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Answer to Anonymous Referee #2 

 

Although the authors’ similarity report found some similarity with other papers by 

the authors, my main concern was a lack of similarity with one of them! Indeed, 

the authors completely failed to cite the first and still the most comprehensive 

multifractal analysis of satellite derived vegetation indices. Without this, their own 

paper is without adequate context, their results are simply isolated numbers – and 

as we argue – the numbers that are kept are stochastic variables and hence will 

lack reproduce ability. This failure is remarkable because the second author of the 

paper was a key author in the earlier more thorough and quantitative one the 

same subject. 

 

Apologize for this mistake. We are totally agreed that we should include the paper 

you mention and the second author specially apologize for this mistake. The new 

version of this manuscript has included now the reference you mention: 

 

Lovejoy , S., A. Tarquis, H. Gaonac'h, and D. Schertzer (2008), Single and 

multiscale remote sensing techniques, multifractals and MODIS derived vegetation 

and soil moisture, Vadose Zone J., 7, 533-546 doi: doi 10.2136/vzj2007.0173. 

 

We had very few time to deliver this manuscript to be included in this special issue. 

We really appreciate to the editors the opportunity they gave us. 

 

As we normally do in scientific context, each time that you refer to this paper, we 

will mention henceforth as Lovejoy paper, as Shaun Lovejoy is the first author of 

this paper. 

 

 

In this paper, the authors use the multifractal dimension formalism of Halsey el 

1986 that was developed for characterizing the deterministic phase spaces of 

strange attractors. In [Lovejoy et al., 2008] co-authored by the second author in the 

present paper A. Tarquis (henceforth the “Lovejoy paper”), it was explained in 

considerable detail why the dimension formalism is ill-suited for stochastic 

multifractals. Here, the images are assumed to be densities of multifractal 

measures, each realizations of a stochastic process. Co-author A. Tarquis can 

surely explain why the co-dimension formalism is more appropriate for the present 

application. She can also explain why the assumption of the existence of Holder 

exponents does not generally hold for stochastic multifractals and how the co-

dimension formalism avoids this unnecessary (and doubt fully valid) assumption. 

 

The authors are working already on it to dedicate another manuscript to make a 

comparison of both methodologies on these images. This is an important issue that 

deserve a manuscript just with this aim, as it has been done in Morato et al. and 

Renosh et al. papers: 

 



Morató, M.C., M.T. Castellanos, N.R. Bird, A.M. Tarquis. Multifractal analysis in 

soil properties: Spatial signal versus mass distribution. Geoderma, 287, 54-65, 

2017. http://dx.doi.org/10.1016/j.geoderma.2016.08.004. 

 

Renosh, P. R., Schmitt, F. G., and Loisel, H. 2015. Scaling analysis of ocean surface 

turbulent heterogeneities from satellite remote sensing: use of 2D structure 

functions. PLoS ONE, 10, e0126975. doi:10.1371/journal.pone.0126975. 

 

 

At the very least the paper must acknowledge the existence of the codimension 

formalism and refer to the Lovejoy paper. The authors should also give the 

formulae: 

 

 

 

where d is the dimension of space (here d =2) and c() is the codimension of the 

singularity of the density of the multifractal measure  (  is related to the 

singularity of the measure α by the formula  above) and K(q) is the 

moment scaling function of the density of the multifractal measure (i.e. it directly 

characterizes the scaling of the moments of the image rather than the integral of 

the image). These formulae are necessary in order to compare results obtained in 

the two formalisms (i.e. with the rest of the literature). 

 

Now we have included in Material and Methods the followed in the subsection of 

Multifractal analysis: 

 

A monofractal object can be measured by counting the number N of  size boxes needed to 

cover the object. The measure depends on the box size as 
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is the fractal dimension. 0D  is calculated from slope of a log-log plot. However, many 

examples are found where a single scaling law cannot be applied and it is necessary to do a 

multiscaling analysis. 

 

There are several methods for implementing multifractal analysis. The Universal Multifractal 

(UM) model assumes that multifractals are generated from a random variable with an 

exponentiated extreme Levy distribution (Lavallée et al., 1991; Tessier et al., 1993). In UM 
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analysis, the scaling exponent K(q) is highly relevant. This function for the moments q of a 

cascade conserved process is obtained according to Schertzer and Lovejoy (1987) as follows: 

    (5) 

where C1 is the mean intermittency codimension and  is the Levy index. These are known as 

the UM parameters. 

 

Other method is the moment method developed by Halsey et al. (1986) and applied to this 

case study. This method uses mainly three functions: )(q , known as the mass exponent 

function,  , the coarse Hölder exponent, and )(f , multifractal spectrum. A measure (or 

field), defined in two-dimensional image embedding space ( nn   pixels) and with values 

based on grey tones (for 8 bits goes from 0 to 255), cannot be consider as a geometrical set 

and therefore cannot be characterized by a single fractal dimension. 

 

To characterize the scaling property of a variable measured on the spatial domain of the 

studied, it divides the image into a number of self-similar boxes. Applying disjoint covering by 

boxes in an “up-scaling” partitioning process we obtain the partition function ),(  q  

(Feder, 1989) defined as: 
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where m is the mass of the measure, q is the mass exponent,  is the length size of the box 

and )(N  is the number of boxes in which 0im . Based on this, the mass exponent function 

)(q  shows how the moments of the measure scales with the box size: 
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where <> represents statistical moment of the measure )( i  defined on a group of non 

overlapping boxes of the same size partitioning the area studied. 

 



The singularity index,  , can be determined by the Legendre transformation of the )(q  curve 

(Halsey, 1986) as: 
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The number of cells of size  with the same , )(N , is related to the cell size as 

)()( 
  fN  , where )(f  is a scaling exponent of the cells with common  . Parameter

)(f  can be calculated as: 

)()()( qqqf         (9) 

 

Multifractal spectrum (MFS) shown as plot of  vs. )(f , quantitatively characterizes 

variability of the measure studied with asymmetry to the right and left indicating domination 

of small and large values respectively (Evertsz and Mandelbrot, 1992). There are three 

characteristic values obtained from MFS, the singularity ( )q  values for  0,1,2q  . The first 

value ( ) corresponds to the maximum of MFS and it is related to the box-counting 

dimension of the measure support; the second value is related to information or entropy 

dimension ( ) and the third with the correlation dimension. The entropy dimension 

quantifies the degree of disorder present in a distribution. According to Andraud et al. (1994) 

and Gouyet (1996) a  value close to 2.0 characterizes a system uniformly distributed 

throughout all scales, whereas a  close to 0 reflects a subset  of the scale in which the 

irregularities are concentrated. These three values will be shown from each calculation of MFS. 

 

The width of the MF spectrum ( ) indicates overall variability (Tarquis et al., 2001; 2014) and 

we have split it in two sections. Section I correspond to values ( ) (0)q   or 0q   and 

section II to values with ( ) (0)q   or 0q  . In section I the amplitude, or semi-width, was 

calculated with differences (0) ( 5)     , and in section II with ( 5) (0)     . 

 

To study the asymmetry of the multifractal spectrum we have choose the asymmetry index 

(AI) estimated as (Xie et al., 2010): 

                                      (10) 

In our case,  is the singularity for q=0 or , is  and is . Therefore, 

we can rewrite  as: 



     (11) 

Expressing  as equation (11), we can see that it is a normalized index based on the 

amplitudes  and  . 

 

There are several works relating the UM model and the multifractal formalism based on )(q  (Gagnon 

et al., 2003; Aguado et al., 2014; Morató et al., 2017 among others) through the equations: 

    (12) 

     (13) 

 

where E is the Euclidean dimension where the measure is embedded, in this case will be E=2, 

and c() is the codimension of the singularity of the density of the multifractal measure . 

 

One of the advantages of the codimension formalism is immediately obvious from 

the formulae: c(), K(q) are independent of the dimension of the embedding space 

d whereas f(α), are different where ever one looks at subpaces of the process 

(i.e. the same process but observed at different d). An related advantage of the 

codimension formalism is that when one performs the moment analysis (e.g. their 

figs 3, 6) that the moments will not dominated by the trivial, deterministic scaling 

factor  but will directly show the key (and usually much smaller)  part 

see the expression above; such an analysis is called “trace moment analysis”). As it 

is, the quality of the scaling of the statistics is practically impossible to judge from 

the authors’ figures. In addition - also as explained in the Lovejoy paper – the 

moments q<0 will in general diverge so that special care is needed to avoid 

spurious estimates. 

As carefully explained in the Lovejoy paper, the multifractal spectrum f(α) – or 

better, c() - is a function; empirically it corresponds to estimating an infinite 

number of parameters. Since the framework is of stochastic processes, and in 

general stochastic multifractals have unbounded spectra (i.e. c() is generally 

unbounded), the authors differences Δ± are simply random variables, they will 

provide very poor characterizations of the process. Why don’t the authors 

characterize the multifractality as explained in the Lovejoy paper (using C1, and 

the multifractal index α  - not the same as the authors’ α)? An added bonus would 

be that they could quantitatively compare their results with others in the literature 

(including those in the Lovejoy paper!), rather than simply obtaining an isolated 

result with no context, no point of comparison. There are other ways of 

quantitatively characterizing the multifractality, but the singularity range used 

here is a particularly poor choice. 

 



We understand that you prefer the UM model than the multifractal spectrum and 

perhaps you consider the later a poor choice. However, the results are similar than 

the one found in Lovejoy paper. A quantitative comparison of both methodologies 

it will be the aim of our next manuscript where we can study deeper why 

discrepancies or agreements as it has been done in Morato et al. (2017) paper on a 

transect data of soil properties and Renosh et al. (2015) work applied on 2D remote 

sensing images. We appreciate these comments that will help us to improve the 

discussion in this next manuscript. Also it will be interesting to compare with the 

Structure Function and Detrended Fluctuation Analysis, other methods that we 

haven’t mentioned here. 

 

As mentioned in Morato et al. (2017) work introduction, the methodology we have 

applied here is the most common used in Soil Science for several reasons, and that 

is why we began to use it in this manuscript. Just looking into the NPG journal we 

can found several articles with this methodology used. 

 

We agree that we shouldn’t stop here and applied other type of methodologies that 

could be more interesting. We have added the follow at the end of Conclusions: 

 

“Further research will be conducted to establish a qualitative and quantitative 

comparison of these conclusions among several multifractal methodologies applied 

on these images.” 

 

References 

 

Morató, M.C. , M.T. Castellanos, N.R. Bird, A.M. Tarquis. Multifractal analysis in 

soil properties: Spatial signal versus mass distribution. Geoderma, 287, 54-65, 

2017. http://dx.doi.org/10.1016/j.geoderma.2016.08.004. 

 

Renosh, P. R., Schmitt, F. G., and Loisel, H. 2015. Scaling analysis of ocean surface 

turbulent heterogeneities from satellite remote sensing: use of 2D structure 

functions. PLoS ONE, 10, e0126975. doi:10.1371/journal.pone.0126975. 

 

 

Another problem with the authors’ characterization technique is that it ignores the 

issue of multifractal phase transitions that is extensively dealt with in the Lovejoy 

paper. The authors should check that their moments (up to the rather high value 

of q = 5) are not spurious. 

 

We agree that higher is q value the errors could increase considerable. There are 

many works in Soil Science using this multifractal methodology that are applied 

from q=-10 to q=+10. For this reason we only included a range of 5 (q=-5 till 

q=+5). The errors of the α(q) values are included in Table 1, 2 and 3. 

 

Some of the other conclusions of the Lovejoy paper could also be recalled and the 

authors’ new results could be then be quantitatively compared. 

 

Now in Results and Discussion these conclusions of Lovejoy paper are recalled. In 

the next manuscript we are going to compare both conclusions, in a quantitative 

http://dx.doi.org/10.1016/j.geoderma.2016.08.004


and qualitative way, based on the same images following the line of Morato et al. 

(2016) and Renosh et al. (2015) works. 

 

References 

 

Morató, M.C., M.T. Castellanos, N.R. Bird, A.M. Tarquis. Multifractal analysis in 

soil properties: Spatial signal versus mass distribution. Geoderma, 287, 54-65, 

2017. http://dx.doi.org/10.1016/j.geoderma.2016.08.004. 

 

Renosh, P. R., Schmitt, F. G., and Loisel, H. 2015. Scaling analysis of ocean surface 

turbulent heterogeneities from satellite remote sensing: use of 2D structure 

functions. PLoS ONE, 10, e0126975. doi:10.1371/journal.pone.0126975. 

 

 

Conclusion: This paper should not be published without proper citations and 

comparisons with the Lovejoy paper. 

 

In this conclusion we are partially agree. Of course, as mentioned earlier the 

citations are already included about Lovejoy paper and the ones related to other 

methodology to estimate the multifractality. Also, we have included in the new 

version a qualitative comparison of the results on the common bands and NDVI 

showed in Lovejoy paper. 

 

The quantitative comparison of both methodologies is a work in progress already 

following the line that was developed in the paper Morató et al. (2017) but 

extending it for 2D. 

 

Reference 

 

M.C. Morató, M.T. Castellanos, N.R. Bird, A.M. Tarquis. Multifractal analysis in 

soil properties: Spatial signal versus mass distribution. Geoderma, 287, 54-65, 

2017. http://dx.doi.org/10.1016/j.geoderma.2016.08.004. 

 

 

Detailed Comments: 

Section 2.2, line 2: The authors state: 

“A multifractal analysis is basically the measurement of a statistic distribution and 

therefore gives useful information even if the underlying structure does not show a 

full self similar behaviour (Plotnick et al., 1996).” 

This is incomprehensible since isotropic multifractals assumed to be self-similar 

(i.e. scaling and isotropic), and the authors do not consider anisotropy in this 

paper. It is more correct to say that: “A multifractal analysis is an analysis of how 

the statistical properties of a scaling field (or series) varies with scale. It therefore 

does not give useful information when the underlying structure is not scaling.” 

 

Thank you so much for your comment; we have delete that paragraph to don’t 

create confusion. 

 

 

References: 

http://dx.doi.org/10.1016/j.geoderma.2016.08.004


Lovejoy , S., A. Tarquis, H. Gaonac'h, and D. Schertzer (2008), Single and 

multiscale remote sensing techniques, multifractals and MODIS derived vegetation 

and soil moisture, Vadose Zone J., 7, 533-546 doi: doi 10.2136/vzj2007.0173. 

 

Lovejoy paper already included. Thanks so much to help us to avoid this mistake. 

 


