the manuscript: 

 For comment 1 and 2, the term “geophysical parameters” was revised as “geophysical variables”, 

and “parameter” in the new manuscript only refers to “argument of a function”. How to distinguish the 

other similar terms was also presented in part 5, General reply of this response letter. 

 For comment 3 and 4, V was revised as “geophysical variable”. After the definition of geophysical 

variable, we also appended “In n-dimensional data assimilation, a geophysical variable 𝑉 is related to 

an element of state vector 𝑋 at a specific scale 𝑠 and time 𝑡”. Other related text will be revised in the 

new manuscript as well.  

4. Stochastic differential equation with respect to scale 

1. P11, 23: The authors introduce a stochastic process in scale space that operates at a time instance, 

so time is a constant, and the variable changes due to a process in scale space. Is this interpretation 

correct, and if so, what is this process physically? This is a crucial point for me, and the point where 

I get lost. 

2. P12: I understand this as a formal derivation of the stochastic process in scale space up to line 23 

(but, as mentioned, I don’t understand the physical process behind this).  

3. P13, 4: What does this equation mean? That X(s) changes due to changes in scale in the analysis step? 

If so, phi should also depend on Y, or at least on the scales in Y. Or does this equation describe a 

scale relation in X? So how X depends on scale? If so, what is the stochastic forcing?  

Also, how to choose or estimate phi and sigma in an application? 

Response:  

  Yes, this is the most important problem in our study. In paragraph 2, Sect. 1, we stated that 

the scale issue is related to spatial heterogeneities and dynamic process variations among different 

scales. That’s to say, if the study region is not homogeneous, the values of a variable that observed 



at the same place may present differently between large scale and small scale (for example, between 

the larger footprint C2 and the smaller footprint C3 in Figure 1). Some physical processes also vary 

among different scales. For example, except the ones we mentioned in paragraph 2, Sect. 1, ground 

water flow process is governed by Darcy’s law at the macro-scale and by the Navier–Stokes 

equations at the pore-scale (Narsilio, et al. 2009). The validity of Planck's law also depends on the 

scale (Li, et al. 1999). 

  Therefore, to understand the physical processes behind the scale issue should both consider 

the heterogeneities and the changes of dynamic processes among different scales. However, based 

on associated literatures, most of them are not very clear, let along to model these physical processes 

in a general theory study. Therefore, a sophisticated formulations is conceptualized in our 

manuscript but we believe this problem needs further study to make it more concrete.  

  For comment 3, we think that in the analysis step, time is invariant, but the state 𝑋 in the state 

space is mapped to the observational space, i.e., the scale of 𝑋 changes from 𝑠𝑋 (scale of state 

space) to 𝑠𝑌 (scale of observation space). This process can be regarded as an Ito process of state 

with respect to scale, which can also be formulated by Eq. (15). Based on Eq. (12) (the integral form 

of Ito process), state 𝑋 in the state space is 𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑋

𝑠0

𝑠𝑋

𝑠0
 and 

state in the observational space is 𝑋(𝑠𝑌) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑌

𝑠0

𝑠𝑌

𝑠0
. Apparently, 𝑋 

depends on scale. 

  In Eq. (13), as we stated, 𝜑(𝑠) is the scale-dependent drift rate from standard scale to a 

specific scale, for example, 𝑠𝑋 or 𝑠𝑌. 𝜑(𝑠) accords to the physical processes of state with respect 

to scale, which currently may be hard to be formulated. 𝜎(𝑠) can be regarded as the stochastic 

perturbation with respect to scale, which is needed to be further investigated. However, if assuming 

the perturbation at the scales is totally random or Gaussian, then 𝜎(𝑢) = 1. In our study, only the 

simplest case, i.e., 𝜑 = 0 and 𝜎 = 1, was considered. This means only the Gaussian perturbation 

presents when the scale is changed. However, the result (Eq. (23)) is still complicated. 

Changes in the manuscript: 

  For comment 1 and comment 2, we added some necessary explanations after Eq. (10): “To 

formulate 𝜑(𝑠) should consider both the spatial heterogeneities and physical process variations 

among different scales. However, neither of them is well understood in a general theory study. 



Therefore 𝜑(𝑠) is conceptualized in Eq. (10).” And after Eq. (13) and Eq. (14), we stated “𝜑(𝑠) also 

implies the heterogeneities and physical processes from standard scale to a specific scale, which 

currently maybe hard to be formulate.” 

  For comment 3, we added text after Eq. (14): “Therefore, according to Eq. (12), a state is 

𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑋

𝑠0

𝑠𝑋

𝑠0
 in the state space and is 𝑋(𝑠𝑌) = 𝑋0 +

∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑌

𝑠0

𝑠𝑌

𝑠0
 in the observation space. These formulas prove that the value of 

state varies with the changes of scale.” 

5. Data assimilation  

1. P12: I don’t understand what assumption 1 means, ‘in data assimilation’ seems rather vague to me.  

Assumption 2 assumes that the model has a constant grid in space and time. That should perhaps 

me mentioned explicitly. So the grid is not finite element or finite volume, or adaptive in time.  

Assumption 3: What does ‘scale dependent’ mean here? That the scale changes when applying Bayes 

Theorem?  

2. P13, 9: The `authors state that ‘Assumption 3 implies that the scales of the state and observation are 

invariant when observational information is added in the analysis step’. I don’t see that, please 

clarify. 

Response:    

  For assumption 1, the scale transformation between state space and observation space of data 

assimilation obeys a one-dimensional rule. The one-dimensional rule is defined in Sect. 3.1 and can 

make scale change in a sense of geometrical similarity (for example, form a square observation 

footprint to a smaller square observation footprint). By this assumption, the formulations of scale 

transformation in data assimilation can be extremely reduced, but turn out the same conclusions with 

the one without any assumption about scale transformation.  

  For assumption 2, in the forecasting step, the model unit and state scale are both supposed to 

be same and invariant. There is no scale transformation in this step. 

  For assumption 3, the term “scale dependent” means that the state, observation and observation 

operator are all dependent on scale, and they can vary with scale. But when the Bayesian theorem is 

applied, the scales of state and observation are actually not changed, and the scale transformation 



only involves in the process that mapping the state vector from state space to observation space. 

Then we get an estimation of observation 𝐻(𝑋(𝑠𝑋)) in the observation space which is related to 

the state 𝑋(𝑠𝑋) defined in the state space.  

Changes in the manuscript: 

 We add some necessary text after all the assumptions, which is supposed to be more explicit to express 

our intention.  

 For assumption 1, we added “In assumption 1, the one-dimensional rule ensures that scale changes in 

a sense of geometrical similarity (for example, form a larger square observation footprint to a smaller 

square observation footprint, or from 𝐶2 to 𝐶3 as presented in Figure 1). Additionally, the formulations 

of scale transformation can be extremely reduced, but turn out the same conclusions with the one without 

any assumption about scale transformation.” 

 For assumption 2, it stated that “Assumption 2 indicates that the model unit and state scale are both 

supposed to be the same and invariant in space and time. So, there is no scale transformation in the 

forecasting step”. 

 For assumption 3, after Eq. (14), the sentence “Assumption 3 implies that the scales of the state and 

observation are invariant when observational information is added in the analysis step” missed some 

necessary information. This sentence was replaced by “The scale transformation only involves in the 

process that mapping the state vector from state space to observation space”. 

 

3. P13, 22: What does this equation mean? Is this the prior marginal pdf of X in scale space? 

I am lost as this page. Where is the measurement uncertainty? That should also appear somewhere 

in p(y|x). I see only the scale part of the error. Is the assumption that the scale part is dominant?  

And again, what is this process in scale space that happens at observation time prior to calculating 

p(y|x). Note that assumption 2 mentions explicitly that the scale of state and observation do not 

change before the observation time.  

Response:  

  The equations mean the prior pdfs of state and observation with respect to scale in state space 

and observation space, respectively. They are different from the pdfs with respect to time, because 

their means are equal to the value at the standard scale and variances depends on the differences 



between standard scale and the state space or observation space. These two prior pdfs are introduced 

into the Bayesian theorem that reformulated by scale. 

  We first clarify that the measurement error has little impact on the error caused by scale 

transformation (it will be also clarified in the new manuscript, see paragraph 3, Sect. 1). Actually, 

in some data assimilation literatures, for example, Lorenc (1995) and van Leeuwen (2014), the 

observational error is composed of two individual errors on the Gaussian assumption: measurement 

error and representativeness error (the error caused by scale transformation is the major component 

of representativeness error). Both of them are equally important. Meanwhile measurement error is 

independent with scale transformation. Therefore, it is not necessary to introduce the measurement 

error when formulate the scale transformation in data assimilation, but that should be stated in the 

manuscript.    

  Assumption 2 and 3 mentioned that both model unit and scale of state do not change before 

the analysis step, but if mapping the state vector from state space to observation space, the scale 

transformation occurs, and the state 𝑋 , observation 𝑌  and observation operator 𝐻(∙)  are all 

dependent on scale. Then the error caused by scale transformation can be formulated with 𝑌(𝑠𝑌) −

𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)). 

Changes in the manuscript: 

  For the equation, explanation was appended: “Eq. (17) and Eq. (18) are the prior PDFs of state and 

observation with respect to scale in state space and observation space, respectively. Compared with the 

PDFs with respect to time, their expectations are equal to the value at the standard scale, and the variances 

depend on the differences between the standard scale and the scale in state or observation space. These 

two prior PDFs are introduced into the Bayesian theorem that reformulated by scale. ” 

  For the issue on measurement error, we appended some necessary text in paragraph 3, Sect. 1 to 

clarify that the measurement error is not necessary to introduce in this paper: “The representativeness 

error and instrument error make up the observation error of data assimilation. Under the Gaussian 

assumption, they are independent of each other (Lorenc, 1995; van Leeuwen, 2014). This study will not 

introduce the instrument error when formulate the scale transformation in data assimilation.” Here 

“measurement error” is replaced by “instrument error” to avoid being confused with “measure”. 



6. Data assimilation and stochastic calculus 

1. My main issue is that I don’t understand the stochastic equation in scale space, neither where it comes 

from nor how it helps solve the representation error problem. 

2. P13, 28: I’m not sure what happens here. Why is there a stochastic equation for H? Why not use the 

pdf of X directly to find the uncertainty in H? 

3. I seem to miss something fundamental related to the stochastic equation in scale space and hope the 

authors can clarify that. What I would understand is a transformation from state to observation 

space, which might be modelled by a stochastic process. The rationale for that is that the state and/or 

observation subgrid processes are unknown and treated randomly. For that, only equations (19) 

and (20) are needed, although I still don’t see why a stochastic differential equation is used to model 

this transformation, why not define it directly as a nonlinear function from state to observation space? 

Then the likelihood can be formulated. 

Response:  

  Thanks for your comments. We believe it is worth to use the stochastic approach to solve the 

representation error problem based on the following reasons: 

  First, using the Ito process and stochastic calculus is essentially consistent with the definitions 

of scale, scale transformation and geophysical variable. In Sect. 3.1, the scale was defined as the 

Lebesgue measure with respect to the observation footprint, scale transformation presents the change 

between two different scales, and geophysical variable is a real mapping function on 𝑅. All of them 

are associated with corresponding measure spaces (𝛺, ℱ, 𝜇). Therefore, it is natural to regard the 

state space and observation space as two different measure spaces, respectively, and each element 

of state (or observation) vector can be seen as a geophysical variable that mapping the state (or 

observation) measure space onto 𝑅 . Correspondingly, stochastic calculus, which is defined for 

integrals of random processes with respect to random processes, was adopted. 

  Second, understanding the scale transformation between different scales can be further 

improved by stochastic calculus. As we stated, to map the state vector from state space to observation 

space should consider the transformation of scales, heterogeneities and physical processes. This can 

be illustrated by Eq. (12).  



𝑉(𝑠) = 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)

𝑠

𝑠0

𝑠

𝑠0

 

Eq. (12) is integrated from 𝑠0  to 𝑠, which presents the scale transformation. The integral term 

𝜑(𝑢) combines physical processes with heterogeneities.  

  Third, using stochastic calculus can formulate the scale-dependent errors. The results are 

presented in Eq. (23) and Eq. (25), which are derivate from Eq. (20). Therefore, we believe that all 

the equations are needed. 

  Further, compared with nonlinear function, the stochastic equation can offer a more general 

framework for scale issue and representativeness error. For example, we used the one-dimensional 

rule to simplify the scale transformation. However, that is the simplest situation. If the scale changes 

randomly, say, from an irregular footprint to another irregular footprint, the stochastic equation can 

offer a double-integral or multiple-integral to further study the scale issue, such as  

𝑉(𝑥, 𝑦) = 𝑉0 + ∬ 𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + ∬ 𝜎(𝑥, 𝑦)𝑑𝑊1(𝑥)𝑑𝑊2(𝑦) 

where 𝑊1(𝑥) and 𝑊2(𝑦) are two independent Brownian Motion. 

Changes in the manuscript: 

  To explicitly explain why using stochastic calculus is benefit to understanding the scale 

transformation and the representation error, we reorganized the section of “Discussion”. In Sect. 4.1 

titled “Discussion”, we restated the advantages of this study: 

  “The reasons that the methodology focuses on a stochastic framework are: First, the stochastic 

data assimilation framework is essentially consistent with the conceptions of scale and scale 

transformation. Both of them are associated with corresponding measure spaces (𝛺, ℱ, 𝜇) . 

Therefore, it is natural to regard the state space and observation space as two different measure 

spaces, respectively, and each element of state (or observation) vector can be seen as a geophysical 

variable that mapping the state (or observation) measure space onto 𝑅. Correspondingly, as the 

integrals of random processes with respect to random processes, stochastic calculus was adopted 

ultimately. Second, using stochastic calculus can also formulate the errors caused by scale 

transformations. The study proceeds with and improves the understanding of representativeness 

error in terms of scale. Results did not only prove the conventional point that the uncertainties of 

these errors mainly depend on the differences between scales, but indicated that the first-order 



differential of the nonlinear observation operator should also be incorporated in representativeness 

error. Last, stochastic calculus can be extended to meet a general scale transformation and formulate 

corresponding representativeness error. This was unattainable in previous work. For example, if the 

scale changes randomly, say, from an irregular footprint to another irregular footprint, the stochastic 

equation can offer a multiple-integral to present this kind of a scale transformation, such as 

𝑉(𝑥, 𝑦) = 𝑉0 + ∫ ∫ 𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑋

𝑋0

𝑌

𝑌0
+ ∫ ∫ 𝜎(𝑥, 𝑦)𝑑𝑊1(𝑥)𝑑𝑊2(𝑦)

𝑋

𝑋0

𝑌

𝑌0
, where 𝑊1(𝑥)  and 𝑊2(𝑦) 

are two independent Brownian Motion.” 

 

7. Other problems 

1. P2, 15: The ‘therefore’ is not a logical consequence. What does ‘them’ refer to? 

Response:  

 Here the term “them” refer to “forcing data and system states”. 

Changes in the manuscript: 

 We have rewritten the Sect. 1 titled “introduction”. According to your comments, this sentence was 

changed to “Geophysical data are typically observed by various Earth observations, therefore to update 

the observation data in a data assimilation system may result in scale transformations between 

observation space and system state space”.  

 

2. P2, 16: The fact that observation operators are nonlinear and complex has in principle nothing 

to do with mismatches between model units and observation footprints. The logical connection 

is not clear. 

Changes in the manuscript: 

 We realized this problem and have made some revision according to your comments. Related text will 

be changed to “If observation operator is strongly nonlinear and complex, errors caused by scale 

transformation is even more serious”. 

 

3. P2, 16: Model units should be defined a bit better (I know this is difficult because it is unclear 

what scales a model with a certain grid box size represents.) 

Response:  



 We agree with you that to well define the model units is a little difficult, and its definition may vary 

with branches of geoscience. So in the definition of scale (page 8, line 10, previous manuscript), we have 

exemplified the model units. 

Changes in the manuscript: 

 According to the previous problem, the term “model units” was removed in this sentence. 

 We further defined the model unit in paragraph 1, Sect. 2 as “The model unit is a specified subspace 

where a geophysical variable evolves in the model space. It could be a point, a rectangular grid, or an 

irregular unit such as a response unit (watershed, landscape patch and so on)”. 

 

4. P3, 4: Van Leeuwen also discussed the spatial and temporal resolution differences as giving rise 

to representation error, and Lorenc 1986 was the first to discuss the observation operator as 

source of an extra error on top of the measurement error in data assimilation. 

Response:  

Thanks for the guidance. The related references have been cited in the revised manuscript. 

Changes in the manuscript: 

 Related text will be changed to “An important concept that is related to scale transformation in data 

assimilation is “representativeness error”, which is associated with the inconsistency in spatial and 

temporal resolutions between states, observations and operators (Lorenc, 1986; Janjić and Cohn, 2006; 

van Leeuwen, 2014; Hodyss and Nichols, 2015)”. 

 New reference: 

Lorenc A C. Analysis methods for numerical weather prediction. Quarterly Journal of the Royal 

Meteorological Society, 1986, 112(474):1177–1194. 

 

5. P3, 7: ‘According to the above…’ The land surface dynamical processes have not been discussed, 

so the logical link is missing. 

Response:  

 In the new manuscript, the Sect. 1 was rewrote, so the related text about land surface dynamics is 

removed.  

 



6. P4, 7: Data assimilation does not necessarily result in first and second moments, the solution is 

the full pdf. For instance, data assimilation can describe multimodal pdfs. 

Response:  

Thanks for the guidance. In the new manuscript, the Sect. 1 was rewrote, and the incorrect 

sentences was also removed. 

 

7. P7: I assume phi(t) is deterministic in eq (1), it is the drift term, so ‘transition probability’ is 

perhaps misleading. 

Response:  

 We agree with you. The term ‘transition probability’ will be changed to “drift rate” in the new version. 

Correspondingly, the term ‘volatility’ is also changed to “volatility rate”. 

 

8. P11, 15: ‘the variable varies with scale because of the scale issue’ is unnecessary vague. Perhaps 

remove this part of the sentence? 

Response:  

  The unnecessary vague part will be removed in the new version. 

 

9. P11, 31: What are the exact relations between M and p, and eta and q? 

Response:  

  As we stated, Eq. (6) (In the revised manuscript, it changed to Eq. (5)) is a discrete-time forecasting 

system, and Eq. (9) is a continuous-time Ito process that obtaining the prediction of state. So 𝑝(𝑡) can 

be regarded as a continuous-time version of 𝑀 that obtaining the state on the interval [0, 𝑡]. 𝜂 is the 

model error, and 𝑞(𝑡) can be seen as the error caused by evolution of time. So 𝑞(𝑡) is one part of 𝜂. 

  Generally 𝑞(𝑡)𝑑𝑊(𝑡)  is Gaussian (Apte, et al., 2007) and can hardly be used to study the 

representativeness error. That is also one of the reasons that we define the scale and formulate 

stochastic processes with respect to scale. 

Changes in the manuscript: 

  We removed this paragraph, and made the new paragraph instead:  

  “Eq. (9) can be regarded as a continuous-time version of Eq. (5), i.e., to estimate the state is equal 

to the integral of Eq. (9) over a time interval. Here 𝑝(𝑡) indicates the physical process with respect to 



time, and 𝑞(𝑡) is the error only caused by the evolution of time, so model error 𝜂 in Eq. (5) contains 

more parts than 𝑞(𝑡). Eq. (10) implies that the value and variance of a geophysical variable may change 

if the scale changes. … Particularly, if the study region is homogeneous, then the values of a variable 

that observed at the same place are identical between large scale and fine scale, and 𝜑(𝑠) can be left 

out. 𝜎(𝑠) is the error caused by the scale transformation.” 
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Abstract: Understanding of the errors caused by spatial scale transformation in Earth observations and simulations requires a 10 

rigorous definition of scale. These errors are also an important component of representativeness errors in data assimilation. 

Several relevant studies have been conducted, but the theorization of the scale associated representativeness errors is still not 

well developed. We addressed these problems by reformulating the data assimilation framework using measure theory and 

stochastic calculus. First, the measure theory is used to propose that the spatial scale is the Lebesgue measure with respect to 

the observation footprint or model unit, and the Lebesgue integration by substitution is used to describe the scale transformation. 15 

Second, a scale-dependent geophysical variable is defined to consider the heterogeneities and dynamic processes. Finally, the 

structures of scale-dependent errors are studied in the Bayesian framework of data assimilation based on stochastic calculus.  

All the results were presented on the condition that scale is one-dimensional, and the variations in these errors depend on the 

difference between scales. This new formulation provides a more general framework to understand the representativeness error 

in a nonlinear and stochastic sense and is a promising way to address the spatial scale issue. 20 

1 Introduction 

 The spatial scale in Earth observations and simulations refers to the observation footprint or model unit in which a 

geophysical variable is observed or modelled (scale is used below to abbreviate spatial scale). Scale is traditionally defined 

in terms of distance, which is not adequate both because distance is a one-dimensional quantity but scale generally refers to a 

two- or three-dimensional space, and because scale may change much complicated (for example, form an irregular observation 25 

footprint to a square observation footprint). Generally, scale is not explicitly expressed in the dynamics of a geophysical 

variable, partially because a rigorous definition of scale is difficult to find, except for an intuitive conception (Goodchild and 
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Proctor, 1997) and certain qualitative classifications of scale (Vereecken et al., 2007). This reflects the complexity of scale and 

requires a more rigorous mathematical conceptualization of scale. 

 Scale transformation of a geophysical variable may result in significant errors (Famiglietti et al., 2008; Crow et al., 2012; 

Gruber et al., 2013; Hakuba et al., 2013; Huang et al., 2016; Li and Liu, 2016; Ran et al., 2016). These errors are mainly caused 

by the strong spatial heterogeneities (Miralles et al., 2010; Li, 2014) and irregularities (Atkinson and Tate, 2000) that are 5 

associated with geophysical variables across different scales, and are also closely related to dynamic variations, e. g., 

hydrological (Giménez et al., 1999; Vereecken et al., 2007; Merz et al., 2009; Narsilio, et al. 2009), soil (Ryu and Famiglietti, 

2006; Lin et al., 2010) and ecological (Wiens, 1989) processes. How to develop mathematical tools to elucidate the scale 

transformation has yet to be fully addressed. 

 Data assimilation could be an ideal tool to explore the scale transformation because it presents a unified and generalized 10 

framework in Earth system modelling and observation (Talagrand, 1997). Geophysical data are typically observed by various 

Earth observations, therefore to update the observation data in a data assimilation system may result in scale transformations 

between observation space and system state space. If observation operator is strongly nonlinear and complex, errors caused by 

scale transformation is even more serious (Li, 2014). An important concept that is related to scale transformation in data 

assimilation is “representativeness error”, which is associated with the inconsistency in spatial and temporal resolutions 15 

between states, observations and operators (Lorenc, 1986; Janjić and Cohn, 2006; van Leeuwen, 2014; Hodyss and Nichols, 

2015), and the missing physical information that is related to numerical operator compared to the ideal operator (van Leeuwen, 

2014), such as the discretization of a continuum model or neglect of necessary physical processes. The representativeness error 

and instrument error make up the observation error of data assimilation. Under the Gaussian assumption, they are independent 

of each other (Lorenc, 1995; van Leeuwen, 2014). This study will not introduce the instrument error when formulate the scale 20 

transformation in data assimilation. 

 Recently, approaches have been developed to assess representativeness error. Janjić and Cohn (2006) studied 

representativeness error by treating system state as the sum of resolved and unresolved portions. Bocquet et al. (2011) used a 

pair of operators, namely, restriction and prolongation, to connect the relationship between the finest regular scale and a coarse 

scale, and determined representativeness error using a multi-scale data assimilation framework. van Leeuwen (2014) 25 
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considered two complicated cases, i.e., conducting the observation vector in a finer resolution compared with system state 

vector and assimilating the retrieved variables. Their solutions were formulated using an agent in observation or state space, 

and a particle filter was proposed to treat the nonlinear relationship between observations, states and retrieved values. Hodyss 

and Nichols (2015) also estimated the representativeness error by investigating the difference between the truth and the 

inaccurate value that is generated by forecasting model. 5 

 Although these approaches explored the structure of representativeness error and offered various solutions, improvements 

are still necessary to investigate what is the exact expression of errors caused by scale transformation in data assimilation. The 

authors believe that these approaches are optimal in linear systems, but may not be suitable when observations are 

heterogeneous and sparse, or when operators are nonlinear between states and observations, although the general equations in 

the nonlinear case were given.Without taking heterogeneities and nonlinear operators into account, representativeness error 10 

cannot be fully understood. However, heterogeneity varies depending on the situation and is difficult to be formulated in a 

general theory study.  

 Data assimilation studies based on stochastic processes (Miller, 2007; Apte et al., 2007) or stochastic dynamic model (Miller 

et al., 1999; Eyink et al., 2004) have been proposed recently. Compared to deterministic models, stochastic data assimilation 

is more applicable in an integrated and time-continuous theoretical study (Bocquet et al., 2010), and creates an infinite sampling 15 

space of the system state (Apte et al., 2007). Although the theorems of calculus that are based on stochastic processes (or 

stochastic calculus) are different from those of ordinary calculus, these advantages suggest that stochastic data assimilation 

offers a more general framework to study scale transformation. 

We attempt to explore the mathematic definitions of scale and scale transformation, and then formulate the errors caused by 

scale transformation in a general theory study on stochastic data assimilation. The next section introduces the basic concepts 20 

and theorems of measure theory, stochastic calculus and data assimilation. In Sect. 3, we present the definitions of scale and 

scale transformation. The posterior probability of system state was also reformulated by scale transformation in a stochastic 

data assimilation framework. In the final section, the contributions and deficiencies of this study were discussed. 

2 Basic knowledge 

 The scale greatly depends on the geometric features of a certain observation footprint or model unit. The model unit is a 25 

specified subspace where a geophysical variable evolves in the model space. It could be a point, a rectangular grid, or an 

irregular unit such as a response unit (watershed, landscape patch and so on). We offer a solution in which the definition of 



4 

 

scale uses measure theory and the expression of geophysical variable as a stochastic process uses stochastic calculus. Therefore, 

we first introduce several basic concepts of measure theory and stochastic calculus. 

2.1 Measure theory 

 Let 𝛺 be an arbitrary nonempty space. ℱ is a σ-algebra (or σ-field) of subsets of 𝛺 that satisfies the following conditions: 

(i) 𝛺 ∈ ℱ, and the empty set 𝛷 ∈ ℱ; 5 

(ii) 𝐴 ∈ ℱ implies that its complementary set 𝐴𝑐 ∈ ℱ; 

(iii) 𝐴1, 𝐴2, ⋯ ∈ ℱ implies their union 𝐴1 ∪ 𝐴2 ∪ ⋯ ∈ ℱ. 

 A set function 𝜇 of ℱ is called a measure if it satisfies the following conditions: 

(1) 𝜇(𝐴) ∈ [0, ∞) and 𝜇(𝛷) = 0; 

(2) If 𝐴1, 𝐴2, ⋯ ∈ ℱ  is any disjoint sequence and  ⋃ 𝐴𝑘
∞

𝑘=1
∈ ℱ , 𝜇  is countably additive such that  𝜇(⋃ 𝐴𝑘

∞

𝑘=1
) =

10 

∑ 𝜇(𝐴𝑘)∞
𝑘=1 . 

 If 𝜇(𝛺) = 1, 𝜇 can be replaced by the probability measure 𝑝, and if 𝜇 is finite, 𝑝 can be calculated as 𝑝(𝐴) = 𝜇(𝐴) 𝜇(𝛺)⁄ . 

The triples (𝛺, ℱ, 𝜇) and (𝛺, ℱ, 𝑝) are the measure space and probability measure space, respectively. 

 Let 𝛺 be the set of real numbers 𝑅 and σ-algebra ℬ be Borel algebra, which is generated by all closed intervals in 𝑅. Then 

∀ 𝐴 = [𝑎, 𝑏] ∈ 𝐵 , a Lebesgue measure on 𝑅 is defined as 𝐼(𝐴) = 𝑏 − 𝑎. Intuitively, the Lebesgue measure on 𝑅 coincides 15 

with length. 

 An n-dimensional Lebesgue volume is defined to measure the standard volumes of subsets in 𝑅𝑛  based on 𝐼𝑛(𝐴) =

∏ (𝑏𝑘 − 𝑎𝑘)𝑛
𝑘=1 , where 𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘, 𝑘 = 1,2, ⋯ , 𝑛]  is an n-dimensional regular cell in  𝑅𝑛 . The n-dimensional 

Lebesgue volume is an ordinary volume, such as length (n=1), area (n=2) and volume (n=3).  

 Next, the outer measure is defined as  𝑚𝑛(𝐴) = inf{∑ 𝐼𝑛(𝐴𝑖)
+∞
𝑖=1 } , where  inf{∙}  is the infimum,  𝐴𝑖 = [𝑥: 𝑎𝑖,𝑘 ≤ 𝑥𝑘 ≤

20 

𝑏𝑖,𝑘 , k = 1,2, ⋯ , n] is the n-dimensional regular cell in 𝑅𝑛, and 𝐴 ⊆ ⋃ 𝐴𝑖
+∞

𝑖=1 . Thus, if 𝐴 is any subset of 𝑅𝑛, one can collect 

many sets of n-dimensional regular cells {𝐴𝑖} to cover 𝐴. Among them, the outer measure denotes the set whose union has the 

smallest n-dimensional Lebesgue volume.  
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 To match the two conditions of a measure, one can define the outer measure 𝑚𝑛  as a Lebesgue measure on measure 

spaces (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛), where  ℒ𝑛 is the Lebesgue σ-algebra of 𝑅𝑛. The construction of the Lebesgue σ-algebra is based on the 

Caratheodory condition (Bartle, 1995, definition 13.3). Fortunately, almost all of the observation footprints and model units 

are finite and closed, leading them to be Lebesgue measurable. This consequently ensures the Lebesgue measure 𝑚𝑛 is a 

measure and the triple (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is a measure spaces. The Lebesgue measure of a Lebesgue measurable subset in 𝑅𝑛  also 5 

coincides with its volume. 

 The n-dimensional Lebesgue integral in (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is ∫ 𝑓𝑑𝑚𝑛 , where 𝑓 is a real function on 𝑅𝑛. The Lebesgue integral 

can be further denoted by ∫ 𝑓𝑑𝑚𝑛 = ∫ 𝑓(𝑥)𝑑𝑥, where 𝑥 ∈ 𝑅𝑛 and 𝑥 = (𝑥1, ⋯ , 𝑥𝑛). 

 In the two-dimensional case (𝑛 = 2), the Lebesgue integral is 

∬𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝐴

, 10 

where 𝐴 ∈ ℒ2. Next, we consider the Lebesgue integration by substitution on 𝑅2. Let 𝑇(𝑥1, 𝑥2) = [𝑡1(𝑥1, 𝑥2), 𝑡2(𝑥1, 𝑥2)] =

[𝑦1, 𝑦2] be a one-to-one mapping of a subset  𝑋 onto another subset  𝑌  on  𝑅2 . Assuming that 𝑇  is continuous and has a 

continuous partial derivative matrix 𝑇𝑥 = (
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
), then 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= ∬ 𝑓(𝑇(𝑥1, 𝑥2))|𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2
𝑋

, 15 

where the Jacobian determinant  |𝐽(𝑥1, 𝑥2)| = |det 𝑇𝑥| = |
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
|. If 𝑇 is linear, the integral reduces to 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= |𝐽(𝑥1, 𝑥2)| ∬ 𝑓(𝑇(𝑥1, 𝑥2))𝑑𝑥1𝑑𝑥2
𝑋

. 

 By so, any observation footprint or model unit can be regarded as a Lebesgue measurable subset in a two-dimensional 

space 𝑅2. 

 Additional details regarding measure theory can be found in the literature (for example, Billingsley, 1986; Bartle, 1995). 

2.2 Stochastic calculus 20 

 We then introduce some necessary concepts and theorems of stochastic calculus. All the classic theorems are introduced 

without proofs; their detailed derivations can be found in the literature (Itô, 1944; Karatzas et al., 1991; Shreve, 2005). 
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 Stochastic calculus is defined for ordinary integrals with respect to stochastic processes. One of the simplest stochastic 

processes is Brownian motion. The Brownian motion 𝑊  that is defined on a probability measure space  (𝛺, 𝐹, 𝑝)  is 

characterized as follows: 

1) 𝑊(0) = 0. 

2) ∀𝑡1 > 𝑠1 ≥ 𝑡2 > 𝑠2 > 0, the increments 𝑊(𝑡1) − 𝑊(𝑠1)  and 𝑊(𝑡2) − 𝑊(𝑠2)are independent. 5 

3) ∀𝑡 > 𝑠 ≥ 0, 𝑊(𝑡) − 𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠). 

 The last two conditions represent that  ∀𝑡2 > 𝑠2 > 𝑡1 > 𝑠1 ≥ 0 , 𝑊(𝑡2) − 𝑊(𝑠2) and 𝑊(𝑡1) − 𝑊(𝑠1)  are independent 

Gaussian random variables. Additionally, 𝑊 is related to the probability measure 𝑝. 

 Stochastic calculus based on Brownian motion produces Ito process. The differential form of the time-dependent Ito 

process is 10 

𝑑𝐼 = 𝜑(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡),   (1) 

where 𝜑(𝑡), 𝜎(𝑡) and 𝑊(𝑡) are the drift rate, volatility rate and Brownian motion, respectively. The integral form of Eq. (1) 

is 

𝐼(𝑡) = 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
+ ∫ 𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
.  (2) 

 Theorem 1: For any Ito process defined as in Eq. (1), the quadratic variation that is accumulated on the interval [0, 𝑡] is 15 

 [𝐼, 𝐼](𝑡) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑡

0
,   (3) 

and the drift of Eq. (1) is 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
. 

 As distinguishing features of stochastic calculus, quadratic variation and drift can be regarded as stochastic versions of the 

variance and expectation, respectively. That is, the variance and expectation are instances of their random variable stochastic 

counterparts within a certain integral path. Therefore, rather than being constants, quadratic variation and drift are given in 20 

terms of probability.   

 Theorem 2 (Ito's Lemma): If the partial derivatives of function 𝑓(𝑢, 𝑥), viz. 𝑓𝑢(𝑢, 𝑥)，𝑓𝑥(𝑢, 𝑥) and 𝑓𝑥𝑥(𝑢, 𝑥) are defined 

and continuous, and if 𝑡 ≥ 0, we have 

𝑓(𝑡, 𝑥(𝑡)) = 𝑓(0, 𝑥(0)) + ∫ 𝑓𝑢(𝑢, 𝑥(𝑢))𝑑𝑢 +
𝑡

0
∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
+ ∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜑(𝑢)𝑑𝑢

𝑡

0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑥(𝑢))𝜎2(𝑢)𝑑𝑢

𝑡

0  .    (4) 25 

 Ito's Lemma is typically used to build the differential of a stochastic model with Ito processes. In this study, Ito's Lemma is 

applied to study the scale-dependent relationship between the observation and state, and the errors caused by scale 

transformation. 
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2.3 Traditional formulation of data assimilation in the Bayesian theorem framework 

 We use the well accepted Bayesian theorem of data assimilation (Lorenc, 1995; van Leeuwen, 2015) to investigate its time- 

and scale-dependent errors. State and observation are first assumed to be one-dimensional. In Sect. 3.5, the results are extended 

to n-dimensional state vectors and observation vectors. 

 A nonlinear forecasting systemcan be described by 5 

𝑋(𝑡𝑘) = 𝑀𝑘−1:𝑘(𝑋(𝑡𝑘−1)) + 𝜂(𝑡𝑘),  (5) 

where  𝑀𝑘−1:𝑘(⋅), 𝑋(𝑡𝑘) and 𝜂(𝑡𝑘) represent a nonlinear forecasting operator that transits the state from the discrete time 𝑘 −

1 to 𝑘, the state with prior probability distribution function (PDF)  𝑝(𝑋), and the model error at time 𝑘, respectively.  

 If a new observation is available at time 𝑘, the observation system is given by 

𝑌𝑜(𝑡𝑘) = 𝐻𝑘(𝑋(𝑡𝑘)) + 𝜀(𝑡𝑘),  (6) 10 

where 𝐻𝑘(⋅), 𝑌𝑜(𝑡𝑘) and 𝜀(𝑡𝑘) represent the nonlinear observation operator, true observation with prior PDF 𝑝(𝑌), and 

observation error at time 𝑘, respectively. 

 Previous studies (e.g., Janjić and Cohn, 2006; Bocquet et al. 2011) described the origin of the components of 𝜀(𝑡𝑘) and 

𝜂(𝑡𝑘), such as white noise, the discretization error of a continuum model, the errors that are caused by missing physical 

processes, and scale-dependent bias. In this study, we assume that both forecasting and observation operators are perfect 15 

models, so errors that are caused by missing physical processes are discarded.  

 According to Bayesian theory, the posterior PDF of the state based on the addition of a new observation into the system is 

𝑝(𝑋|𝑌) = 𝑝(𝑌|𝑋)𝑝(𝑋) 𝑝(𝑌)⁄ ,  (7) 

where 𝑝(𝑋|𝑌) is the posterior PDF that presents the PDF value of state 𝑋 given an available observation 𝑌. 𝑝(𝑌|𝑋) is a 

likelihood function, which is the probability that an observation is 𝑌 given a state 𝑋. 𝑝(𝑋) and 𝑝(𝑌) are the prior PDF values 20 

of the state and observation, respectively. Here, 𝑝(𝑋) is supposed to be known and 𝑝(𝑌) is a normalisation constant (van 

Leeuwen, 2014). The aim of data assimilation is equivalent to finding the posterior PDF 𝑝(𝑋|𝑌). 

3 Reformulation of scale transformation in data assimilation framework 

3.1 Definition of scale 

 We define the scale based on the measure theory that was introduced in Sect. 2. The relationship between Lebesgue measure 25 

in (𝑅2, ℒ2, 𝑚2) and scale is firstly introduced by the following measures of Earth observations.  

(i) Measure of a single point observation: When the observation footprint is very small and homogeneous, we assume that 

its footprint approaches zero and its measure is accordingly zero under the condition of the Lebesgue measure.  
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(ii) Measure in a line: The measure is a one-dimensional Lebesgue measure. 

(iii) Measure of a rectangular pixel (for example, remote sensing observation): ∀𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘 , k = 1,2], it is a 

two-dimensional Lebesgue volume, i.e., 𝜇𝑖𝑖𝑖(𝐴) = 𝐼2(𝐴) = ∏ (𝑏𝑘 − 𝑎𝑘)2
𝑘=1 . 

(iv) Measure of a footprint-scale observation: The footprint is any bounded closed domain 𝐴, which is not necessary to be 

regular rectangles, but as circles or ellipses. We use Lebesgue measure on  𝑅2 , i.e.,  𝜇𝑖𝑣(𝐴) = 𝑚2(𝐴) =5 

inf {∑ 𝐼2(𝐴𝑖)
+∞

𝑖=1
}, where 𝐴𝑖 = [𝑥: 𝑎𝑖,𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑖,𝑘 , 𝑘 = 1,2] and 𝐴 ⊆ ⋃ 𝐴𝑖

+∞

𝑖=1 . Obviously, measure (i)~(iii) are the 

special cases of the measure of a footprint-scale observation. 

 Actually, all the above measures mainly depend on the shape and size of 𝐴. The Lebesgue measure on 𝑅2 coincides with 

the area, so the Lebesgue integral of 𝜇𝑖𝑣(𝐴) is ∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1.  

 Now, we can generalize the above examples by defining the scale as the Lebesgue measure with respect to the observation 10 

footprint. This definition can also be extended to a certain model unit. Thus, for any subset 𝐴 ∈ ℒ2, the scale is 𝑠 = 𝑚2(𝐴) =

∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1. From a geometric perspective, the measure function 𝑚2(∙) refers to the shape of 

the subset, and the scale further indicates its size.  

 We represent the scale as 𝑠, and let 𝑠0 = 𝑚0
2(𝐴0) = ∬ 𝑑𝑥1𝑑𝑥2𝐴0

= 1 be the standard scale, where 𝐴0 = [𝑥: 0 ≤ 𝑥𝑘 ≤

1, 𝑘 = 1,2] is the unit square in 𝑅2. The standard scale can be regarded as a basic unit of scale. It presents a standard reference, 15 

by which one can make a quantitative comparison between different scales. The standard scale is also the origin of scales that 

let scales vary similarly to other physical quantities, such as time. 

 We can further define scale transformation. For  ∀𝐴1, 𝐴2 ∈ ℒ2 , if there are two different scales, 𝑠1 = 𝑚2(𝐴1) =

∬ 𝑑𝑥1𝑑𝑥2𝐴1
 and  𝑠2 = 𝑚2(𝐴2) = ∬ 𝑑𝑦1𝑑𝑦2𝐴2

, then we can obtain  𝑠2 = ∬ 𝑑𝑦1𝑑𝑦2𝐴2
= ∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴1

 based on 

Lebesgue integration by substitution, where the Jacobian matrix 𝐽(𝑥1, 𝑥2) represents the geometric transformation from 𝐴1 20 

to 𝐴2. In particular, if 𝐽(𝑥1, 𝑥2) = 𝑑𝑖𝑎𝑔(𝜉, 𝜉), 𝜉 ∈ 𝑅, which also indicates that the geometric transformation is linear, then the 

following expression is valid based on Lebesgue integration by substitution: 

𝑠2 = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2
𝐴1

= 𝜉2𝑠1, (8)
 

where 𝑠1 and 𝑠2 represent the change of one-dimensional rule. 
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 If two scales follow the one-dimensional rule, they are geometrically similar. This rule simplifies scale as a one-dimensional 

variable that corresponds to the scale transformations between most remote sensing images with various spatial resolutions. 

For example, ∀𝐴 = [𝑥: 𝑎 ≤ 𝑥𝑘 ≤ 𝑏, 𝑘 = 1,2], where 𝐴 and the unit square 𝐴0 are geometrically similar, and the scale 𝑠 =

𝜇𝑖𝑖𝑖(𝐴)  can be expressed by the one-dimensional rule of scale transformation: 𝑠 =  𝜇𝑖𝑖𝑖(𝐴) = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2𝐴0
=

(𝑏 − 𝑎)2𝑠0. For another example, let 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴  be the scale of a disc footprint 𝐴 with radius 𝑟. The mapping function 5 

between 𝐴  and 𝐴0 is 𝑇(𝑥1, 𝑥2) = [𝑟𝑥1 cos(2𝜋𝑥2) , 𝑟𝑥1 sin(2𝜋𝑥2) ; 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 1] = [𝑦1, 𝑦2] , and the Jacobian 

determinant  |𝐽(𝑥1, 𝑥2)| = |
𝑟 cos(2𝜋𝑥2) −2𝜋𝑟𝑥1 sin(2𝜋𝑥2)

𝑟 sin(2𝜋𝑥2) 2𝜋𝑟𝑥1 cos(2𝜋𝑥2)
| = 2𝜋𝑟2𝑥1 . Therefore, 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴

=

∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴0
= 𝜋𝑟2𝑠0, which is equal to its area. However, 𝑠0 and 𝑠 do not obey one-dimensional rule because the 

Jacobian matrix is not diagonal. 

 The Layer 1 in Figure 1 shows the relationship between the Lebesgue measure and scale. The measure space 𝛺 =10 

[𝑥: 0 ≤ 𝑥𝑘 ≤ 4, 𝑘 = 1,2] is regularly divided by the unit square 𝐴0. Let scales 𝑠𝐶1 = 𝑚𝐶1
2 (𝐶1), 𝑠𝐶2 = 𝑚𝐶2

2 (𝐶2) and 𝑠𝐶3 =

𝑚𝐶3
2 (𝐶3) be the Lebesgue measures of disc observation footprints 𝐶1, 𝐶2 and 𝐶3, respectively. Then, 𝑚𝐶1

2 (∙) = 𝑚𝐶2
2 (∙) =

𝑚𝐶3
2 (∙) because they are the same Lebesgue measure functions. That is, if {𝐴𝑖} is the set with the smallest volume that 

covers 𝐶1, then similar sets {𝐴𝑖 + 2} and {𝐴𝑖 × 3 + 2} can be used (with the origin located in the upper-left corner) to cover 𝐶3 

and 𝐶2 with the smallest volumes, respectively. Here, 𝐴𝑖 + 2 = [𝑥𝑖: 𝑥𝑖,𝑘 + 2, 𝑥𝑖,𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2] and 𝐴𝑖 × 3 + 2 = [𝑥𝑖: 𝑥𝑖,𝑘 ×
15 

3 + 2, 𝑥𝑖,𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2], which proves that functions 𝑚𝐶1
2 (∙), 𝑚𝐶2

2  (∙)and 𝑚𝐶3
2 (∙) collect the desirable set based on the same 

scheme, so they are identical. Additionally, 𝑠𝐶2 = 𝑚𝐶2
2 (𝐶2) = ∑ 𝐼2(𝐴𝑖 × 3 + 2)  is much larger than 𝑠𝐶1 =  𝑚𝐶1

2 (𝐶1) =

 ∑ 𝐼2(𝐴𝑖) and 𝑠𝐶3 =  𝑚𝐶3
2 (𝐶3) =  ∑ 𝐼2(𝐴𝑖 + 2). Therefore, the scale of 𝐶2 is not equal to the two other scales because the 

volumes of their subsets are different. However, their scales are governed by one-dimensional rules because their measures 

are identical and the Jacobian matrices between them are diagonal.  20 



10 

 

  

Figure 1. Diagram of the relationships among a Lebesgue measure, scale and geophysical variable 

3.2 Stochastic variables in data assimilation  

 Instead of using Eq. (5) and (6), which are discrete in time, we use Ito process-formed expressions with the one-dimensional 

infinitesimals 𝑑𝑠 and 𝑑𝑡 to formulate a continuous-time (or continuous-scale) state and observation. 5 

 Geophysical variable can be regarded as a real function 𝑉(𝑠, 𝑡) , and it maps the space (𝑅2, ℒ2, 𝑚2) onto 𝑅, where 𝑠 is the 

scale, 𝑠 = 𝑚2(𝐴), 𝐴 ∈ ℒ2, and 𝑡 is the time. In n-dimensional data assimilation, a geophysical variable 𝑉 is related to an 

element of state vector 𝑋 at a specific scale 𝑠 and time 𝑡.  

 In Figure 1, Layer 2 presents a heterogeneous geophysical variable in the entire region. If aggregating Layer 2 into Layer 1 

and let each pixel intensity is the value for a geophysical variable in each pixel, then the measure space 𝛺 is heterogeneous. A 10 

geophysical variable represents a spatial average in a specific observation footprint with a specific scale. Therefore, the 

geophysical variables in 𝐶1 and 𝐶3 are not equal because their observation footprints are different, and the geophysical 

variables in 𝐶2 and 𝐶3 are also different because the scale changes. The former introduces that the geophysical variables vary 

with location, and the latter states that the geophysical variables are scale-dependent.   

 If the statistical properties of the geophysical variable are available, we can construct an explicit stochastic equation for 15 

the geophysical variable. We introduce the time-dependent Ito process Eq. (1) to define the geophysical variable process: 

𝑑𝑉 = 𝑝(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡).   (9) 

Similarly, the geophysical variable is supposed to evolve via a stochastic process, for which the dynamic process and 

uncertainty are allowed to vary with scale:  

𝑑𝑉 = 𝜑(𝑠)𝑑𝑠 + 𝜎(𝑠)𝑑𝑊(𝑠),   (10) 20 

where 𝜑(𝑠) and 𝜎(𝑠) are the scale-based drift rate and volatility rate, respectively. The geophysical variable is a probabilistic 

process with respect to scale and thus has scale-dependent errors, where the scale should shift forward or backward based on 

the condition that the scale follows the one-dimensional rule.   
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 Eq. (9) can be regarded as a continuous-time version of Eq. (5), i.e., to estimate the state is equal to the integral of Eq. (9) 

over a time interval. Here 𝑝(𝑡) indicates the physical process with respect to time, and 𝑞(𝑡) is the error only caused by the 

evolution of time, so model error 𝜂 in Eq. (5) contains more parts than 𝑞(𝑡). Eq. (10) implies that the value and variance of a 

geophysical variable may change if the scale changes. To formulate 𝜑(𝑠) should consider both the spatial heterogeneities and 

physical process variations among different scales. However, neither of them is well understood in a general theory study. 5 

Therefore 𝜑(𝑠) is conceptualized in Eq. (10). Particularly, if the study region is homogeneous, then the values of a variable 

that observed at the same place are identical between large scale and fine scale, and 𝜑(𝑠) can be left out. 𝜎(𝑠) is the error 

caused by the scale transformation. 

  The state in the forecasting step can be expressed by Eq. (9) because only time is involved. In the analysis step of data 

assimilation, the state does not pertain to time, and we assume that the scale has a quantifiable effect on the errors in this step; 10 

thus, both the states and observations can be defined by Eq. (10).  

3.3 Expression of scale transformation in a stochastic data assimilation framework 

First, we provide the following lemma. 

 Lemma 1: For ∀𝑠0 > 0 , let 𝑊∗(0) = 𝑊(𝑠0) − 𝑊(𝑠0), … , 𝑊∗(𝑠) = 𝑊(𝑠0 + 𝑠) − 𝑊(𝑠0) ; then, 𝑊∗(𝑠), 𝑠 ≥ 0  is a 

Brownian motion.  15 

 Proof. First,  𝑊∗(0) = 𝑊∗(𝑠0) − 𝑊∗(𝑠0) = 0.  ∀𝑠𝑖+1 > 𝑠𝑖 ≥ 0, 𝑖 = 1,2,3, … , 𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖) = [𝑊(𝑠0 + 𝑠𝑖+1) −

𝑊(𝑠0)] − [𝑊(𝑠0 + 𝑠𝑖) − 𝑊(𝑠0)] = 𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖), which suggests that the increments [𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] 

are equal to [𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖)] and are independent Gaussian distributed. Therefore, 𝑊∗(𝑠), 𝑠 ≥ 0 is a Brownian 

motion, with 𝐸[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 0 and 𝑉𝑎𝑟[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 𝑠𝑖+1 − 𝑠𝑖 . Q. E. D.  

 Remark on Lemma 1: Note that in the definition of Brownian motion, the parameter starts at zero. However, the scale is 20 

realistically greater than zero, which results that it cannot be directly applied in Brownian motion. So, Lemma 1 is logical 

because it implies that 𝑊(𝑠), 𝑠 ≥ 𝑠0 is an equivalent expression of 𝑊∗(𝑠), 𝑠 ≥ 0. Therefore, beginning with the standard scale, 

the Brownian motion and stochastic calculus with respect to scale can be further developed. 

 In the following content, we use Brownian motion with a parameter that starts at 𝑠0  to define the scale-dependent 

geophysical variables; therefore, the classic expressions above are changed. According to Lemma 1, Eq. (3) is given by 25 

 [𝐼, 𝐼](𝑠) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑠

𝑠0
.  (11) 

Additionally, the integral form of the Eq. (10) is as follows: 

 𝑉(𝑠) = 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠

𝑠0

𝑠

𝑠0
 ,  (12) 

where 𝑉0 = 𝑉(𝑠0) and the drift of Eq. (12) is  

 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢
𝑠

𝑠0
 . 30 
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Similarly, Eq. (4) becomes 

𝑓(𝑠, 𝑉(𝑠)) = 𝑓(𝑠0, 𝑉(𝑠0)) + ∫ 𝑓𝑢(𝑢, 𝑉(𝑢))𝑑𝑢
𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜑(𝑢)𝑑𝑢

𝑠

𝑠0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑉(𝑢))𝜎2(𝑢)𝑑𝑢

𝑠

𝑠0
. 

 Now, we make the following assumptions. 

 Assumption 1: The scale transformations between the state and observation spaces of data assimilation obey the one-5 

dimensional rule as defined in Sect. 3.1. 

 Assumption 2: In the forecasting step, the model unit equals the scale of the state space, and both of them are constant.  

 Assumption 3: In the analysis step, the state, observation and observation operator are scale dependent. Only one 

observation is added into the data assimilation system at a time. 

 In assumption 1, the one-dimensional rule ensures that scale changes in a sense of geometrical similarity (for example, form 10 

a larger square observation footprint to a smaller square observation footprint, or from 𝐶2 to 𝐶3 as presented in Figure 1). 

Additionally, the formulations of scale transformation can be extremely reduced. 

 Assumption 2 indicates that the model unit and state scale are both supposed to be the same and invariant in space and time. 

So, there is no scale transformation in the forecasting step. Thus, Eq. (9) can adequately describe this step. 

 Based on assumption 3, the analysis step is related to the scale. According to Eq. (10), the state and observation in the 15 

analysis step are as follows: 

 𝑑𝑋 = 𝜑𝑋(𝑠)𝑑𝑠 + 𝜎𝑋(𝑠)𝑑𝑊(𝑠) (13) 

and  

 𝑑𝑌 = 𝜑𝑌(𝑠)𝑑𝑠 + 𝜎𝑌(𝑠)𝑑𝑊(𝑠), (14) 

where 𝜑𝑋 (𝑠), 𝜎𝑋(𝑠), 𝜑𝑌
(𝑠) and 𝜎𝑌(𝑠) represent the scale-dependent drift rates and volatility rates of state 𝑋 and observation 20 

𝑌, respectively. 𝜑(𝑠) also implies the heterogeneities and physical processes from standard scale to a specific scale, which 

currently maybe hard to be formulate. 𝜎(𝑢) can be regarded as the stochastic perturbation with respect to scale. Therefore, 

according to Eq. (12), a state is 𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑋

𝑠0

𝑠𝑋

𝑠0
 in the state space and is 𝑋(𝑠𝑌) = 𝑋0 +

∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑌

𝑠0

𝑠𝑌

𝑠0
 in the observation space. These formulas prove that the value of state varies with the changes 

of scale. 25 

 The scale transformation only involves in the process that mapping the state vector from state space to observation space. 

For simplicity, assume the scale-based drift rates of the state and observation do not exist, which leads to 𝜑
𝑋
(𝑠) = 0 and 

𝜑
𝑌
(𝑠) = 0. If the noises are Gaussian, we have 𝜎𝑋(𝑠) = 𝜎𝑌(𝑠) = 1. 

 Based on the above discussion, the differential and integral forms of the state are 

 𝑑𝑋 = 𝑑𝑊(𝑠) and 𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝑑𝑊(𝑠)
𝑠𝑋

𝑠0
 . (15) 30 

For the observation, we have 
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 𝑑𝑌 = 𝑑𝑊(𝑠) and  𝑌(𝑠𝑌) = 𝑌0 + ∫ 𝑑𝑊(𝑠)
𝑠𝑌

𝑠0
  (16) 

In Eq. (15) and Eq. (16), the time 𝑡 is omitted, and 𝑠𝑋 , 𝑠𝑌 , 𝑋0  and 𝑌0  represent the scale of the state space, scale of the 

observation space, state in 𝑠0 and observation in  𝑠0, respectively. 

 The Bayesian equation of data assimilation (Eq. (7)) produces the posterior PDF 𝑝(𝑋|𝑌)  that is associated with the 

likelihood function 𝑝(𝑌|𝑋)  and the distributions of the state and observation. Theorem 1 and Eqs. (15)~(16) yield 5 

𝑋~𝑁 (𝑋0, ∫ 𝑑𝑠
𝑠𝑋

𝑠0
) and 𝑌~𝑁 (𝑌0, ∫ 𝑑𝑠

𝑠𝑌

𝑠0
) under the condition that the variances exist. In addition, assumption 1 states that the 

scales vary in one-dimensional space, which results in  

 𝑋~𝑁(𝑋0, 𝑠𝑋 − 𝑠0)  (17) 

  and 𝑌~𝑁(𝑌0, 𝑠𝑌 − 𝑠0).  (18) 

Eq. (17) and Eq. (18) are the prior PDFs of state and observation with respect to scale in state space and observation space, 10 

respectively. Compared with the PDFs with respect to time, their expectations are equal to the value at the standard scale, and 

the variances depend on the differences between the standard scale and the scale in state or observation space. These two prior 

PDFs are introduced into the Bayesian theorem that reformulated by scale.  

 Then, we calculate the posterior PDF. 

 The scale-dependent observation operator is 𝐻(𝑠, 𝑥), which suggests that the observation operator and its parameters are 15 

both susceptible to the scale. If 𝐻(𝑠, 𝑥) is defined, its continuous partial derivatives are 𝐻𝑠(𝑠, 𝑥), 𝐻𝑥(𝑠, 𝑥) and 𝐻𝑥𝑥(𝑠, 𝑥). In 

line with Ito’s Lemma, we get an estimation of observation in the observation space, which is related to the state 𝑋(𝑠𝑋) defined 

in the state space 

𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) = 𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) +

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢  

 = 𝐻(𝑠0, 𝑋0) + ∫ [𝐻𝑠(𝑢, 𝑋(𝑢)) +
1

2
𝐻𝑥𝑥(𝑢, 𝑋(𝑢))]

𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢).  (19)  20 

 Assumption 1 suggests that the observation and model spaces have the same probability measure; thus, the Brownian 

motions in these two spaces are equivalent. Let Eq. (16) − Eq. (19), and we obtain 

𝑌(𝑠𝑌) − 𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) 

= 𝑌0 + ∫ 𝑑𝑊(𝑢)
𝑠𝑌

𝑠0
− [𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) +

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] 

= 𝑌0 − 𝐻(𝑠0, 𝑋0) + ∫ 𝑑𝑊(𝑢) − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) − 𝐻(𝑠0, 𝑋(𝑠0))] −
𝑠𝑌

𝑠0

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢 − ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) 25 

= 𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] + {∫ 𝑑𝑊(𝑢)

𝑠𝑌

𝑠0
− ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢)}.  (20) 

 Equation (20) can be regarded as an Ito process, and its drift is 

 𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢].   (21) 

 The integral term in Eq. (21) is the difference in the first-order differential observation operator between the state scale 

𝑠𝑋  and the standard scale 𝑠0. This term illustrates that the mapping process should consider not only the observation operator 30 
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but also the first-order differential term when state is mapped to the observation space. The former is typically determined 

from the literature, whereas the latter was derived in this study for the first time. This result prompted us to further consider 

the first-order differential of the observation operator when calculating the representativeness error. 

 The quadratic variation of Eq. (20) is 

 (𝑠𝑌 − 𝑠0) + ∫ 𝐻𝑥
2(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢.  (22) 5 

 This equation suggests that the uncertainty in the observation error includes both the difference between scales 𝑠𝑌 and 𝑠0 

and the change in the observation operator from scale 𝑠𝑋 to 𝑠0. Therefore, Eq. (21) and Eq. (22) can be combined to produce 

𝑝(𝑌|𝑋) = 𝑁 (𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] , (𝑠𝑌 − 𝑠0) + ∫ 𝐻𝑥

2(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠0
𝑑𝑢) . (23) 

 Based on Eqs. (17), (18) and (23), 𝑝(𝑌|𝑋), 𝑝(𝑋) and 𝑝(𝑌) are stochastic functions that depend on the scale; thus, the 

posterior PDF of the state is scale-dependent as well.  10 

 In particular, if 𝑌 is a direct observation, which means the observation is of the same physical quantity and scale as the state, 

viz. 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠). The result becomes  

 𝑌(𝑠𝑌) − 𝑋(𝑠𝑋) = {
𝑌0 − 𝑋(𝑠𝑋) + 𝑊(𝑠𝑌) − 𝑊(𝑠𝑋), 𝑠𝑌 > 𝑠𝑋

𝑌0 − 𝑋(𝑠𝑋) + 𝑊(𝑠𝑋) − 𝑊(𝑠𝑌), 𝑠𝑋 > 𝑠𝑌
  (24) 

 and 𝑝(𝑌|𝑋) = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} . (25) 

 The quadratic variation in Eq. (22) can be further described by the scale from 𝑠𝑋 to 𝑠𝑌. Under the condition 𝑠𝑌 > 𝑠𝑋 and 15 

because 𝑊(𝑠𝑌) − 𝑊(𝑠𝑋) and 𝑊(𝑠𝑋) − 𝑊(𝑠0) are independent, the quadratic variation of Eq. (20) is 

 𝑠𝑌 − 𝑠𝑋 + ∫ [1 − 𝐻𝑥(𝑢, 𝑋(𝑢))]
2

𝑑𝑢
𝑠𝑋

𝑠0
. (26) 

 Similarly, if 𝑠𝑋 > 𝑠𝑌, the quadratic variation of Eq. (20) is 

 ∫ (1 − 𝐻𝑥(𝑢, 𝑋(𝑢)))
2

𝑑𝑢
𝑠𝑌

𝑠0
+ ∫ 𝐻𝑥

2(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠𝑌
𝑑𝑢.  (27) 

 The significance of Eqs. (20)~(27) is that the effect of scale on the posterior PDF can be determined quantitatively. In 20 

addition to the model error and instrument error (both of them were not introduced explicitly in this study because they have 

little influence on the error caused by scale transformation), a new type of error in data assimilation was discovered in the 

analysis step. The expectation of the posterior PDF may vary with the scale of the state space if 𝑌 is an indirect observation, 

and the variance of the drift depends on the difference between 𝑠𝑌 and 𝑠𝑋 (based on Eq. (26) and Eq. (27)) or among 𝑠0, 𝑠𝑌 

and 𝑠𝑋 (based on Eq. (22)). In addition, if 𝑌 is a direct observation (Eq. (24) and Eq. (25)), the expectation of the posterior 25 

PDF is the difference between 𝑌 and 𝑋, and the variance is equal to the increment of Brownian motion with respect to the 
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scale. Additionally, if the results are not derived from assumption 1, i.e., the scale varies randomly, the posterior PDF is more 

complex because the Jacobian matrix in Lebesgue integration of scale transformation is arbitrary.  

3.4 Examples: the stochastic radiative transfer equation (SRTE) 

 To explicitly show how the stochastic scale transformations impact on assimilation, we introduce an illustrative example 

based on the scales presented in Figure 1. Assuming that in the analysis step, the state is with the standard scale  𝑠0, whose 5 

observation footprint is the unit square 𝐴0.  If the scale of observation space is 𝑠𝐶1 and its observation footprint is the disc 𝐶1, 

then the Jacobian matrix of the transformation between the scales of state space and observation space is not diagonal according 

to the statements in Sect. 3.1, leading the two scales do not obey the one-dimensional rule and against assumption 1. However, 

if let the scales of of state space and observation space are 𝑠𝐶1 and 𝑠𝐶2, respectively, the assumption 1 is met and it can be 

counted that 𝑠𝑋 = 𝑠𝐶1 =
𝜋

4
𝑠0 and 𝑠𝑌 = 𝑠𝐶2 =

9𝜋

4
𝑠0. 10 

 Now the scales of state space and observation space obey the one-dimensional rule, and then we further presume that the 

measure space 𝛺  in Figure 1 is free of the spatial heterogeneities and dynamic process variations depending on scale. 

Consequently, the drift rate 𝜑(𝑠) = 0. If denoting the value of state in the standard scale is 𝑋0, then the prior PDF of state is 

𝑋~𝑁 (𝑋0,
𝜋

4
𝑠0 − 𝑠0)  according to Eq. (17). , Noting that 

𝜋

4
𝑠0 − 𝑠0 is not a real number and only indicates the variation when 

the scale changes.  15 

 If 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠), the observation is the same physical quantity as the state, and according to Eq. (25), the likelihood 

function is 𝑝(𝑌|𝑋) = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝐶2 − 𝑠𝐶1|} = 𝑁 {𝑌0 − 𝑋(𝑠𝑋), |
9𝜋

4
𝑠0 −

𝜋

4
𝑠0|}.  

 To formulate the likelihood function in the case that the observation is different from the state, the SRTE will be employed 

in the following text. The SRTE is a stochastic integral-differential equation that describes the radiative transfer phenomena 

through a stochastically mixed immiscible media. Scientists have developed analytical or numerical methods for finding the 20 

stochastic moments of the solution, such as the ensemble-averaged or variance of the radiation intensity (Pomraning, 1998; 

Shabanov et al., 2000; Kassianov et al., 2011). 

 Consider the general expression of the SRTE (leave out the scattering and emission), 
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−𝜇
𝑑𝐼(𝜏)

𝑑𝜏
= −𝐼(𝜏) ,    (28) 

where 𝐼(𝜏), 𝜇 and 𝜏 are the radiation intensity, coefficient of radiation direction and optical depth, respectively. The analytical 

solution of Eq. (28) is  𝐼(𝜏) = −𝐼(0)𝑒
𝜏

𝜇⁄ . 

 To tie into more substantial random optical properties of transfer media, such as absorption and scattering, the optical depth 

𝜏 is assumed to be stochastic. So it suggests that optical depth is a scale-dependent Ito process and can be expressed as 5 

𝑑𝜏(𝑠) = 𝜑𝜏(𝑠)𝑑𝑠 + 𝜎𝜏(𝑠)𝑑𝑊(𝑠),   (29). 

This causes the radiation intensity depend on scale. 

 SRTE can be considered as a concrete instance of stochastic observation operator by defining 𝐻(𝑠, 𝑥(𝑠)) = 𝐼(𝑥) =

𝐼(0)𝑒
𝑥

𝜇⁄ . Therefore, 𝐻𝑠(𝑠, 𝑥(𝑠)) = 0, 𝐻𝑥(𝑠, 𝑥(𝑠)) =
1

𝜇
𝐼(0)𝑒

𝑥
𝜇⁄

 and 𝐻𝑥𝑥(𝑠, 𝑥(𝑠)) =
1

𝜇2 𝐼(0)𝑒
𝑥

𝜇⁄
. Based on Ito's Lemma, 
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. (30) 10 

 Radiation intensity is a scale-dependent Ito process. The difference between Eq. (30) and the general Ito process is that there 

is a primitive function 𝐼(𝜏(𝑠)) in the integral term. Therefore, the uncertainty of the radiation intensity is more complex 

because it is related to both the change of scale and the primitive function. 

 Integrating both sides of Eq. (30) yields the general solution of the radiation intensity, 

 
2

22

( ) ( ) ( )
( ) exp ( )

s s s
I s C dW s ds    


  

   
      

    
  ,  (31) 15 

where the constant 𝐶 ∈ 𝑅. Eq. (31) further indicates that 𝐼(𝜏(𝑠)) is a scale-dependent Ito process. Considering that the optical 

depth 𝜏 is the state, the radiation intensity 𝐼 is the observation and 𝐼(𝜏(𝑠)) is the observation operator, then the above results 

in Sect. 3.3 (For example, Eq. (20)) could be easily applied here to study the posterior PDF of data assimilation. 
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3.5 Extension to n-dimensional data assimilation  

 In the above discussion, we assumed that only one state existed in data assimilation. However, numerous states typically 

exist. This section further introduces the product spaces to extend the one-dimensional stochastic data assimilation to n-

dimensions. 

 Assume that the independent states 𝑋𝑘 are the variables of the measure spaces (𝛺𝑘, ℱ𝑘, 𝜇
𝑘
), 𝑘 = 1,2, … , 𝑛, and (𝛺𝑛, ℱ𝑛) is 5 

the product space, where 𝛺𝑛 = ∏ 𝛺𝑘
𝑛
𝑘=1   and ℱ𝑛 = ∏ ℱ𝑘

𝑛
𝑘=1  . According to Fubini’s theorem (Billingsley, 1986), only one 

product measure 𝜇𝑛  in (𝛺𝑛, ℱ𝑛) exists, such that 𝜇𝑛(∏ 𝐴𝑘
𝑛
𝑘=1 ) = ∏ 𝜇

𝑘
(𝐴𝑘)𝑛

𝑘=1 , where 𝐴𝑘 ∈ ℱ𝑘.  

 We define the state vector 𝑋𝑛 = (𝑋1, 𝑋2, … , 𝑋𝑛)𝑇  as a variable vector of the product measure space (𝛺𝑛, ℱ𝑛, 𝜇𝑛). In 

particular, if all the scales obey the one-dimensional rule, we have 

𝜇𝑛 (∏ 𝐴𝑘

𝑛

𝑘=1

) = ∏ 𝜉𝑘
2𝜇0(𝐴𝑘)

𝑛

𝑘=1

= (∏ 𝜉𝑘

𝑛

𝑘=1

)

2

𝜇0
𝑛 (∏ 𝐴𝑘

𝑛

𝑘=1

). 10 

This expression proves that the product measure also obeys a one-dimensional rule. However, the above results may not hold 

without the assumption that the states 𝑋𝑘are independent. 

 As discussed in Sect. 2.1, the Lebesgue measure 𝑚2 is a measure and the triple (𝑅2, ℒ2, 𝑚2) is a measure space. Therefore, 

the above extension is reasonable. 

 The analysis of a single state can also be applied to finite multiple states in the product measure space.  15 

4 Discussion & Conclusions 

4.1 Discussion 

 Our study offered a stochastic data assimilation framework to formulate the errors that are caused by scale transformation. 

The necessity of the methodology, the difference to previous works by other investigators, and the advantages and limitations 

of this study are discussed as follows. 20 

 The reasons that the methodology focuses on a stochastic framework are: First, the stochastic data assimilation framework 

is essentially consistent with the conceptions of scale and scale transformation. Both of them are associated with corresponding 

measure spaces (𝛺, ℱ, 𝜇). Therefore, it is natural to regard the state space and observation space as two different measure 

spaces, respectively, and each element of state (or observation) vector can be seen as a geophysical variable that mapping the 

state (or observation) measure space onto 𝑅. Correspondingly, as the integrals of random processes with respect to random 25 

processes, stochastic calculus was adopted ultimately. Second, using stochastic calculus can also formulate the errors caused 

by scale transformations. The study proceeds with and improves the understanding of representativeness error in terms of scale. 
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Results did not only prove the conventional point that the uncertainties of these errors mainly depend on the differences 

between scales, but indicated that the first-order differential of the nonlinear observation operator should also be incorporated 

in representativeness error. Last, stochastic calculus can be extended to meet a general scale transformation and formulate 

corresponding representativeness error. This was unattainable in previous work. For example, if the scale changes randomly, 

say, from an irregular footprint to another irregular footprint, the stochastic equation can offer a multiple-integral to present 5 

this kind of a scale transformation, such as 𝑉(𝑥, 𝑦) = 𝑉0 + ∫ ∫ 𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑋

𝑋0

𝑌

𝑌0
+ ∫ ∫ 𝜎(𝑥, 𝑦)𝑑𝑊1(𝑥)𝑑𝑊2(𝑦)

𝑋

𝑋0

𝑌

𝑌0
, where 

𝑊1(𝑥) and 𝑊2(𝑦) are two independent Brownian Motion. 

 The significant of this work is: We developed a more rigorous formulation of scale and the scale transformation based on 

Lebesgue measure, which places the related conceptions in a rigorous mathematical framework and then conduces new 

understanding of the errors caused by scale transformation. In addition, due to the Ito process-formed state and observation, a 10 

stochastic data assimilation framework was proposed by considering the nonlinear operators, heterogeneity of a geophysical 

variable and a general Gaussian representativeness error. Scale transformation is also nonlinear if the one-dimensional rule is 

not involved. Additionally, Ito processes-formed state and observation offer the drift rate (i.e., 𝜑(𝑠) in Eq. (10)) to formulate 

the heterogeneity associated with scale transformation. It also permits the representativeness error to be general Gaussian in 

this framework. If all the integrands in Eq. (13) and Eq. (14) are nonlinear functions instead of constants (in this study we 15 

let 𝜑𝑋 (𝑠) = 0, 𝜑𝑌(𝑠) = 0 and 𝜎𝑋(𝑠) = 𝜎𝑌(𝑠) = 1 for simplicity), then these two equations are integrated over the field of 

Brownian motion, and state and observation are the general Gaussian processes of scale. Based on these functions, 

representativeness error is a general Gaussian process.  

 As a theoretical exploration towards scale transformation and stochastic data assimilation, there is still big room for 

improvement. First, we reduced the scale transformation by one-dimensional rule, and let the variables in data assimilation 20 

evolve regularly according to assumptions 1~3. So, only the ideal result was investigated. Therefore, an in-depth and 

comprehensive exploration should be conducted in future to describe other situations in the real world. However, either an 

arbitrary scale transformation or the geophysical variable without ignoring the drift rates will deduce lengthy results. Therefore, 

the second improvement focuses on how to make the formulation more concise. Last, noting that all the results in our 

framework were given in terms of probability, it is necessary to implement the real-world applications of these theoretical 25 

results, such as introducing some concrete dynamic models to formulate the Ito process-formed geophysical variable of scale. 

4.2 Conclusions 

 In this study, we mainly addressed two basic problems associated with scale transformation in earth observation and 

simulation. First, we produced a mathematical formalism of scale and scale transformation by employing measure theory. 

Second, we demonstrated how scale transformation and associated errors could be presented in a stochastic data assimilation 30 

framework. 
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 We revealed that the scale is the Lebesgue measure with respect to the observation footprint or model unit. Scale is related 

to the shape and size of a footprint, and scale transformation depends on the spatial change between different footprints. We 

then defined the geophysical variable, which further considers the heterogeneities and physical processes. A geophysical 

variable consequently expresses the spatial average at a specific scale.  

 We formulated the expression of scale transformation and investigated the error structure that is caused by scale 5 

transformation in data assimilation using basic theorems of stochastic calculus. Formulations explicate that the first-order 

differential of the nonlinear observation operator should be considered in representativeness error, and the uncertainty of 

representativeness error is directly associated with the difference between scales. A concrete physical models (SRTE) was 

introduced to demonstrate the results when observation operator is nonlinear. Extension the results to n-dimensional stochastic 

data assimilation was also presented. 10 

 This work conducted a theoretical exploration of formulating the errors caused by scale transformation in stochastic data 

assimilation framework. We hope that the stochastic methodology can essentially benefit the study on these errors.  

5 Notation 

5.1 Basic notations 

𝛺  Non empty space  15 

ℱ  σ-algebra 

𝜇  Measure 

𝑑𝑉  Variable process 

𝑊(𝑠)  Brownian motion 

(𝛺, ℱ, 𝜇)  Measure space 20 

𝐼𝑛  N-dimensional Lebesgue volume 

𝑚𝑛  Lebesgue measure or an outer measure on 𝑅𝑛  

ℒ𝑛   Lebesgue σ-algebra of 𝑅𝑛 

∫ 𝑓𝑑𝑚𝑛  Lebesgue integral 

|𝐽(∙)|  Jacobian determinant   25 

(𝛺𝑛, ℱ𝑛)  Product space 

5.2 New notations 

Notation Name Explanation Index 

𝒔 Scale 
The observation footprint or model unit to observe or 

model a geophysical variable 

Sect. 1 & 

Sect. 3.1 
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𝑨𝟎 Unit square in 𝑅2  Sect. 3.1 

𝒔𝟎 Standard scale A Lebesgue integral of 𝐴0 is the unit area Sect. 3.1 

 One-dimensional rule Two scales are geometrically similar Eq. (8) 

𝑽 Geophysical variable Estimation of a variable at a specific scale Sect. 3.2 

𝒅𝑿 State process Ito process-formed state Eq. (13) 

𝒅𝒀 Observation process Ito process-formed observation Eq. (14) 

𝑿𝟎 State in 𝑠0  Eq. (15) 

𝒀𝟎 Observation in 𝑠0  Eq. (16) 

𝒔𝑿 Scale of state space  Eq. (15) 

𝒔𝒀 Scale of observation space  Eq. (16) 
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Abstract: The uUnderstanding of uncertainties the errors caused by spatial scale transformation in Earth observations and 10 

simulations requires a rigorous definition of scale.has been hindered by the spatial scale issue. In addition, errors that are 

caused by spatial scale transformation These errors are also an important component of representativeness errors in data 

assimilation. Several relevant studies have been conducted, but the theorization of these the scale associated representativeness 

errors is still exceed the abilities of current theory not well developedbecause of the associated nonlinearity. Thus, wWe attempt 

to addressed these problems by reformulating the data assimilation framework using measure theory and stochastic calculus . 15 

First, the measure theory is used to propose a mathematical definition such that the spatial scale is the Lebesgue measure with 

respect to the observation footprint or model unit. , Then, and the Lebesgue integration by substitution is used to describe the 

scale transformation. Second, a scale-dependent variablegeophysical variable is defined to further consider the heterogeneities 

and dynamic processes. Finally, the structures of scale-dependent errors in nonlinear and general Gaussian senses are studied 

in the Bayesian framework of data assimilation based on stochastic calculus. If we restrict the scale to be All the results were 20 

presented on the condition that scale is one-dimensional, and the variations in this type of these errors is proportional todepend 

on the difference between scales. This new methodology formulation can expand the understanding and treatment ofprovides 

a more general framework to understand the representativeness error in a nonlinear and stochastic sensedata assimilation and 

may be able to and is a promising way to address the spatial scale issue. 

1 Introduction 25 

Scientists have devoted considerable attention to understanding uncertainties in Earth observations and simulations. However, 

uUncertainties that are caused by spatial scale  (scale is used below to abbreviate spatial scale) transformations result in 

significant errors in understanding geophysical variables and have yet to be fully addressed. Here, the spatial scale refers to 

the observation footprint or model unit in which a geophysical parameter can beis measured or evaluatedmodelled. Empirical 
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studies have been conducted only recently. Scientists have devoted considerable attentions to understanding uncertainties 

associated to scale in Earth observations and simulations. Investigators Studies have found that the uncertainty increases with 

increases in the difference between spatial scales (Famiglietti et al., 2008; Crow et al., 2012; Gruber et al., 2013; Hakuba et 

al., 2013; Huang et al., 2016; Li and Liu, 2016; Ran et al., 2016). This uncertainty that is associated with the spatial scale (for 

brevity, the term “scale” is used to refer to the spatial scale below) results in significant errors in understanding geophysical 5 

parameters. 

 The scale issue is mainly derived from the strong spatial heterogeneities (Miralles et al., 2010; Li, 2014) and irregularities 

(Atkinson and Tate, 2000) that are associated with geophysical parameters across different scales, and both the spatial 

heterogeneities and irregularities vary nonlinearly with scale. In addition, the scale issue is closely related to dynamic process 

variations in land surface systems, which include hydrology (Giménez et al., 1999; Vereecken et al., 2007; Merz et al., 2009), 10 

soil science (Ryu and Famiglietti, 2006; Lin et al., 2010), radiative transfer (Jacquemoud et al., 2009) and ecology (Wiens, 

1989).   

 A mathematic conceptualization of scale is extremely important to study Earth observations and simulations.However, 

traditionally, scale is not explicitly expressed in geosystem dynamics and its measurement. A rigorous definition of scale is 

difficult to find, except for an intuitive conception (Goodchild and Proctor, 1997) and certain qualitative classifications of 15 

scale (Vereecken et al., 2007). This gap partially reflects the complexity of this problem and requires corresponding 

mathematical tools to elucidate the “scale”. The spatial scale in Earth observations and simulations refers to the observation 

footprint or model unit in which a geophysical variable is observed or modelled (scale is used below to abbreviate spatial 

scale). Scale is traditionally defined in terms of distance, which is not adequate both because distance is a one-dimensional 

quantity but scale generally refers to a two- or three-dimensional space, and because scale may change much complicated (for 20 

example, form an irregular observation footprint to a square observation footprint). Generally, scale is not explicitly expressed 

in the dynamics of a geophysical variable, partially because a rigorous definition of scale is difficult to find, except for an 

intuitive conception (Goodchild and Proctor, 1997) and certain qualitative classifications of scale (Vereecken et al., 2007). 

This reflects the complexity of scale and requires a more rigorous mathematical conceptualization of scale. 
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 Scale transformation of a geophysical variable may result in significant errors (Famiglietti et al., 2008; Crow et al., 2012; 

Gruber et al., 2013; Hakuba et al., 2013; Huang et al., 2016; Li and Liu, 2016; Ran et al., 2016). These errors are mainly caused 

by the strong spatial heterogeneities (Miralles et al., 2010; Li, 2014) and irregularities (Atkinson and Tate, 2000) that are 

associated with geophysical variables across different scales, and are also closely related to dynamic variations, e. g., 

hydrological (Giménez et al., 1999; Vereecken et al., 2007; Merz et al., 2009; Narsilio, et al. 2009), soil (Ryu and Famiglietti, 5 

2006; Lin et al., 2010) and ecological (Wiens, 1989) processes. How to develop mathematical tools to elucidate the scale 

transformation has yet to be fully addressed. 

 Data assimilation could be an ideal tool to explore the scale transformation presents because it presents a unified and 

generalized framework in Earth system modelling and observation in a unified and generalized framework (Talagrand, 1997) 

and therefore is an ideal tool to explore scale transformation. In the forecasting operators of data assimilation, scale and 10 

associated uncertainties exist in forcing data and parameters, which Geophysical data are typically collected observed by 

various Earth observations techniques or from data products, therefore to update the observation data in a data assimilation 

system may result in scale transformations between observation space and system state space.therefore, scale mismatch may 

arise between them. Furthermore, this problem is even more common between the model units and observation footprints of 

measurements If observation operator is strongly nonlinear and complex, errors caused by scale transformation is even more 15 

serious (Li, 2014).because both the forecasting and observation operators in data assimilation are likely strongly nonlinear and 

complex (Li, 2014). The scale issue cannot be properly treated using traditional linear rules in Earth observations and 

simulations. The forecasting and observation operators of a data assimilation system are typically deterministic models. 

Recently, nonlinear dynamic models that were based on stochastic differential equations (SDEs), such as the stochastic Lorenz 

model (Miller et al., 1999; Eyink et al., 2004), have been studied in assimilation. A data assimilation study that was based on 20 

stochastic processes (Miller, 2007; Apte et al., 2007) has also been proposed. Compared to deterministic models, data 

assimilation that is based on stochastic models is more applicable in an integrated and time-continuous theoretical study 

(Bocquet et al., 2010), and creates an infinite sampling space of the system state (Apte et al., 2007). However, the theorems of 

calculus that are based on stochastic processes (or stochastic calculus) are different from those of ordinary calculus.Scale 
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transformations between different components of data assimilation must be reformulated in a stochastic manner to fully present 

the random and nonlinear geosystem dynamics and observations in a multi-scale data assimilation framework. 

 An important concept that is related to scale transformation in data assimilation is “representativeness error”, which is 

associated with the inconsistency in spatial and temporal resolutions between states, observations and operators (Lorenc, 1986; 

Janjić and Cohn, 2006; van Leeuwen, 2014; Hodyss and Nichols, 2015), and the missing physical information that is related 5 

to numerical operator compared to the ideal operator (van Leeuwen, 2014), such as the discretization of a continuum model or 

neglect of necessary physical processes. The first source of representativeness error is related to scale. According to the above 

discussion, scale issue produces effects on the land surface dynamic process, so we argue that the second is also partly 

associated with the scale variations in physical processes. Thus, the scale issue is a universal phenomenon in the study of Earth 

observations and simulations and inevitably results in representativeness error.The representativeness error and 10 

measurementinstrument error make up the observation error of data assimilation. Under the Gaussian assumption, they are 

independent of each other (Lorenc, 1995; van Leeuwen, 2014). This study will not introduce the measurementinstrument error 

when formulate the scale transformation in data assimilation. 

 Recently, approaches have been developed to assess representativeness error. Janjić and Cohn (2006) studied 

representativeness error by treating systemtreated states as the sum of resolved and unresolved portions. This resulted in 15 

observation error was the sum of the measurement error and representativeness error. Bocquet et al. (2011) used a pair of 

operators, namely, restriction and prolongation, to connect the relationship between the finest regular scale and a coarse scale, 

and determined the scale-dependent representativeness error using a multi-scale data assimilation framework. van Leeuwen 

(2014) considered two complicated cases. In one, i.e., conducting the observation vector s had in a finer resolution than the 

model. In the other, compared with system state vector (we below use “observation” and “state” for brevity) and assimilating 20 

the retrieved variables, which represented different dynamic processes, were assimilated. Their solutions were formulated 

using an agent variable in observation or model state space, and a particle filter was proposed to treat the nonlinear relationship 

between observations, states and retrieved values. Hodyss and Nichols (2015) also estimated the representativeness error based 

on the concept that the main cause of this error isby investigating the difference between the truth and the inaccurate value that 

is forecasted generated by the forecasting model. 25 
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 Overall,Although these approaches explored the structure of representativeness error and offered various solutions. However, 

improvements can still be madeare still necessary to investigate what is the exact expression of errors caused by scale 

transformation in data assimilation. The authors believe that these approaches are optimal in linear systems, but may not be 

suitable when observations are heterogeneous and sparse and thus cannot be averaged to fit model units at a relatively coarse 

scale, or when operators are nonlinear between states and observations. In previous studies, although the general equations in 5 

the nonlinear case were given.the forecasting and observation operators, maps of the resolutions of different variables and 

models were assumed to be linear. Representativeness error is unavoidable, even if micro-scale observations are averaged over 

a larger area (van Leeuwen, 2014; Li and Liu, 2016), partly because of the heterogeneity of geophysical parameter. However, 

Without taking heterogeneities and nonlinear operators into account, representativeness error cannot be fully understood. 

However, heterogeneity varies depending on the situation situationally and is difficult to be formulated in a general theoryan 10 

integrated study.  We can use semivariogram to quantify the heterogeneity of a geophysical parameter in a special region at a 

special time, but have no idea how to generalize this result to the entire region and time.  

 Data assimilation studies based on stochastic processes (Miller, 2007; Apte et al., 2007) or stochastic dynamic model (Miller 

et al., 1999; Eyink et al., 2004) have been proposed recently. Compared to deterministic models, stochastic data assimilation 

is more applicable in an integrated and time-continuous theoretical study (Bocquet et al., 2010), and creates an infinite sampling 15 

space of the system state (Apte et al., 2007). Although the theorems of calculus that are based on stochastic processes (or 

stochastic calculus) are different from those of ordinary calculus, these advantages suggest that stochastic data assimilation 

offers a more general framework to study scale transformation. 

We attempt to explore the mathematic definitions of scale and scale transformation, and then formulate the errors caused by 

scale transformation in a general theory study on stochastic data assimilation. We believe that the solution to this problem 20 

should begin with an integrated study of all the random evolutions of a parameter in its probability distribution space. 

Meanwhile, data assimilation also stresses an integrated understanding of the probability distribution function (PDF) of the 

model space, which results in an estimation of the first and second moments (data value and error information). 

 In this study, we attempt to explore the mathematic definition of scale and how scale transformation influences the 

errors in data assimilation. The next section introduces the basic concepts and theorems of measure theory, and stochastic 25 

calculus and data assimilation. In Sect. 3, we present some essential concepts, such asthe definitions of scale,  and scale 

transformation and variable, which form the basis for the subsequent study. In Sect. 4,The posterior probability of system state 

was also reformulated by scale transformation in a stochastic data assimilation framework. we establish a Bayesian description 

of data assimilation with time- and scale-dependent stochastic processes and investigate the effect of scale transformations on 
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the posterior probability of the state. In the final section, the contributions and deficiencies of this study is were presented in 

light of previous workdiscussed. Comments and future work are also summarized. 

2 Basic knowledge 

 As mentioned above, tThe scale greatly depends on the geometric features of a certain observation footprint or model unit. 

The model unit is a specified subspace where a geophysical variable evolves in the model space. It could be a point, a 5 

rectangular grid, or an irregular unit such as a response unit (watershed, landscape patch and so on). We offer a solution in 

which the definition of scale must use the uses measure theory and the expression of geophysical parameter variable as a 

stochastic process must uses stochastic calculus. Therefore, we first introduce several basic concepts of measure theory and 

stochastic calculus. 

2.1 Measure theory 10 

 Let 𝛺 be an arbitrary nonempty space. ℱ is a σ-algebra (or σ-field) of subsets of 𝛺 that satisfies the following conditions: 

(i) 𝛺 ∈ ℱ, and the empty set 𝛷 ∈ ℱ; 

(ii) 𝐴 ∈ ℱ implies that its complementary set 𝐴𝑐 ∈ ℱ; 

(iii) 𝐴1, 𝐴2, ⋯ ∈ ℱ implies their union 𝐴1 ∪ 𝐴2 ∪ ⋯ ∈ ℱ. 

 A set function 𝜇 of ℱ is called a measure if it satisfies the following conditions: 15 

(1) 𝜇(𝐴) ∈ [0, ∞) and 𝜇(𝛷) = 0; 

(2) If 𝐴1, 𝐴2, ⋯ ∈ ℱ  is any disjoint sequence and  ⋃ 𝐴𝑘
∞

𝑘=1
∈ ℱ , 𝜇  is countably additive such that  𝜇(⋃ 𝐴𝑘

∞

𝑘=1
) =

∑ 𝜇(𝐴𝑘)∞
𝑘=1 . 

 If  𝜇(𝛺) = 1, 𝜇 can be replaced by the probability measure  𝑝𝑃 , and if 𝜇  is finite, 𝑝𝑃  can be calculated as  𝑝𝑃(𝐴) =

𝜇(𝐴) 𝜇(𝛺)⁄ . The triples (𝛺, ℱ, 𝜇) and (𝛺, ℱ, 𝑝𝑃) are the measure space and probability measure space, respectively. 20 
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 Let 𝛺 be the set of real numbers 𝑅 and σ-algebra ℬ be Borel algebra, which is generated by all closed intervals in 𝑅. Then 

∀ 𝐴 = [𝑎, 𝑏] ∈ 𝐵 , a Lebesgue measure on 𝑅 is defined as 𝐼(𝐴) = 𝑏 − 𝑎. Intuitively, the Lebesgue measure on 𝑅 actually 

coincides with length. 

 An n-dimensional Lebesgue volume is defined to measure the standard volumes of subsets in 𝑅𝑛  based on 𝐼𝑛(𝐴) =

∏ (𝑏𝑘 − 𝑎𝑘)𝑛
𝑘=1 , where 𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘, 𝑘 = 1,2, ⋯ , 𝑛]  is an n-dimensional regular cell in  𝑅𝑛 . The n-dimensional 5 

Lebesgue volume is an ordinary volume, such as length (n=1), area (n=2) and volume (n=3).  

 Generally, a Lebesgue measure on 𝑹𝒏 assumes that 𝐴 is any subset of 𝑅𝑛. FirstNext, we define the outer measure is 

defined as  𝑚𝑛(𝐴) = inf{∑ 𝐼𝑛(𝐴𝑖)
+∞
𝑖=1 } , where  inf{∙}  is the infimum,  𝐴𝑖 = [𝑥: 𝑎𝑖,𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑖,𝑘 , k = 1,2, ⋯ , n]  is the n-

dimensional regular cell in 𝑅𝑛, and 𝐴 ⊆ ⋃ 𝐴𝑖
+∞

𝑖=1 . Thus, if 𝐴 is any subset of 𝑅𝑛, one can collect many sets of n-dimensional 

regular cells {𝐴𝑖} to cover 𝐴. Among them, the outer measure denotes the set whose union has the smallest n-dimensional 10 

Lebesgue volume.  

 Both 𝐼(𝐴) and 𝐼𝑛(𝐴) are measures because they satisfy the two conditions of a measure. However, the outer measure 𝑚𝑛(𝐴) 

is not a measure because it is not countably additive. Fortunately, almost all the observed footprints and model units are finite 

and closed; therefore, as an alternativeTo match the two conditions of a measure, one can define the outer measure 𝑚𝑛 as a 

Lebesgue measure on measure spaces (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛), where  ℒ𝑛 is the Lebesgue σ-algebra of 𝑅𝑛. The construction of the 15 

Lebesgue σ-algebra is based on the Caratheodory condition (Bartle, 1995, definition 13.3). Fortunately, almost all of the 

observation footprints and model units are finite and closed, leading them to be Lebesgue measurable. This consequently 

ensures the Lebesgue measure 𝑚𝑛 is a measure and the triple (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is a measure spaces. The Lebesgue measure of a 

Lebesgue measurable any subset in 𝑅𝑛  also coincides with its volume. 

 The n-dimensional Lebesgue integral in (𝑅𝑛 , ℒ𝑛 , 𝑚𝑛) is ∫ 𝑓𝑑𝑚𝑛 , where 𝑓 is a real function on 𝑅𝑛. The Lebesgue integral 20 

can be further denoted by ∫ 𝑓𝑑𝑚𝑛 = ∫ 𝑓(𝑥)𝑑𝑥, where 𝑥 ∈ 𝑅𝑛 and 𝑥 = (𝑥1, ⋯ , 𝑥𝑛). 

 In the two-dimensional case (𝑛 = 2), the Lebesgue integral is 

∬𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝐴

, 
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where 𝐴 ∈ ℒ2. Next, we consider the Lebesgue integration by substitution on 𝑅2. Let 𝑇(𝑥1, 𝑥2) = [𝑡1(𝑥1, 𝑥2), 𝑡2(𝑥1, 𝑥2)] =

[𝑦1, 𝑦2] be a one-to-one mapping of a subset  𝑋 onto another subset  𝑌  on  𝑅2 . Assuming that 𝑇  is continuous and has a 

continuous partial derivative matrix 𝑇𝑥 = (
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
), then 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= ∬ 𝑓(𝑇(𝑥1, 𝑥2))|𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2
𝑋

, 5 

where the Jacobian determinant  |𝐽(𝑥1, 𝑥2)| = |det 𝑇𝑥| = |
𝜕𝑡1 𝜕𝑥1⁄ 𝜕𝑡1 𝜕𝑥2⁄

𝜕𝑡2 𝜕𝑥1⁄ 𝜕𝑡2 𝜕𝑥2⁄
|. If 𝑇 is linear, the integral reduces to 

∬𝑓(𝑦1, 𝑦2)𝑑𝑦1𝑑𝑦2
𝑌

= |𝐽(𝑥1, 𝑥2)| ∬ 𝑓(𝑇(𝑥1, 𝑥2))𝑑𝑥1𝑑𝑥2
𝑋

. 

 By so, any observation footprint or model unit can be regarded as a Lebesgue measurable subset in a two-dimensional 

space 𝑅2. 

 Additional details regarding measure theory can be found in the literature (for example, Billingsley, 1986; Bartle, 1995). 

2.2 Stochastic calculus 10 

 We then introduce have incorporated some necessary concepts and theorems of stochastic calculus. All the classic theorems 

have beenare introduced without proofs; their detailed derivations can be found in the literature (Itô, 1944; Karatzas et al., 

1991; Shreve, 2005). 

 Compared to ordinary differential and integral calculus, sStochastic calculus is defined for integrals of stochastic 

processesordinary integrals with respect to stochastic processes, such as Brownian motion. One of the simplest stochastic 15 

processes is Brownian motion is one of the simplest stochastic processes. The Brownian motion 𝑊 that is defined on a 

probability measure space (𝛺, 𝐹, 𝑃𝑝) is characterized as follows: 

1) 𝑊(0) = 0. 

2) ∀𝑡1𝑡 > 𝑠1𝑠 ≥ 𝑡2 > 𝑠2 > 0, the increments 𝑊(𝑡1𝑡) − 𝑊(𝑠1𝑠)  and 𝑊(𝑡2) − 𝑊(𝑠2)are independent. 

3) ∀𝑡 > 𝑠 ≥ 0, 𝑊(𝑡) − 𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠). 20 

 The last two conditions represent that ∀𝑡2 > 𝑠21 > 𝑡1 > 𝑠1 ≥ 0, 𝑊(𝑡2) − 𝑊(𝑠2) and 𝑊(𝑡1) − 𝑊(𝑠1) are independent 

Gaussian random variables. Additionally, Brownian motion is based on a probability measure space, so 𝑊 is related to the 

probability measure 𝑝𝑃. 

 Stochastic calculus based on Brownian motion produces Ito process. The differential form of the time-dependent Ito 

process is 25 

𝑑𝐼 = 𝜑(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡),   (1) 
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where 𝜑(𝑡), 𝜎(𝑡) and 𝑊(𝑡) are the transition probabilitydrift rate, volatility rate and Brownian motion, respectively. The 

integral form of Eq. (1) is 

𝐼(𝑡) = 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
+ ∫ 𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
.  (2) 

 Theorem 1: For any Ito process defined as in Eq. (1), the quadratic variation that is accumulated on the scale interval 

[0, 𝑡] is  5 

 [𝐼, 𝐼](𝑡) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑡

0
,   (3) 

and the drift of Eq. (1) is 𝐼(0) + ∫ 𝜑(𝑢)𝑑𝑢
𝑡

0
. 

 As distinguishing features of stochastic calculus, quadratic variation and drift can be regarded as stochastic versions of the 

variance and expectation, respectively. That is, the variance and expectation are instances of their random variable stochastic 

counterparts within a certain integral path. Therefore, rather than being constants, quadratic variation and drift are given in 10 

terms of probability. The quadratic variation is expressed by the second-order variation of a stochastic process, which 

consequently is 0 in a continuous differentiable random variable. Equation (3) relies on the volatility 𝜎2(𝑢); thus, the quadratic 

variation varies with the integration path.  In addition, a general expression occurs when the integral path is random; that is, 

Eq. (2) is the curvilinear integral 𝐼(𝑡) = 𝐼(0) + ∫
𝐿

𝜑(𝑢)𝑑𝑢 + ∫
𝐿

𝜎(𝑢)𝑑𝑊(𝑢), where 𝐿 is an arbitrary path from 0 to 𝑡. 

 Theorem 2 (Ito's Lemma): If the partial derivatives of function 𝑓(𝑢, 𝑥), viz. 𝑓𝑢(𝑢, 𝑥)，𝑓𝑥(𝑢, 𝑥) and 𝑓𝑥𝑥(𝑢, 𝑥) are defined 15 

and continuous, and if 𝑡 ≥ 0, we have 

𝑓(𝑡, 𝑥(𝑡)) = 𝑓(0, 𝑥(0)) + ∫ 𝑓𝑢(𝑢, 𝑥(𝑢))𝑑𝑢 +
𝑡

0
∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑡

0
+ ∫ 𝑓𝑥(𝑢, 𝑥(𝑢))𝜑(𝑢)𝑑𝑢

𝑡

0
+

1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑥(𝑢))𝜎2(𝑢)𝑑𝑢

𝑡

0  .    (4) 

 Ito's Lemma is typically used to build the differential of a stochastic model with Ito processes. In this sectionstudy, Ito's 

Lemma is applied to study the scale-dependent relationship between the observations operator and state, as well asand the 20 

uncertainties errors that are caused by scale transformationin the analysis stepupdate of the state by introducing new 

observations. 

2.3 Traditional formulation of data assimilation in the Bayesian theorem framework 

 We use the widelywell accepted Bayesian theorem of data assimilation (Lorenc, 1995; van Leeuwen, 2015) to investigate 

its time- and scale-dependent errors. State and observation are first assumed to be one-dimensional. In Sect. 3.5, the results are 25 

extended to n-dimensional state vectors and observation vectors. 

 Consider aA nonlinear forecasting system that iscan be described by 

𝑋(𝑡𝑘) = 𝑀𝑘−1:𝑘(𝑋(𝑡𝑘−1)) + 𝜂(𝑡𝑘),  (5) 

where  𝑀𝑘−1:𝑘(⋅), 𝑋(𝑡𝑘) and 𝜂(𝑡𝑘) represent a nonlinear forecasting operator that transits the state from the discrete time 𝑘 −

1 to 𝑘, the state with prior probability distribution function (PDF)  𝑝(𝑋), and the model error at time 𝑘, respectively.  
30 
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 If a new observation is available at time 𝑘, the observation system is given by 

𝑌𝑜(𝑡𝑘) = 𝐻𝑘(𝑋(𝑡𝑘)) + 𝜀(𝑡𝑘),  (6) 

where 𝐻𝑘(⋅), 𝑌𝑜(𝑡𝑘) and 𝜀(𝑡𝑘) represent the nonlinear observation operator, true observation with prior PDF 𝑝(𝑌), and 

observation error at time 𝑘, respectively. 

 Previous studies (e.g., Janjić and Cohn, 2006; Bocquet et al. 2011) described the origin of the components of 𝜀(𝑡𝑘) and 5 

𝜂(𝑡𝑘), such as white noise, the discretization error of a continuum model, the errors that are caused by missing physical 

processes, and scale-dependent bias. In this study, we assume that both forecasting and observation operators are derived from 

a perfect models, so errors that are caused by missing physical processes are discarded.  

 According to Bayesian theory, the posterior PDF of the state based on the addition of a new observation into the system is 

𝑝(𝑋|𝑌) = 𝑝(𝑌|𝑋)𝑝(𝑋) 𝑝(𝑌)⁄ ,  (7) 10 

where 𝑝(𝑋|𝑌) is the posterior PDF that presents the PDF value of state 𝑋 given an available observation 𝑌. 𝑝(𝑌|𝑋) is a 

likelihood function, which is the probability that an observation is 𝑌 given a state 𝑋. 𝑝(𝑋) and 𝑝(𝑌) are the prior PDF values 

of the state and observation, respectively. Here, 𝑝(𝑋) is supposed to be known and 𝑝(𝑌) is a normalisation constant (van 

Leeuwen, 2014). SoTherefore,The aim of data assimilation is equivalent to finding the posterior PDF 𝑝(𝑋|𝑌). 

3 Reformulation of scale transformation in data assimilation framework 15 

3.1 Definition of scale 

 We define the scale based on the measure theory that was introduced in section Sect. 2. The relationship between Lebesgue 

measure in (𝑅2, ℒ2, 𝑚2) and scale is firstly introduced by the following measures of Earth observations. The following 

measures of Earth observations are considered to connect the Lebesgue measure in (𝑅2, ℒ2, 𝑚2) and scale.  

(i) Measure of a single point measurementobservation: When the observation footprint is very small and homogeneous, 20 

we assume that its footprint approaches zero and its measure is accordingly zero under the condition of the Lebesgue 

measure.  However, in the real world, the volume of the observation footprint is not zero; thus, any single point 

measurement with an absolute zero measure is just an ideal assumption. 

(ii) Measure in a line: The measure is a one-dimensional Lebesgue measure. 

(iii) Measure of a rectangular pixel (for example, remote sensing observation): ∀𝐴 = [𝑥: 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘 , k = 1,2], it is a 25 

two-dimensional Lebesgue volume, i.e., 𝜇𝑖𝑖𝑖(𝐴) = 𝐼2(𝐴) = ∏ (𝑏𝑘 − 𝑎𝑘)2
𝑘=1 . 
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(iv) Measure of a footprint-scale  measurementobservation: The observed space of a footprint-scale measurement 

observation is any bounded closed domain 𝐴, most of which are is not necessary to be regular rectangless, such asbut 

as circles or ellipses. We use Lebesgue measure on  𝑅2 , i.e.,  𝜇𝑖𝑣(𝐴) = 𝑚2(𝐴) = inf {∑ 𝐼2(𝐴𝑖)
+∞

𝑖=1
} , where 𝐴𝑖 =

[𝑥: 𝑎𝑖,𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑖,𝑘 , 𝑘 = 1,2] and 𝐴 ⊆ ⋃ 𝐴𝑖
+∞

𝑖=1 . Obviously, measure (i)~(iii) are the special cases of the measure of a 

footprint-scale measurementobservation. 5 

 Actually, all the above measures mainly depend on the shape and size of 𝐴. The Lebesgue measure on 𝑅2 coincides with 

the area, so the Lebesgue integral of 𝜇𝑖𝑣(𝐴) is ∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1.  

 Now, we can generalize the above examples by defining the scale as the Lebesgue measure with respect to the observation 

footprint. This definition can also be extended to a certain model unit, which could be a point, a rectangular grid, or an irregular 

unit such as a response unit (watershed, land coverscape patch and so on). Thus, for any subset 𝐴 ∈ ℒ2 , the scale is 𝑠 =10 

𝑚2(𝐴) = ∬ 𝑑𝑥1𝑑𝑥2𝐴 , where the real function 𝑓 ≡ 1. From a geometric perspective, the measure function 𝑚2(∙) refers to the 

shape of the subset, and the scale further indicates its size.  

 We represent the scale as 𝑠, and let 𝑠0 = 𝑚0
2(𝐴0) = ∬ 𝑑𝑥1𝑑𝑥2𝐴0

= 1 be the standard scale, where 𝐴0 = [𝑥: 0 ≤ 𝑥𝑘 ≤

1, 𝑘 = 1,2] is a unit intervalthe unit square in 𝑅2. The standard scale can be regarded as a basic unit of scale . It presents a 

standard reference, by which one can make a quantitative comparison between different scales. The standard scale is also the 15 

origin of scales that let scales vary similarly to other physical quantities, such as time. 

 We can further define scale transformation. For  ∀𝐴1, 𝐴2 ∈ ℒ2 , if there are two different scales, 𝑠1 = 𝑚2(𝐴1) =

∬ 𝑑𝑥1𝑑𝑥2𝐴1
 and  𝑠2 = 𝑚2(𝐴2) = ∬ 𝑑𝑦1𝑑𝑦2𝐴2

, then we can obtain  𝑠2 = ∬ 𝑑𝑦1𝑑𝑦2𝐴2
= ∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴1

 based on 

Lebesgue integration by substitution, where the Jacobian matrix 𝐽(𝑥1, 𝑥2) represents the geometric transformation from 𝐴1 

to 𝐴2. In particular, if 𝐽(𝑥1, 𝑥2) = 𝑑𝑖𝑎𝑔(𝜉, 𝜉), 𝜉 ∈ 𝑅, which also indicates that the geometric transformation is linear, then the 20 

following expression is valid based on Lebesgue integration by substitution: 

𝑠2 = |𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2
𝐴1

= 𝜉2𝑠1, (58)
 

where 𝑠1 and 𝑠2 represent a the change of one-dimensional rule change. 
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 If two scales follow the one-dimensional rule, they are geometrically similar. This rule simplifies scale as a one-dimensional 

variable that corresponds to the scale differences transformations between most remote sensing images with various spatial 

resolutions. For example, ∀𝐴 = [𝑥: 𝑎 ≤ 𝑥𝑘 ≤ 𝑏, 𝑘 = 1,2], where 𝐴 and the unit square interval 𝐴0 are geometrically similar, 

and the scale 𝑠 = 𝜇𝑖𝑖𝑖(𝐴)  can be expressed by the one-dimensional rule of scale transformation: 𝑠 =  𝜇𝑖𝑖𝑖(𝐴) =

|𝐽(𝑥1, 𝑥2)| ∬ 𝑑𝑥1𝑑𝑥2𝐴0
= (𝑏 − 𝑎)2𝑠0. For another example, let 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴  be a disc measurethe scale, where  𝐴 is of a 5 

disc observation footprint 𝐴  with radius  𝑟 . The mapping function between 𝐴  and 𝐴0 is 𝑇(𝑥1, 𝑥2) =

[𝑟𝑥1 cos(2𝜋𝑥2) , 𝑟𝑥1 sin(2𝜋𝑥2) ; 0 ≤ 𝑥1 ≤ 𝑟1, 0 ≤ 𝑥2 ≤ 2𝜋1] = [𝑦1, 𝑦2] , and the Jacobian determinant  |𝐽(𝑥1, 𝑥2)| =

|
𝑟 cos(2𝜋𝑥2) −2𝜋𝑟𝑥1 sin(2𝜋𝑥2)

𝑟 sin(2𝜋𝑥2) 2𝜋𝑟𝑥1 cos(2𝜋𝑥2)
| = 2𝜋𝑟2𝑥1. Therefore, 𝑠 = ∬ 𝑑𝑦1𝑑𝑦2𝐴

= ∬ |𝐽(𝑥1, 𝑥2)|𝑑𝑥1𝑑𝑥2𝐴0
= 𝜋𝑟2𝑠0, which is equal 

to its area. However, 𝑠0 and 𝑠 do not obey one-dimensional rule because the Jacobian matrix is not diagonal. 

 The Layer 1 in Figure 1 shows the relationship between the Lebesgue measure and scale. The measure space 𝛺 =10 

[𝑥: 0 ≤ 𝑥𝑘 ≤ 4, 𝑘 = 1,2]  is regularly divided by the unit squareinterval  𝐴0 . Let scales 𝑠𝐶1 = 𝑚𝐶1
2 (𝐶1), 𝑠𝐶2 =

𝑚𝐶2
2 (𝐶2) and 𝑠𝐶3 = 𝑚𝐶3

2 (𝐶3) be the Lebesgue measures of disc measurements observation footprints 𝐶1𝐶1,  𝐶2𝐶2 and 𝐶3𝐶3, 

respectively, and let 𝑚𝐷1
2  and 𝑚𝐷2

2 be the Lebesgue measures of diamond measurements 𝐷1 and 𝐷2. Then, 𝑚𝐶1
2 (∙) = 𝑚𝐶2

2 (∙) =

𝑚𝐶3
2 (∙) because they are the same Lebesgue measure functions. That is, if {𝐴𝑖} is the set with the smallest volume that 

covers 𝐶1𝐶1, then similar sets {𝐴𝑖 + 2} and {𝐴𝑖 × 3 + 2} can be used (with the origin located in the upper-left corner) to 15 

cover 𝐶3 and 𝐶2 with the smallest volumes, respectively. Here, 𝐴𝑖 + 2 = [𝑥𝑖𝑥: 𝑥𝑖,𝑘 + 2, 𝑥𝑖,𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2] and 𝐴𝑖 × 3 + 2 =

[𝑥𝑖𝑥: 𝑥𝑖,𝑘 × 3 + 2, 𝑥𝑖,𝑘 ∈ 𝐴𝑖 , 𝑘 = 1,2], which proves that functions 𝑚𝐶1
2 (∙), 𝑚𝐶2

2  (∙)and 𝑚𝐶3
2 (∙) collect the desirable set based 

on the same scheme, so they are identical. Additionally, 𝑠𝐶2 = 𝑚𝐶2
2 (𝐶2) = ∑ 𝐼2(𝐴𝑖 × 3 + 2)  is much larger than 𝑠𝐶1 =

 𝑚𝐶1
2 (𝐶1) =  ∑ 𝐼2(𝐴𝑖) and 𝑠𝐶3 =  𝑚𝐶3

2 (𝐶3) =  ∑ 𝐼2(𝐴𝑖 + 2). Therefore, the scale of 𝐶2𝐶2 is not equal to the two other scales 

because the volumes of their subsets are different. However, their scales are governed by one-dimensional rules because their 20 

measures are identical and the Jacobian matrices between them are diagonal. Similarly, 𝑚𝐷1
2 = 𝑚𝐷2

2 ; although their scales are 

different, they obey a one-dimensional rule. 



12 

 

  

Figure 1. Diagram of the Relationships relationships among a Lebesgue Measuremeasure, Scale scale and 

Variablegeophysical variable 

3.2 Stochastic variables in data assimilation  

We introduce use the widely accepted Bayesian theorem of data assimilation (Lorenc, 1995; van Leeuwen, 2015) to 5 

investigate its time- and scale-dependent errors. We assume that both the state vector and observation vector are one-

dimensional (in the following text, we use “state” and “observation” for brevity). In Sect. 3.4, the results are extended to n-

dimensional state vectors and observation vectors. 

 Consider a nonlinear forecasting system that is described by 

𝑋(𝑡𝑘) = 𝑀𝑘−1:𝑘(𝑋(𝑡𝑘−1)) + 𝜂(𝑡𝑘),  (6) 10 

where  𝑀𝑘−1:𝑘(⋅), 𝑋(𝑡𝑘) and 𝜂(𝑡𝑘) represent a nonlinear forecasting operator that transits the state from the discrete time 𝑘 −

1 to 𝑘, the state with prior PDF  𝑝(𝑋), and the model error at time 𝑘, respectively. In addition, if a new observation is available 

at time 𝑘, the observation system is given by 

𝑌𝑜(𝑡𝑘) = 𝐻𝑘(𝑋(𝑡𝑘)) + 𝜀(𝑡𝑘),  (7) 

where 𝐻𝑘(⋅), 𝑌𝑜(𝑡𝑘) and 𝜀(𝑡𝑘) represent the nonlinear observation operator, true observation with prior PDF 𝑝(𝑌), and 15 

observation error at time 𝑘, respectively. 

 Previous studies (e.g., Janjić and Cohn, 2006; Bocquet et al. 2011) discovered the components of 𝜀(𝑡𝑘) and 𝜂(𝑡𝑘), such as 

white noise, the discretization error of a continuum model, the errors that are caused by missing physical processes, and scale-

dependent bias. In this study, we assume that both forecasting and observation operators are derived from a perfect model, so 

the discretization errors and errors that are caused by missing physical processes are discarded.  20 

 According to Bayesian theory, the posterior PDF of the state based on the addition of a new observation into the system is 

𝑝(𝑋|𝑌) = 𝑝(𝑌|𝑋)𝑝(𝑋) 𝑝(𝑌)⁄ ,  (8) 
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where 𝑝(𝑋|𝑌) is the posterior PDF that presents the PDF value of state 𝑋 given an available observation 𝑌. 𝑝(𝑌|𝑋) is a 

likelihood function, which is the probability that an observation is 𝑌 given a state 𝑋. 𝑃(𝑋) and 𝑃(𝑌) are the prior PDF values 

of the state and observation, respectively. Here, 𝑃(𝑋) is supposed to be known and 𝑃(𝑌) is a normalisation constant (van 

Leeuwen, 2014). The aim of data assimilation is equivalent to finding the posterior PDF 𝑝(𝑋|𝑌). 

 Instead of using Eq. (65) and (76), which are discrete in time, we use Ito process-formed expressions with the one-5 

dimensional infinitesimals 𝑑𝑠 and 𝑑𝑡 to formulate a continuous-time (or continuous-scale) state and observation. 

 Geophysical variable can be regarded as Let a real function  𝑉(𝑠, 𝑡) be the variable if, and it maps the space (𝑅2, ℒ2, 𝑚2) 

onto 𝑅, where 𝑠 is the scale, 𝑠 = 𝑚2(𝐴), 𝐴 ∈⊂ ℒ2𝑅2, and 𝑡 is the time. In n-dimensional data assimilation, a geophysical 

variable 𝑉 is related to an element of state vector 𝑋 at a specific scale 𝑠 and time 𝑡. A variable is an estimation of a geophysical 

parameter at a specific scale 𝑠 and time 𝑡. 10 

 In Figure 1, Layer 2 presents a heterogeneous geophysical variable in the entire region. If aggregating ingLayer 2 into Layer 

1 and let the each pixel intensity is the estimator ofvalue for a geophysical variable parameter in each pixel, then this parameter 

the measure space 𝛺 is heterogeneous in the entire region. A variablegeophysical variable represents an ensemblea spatial 

average in a specific observation footprint with a specific scale. Therefore, the variablegeophysical variables in 𝐶1 and 𝐶3 are 

not equal because their observation footprints are different, and the variablegeophysical variables in 𝐶2 and 𝐶3 are also 15 

different because the scale changes. The former introduces that the variablegeophysical variables that vary with location, and 

the latter states that the variablegeophysical variables are scale-dependent. Therefore,  from an Earth observation perspective, 

a variable is a nonlinear and heterogeneous mapping function of observation footprints onto 𝑅 at a given scale. 

 The dynamic process of the variable clearly depends on time, and we further assume that the variable varies with scale in 

view of the scale issue. Furthermore, assuming It is reasonable to aethat the variable is random both in time and scale is 20 

reasonable because of the uncertainties in Earth observations and simulations. Therefore, iIf the statistical properties of the 

variablegeophysical variable are available, we can construct an explicit stochastic equation for the variablegeophysical variable.  

 We introduce the time-dependent Ito process Eq. (1) to define the variablegeophysical variable process: 

𝑑𝑉 = 𝑝(𝑡)𝑑𝑡 + 𝑞(𝑡)𝑑𝑊(𝑡).   (9) 

Similarly, the variablegeophysical variable is supposed to evolve via a stochastic process, for which the dynamic process and 25 

uncertainty are allowed to vary with scale:  

𝑑𝑉 = 𝜑(𝑠)𝑑𝑠 + 𝜎(𝑠)𝑑𝑊(𝑠),   (10) 

where  𝜑(𝑠)  and 𝜎(𝑠)  are the scale-based transition probabilitydrift rate and volatility rate, respectively. The 

variablegeophysical variable is a probabilistic process with respect to scale and thus has scale-dependent errors, where the 

scale should shift forward or backward based on the condition that the scale follows the one-dimensional rule. 30 

 First, time is one dimensional and unidirectional, but the scale can shift forward or backward based on the condition that the 

scale follows the one-dimensional rule. Second, Eq. (10) implies that the value and variance of a variable may change if the 

scale changes. As discussed in Sect. 1, evaluating the heterogeneity in an integrated study is more difficult than in a special 
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case study. However, in Eq. (10), one can track a special scale path to obtain the quadratic variation and drift, which indicate 

the heterogeneity of the variable.  

 Eq. (9) can be regarded as a continuous-time version of Eq. (5), i.e., to estimate the state is equal to the integral of Eq. (9) 

over a time interval. Here 𝑝(𝑡) indicates the physical process with respect to time, and 𝑞(𝑡) is the error only caused by the 

evolution of time, so model error 𝜂 in Eq. (5) contains more parts than 𝑞(𝑡). Eq. (10) implies that the value and variance of a 5 

geophysical variable may change if the scale changes. To formulate 𝜑(𝑠) should consider both the spatial heterogeneities and 

physical process variations among different scales. However, neither of them is well understood in a general theory 

study. ,Therefore 𝜑(𝑠) is conceptualized in Eq. (10). EspeciallyParticularly, if the study region is mean homogeneous, then 

the values of a variable that observed at the same place are much identical between large scale and fine scale, and 𝜑(𝑠) can be 

left out. 𝜎(𝑠) is the error caused by the scale transformation. 10 

 Comparing Eq. (6) and Eq. (9) shows that 𝑀𝑘−1:𝑘(⋅) and 𝜂(𝑡𝑘) are associated with 𝑝(𝑡) and 𝑞(𝑡). The variables in a data 

assimilation forecasting model The state in the forecasting step can be expressed by Eq. (9) because only time is involved. In 

the analysis step of data assimilation, the state does not pertain to time, and we assume that the scale has a quantifiable effect 

on the uncertainties errors in this step; thus, both the states and observations can be defined by Eq. (10). We will try to use this 

assumption in the following sections. 15 

3.3 Expression of scale transformation in a stochastic data assimilation framework 

First, we provide the following lemma. 

 Lemma 1: For ∀𝑠0 > 0 , let 𝑊∗(0) = 𝑊(𝑠0) − 𝑊(𝑠0), … , 𝑊∗(𝑠) = 𝑊(𝑠0 + 𝑠) − 𝑊(𝑠0) ; then, 𝑊∗(𝑠), 𝑠 ≥ 0  is a 

Brownian motion.  

 Proof. First,  𝑊∗(0) = 𝑊∗(𝑠0) − 𝑊∗(𝑠0) = 0.  ∀𝑠𝑖+1 > 𝑠𝑖 ≥ 0, 𝑖 = 1,2,3, … , 𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖) = [𝑊(𝑠0 + 𝑠𝑖+1) −20 

𝑊(𝑠0)] − [𝑊(𝑠0 + 𝑠𝑖) − 𝑊(𝑠0)] = 𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖), which suggests that the increments [𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] 

are equal to [𝑊(𝑠0 + 𝑠𝑖+1) − 𝑊(𝑠0 + 𝑠𝑖)] and are independent Gaussian distributed. Therefore, 𝑊∗(𝑠), 𝑠 ≥ 0 is a Brownian 

motion, with 𝐸[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 0 and 𝑉𝑎𝑟[𝑊∗(𝑠𝑖+1) − 𝑊∗(𝑠𝑖)] = 𝑠𝑖+1 − 𝑠𝑖 . Q. E. D.  

 Remark on Lemma 1:  This Lemma is practical because the scale is greater than zero, which does not fit the definition of 

Brownian motion, whereby the parameter should start at zero. The standard scale 𝑠0 is associated with zero in Lemma 1; thus, 25 

it is logical to let 𝑠 = 0 in 𝑊∗(𝑠). Lemma 1 further implies that 𝑊(𝑠), 𝑠 ≥ 𝑠0 is an equivalent expression of 𝑊∗(𝑠), 𝑠 ≥ 0. 

Note that in the definition of Brownian motion, the parameter should starts at zero. However, the scale is realistically greater 

than zero, which results that it cannot be directly applied in Brownian motion. So, Lemma 1 is logical because it implies that 

𝑊(𝑠), 𝑠 ≥ 𝑠0 is an equivalent expression of 𝑊∗(𝑠), 𝑠 ≥ 0. Therefore, beginning with the standard scale, the Brownian motion 

and stochastic calculus with respect to scale can be further developed. 30 
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 In the following content, we use Brownian motion with a parameter that starts at 𝑠0  to define the scale-dependent 

variablegeophysical variables; therefore, some the classic expressions above should beare changed. According to Lemma 1, 

Eq. (3) is given by 

 [𝐼, 𝐼](𝑠) = ∫ 𝜎2(𝑢)𝑑𝑢
𝑠

𝑠0
.  (11) 

Additionally, the integral form of the Eq. (10) is as follows: 5 

 𝑉(𝑠) = 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠

𝑠0

𝑠

𝑠0
 ,  (12) 

where 𝑉0 = 𝑉(𝑠0) and the drift of Eq. (12) is  

 𝑉0 + ∫ 𝜑(𝑢)𝑑𝑢
𝑠

𝑠0
 . 

Similarly, Eq. (4) becomes 

𝑓(𝑠, 𝑉(𝑠)) = 𝑓(𝑠0, 𝑉(𝑠0)) + ∫ 𝑓𝑢(𝑢, 𝑉(𝑢))𝑑𝑢
𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜎(𝑢)𝑑𝑊(𝑢)

𝑠

𝑠0
+ ∫ 𝑓𝑥(𝑢, 𝑉(𝑢))𝜑(𝑢)𝑑𝑢

𝑠

𝑠0
+

10 
1

2
∫ 𝑓𝑥𝑥(𝑢, 𝑉(𝑢))𝜎2(𝑢)𝑑𝑢

𝑠

𝑠0
. 

 Now, we make the following assumptions. 

 Assumption 1: The measures of scale transformations between the state and observation in spaces of data assimilation obey 

the one-dimensional rule as defined in Sect. 3.1. 

 Assumption 2: In the forecasting step, the model unit equals the scale of the state space, and both of them are constant.  15 

 Assumption 3: In the analysis step, the state, observation and observation operator are scale dependent. Only one 

observation is added into the data assimilation system at a time, and the states and observations at different times are scale 

independent. 

 In assumption 1, the one-dimensional rule ensures that scale changeds in a sense of geometrical similarity (for example, 

form a larger square observation footprint to a smaller square observation footprint, or from 𝐶2 to 𝐶3 as presented in Figure 1). 20 

AlsoAdditionally, the formulations of scale transformation can be extremely reduced. 

 Assumption 2 indicates that the model unit and state scale are both supposed to be the same with each other and invariant 

in space and time. So, there is no scale transformation in the forecasting step. Thus, Eq. (9) can adequately describe this step. 

 Considering assumption 2, the forecasting step is explicitly free of scale; thus, Eq. (9) can adequately describe this step.

 Based on assumption 3, the analysis step is related to the scale; thus, some basic definitions should be presented in advance. 25 

According to Eq. (10), the state and observation in the analysis step are as follows: 

 𝑑𝑋 = 𝜑𝑋(𝑠)𝑑𝑠 + 𝜎𝑋(𝑠)𝑑𝑊(𝑠) (13) 

and  

 𝑑𝑌 = 𝜑𝑌(𝑠)𝑑𝑠 + 𝜎𝑌(𝑠)𝑑𝑊(𝑠), (14) 

where  𝜑𝑋 (𝑠) , 𝜎𝑋(𝑠) , 𝜑
𝑌
(𝑠)  and 𝜎𝑌(𝑠)  represent the scale-dependent transition probabilitiesdrift rates and volatilities 30 

volatility rates of state 𝑋 and observation 𝑌, respectively. 𝜑(𝑠) also implies the heterogeneities and physical processes from 

standard scale to a specific scale, which currently maybe hard to be formulate. 𝜎(𝑢) can be regarded as the stochastic 
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perturbation with respect to scale. In terms of scale, the state and observation in the analysis step are formulated. Therefore, 

Aaccording to Eq. (12), a state is 𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑋

𝑠0

𝑠𝑋

𝑠0
 in the state space and is 𝑋(𝑠𝑌) = 𝑋0 +

∫ 𝜑(𝑢)𝑑𝑢 + ∫ 𝜎(𝑢)𝑑𝑊(𝑢)
𝑠𝑌

𝑠0

𝑠𝑌

𝑠0
 in the observation space. These formulas prove that the value of state varies with the changes 

of scale. 

 Assumption 3 implies that the scales of the state and observation are invariant when observational information is added in 5 

the analysis stepThe scale transformation only involves in the process that mapping the state vector from state space to 

observation space. For simplicity, assume the scale-based drift rates transition probabilities of the state and observation do not 

exist, which leads to 𝜑
𝑋
(𝑠) = 0 and 𝜑

𝑌
(𝑠) = 0. And assuming thatIf the noises are Gaussian, we have 𝜎𝑋(𝑠) = 𝜎𝑌(𝑠) = 1. 

 Based on the above discussion, the differential and integral forms of the state are 

 𝑑𝑋 = 𝑑𝑊(𝑠) and  𝑋(𝑠𝑋) = 𝑋0 + ∫ 𝑑𝑊(𝑠)
𝑠𝑋

𝑠0
 . (15) 10 

For the observation, we have 

 𝑑𝑌 = 𝑑𝑊(𝑠) and  𝑌(𝑠𝑌) = 𝑌0 + ∫ 𝑑𝑊(𝑠)
𝑠𝑌

𝑠0
  (16) 

In Eq. (15) and Eq. (16), the time 𝑡 is omitted, and 𝑠𝑋 , 𝑠𝑌 , 𝑋0  and 𝑌0  represent the scale of the state space, scale of the 

observation space, state in 𝑠0 and observation in  𝑠0, respectively. 

 The Bayesian equation of data assimilation (Eq. (87)) produces the posterior PDF 𝑝(𝑋|𝑌)  that is associated with the 15 

likelihood function 𝑝(𝑌|𝑋)  and the distributions of the state and observation. Theorem 1 and Eqs. (15)~(16) yield 

𝑋~𝑁 (𝑋0, ∫ 𝑑𝑠
𝑠𝑋

𝑠0
) and 𝑌~𝑁 (𝑌0, ∫ 𝑑𝑠

𝑠𝑌

𝑠0
) under the condition that the variances exist. In addition, assumption 1 states that the 

scales vary in one-dimensional space, which results in  

 𝑋~𝑁(𝑋0, 𝑠𝑋 − 𝑠0)  (17) 

  and 𝑌~𝑁(𝑌0, 𝑠𝑌 − 𝑠0).  (18) 20 

Eq. (17) and Eq. (18) are the prior PDFs of state and observation with respect to scale in state space and observation space, 

respectively. Compared with the PDFs with respect to time, their expectations are equal to the value at the standard scale, and 

the variances depend on the differences between the standard scale and the scale in state or observation space. These two prior 

PDFs are introduced into the Bayesian theorem that reformulated by scale.  

 Then, we calculate the posterior PDF.Thus, the last point is to calculate 𝑝(𝑋|𝑌). 25 

 The scale-dependent observation operator is 𝐻(𝑠, 𝑋(𝑠)𝑥), which suggests that the observation operator and its parameters 

are both susceptible to the scale. If 𝐻(𝑠, 𝑋(𝑠)𝑥)  is defined, its continuous partial derivatives are 𝐻𝑠(𝑠, 𝑥), 𝐻𝑥(𝑠, 𝑥) and 

𝐻𝑥𝑥(𝑠, 𝑥). In line with Ito’s Lemma, we get an estimation of observation in the observation space, which is related to the 

state 𝑋(𝑠𝑋) defined in the state spacehave 

𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) = 𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) +

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢  30 

 = 𝐻(𝑠0, 𝑋0) + ∫ [𝐻𝑠(𝑢, 𝑋(𝑢)) +
1

2
𝐻𝑥𝑥(𝑢, 𝑋(𝑢))]

𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢).  (19)  
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 Assumption 1 suggests that the observation and model spaces have the same probability measure; thus, the Brownian 

motions in these two spaces are equivalent. Let Eq. (16) − Eq. (19), and we obtain 

𝑌(𝑠𝑌) − 𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) 

= 𝑌0 + ∫ 𝑑𝑊(𝑢)
𝑠𝑌

𝑠0
− [𝐻(𝑠0, 𝑋0) + ∫ 𝐻𝑠(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢 + ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) +

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] 

= 𝑌0 − 𝐻(𝑠0, 𝑋0) + ∫ 𝑑𝑊(𝑢) − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) − 𝐻(𝑠0, 𝑋(𝑠0))] −
𝑠𝑌

𝑠0

1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢 − ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢) 5 

= 𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] + {∫ 𝑑𝑊(𝑢)

𝑠𝑌

𝑠0
− ∫ 𝐻𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑊(𝑢)}.  (20) 

 Equation (20) can be regarded as an Ito process, and its drift is 

 𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢].   (21) 

 The integral term in Eq. (21) is the difference in the first-order differential observation operator between the state scale 

𝑠𝑋  and the standard scale 𝑠0. This term illustrates that the mapping process should consider not only the observation operator 10 

but also the first-order differential term when state is mapped to the observational space. The former is typically determined 

from the literature, whereas the latter was derived in this study for the first time. This result prompted us to further consider 

the first-order differential of the observation operator when calculating the representativeness observation error. 

 The quadratic variation of Eq. (20) is 

 (𝑠𝑌 − 𝑠0) + ∫ 𝐻𝑥
2(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢.  (22) 15 

 This equation suggests that the uncertainty in the observation error includes both the difference between scales 𝑠𝑌 and 𝑠0 

and the change in the observation operator from scale 𝑠𝑋 to 𝑠0. Therefore, Eq. (21) and Eq. (22) can be combined to produce 

𝑝(𝑌|𝑋) = 𝑁 (𝑌0 − [𝐻(𝑠𝑋 , 𝑋(𝑠𝑋)) +
1

2
∫ 𝐻𝑥𝑥(𝑢, 𝑋(𝑢))

𝑠𝑋

𝑠0
𝑑𝑢] , (𝑠𝑌 − 𝑠0) + ∫ 𝐻𝑥

2(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠0
𝑑𝑢) . (23) 

 Based on Eqs. (17), (18) and (23), 𝑝(𝑌|𝑋), 𝑝(𝑋) and 𝑝(𝑌) are stochastic functions that depend on the scale; thus, the 

posterior PDF of the state is scale scale-dependent as well.  20 

 In particular, if 𝑌 is a direct observationmeasurement, which means the observation is of the same physical quantity and 

scale as the state, viz. 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠). The result becomes  

 𝑌(𝑠𝑌) − 𝑋(𝑠𝑋) = {
𝑌0 − 𝑋(𝑠𝑋) + 𝑊(𝑠𝑌) − 𝑊(𝑠𝑋), 𝑠𝑌 > 𝑠𝑋

𝑌0 − 𝑋(𝑠𝑋) + 𝑊(𝑠𝑋) − 𝑊(𝑠𝑌), 𝑠𝑋 > 𝑠𝑌
  (24) 

 and 𝑝𝑃(𝑌|𝑋) = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} . (25) 

 The quadratic variation in Eq. (22) can be further described by the scale from 𝑠𝑋 to 𝑠𝑌. Under the condition that 𝑠𝑌 > 𝑠𝑋  25 

and because 𝑊(𝑠𝑌) − 𝑊(𝑠𝑋) and 𝑊(𝑠𝑋) − 𝑊(𝑠0) are independent, the quadratic variation of Eq. (20) is 

 𝑠𝑌 − 𝑠𝑋 + ∫ [1 − 𝐻𝑥(𝑢, 𝑋(𝑢))]
2

𝑑𝑢
𝑠𝑋

𝑠0
. (26) 

 Similarly, if 𝑠𝑋 > 𝑠𝑌, the quadratic variation of Eq. (20) is 

 ∫ (1 − 𝐻𝑥(𝑢, 𝑋(𝑢)))
2

𝑑𝑢
𝑠𝑌

𝑠0
+ ∫ 𝐻𝑥

2(𝑢, 𝑋(𝑢))
𝑠𝑋

𝑠𝑌
𝑑𝑢.  (27) 
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 The significance of Eqs. (20)~(27) is that the effect of scale on the posterior PDF can be determined quantitatively. In 

addition to the model error and measurement instrument error (both of them were not introduced explicitly in this study because 

they have little influence on the error caused by scale transformation), a new type of error in data assimilation was discovered 

in the analysis step. The expectation of the posterior PDF may vary with the scale of the state space if 𝑌 is an indirect 

measurement of 𝑋observation, and the variance of the drift depends on the difference between 𝑠𝑌 and 𝑠𝑋 (based on Eq. (26) 5 

and Eq. (27)) or among 𝑠0, 𝑠𝑌 and 𝑠𝑋 (based on Eq. (22)). In addition, if 𝑌 is a direct measurement of 𝑋observation (Eq. (24) 

and Eq. (25)), the expectation of the posterior PDF is the difference between 𝑌 and 𝑋, and the variance is equal to the increment 

of Brownian motion with respect to the scale. Additionally, if the results are not derived from assumption 1, i.e., the measure 

scale varies randomly, the posterior PDF is more complex because the Jacobian matrix in Lebesgue integration of scale 

transformation is arbitrary its integral path is an arbitrary curve. 10 

 However, a problem still exists. If the initial state is not at the scale of the forecasting operator, the corresponding error 

should also be considered. Similarly, if the forecasting operator 𝑀(𝑠, 𝑋(𝑡, 𝑠))  has continuous partial 

derivatives 𝑀𝑠(𝑠, 𝑥), 𝑀𝑥(𝑠, 𝑥) and 𝑀𝑥𝑥(𝑠, 𝑥), then according to Ito’s Lemma, we have 

 
𝑀(𝑠, 𝑋(𝑠)) = 𝑀(𝑠𝑜 , 𝑋0) + ∫ 𝑀𝑠(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠

𝑠0
+

1

2
∫ 𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠

𝑠0

   = 𝑀0 + ∫ [𝑀𝑠(𝑢, 𝑋(𝑢)) +
1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))] 𝑑𝑢

𝑠

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠

𝑠0

.(28) 

Assume that the initial state is 𝑋(𝑠𝑖), where 𝑠𝑖 is its scale, and 𝑋(𝑠𝑋) is the ideal initial state in the model space that is related 15 

to 𝑋( 𝑠𝑖). Then, 𝑋(𝑠𝑋) has the same scale  𝑠𝑋 as the forecasting operator. From Eq. (28) we obtain the error: 

 

𝑀(𝑠𝑋 , 𝑋(𝑠𝑖)) − 𝑀(𝑠𝑋 , 𝑋(𝑠𝑋))

    = 𝑀0 + ∫ 𝑀𝑠(𝑢, 𝑋(𝑢))𝑑𝑢
𝑠𝑋

𝑠0
+ ∫

1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠𝑖

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠𝑖

𝑠0

    − [𝑀0 + ∫ 𝑀𝑠(𝑢, 𝑋(𝑢))𝑑𝑢
𝑠𝑋

𝑠0
+ ∫

1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠𝑋

𝑠0
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠𝑋

𝑠0
]

    = ∫
1

2
𝑀𝑥𝑥(𝑢, 𝑋(𝑢))𝑑𝑢

𝑠𝑖

𝑠𝑋
+ ∫ 𝑀𝑥(𝑢, 𝑋(𝑢))𝑑𝑊(𝑢)

𝑠𝑖

𝑠𝑋

, (29) 

where 𝑀(𝑠𝑋 , 𝑋(𝑠𝑖)) and 𝑀(𝑠𝑋 , 𝑋(𝑠𝑋)) denote the next states that are associated with the true initial state and the ideal initial 

state, respectively. Based on Eq. (29), the error is an Ito process with a transition probability as the second-order differential 

forecasting operator, and a volatility as the first-order differential forecasting operator. Both of these operators are integrated 20 

from 𝑠𝑋 to 𝑠𝑖.  

3.4 Examples: the stochastic radiative transfer equation (SRTE) 

 To explicitly show how the stochastic scale transformations impact on assimilation, we introduce an illustrative example 

based on the scales presented in Figure 1 and the above results. Assuming that in the analysis step, the state is with the standard 
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scale  𝑠0, whose observation footprint is the unit square 𝐴0.  If the scale of observation space is 𝑠𝐶1 and its observation footprint 

is the disc 𝐶1, then according to the statements in Sect. 3.1, the Jacobian matrix of the transformation between the scales of 

state space and observation space is not diagonal according to the statements in Sect. 3.1, which leadsing the two scales do not 

obey the one-dimensional rule and go against assumption 1. However, if let the scales of of state space and observation space 

are 𝑠𝐶1 and 𝑠𝐶2, respectively, the assumption 1 is met and it can be counted that 𝑠𝑋 = 𝑠𝐶1 =
𝜋

4
𝑠0  and 𝑠𝑌 = 𝑠𝐶2 =

9𝜋

4
𝑠0. 5 

 Now the scales of state space and observation space obey the one-dimensional rule, and then we further presume that the 

measure space 𝛺 in Figure 1 is free of the spatial heterogeneities and dynamic process variations depending on scale,.This is  

Consequently, the drift rate 𝜑(𝑠) = 0. If denoting the value of state in the standard scale is 𝑋0, then according to Eq. (19), the 

prior PDF of state is 𝑋~𝑁 (𝑋0,
𝜋

4
𝑠0 − 𝑠0)  according to Eq. (1917). , nNoting that 

𝜋

4
𝑠0 − 𝑠0 in here is not a real number and 

only indicates the variation when the scale changeds.  10 

 If 𝐻(𝑠, 𝑋(𝑠)) = 𝑋(𝑠), the observation is the same physical quantity as the state, and according to Eq. (25), the likelihood 

function is 𝑝(𝑌|𝑋) = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝑌 − 𝑠𝑋|} = 𝑁{𝑌0 − 𝑋(𝑠𝑋), |𝑠𝐶2 − 𝑠𝐶1|} = 𝑁 {𝑌0 − 𝑋(𝑠𝑋), |
9𝜋

4
𝑠0 −

𝜋

4
𝑠0|}.  

 To formulate the likelihood function in the case that the observation is different from the state, the SRTE will be employed 

in the following text. The SRTE is a stochastic integral-differential equation that describes the radiative transfer phenomena 

through a stochastically mixed immiscible media. Scientists have developed analytical or numerical methods for finding the 15 

stochastic moments of the solution, such as the ensemble-averaged or variance of the radiation intensity (Pomraning, 1998; 

Shabanov et al., 2000; Kassianov et al., 2011). 

 Consider the general expression of the SRTE (leave out the scattering and emission source), 

−𝜇
𝑑𝐼(𝜏)

𝑑𝜏
= −𝐼(𝜏) ,    (28) 

where 𝐼(𝜏), 𝜇 and 𝜏 are the radiation intensity, coefficient of radiation direction and optical depth, respectively. The analytical 20 

solution of Eq. (28) is  𝐼(𝜏) = −𝐼(0)𝑒
𝜏

𝜇⁄ . 

 To tie into more substantial random optical properties of transfer media, such as absorption and scattering, the optical depth 

𝜏 is assumed to be stochastic. So it suggests that optical depth is a scale-dependent Ito process and can be expressed as 

𝑑𝜏(𝑠) = 𝜑𝜏(𝑠)𝑑𝑠 + 𝜎𝜏(𝑠)𝑑𝑊(𝑠),   (29). 

which This causes the radiation intensity depend on scale as well (Nevertheless, we assume that the relation between radiation 25 

intensity and optical depth is scale invariant). 
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 SRTE can be considered as a concrete instance of stochastic observation operator by defining 𝐻(𝑠, 𝑥(𝑠)) = 𝐼(𝑥) =

𝐼(0)𝑒
𝑥

𝜇⁄ . Therefore, 𝐻𝑠(𝑠, 𝑥(𝑠)) = 0, 𝐻𝑥(𝑠, 𝑥(𝑠)) =
1

𝜇
𝐼(0)𝑒

𝑥
𝜇⁄

 and 𝐻𝑥𝑥(𝑠, 𝑥(𝑠)) =
1

𝜇2 𝐼(0)𝑒
𝑥

𝜇⁄
. Based on Ito's Lemma, 
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. (3230) 

 Radiation intensity is a scale-dependent Ito process. The difference between Eq. (30) and the general Ito process is that there 

is a primitive function 𝐼(𝜏(𝑠)) in the integral term. Therefore, the uncertainty of the radiation intensity is more complex 5 

because it is related to both the change of scale and the primitive function. 

 Integrating both sides of Eq. (30) yields the general solution of the radiation intensity, 

 
2

22
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s s s
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  ,  (31) 

where the constant 𝐶 ∈ 𝑅. Eq. (31) further indicates that 𝐼(𝜏(𝑠)) is a scale-dependent Ito process. Considering that the optical 

depth 𝜏 is the state, the radiation intensity 𝐼 is the observation and 𝐼(𝜏(𝑠)) is the observation operator. , then Tthe above results 10 

in Sect. 3.3 (For example, Eq. (20)) could be easily applied here to study the posterior PDF of data assimilation  . 

 

3.4 5 Extension to n-dimensional data assimilation  

 In the above discussion, we assumed that only one variable state existed in data assimilation. However, numerous states 

typically exist. This section further introduces the product spaces to extend the one-dimensional stochastic data assimilation 15 

to n n-dimensions. 

 Assume that the independent states 𝑋𝑘 are the variables of the measure spaces (𝛺𝑘, ℱ𝑘, 𝜇
𝑘
), 𝑘 = 1,2, … , 𝑛, and (𝛺𝑛, ℱ𝑛) is 

the product space, where 𝛺𝑛 = ∏ 𝛺𝑘
𝑛
𝑘=1   and ℱ𝑛 = ∏ ℱ𝑘

𝑛
𝑘=1  . According to Fubini’s theorem (Billingsley, 1986), only one 

product measure 𝜇𝑛  in (𝛺𝑛, ℱ𝑛) exists, such that 𝜇𝑛(∏ 𝐴𝑘
𝑛
𝑘=1 ) = ∏ 𝜇

𝑘
(𝐴𝑘)𝑛

𝑘=1 , where 𝐴𝑘 ∈ ℱ𝑘.  
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 We define the state vector 𝑋𝑛 = (𝑋1, 𝑋2, … , 𝑋𝑛)𝑇  as a variable vector of the product measure space (𝛺𝑛, ℱ𝑛, 𝜇𝑛). In 

particular, if all the scales obey the one-dimensional rule, we have 

𝜇𝑛 (∏ 𝐴𝑘

𝑛

𝑘=1

) = ∏ 𝜉𝑘
2𝜇0(𝐴𝑘)

𝑛

𝑘=1

= (∏ 𝜉𝑘

𝑛

𝑘=1

)

2

𝜇0
𝑛 (∏ 𝐴𝑘

𝑛

𝑘=1

). 

This expression proves that the product measure also obeys a one-dimensional rule. However, the above results may not hold 

without the assumption that the states 𝑋𝑘are independent. 5 

 As discussed in Sect. 2.1, the Lebesgue measure 𝑚2 is a measure and the triple (𝑅2, ℒ2, 𝑚2) is a measure space. Therefore, 

the above extension is reasonable in our study. 

 This The analysis of a single state can also be applied to finite multiple states in the product measure space.  

4 Summary & Discussion 

4.1 Summary 10 

In this study, we mainly addressed two basic problems associated with scale transformation in earth observation and 

simulation. First, we produced a mathematical formalism of scale by employing measure theory. Second, we 

demonstrated how scale transformation and associated uncertainties could be evaluated presented in a data 

assimilation framework.. Instead of using empirical and qualitative expressions, we employed measure theory and 

stochastic calculus to define the scale and the evolutions of errors with respect to scale in data assimilation. 15 

 The first problem began with an introduction to measure theory. We revealed that the scale is the Lebesgue measure 

with respect to the observation footprint or model unit. Scale is related to the shape and size of a space, and scale 

transformation depends on the spatial change between different scales. The definition of scale transformation is as 

important as that of scale. This definition was described using a Jacobian matrix and could be further simplified using 

the one-dimensional rule to suit stochastic calculus. This simplification is reasonable for a large portion of Earth 20 

observation data, including remote sensing data, because the scale transformations of those data are geometrically 

similar. However, an in-depth and comprehensive exploration should be conducted in the future to describe other 
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situations in the real world. We then defined the variable, which further considers the heterogeneities of geophysical 

parameters. A variable consequently expresses the ensemble average of a geophysical parameter at a specific scale.  

 For the second problem, wWe reformulated the expression of scale transformation and investigated the error 

structure that is caused by scale transformation in data assimilation using basic theorems of stochastic calculus. The 

new error furtherOur findings supported previous qualitative knowledge that the observation error is highly related 5 

to changes in scale. Understanding the uncertainty of data assimilation based on separating the scale-dependent error 

from other errors is beneficial. The results can be derived from the one-dimensional simplification of scale 

transformation, and the variables in data assimilation evolve regularly based on assumptions 1-3. However, these 

situations may be more complex in the real world.  

4.2 Discussion 10 

 Our approach is different from previous work in the literature that studied representativeness error (e. g. Bocquet 

et al., 2011; van Leeuwen, 2014; Hodyss and Nichols, 2015). The basic concept of these studies was to assume that a 

relationship exists between different variables or operators, and then the relationship was introduced in the Bayesian 

expression of data assimilation to find the corresponding representativeness error.  

 Compared to previous work, our study is significant both in employing rigorous mathematical knowledge and in a 15 

more general framework. We contributed the scale transformation to the relationship between model and observation 

spaces, so we developed the mathematical formalisms of scale and the scale transformation. The definition of scale is 
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central to this framework. We treated scale variations similarly to time variations, and stochastic calculus-based data 

assimilation was conducted with respect to scale. Fingin a stochastic framework  because: 

 Our work presents a general framework that benefits the study of data assimilation in a nonlinear and general 

Gaussian sense. Both the forecasting and observation operators of data assimilation are strongly nonlinear, and the 

state and observation are generally associated with different geophysical parameters. Therefore, the relationship 5 

between them is not linear. We used the nonlinear transformation of scale and stochastic calculus to illustrate this 

relationship. 

 Another advantage is that we considered the heterogeneity of geophysical parameter and a general Gaussian 

representativeness error, which were included in the reformulation of state and observation. In Sect. 3, both the state 

and observation with respect to the scale were understood in the Ito sense. Thus, stochastic process offers an infinite 10 

probability space of continuous scale paths, and indicates a promising approach to track a specificgeneral Gaussian. 

In Eq. (13) and Eq. (14), we let 𝝋𝑿(𝒔) = 𝟎, 𝝋𝒀(𝒔) = 𝟎 and 𝝈𝑿(𝒔) = 𝝈𝒀(𝒔) = 𝟏for simplicity, which caused the state and 

observation to be Gaussian. However, if all the integrands in Eq. (13) and Eq. (14) are nonlinear functions instead of 

constants, which makes these two equations integral over the field of Brownian motion, then the state and observation 

are the general Gaussian processes with respect to scale. These terms finally results in a general Gaussian 15 

representativeness error. Note that all the results in our framework were given in terms of probability, not specific 

values. 

 We further continued and improved the representativeness error expression in data assimilation. The nonlinear 

error that was caused by scale transformation was given in Eq. (23). If we assume that the observation operator and 

the relationship between the state and observation are linear and expand 𝑯(𝒔𝑿, 𝑿(𝒔𝑿)) in Eq. (20) in observation space, 20 

i.e., let 𝒔𝟎 = 𝒔𝒀 , then Eq. (23) becomes  𝑷(𝒀|𝑿) = 𝑵{𝒀(𝒔𝒀) − 𝑯(𝒔𝒀, 𝑿(𝒔𝒀)), |𝒔𝒀 − 𝒔𝑿|}. Here, we further denote the 

covariance of representativeness error as the scale difference between the observation and model space |𝒔𝒀 − 𝒔𝑿|. 
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Similarly, Eq. (29) can also be reduced to 𝑴(𝒔𝑿, 𝑿(𝟎, 𝒔𝒊)) − 𝑴(𝒔𝑿, 𝑿(𝟎, 𝒔𝑿)) = integral paths. Therefore, the stochastic 

calculus equation provided an infinite space with respect to the variable process 𝑽(𝒕), and a case study represented a 

sampling in this space, whose performance depended on its integral path. 

 This study conducted a theoretical exploration. However, applying the above theoretic work to real-world data assimilation 

is challenging. Studies on scale-related errors still require further improvements. 5 

4 Discussion & Conclusions 

4.1 Discussion 

 Compared to previous work, oOur study offered a stochastic data assimilation framework to formulate the errors that are 

caused by scale transformation. The necessity of the methodology, the difference to previous works by other investigators, and 

the advantages and limitations of this study are summarized discussed as follows. 10 

 The reasons whythat the methodology focuses on a stochastic framework are because: First, the stochastic data assimilation 

framework is essentially consistent with the conceptions of scale and scale transformation. Both of them are associated with 

corresponding measure spaces (𝛺, ℱ, 𝜇). Therefore, it is natural to regard the state space and observation space as two different 

measure spaces, respectively, and each element of state (or observation) vector can be seen as a geophysical variable that 

mapping the state (or observation) measure space onto 𝑅. Correspondingly, as the integrals of random processes with respect 15 

to random processes, stochastic calculus was adopted ultimately. Second, using stochastic calculus with respect to scale can 

also formulate the errors caused by scale transformations. The study proceeds with and improves the understanding of 

representativeness error in terms of scale. Results did not only prove the conventional point that the uncertainties of these 

errors mainly depend on the differences between scales, but indicated that the first-order differential of the nonlinear 

observation operator should also be incorporated in representativeness error., which is rarely found in the data assimilation 20 

literature. Last, stochastic calculus can be extended to meet a general scale transformation and formulate corresponding 

representativeness error., which is This was unattainable forin previous work. For example, if the scale changes randomly, 

say, from an irregular footprint to another irregular footprint, the stochastic equation can offer a multiple-integral to further 

formulatepresent this kind of thea scale transformation, such as 𝑉(𝑥, 𝑦) = 𝑉0 + ∫ ∫ 𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑋

𝑋0

𝑌

𝑌0
+

∫ ∫ 𝜎(𝑥, 𝑦)𝑑𝑊1(𝑥)𝑑𝑊2(𝑦)
𝑋

𝑋0

𝑌

𝑌0
, where 𝑊1(𝑥) and 𝑊2(𝑦) are two independent Brownian Motion. 25 

 Our study istThe significant both in forms and functionsof this work is:. We developed a more rigorous formulation of scale 

and the scale transformation based on Lebesgue measure, which places the related conceptions in a rigorous mathematical 

framework and then conduces to new understanding of the errors caused by scale transformation with stochastic calculus. In 
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addition, due to the Ito process-formed state and observation, a stochastic data assimilation framework was proposed by 

considering the  nonlinear operators, heterogeneity of a geophysical variable and a general Gaussian representativeness error. 

There is no linear assumption of forecasting and observation operators. Scale transformation is also nonlinear as well if the 

one-dimensional rule is not involved. Additionally, Ito processes-formed state and observation offer the drift rate (i.e., 𝜑(𝑠) 

in Eq. (10)) to formulate the heterogeneity associated with scale transformation. It also permits the representativeness error to 5 

be general Gaussian in this framework. If all the integrands in Eq. (13) and Eq. (14) are nonlinear functions instead of constants 

(in this study we let 𝜑𝑋 (𝑠) = 0, 𝜑𝑌(𝑠) = 0 and 𝜎𝑋(𝑠) = 𝜎𝑌(𝑠) = 1 for simplicity), then these two equations are integrated 

over the field of Brownian motion, and state and observation are the general Gaussian processes of scale. Based on these 

functions, representativeness error is a general Gaussian process.  

 As a theoretical exploration towards scale transformation and stochastic data assimilation, there is still big room for 10 

improvement. First, we reduced the scale transformation by one-dimensional rule, and let the variables in data assimilation 

evolve regularly according to assumptions 1~3. So, only the ideal result was developedinvestiagedinvestigated. Therefore, an 

in-depth and comprehensive exploration should be conducted in the future to describe other situations in the real world. 

However, other situations may be more complex. Eeither an arbitrary scale transformation or the geophysical variable without 

ignoring the drift rates will deduce lengthy results. SoTherefore, the second improvement focuses on how to make the 15 

formulation more concise. Last, noting that all the results in our framework were given in terms of probability, it is necessary 

to implement the real-world applications of these theoretical results, such as introducing some concrete dynamic models to 

formulate the Ito process-formed geophysical variable of scale. 

4.2 Conclusions 

 In this study, we mainly addressed two basic problems associated with scale transformation in earth observation and 20 

simulation. First, we produced a mathematical formalism of scale and scale transformation by employing measure theory. 

Second, we demonstrated how scale transformation and associated errors could be presented in a stochastic data assimilation 

framework. 

 We revealed that the scale is the Lebesgue measure with respect to the observation footprint or model unit. Scale is related 

to the shape and size of a footprint, and scale transformation depends on the spatial change between different footprints. We 25 

then defined the geophysical variable, which further considers the heterogeneities and physical processes. A geophysical 

variable consequently expresses the spatial average at a specific scale.  

 We formulated the expression of scale transformation and investigated the error structure that is caused by scale 

transformation in data assimilation using basic theorems of stochastic calculus. Formulations explicate that the first-order 

differential of the nonlinear observation operator should be considered in representativeness error, and the uncertainty of 30 

representativeness error is directly associated with the difference between scales. A concrete physical models (SRTE) was 

introduced to explaindemonstrate the results when observation operator is nonlinear. How to extendExtension the results to n-

dimensional stochastic data assimilation was also presented. 
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 This work conducted a theoretical exploration of formulating the errors caused by scale transformation in stochastic data 

assimilation framework. We hope that the stochastic methodology can in essenctialely  benefit the study on these errors.  

5 Notation 

5.1 Basic notations 

𝛺  Non empty space Observational region 5 

ℱ  σ-algebra 

𝜇  Measure 

𝑑𝑉  Variable process 

𝑊(𝑠)  Brownian motion 

(𝛺, ℱ, 𝜇)  Measure space 10 

𝐼𝑛  N-dimensional Lebesgue volume 

𝑚𝑛  Lebesgue measure or an outer measure on 𝑅𝑛  

ℒ𝑛   Lebesgue σ-algebra of 𝑅𝑛 

∫ 𝑓𝑑𝑚𝑛  Lebesgue integral 

|𝐽(∙)|  Jacobian determinant   15 

(𝛺𝑛, ℱ𝑛)  Product space 

5.2 New notations 

Notation Name Explanation Index 

𝒔 Scale 

The observation footprint or model unit to measure 

observe or evaluate model a geophysical 

parametervariable 

Sect. 1 & 

Sect. 3.1 

𝑨𝟎 Unit squareinterval in 𝑅2  Sect. 3.1 

𝒔𝟎 Standard scale A Lebesgue integral of 𝐴0 is the unit area Sect. 3.1 

 One-dimensional rule Two scales are geometrically similar Eq. (58) 

𝑽 Geophysical variable 
Estimation of a geophysical variable parameter at a 

specific scale 
Sect. 3.2 

𝒅𝑿 State process State in the sense of the Ito process-formed state Eq. (13) 

𝒅𝒀 Observation process 
Observation in the sense of Ito process-formed 

observation 
Eq. (14) 
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𝑿𝟎 State in 𝑠0  Eq. (15) 

𝒀𝟎 Observation in 𝑠0  Eq. (16) 

𝒔𝑿 Scale of state space  Eq. (15) 

𝒔𝒀 Scale of observation space  Eq. (16) 

Acknowledgements 

We thank the editor-in-chief of NGP, Prof. Talagrand, and his kind considerations help and valuable comments on our 

manuscript. We also thank Dr. van Leeuwen and another anonymous reviewer for their valuable comments and suggestions. 

This work was supported by the NSFC projects (grant numbers 91425303 & 91625103) and the CAS Interdisciplinary 

Innovation Team of the Chinese Academy of Sciences. 5 

References 

Apte, A., Hairer, M., Stuart, A. M. and Voss, J.: Sampling the posterior: An approach to non-Gaussian data assimilation, 

Physica D, 230, 50-64, doi: 10.1016/j.physd.2006.06.009, 2007. 

Atkinson, P. M. and Tate, N. J.: Spatial scale problems and geostatistical solutions: a review, Prof. Geogr., 52, 607-623, doi: 

10.1111/0033-0124.00250, 2004. 10 

Bartle, R. G.: The Elements of Integration and Lebesgue Measure, Wiley, New York, 1995. 

Billingsley, P.: Probability and Measure, 2nd ed., John Wiley & Sons, New York, 1986.  

Bocquet, M., Pires, C. A., Wu, L.: Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation, Mon. Weather 

Rev., 138, 2997-3023, doi: 10.1175/2010MWR3164.1, 2010. 

Bocquet, M., Wu, L., Chevallier, F.: Bayesian design of control space for optimal assimilation of observations. Part I: 15 

Consistent multiscale formalism, Q. J. Roy. Meteor. Soc., 137, 1340-1356, doi: 10.1002/qj.837, 2011. 

Crow, W. T., Berg, A. A., and Cosh, M. H., et al.: Upscaling sparse ground-based soil moisture observations for the validation 

of coarse-resolution satellite soil moisture products, Rev. Geophys., 50, 3881-3888, doi: 10.1029/2011RG000372, 2012. 

Eyink, G. L., Restrepo, J. M., and Alexander, F. J.: A mean field approximation in data assimilation for nonlinear 

dynamics, Physica D, 195, 347-368, doi: 10.1016/j.physd.2004.04.003, 2004.  20 

Famiglietti, J.S., Ryu, D., Berg, A.A., Rodell, M., and Jackson, T.J.: Field observations of soil moisture variability across 

scales, Water Resour. Res. 44, doi: 10.1029/2006WR005804, 2008. 

Giménez, D., Rawls, W. J., and Lauren, J. G.: Scaling properties of saturated hydraulic conductivity in soil, Geoderma, 27, 

115-130, 1999.  

Goodchild, M. F. and Proctor, J.: Scale in a digital geographic world, Geographical & Environmental Modelling, 1, 5-23, 1997. 25 



29 

 

Gruber, A., Dorigo, W. A., Zwieback, S., Xaver, A., and Wagner, W.: Characterizing coarse-scale representativeness of in situ 

soil moisture measurements from the international soil moisture network, Vadose Zone J., 12, 522-525, doi: 

10.1002/jgrd.50673, 2013. 

Hakuba, M. Z., Folini, D., Sanchez-Lorenzo, A., and Wild, M.: Spatial representativeness of ground-based solar radiation 

measurements, J. Geophys. Res-Atmos., 118, 8585–8597, 2013. 5 

Hodyss, D. and Nichols, N. K.: The error of representation: Basic understanding, Tellus A, 66, 1-17, doi: 

10.3402/tellusa.v67.24822, 2015. 

Huang, G., Li, X., Huang, C., Liu, S., Ma, Y., and Chen, H.: Representativeness errors of point-scale ground-based solar 

radiation measurements in the validation of remote sensing products, Remote Sens. Environ., 181, 198-206, doi: 

10.1016/j.rse.2016.04.001, 2016. 10 

Itô, K.: Stochastic integral, P. JPN. Acad., 22, 519-524, 1944. 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., François, C., and Ustinh, S. L.: Prospect 

and sail models: a review of use for vegetation characterization, Remote Sens. Environ., 113, S56-S66, 2009. 

Janjić, T. and Cohn, S. E.: Treatment of Observation Error due to Unresolved Scales in Atmospheric Data Assimilation, Mon. 

Weather Rev., 134, 2900-2915, doi: 10.1175/MWR3229.1, 2006. 15 

Jazwinski, A. H.: Stochastic processes and filtering theory, Academic Press, New York, 1970. 

Karatzas, I. and Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, New York, 1991. 

Kassianov, E. and Veron, D.: Stochastic radiative transfer in Markovian mixtures: past, present, and future, J. Quant. Spectrosc. 

Radiat. Transf, 112, 566-576, doi: 10.1016/j.jqsrt.2010.06.011, 2011. 

Li, X.: Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface 20 

systems, Sci. China Ser. D, 57, 80-87, doi: 10.1007/s11430-013-4728-9, 2014. 

Li, X. and Liu, F.: Can Point Measurements of Soil Moisture Be Used to Validate a Footprint-Scale Soil Moisture Product?, 

IEEE Geosci. Remote S., 2016. (Submitted) 

Lin, H., Flühler, H., Otten, W., and Vogel, H. J.: Soil architecture and preferential flow across scales, J. HYDROL., 393, 1-2, 

doi: 10.1016/j.jhydrol.2010.07.026, 2010.  25 

Lorenc, A.C.: Atmospheric Data Assimilation, Meteorological Office, Bracknell, 1995. 

Lorenc, A. C.: Analysis methods for numerical weather prediction. Q. J. Roy. Meteor. Soc., 112, 1177–1194, 1986.  

Merz, R., Parajka, J., and Blöschl, G.: Scale effects in conceptual hydrological modelling, Water Resour. Res., 45, 627-643, 

doi: 10.1029/2009WR007872, 2009. 

Miller, R. N., Carter, E. F., and Blue, S. T.: Data assimilation into nonlinear stochastic models, Tellus A, 51, 167-194, doi: 30 

10.1034/j.1600-0870.1999.t01-2-00002.x, 1999. 

Miller, R. N.: Topics in data assimilation: stochastic processes, Physica D, 230, 17-26, doi: 10.1016/j.physd.2006.07.015, 2007.  

Miralles, D. G., Crow, W. T., and Cosh, M. H.: Estimating spatial sampling errors in coarse-scale soil moisture estimates 

derived from point-scale observations, J. Hydrometeorol., 11, 1423-1429, 2010.  



30 

 

Narsilio, G. A., Buzzi, O., Fityus, S., et al.: Upscaling of Navier–Stokes equations in porous media: Theoretical, numerical 

and experimental approach. Computers & Geotechnics, 36,1200–1206, 2009. 

Pomraning, G.C.: Radiative transfer and transport phenomena in stochastic media, Int. J. Eng. Sci., 36, 1595–1621, doi: 

10.1016/S0020-7225(98)00050-0, 1998. 

Ran, Y. H., Li, X., Sun, R., Kljun, N., Zhang, L., Wang, X. F., and Zhu, G. F.: Spatial representativeness and uncertainty of 5 

eddy covariance carbon flux measurement for upscaling net ecosystem productivity to field scale, Agric. Forest Meteorol., 

doi: 10.1016/j.agrformet.2016.05.008, 2016.  

Ryu, D. and Famiglietti, J. S.: Multi-scale spatial correlation and scaling behavior of surface soil moisture, Geophys. Res. Lett., 

33, 153-172, 2006. 

Shabanov, N. V., Knyazikhin, Y., Baret, F., and Myneni, R. B.: Stochastic modeling of radiation regime in discontinuous 10 

vegetation canopies, Remote Sens. Environ., 74, 125-144, doi: 10.1016/S0034-4257(00)00128-0, 2000. 

Shreve, S.E.: Stochastic Calculus for Finance II, Springer-Verlag, New York, 2005.  

Talagrand, O.: Assimilation of observations, an introduction, J. Meteorol. Soc. JPN, 75, 191-209, 1997. 

van Leeuwen, P. J.: Representation errors and retrievals in linear and nonlinear data assimilation, Q. J. Roy. Meteor. Soc., 141, 

1612-1623, doi: 10.1002/qj.2464, 2014. 15 

van Leeuwen, P. J.: Nonlinear data assimilation for high-dimensional systems, in Frontiers in Applied Dynamical Systems: 

Reviews and Tutorials, vol. 2, Springer-Verlag, New York, 2015. 

Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T.: Upscaling hydraulic properties and soil water flow processes in 

heterogeneous soils: a review, Vadose Zone J., 6, 1-28, doi: 10.2136/vzj2006.0055, 2007. 

Wiens, J. A.: Spatial scaling in ecology, Funct. Ecol., 3, 385-397. doi: 10.2307/2389612, 1989. 20 


