
Response to Referee #1 (Assistant Professor, Matthias Morzfeld) 

 

General comments: The paper presents a description of the application of a particle filter 

to assimilate leaf are index observations into a global vegetation model. The paper is 

concise, and presents only the necessary information, no long background/review section 

is provided. I find the numerical experiments and results convincing (pending specific 

comments below). 

 

Response: Thank you very much for the useful, constructive comments to improve the 

paper. We revised the manuscript accordingly. Our point-by-point responses are shown 

in blue. 

 

My main concern is that this paper might not be suitable for Nonlinear Processes in 

Geophysics. The reason is that the journal emphasizes new methods, applied to realistic 

problems. The paper simply presents an "old" method applied to a new problem. I find it 

interesting to read that a particle filter can solve an important and "real" data 

assimilation, however the general NPG readership might get bored. The authors should 

decide wether NPG is the best journal to reach the audience they want to reach. This is 

also reflected by the references, only few of which are to articles in journals similar to 

NPG. I suspect that this paper would also make a fine contribution in a journal that is 

more focused on, e.g., Earth system modeling. The authors may want to consider going 

that route. 

 

Response: We would really appreciate the kind suggestion. After carefully considering 

other potential options, we reached to the conclusion that we would like to have this 

paper published in NPG because the main focus of this paper is methodology. It would 

not be trivial if well-known, “old” methods work with a new problem. As we mentioned 

in the discussion paper (P6. Line 26-27), “To the best of the authors’ knowledge, this is the 

first study to assimilate the fine time-scale satellite data with an individual-based DGVM”. 

We also explored sensitivities to the filter parameters such as the initial and resampling 

perturbation sizes and particle size. In the revised manuscript, Section 4 was added about 

the sensitivity experiments. We believe these methodological explorations would be useful 

for the readers of NPG. In addition, this study performs simple experiments at a single 

location with only a couple of plant functional types (PFTs). Future studies will include 

spatial distributions with more PFTs, and will be more relevant to domain-specific 

journals. We added related descriptions in the revised manuscript (P.2 Line 8-11, P9. 



Line 14 - 16). 

 

Specific comments: 

1. I wonder if there is any sensitivity to how repeated particles are perturbed after resampling. 

The authors chose a random perturbation, but miss to motivate their choice. I think the paper 

should contain numerical experiments where it is shown that either the method is robust to 

(small) changes in how repeated particles are perturbed, or it should be reported how the 

perturbations influence the results. 

 

Response: Following the suggestion, we performed additional experiments with different 

random perturbation settings, and found that the filter collapsed for biomass with 

smaller perturbation settings, though estimated model parameters and other state 

variables were estimated accurately without collapse. We added a new section in the 

revised manuscript to show these results and to discuss the sensitivity to the 

perturbation settings (P7. Line 12 -21). 

 

2. The number of particle used is typically important for the results one obtains with a particle 

filter. Indeed, much of the meteorological literature says that the number of particles required is 

excessive. To address this issue, I would suggest to run more numerical experiments with a 

varying number of particles. One can then compute, e.g., means and variances, and check that 

the method has converged when, e.g., 8000 particles are used. Specifically, I suggest 

experiments with 4000, 8000 and perhaps 16000 particles (if possible). 

 

Response: Following the suggestion, we performed additional experiments with different 

particle sizes ranging from 500 to 16000. The results showed that the filter collapsed for 

biomass with 4000 particles or less when we keep the same random perturbation setting. 

Also, the model parameter and other state variable were not estimated accurately with 

500 particles with a smaller random perturbation setting. We included the sensitivity to 

the particle sizes along with the sensitivity to the random perturbation settings (cf. 

previous comment) in the revised manuscript (P7. Line 12 -21). 

 

3. I wonder what happens when the data assimilation is initialized with a "smaller" initial 

uncertainty. The authors define intervals for the parameters, but do not mention how they came 

up with these intervals. It would be interesting to see what happens when these intervals are 

shortened or widened. In particular, the particle filter has no mechanism to bring the parameters 

to values that are not contained within the initial set. This could make things difficult for the 



"real life" application. Again, I suggest to investigate this issue with more numerical 

experiments. 

 

Response: We would appreciate the suggestion to perform additional sensitivity 

experiments on the initial parameter uncertainties. We selected the intervals of the 

initial parameters based on the ecological knowledge from the previous studies (Kolari 

et al., 2006; Zeng et al., 2011; Zhao et al., 2015; Takagi et al., 2015). We added the 

specific references in the revised manuscript (P5. Line 8-9).  

 

Following the comment, we performed additional experiments with different initial 

parameter uncertainties. The results showed that the parameters were not estimated 

accurately with wider initial intervals when 2000 particles or less are used, although 

they were estimated accurately with narrower initial intervals. With 8000 particles, 

the parameters were estimated accurately even with wider initial intervals. Sampling 

a wider interval with a smaller particle size generally reduces the particle density, or 

the effective number of particles, so that the results seem to be reasonable. We 

included these sensitivity results in the revised manuscript (P6. Line 29 - P7. Line 10). 

 

4. In figs.4 (right column), 5d (right column), 7 (right column), and 8d (right column): it 

seems that the data assimilation only impacts the parameter estimates for parts of the year, 

however data are assimilated every 4 days. The authors miss to provide a clear explanation of 

why that is the case. 

 

Response: We assimilated the LAI only when 0.5 or larger, therefore, data assimilation 

has impacts only in the summer when the leaves appear (i.e., LAI ≥ 0.5). We added 

this discussion in the revised manuscript (P5. Line 33 - P6. Line 1). 

 

5. I would remove all NODA figures, as they do not really carry information. It is clear 

that when no data assimilation is used, no parameter is changed. 

 

Response: We believe that it would be important to show NODA figures to highlight the 

impact of data assimilation. Since this is the first time to apply DA to SEIB-DGVM, it 

is unclear what impact DA would bring. Therefore, we would really like to keep the 

side-by-side comparison of the experiments with and without DA.  

 

Technical corrections: 



I find the use of "newly" in the first sentence of the abstract a bit unusual. I would 

suggest to re-formulate this sentence. The sentence also appears again later on (p.2. 

line 6, p.6 line 27), and there it should also be changed. 

 

Response: We corrected these sentences in the revised manuscript (P1. Line 11, P2. 

Line 7). 

  



Response to Referee #2 (Dr. Malaquias Pena Mendez) 

 

General comments:  

1. This paper applies a particle filter data assimilation scheme to assimilate MODIS 

Leaf Area Index (LAI) data into an explicit individual-plants dynamical global 

vegetation model. Results indicate that the scheme reduces the uncertainty of the LAI 

analyses as compared to random initialization. Furthermore, the technique appears to 

successfully estimate the model parameters that control separately LAI for the forest 

and for the grass types, out of whole LAI observations.  

2. The content of the paper is relevant for Earth Systems and non-linear modeling. It 

addresses one important aspect to increase models realism through the use of 

information contained in fine time-scale observed data.  

3. The problem addressed in this study is challenging considering the nonlinearities in 

the dynamics of the vegetation, the multitude of interactive physical and 

biogeochemical processes taking place at the local and regional scales, and the fact that 

not all state variables are observed or retrieved by satellite.  

4. The study is well executed to proof the concept with all the needed elements 

(calibrated model, quality controlled data, an optimized data assimilation scheme) and 

reduced (only a few geographical points) scope to make it successful. 

 

Response: Thank you very much for the useful, constructive comments to improve the 

paper. We revised the manuscript accordingly. Our point-by-point responses are shown 

in blue. 

 

Specific comments and questions: 

1. While the description is succinct and easy to follow, it needs to make explicit major 

assumptions made and the problems one may encounter if they were to be relaxed. 

 

Response: Thank you very much for the suggestion. We made strong assumptions in 

the OSSE, and relaxed some in the real-world experiment. We still made strong 

assumptions in the limited area application. We made these assumptions clearer in the 

revised manuscript (P9. Line 11-13). 

 

2. Below is a list of questions that arose while reading the manuscript:  

2.1: What modifications to the original vegetation model were made to adapt it to the DA 

scheme? Were these only the changes in parameter values we see in the appendix?  



 

Response: The model simulates daily states, but the original model outputs were only 

once per year. Daily outputs are needed for data assimilation every once in four days. 

Therefore, we modified the model code to output the daily states every 4 days. In 

addition, the original model code assumed running for many years continuously, and 

the initial seed for the random number generator was fixed. Since in this study we 

stopped the model every 4 days, and the same seed was repeated every time we started 

the model. Therefore, we modified the model code to randomly generate the seed for the 

random number generator every time when we initiate the model. These are the only 

modifications not shown in the paper, because we thought these were only minor 

technical modifications. To explicitly describe all necessary changes to the existing 

model code, we included these in the revised manuscript (P2. Line 25-31). 

 

2.2: Are the field observations in the Siberia Yakutsk Larch forest site independent or were they 

included to create the climate forcing data 2001-2007 in the vegetation model?  

 

Response: The climate forcing data were created using the NCEP/NCAR reanalysis data and 

CRU observation based data. The observed climate data at this site were not directly used in our 

experiments, but these data might be included in the NCEP/NCAR reanalysis data. It is not 

simple to find if the site observation data were reported through GTS and included in the 

NCEP/NCAR reanalysis. Therefore, we included a sentence in the revised manuscript 

describing the possibility that the observations at the site may be used in the NCEP/NCAR 

reanalysis through GTS (P4. Line 22-23). 

 

2.3: Was the 2004-2007 period of MODIS 4-days frequency data continuous on the study site? 

Were there missing data? How was the missing data handled?  

 

Response: There are a number of missing data in the quality-controlled MODIS data. Therefore, 

as we have described in P5. Line 30-31 in the discussion paper, if the number of the quality 

controlled MODIS data in the 10-km radius contains less than 300 grid points, we set these data 

as the missing data. We revised the manuscript to describe more explicitly about the missing 

data from the original quality-controlled MODIS data (P7. Line 31 - P8. Line 2).   

 

2.4: Was the 8000 particles generated decided by computer capacity, or any other criteria?  

 

Response: In response to the other reviewer’s comment #2, we performed additional 



experiments with different particle sizes. We added a new section to show the sensitivity to the 

particle size in the revised manuscript (P6. Line 29 - P7. Line 21). 

 

2.5: Simulated observations (in the OSSE) versus real observations: How do they compare? 

Were the real observations also normally distributed? Were standard deviations of real 

observations about 10% as in the OSSE experiment?  

 

Response: We assumed the normal distribution for the real observation error. The error standard 

deviation is included in the MODIS dataset that we used (Knyazikhin et al., 1999). As already 

described in P.6 Lines 1-2 in the discussion paper, we used “the median of the error standard 

deviations” in the 10km radius. The standard deviations of the real observations are different 

from those of the OSSE, as indicated by Figs. 3-a and 6-a. We explicitly described about the 

differences of the observation error standard deviations between the simulated and real 

observations in the revised manuscript (P8. Line 3-6). 

 

2.6: Did you follow any particular rule to determine the perturbation size of Pmax and Dor? In 

the study you allow larger amplitude perturbations for forest than for grass types. The amplitude 

of Dor is relatively very small.  

 

Response: There are two perturbation settings for the model parameters: the initial perturbation 

sizes and the random perturbation sizes when resampling. We selected the initial 

perturbation sizes based on the ecological knowledge from the previous studies (Kolari 

et al., 2006; Zeng et al., 2011; Zhao et al., 2015; Takagi et al., 2015). The initial Pmax 

perturbation size for grass is 4 times smaller than that of forest. The initial Dor perturbation 

sizes for grass and forest are the same. The random perturbation sizes when resampling follow 

the initial perturbation sizes. We added the references and explicit descriptions about the 

perturbation settings in the revised manuscript (P5. Line 8-9, P5. Line18-19).  

 

Following the comment of the other referee, we performed additional experiments with 

different random perturbation settings for the initial perturbation sizes and the random 

perturbation sizes when resampling. We added a new section to show these results and to 

discuss the sensitivity to the perturbation settings in the revised manuscript (P6. 

Line29 - P7. Line 21).  

 

2.7: The manuscript indicates that perturbations of parameters are applied only to duplicated 

particles. Since the particle DA scheme eliminates particles far away from observations (Fig. 1), 



that would mean that the range of the distribution of all the particles decreases after several 

cycles at least compared to the initial (uniform) distribution. Is this correct? Still, you do not 

report any issue with collapsing of the DA scheme when observations are outside the range of 

the distribution of particles. Can you please, elaborate more on this issue?  

 

Response: Yes, it is correct that the range of the distribution of all the particles decreases after 

several cycles. If we apply proper random perturbations to the duplicated particles, we can avoid 

filter collapse. However, our additional experiments showed filter collapse when the particle 

size is 500. We described about the collapse in the new section on the sensitivity to the particle 

size and random perturbation size (P6. Line29 - P7. Line 21). 

  

2.8: The NODA and the TEST experiments; Figure 3. How the 8000 particles are inserted at the 

initial conditions? Is this done every 4 days with a uniform distribution each time? The TEST 

experiment appears to reduce a big systematic error that appear during the growing months. 

Traditional DA schemes apply a bias-correction strategy of the First Guess prior to performing 

the analysis. Does this mean that particle DA also removes systematic errors?  

 

Response: As already described in P.4 Line 28 in the discussion paper, “The 8000 particles at 

the end of the 103-year spin-up runs are used as the initial conditions for DA”, and the NODA 

and TEST experiments start from the same initial 8000 particles. The 8000 particles continue to 

be the same until the first observation of LAI is assimilated. Since the LAI is observed only 

when 0.5 or larger, the LAI observation exists only in the summer season. Model state and 

parameters are estimated together at DA, and the model systematic errors associated with the 

parameters are corrected by DA with parameter estimation. No explicit bias correction is 

applied. We added these descriptions (P5. Line 4-5, P5. Line 14-17) 

 

The systematic errors in NODA comes from the uncertain parameter settings. TEST can 

estimate parameters using observed LAI, and therefore, can reduce the systematic errors. This is 

different from the bias-correction strategy of the first guess. There is no explicit bias correction 

applied to the TEST experiment. So, we understand that this particular particle DA can reduce 

systematic errors by estimating the uncertain model parameters. We discussed this point in the 

revised manuscript (P6. Line 6-8). 

 

2.9: TEST experiment; Figure 3a (forecast+grass). Please, explain the problem at the end of the 

fall months (circled in blue in the attached figure). Can this be attributed to neglecting 

observations when LAI<0.5 ? Will this be removed if observations are added there?  



 

Response: Yes, because we assume observation to be available only when LAI≥0.5, it is 

difficult to estimate the LAI when observed LAI is less than 0.5. We did not perform 

experiments with small LAI observations, because the MODIS data for the real-world 

experiment did not include LAI < 0.5 (Fig. 6). There are too few data with real MODIS LAI < 

0.5, and our preprocessing assigns the missing value. We added these discussions in the revised 

manuscript (P5. Line 3-5). 

 

2.10: It is obscure to me how come the individual LAI of Forest and Grass are accurately 

estimated out of the whole LAI. Even when the whole LAI estimation is incorrect as in the 

periods in the blue circle in the attached figure. What mechanism or statistical assumption 

within the DA process makes the partitioning of LAI correct? Is this pure chance?  

 

Response: Thank you for the comment, which initiated further analysis of the results that were 

not shown in the manuscript. As already described in P.5, Lines 21-22 in the discussion paper, 

“To investigate the sensitivity to the choice of the nature run, we performed similar OSSEs by 

replacing the nature run with other randomly-chosen parameter sets”. We investigated these 

different OSSEs more carefully and found that the parameters for grass were estimated well 

when the nature run used a larger Pmax value for grass. However, in another OSSE, the nature 

run used a small Pmax value; the results showed that the parameters for grass showed 

significantly larger uncertainties, while the parameters for forest were estimated well. Larger 

Pmax values for grass produce more grass LAI, which can be observed with the observing 

threshold of LAI = 0.5 near the growing and falling periods (shown by the blue circles provided 

by the reviewer). With smaller Pmax values for grass, the small grass LAI cannot be observed 

directly, but the large LAI observations in the summer season predominantly suggest forest 

LAI. This would allow to estimate the forest parameters well, although the grass parameters 

showed larger uncertainties. We included these results and discussions in the revised manuscript 

(P6. Line 14-27). 

 

2.10: In the Real-World Experiment; there is no detail on the perturbation strategy, so I suppose 

it is the same as in the OSSE experiment. 

 

Response: We did not provide the details of the experimental settings. Yes, the perturbation 

strategy of the real-world experiment is same as that of the OSSE. We added the descriptions in 

the revised manuscript (P7. Line 24-27). 

 



2.11: The observation error standard deviation in the real case needs more explanation. What is 

the truth from which the error is estimated? Is this the in situ observation? Is this error an input 

in the DA scheme? 

 

Response: As described in our previous response to the comment #2.5, P6 lines 1-2 in the 

discussion paper reads “The observation error standard deviations are assigned to each LAI 

datum from the original source, and we took the median of the error standard deviations.” We 

rely on the original MODIS data source about the estimate of the observation error standard 

deviation. We revised this sentence about the observation error standard deviations to avoid 

potential misunderstanding (P8. Line 3-6). 

 

Technical corrections 

Page 1. Abstract. “.. newly developed” should be “.. developed”. You repeated that later on in 

the text.  

 

Response: We corrected it accordingly (P1. Line 11, P2. Line 7). 

 

Page 1. Abstract. “.., assuming the satellite-based LAI.” This is an incomplete statement. You 

repeated this statement problem in the introduction, page 2, row 11. Maybe you meant to say 

“using” instead of “assuming”. 

 

Response: We do assume the satellite-based LAI data for the OSSE, but more precisely, we 

“simulate” the satellite-based LAI in the OSSE. Therefore, we replaced “assuming” with 

“simulating” in the revised manuscript (P1. Line 13, P2. Line 14, P5. Line 2). 

 

Page 2. row 8. “straightforward” may be replaced by “numerically straightforward”. In this 

context, it is not simple to go from local to global because spatial covariances become relevant. 

 

Response: We agree, and revised it accordingly (P2. Line11). 

 

Page 2. (last) row 31. “phase space stays the same” may be “phase space dimension stays the 

same” 

 

Response: We revised it accordingly (P3. Lines 10, 17). 
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Abstract. We newly developed a data assimilation system based on a particle filter approach with the Spatially Explicit 

Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM). We first performed an idealized observing system 

simulation experiment to evaluate the impact of assimilating the leaf area index (LAI) data every 4 days, assumingsimulating 

the satellite-based LAI. Although we assimilated only LAI as a whole, the forest and grass LAIs were estimated separately 

with high accuracy. Uncertain model parameters and other state variables were also estimated accurately. Therefore, we 15 

extended the experiment to the real world using the real Moderate Resolution Imaging Spectroradiometer (MODIS) LAI data, 

and obtained promising results. 

1 Introduction 

 

     The terrestrial biosphere is an important part of the Earth System Model (ESM) to simulate the carbon and water cycles. 20 

However, terrestrial biosphere models tend to have large uncertainties, for example, in phenology (Richardson et al., 2012; 

Murray-Tortarolo et al., 2013) and in spatial distributions of plant species (Cheaib et al., 2012). Recently, data assimilation 

(DA) methods which incorporate observation data into models have been applied to terrestrial biosphere models to reduce the 

uncertainties in the state variables and model parameters (Luo et al., 2011; Peng et al., 2011). Previous studies have 

successfully applied the ensemble Kalman filter (e.g., Evensen, 2003; Williams et al., 2005; Quaife et al., 2008; Stöckli et al., 25 

2011) or adjoint method (e.g., Kaminski et al., 2013; Kato et al., 2013) to the static vegetation models, but studies with the 

dynamic global vegetation models (DGVMs) are still limited (Luo et al., 2011; Peng et al., 2011), although Hartig et al. (2012) 

pointed out the importance. 

     The static vegetation models are time-independent and do not include the vegetation succession process (Peng, 2000). 

Alternatively, DGVMs include the vegetation succession process and can simulate carbon and water cycle changes linking to 30 

the vegetation shift under the changing climate. Especially, individual-based DGVMs simulate local interactions among 

individual plants such as competitions for light and water, so that the model can simulate the vegetation succession more 
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explicitly (Smith et al., 2001; Sato et al. 2007). Garetta et al. (2010) pioneered to apply DA to an individual-based DGVM for 

paleoclimate, but no study has been published thus far to assimilate fine time-scale data from satellites and ground stations 

using an individual-based DGVM. If the initial vegetation structure and the model parameters of an individual-based DGVM 

are estimated more accurately by assimilating the fine time-scale data, the uncertainties of the simulated future vegetation 

would be greatly reduced.  5 

     This study explores to assimilate frequent satellite-based Leaf Area Index (LAI) data with an individual-based DGVM 

known as the SEIB-DGVM, standing for Spatially Explicit Individual-Based DGVM (Sato et al., 2007). We newly developed 

a non-Gaussian ensemble DA system with the SEIB-DGVM based on a particle filter approach. As the first stepAlthough the 

particle filter is an existing, well-known approach, this is the first attempt to apply it to an individual-based DGVM with 

frequent LAI data. Therefore, we focus on the methodological development in this study performsand perform a series of 10 

numerical experiments at a local scale.single location with only a couple of plant functional types (PFTs) as the first step. It 

would be numerically straightforward to extend it to the global scale in the future studies, since the local-scale experiments 

can be performed in parallel for different locations. In thisthe present study, we first perform an idealized experimentsimulation 

experiments to investigate how well we can estimate the model parameters associated with phenology by assimilating the LAI 

data every 4 days, assumingsimulating the satellite-based LAI product from the Moderate Resolution Imaging 15 

Spectroradiometer (MODIS) aboard the Terra and Aqua spacecraft. We also investigate to what extent assimilating the LAI 

data could improve the estimates of the state variables such as GPP (Gross Primary Production), RE (Ecosystem Respiration), 

NEE (Net Ecosystem Exchange), and biomass, the most fundamental variables for carbon cycle and vegetation states. 

Sensitivities to the filter settings such as the random perturbation sizes and particle sizes are also investigated. Following the 

idealized experimentexperiments, we perform an experiment using the real MODIS LAI observation data to see how well the 20 

proposed approach worksperforms in the real world. 

2 Methods 

2.1 SEIB-DGVM 

     The SEIB-DGVM simulates establishment, growth, and decay of the individuals of prescribed plant functional types (PFTs) 

within a spatially explicit virtual forest (Sato et al., 2007), forced by climate conditions such as air temperature, soil temperature, 25 

cloudiness, precipitation, humidity, and winds. We used version 2.71 (Sato and Ise, 2012) but with minimal modifications for 

DA (cf. Appendix).. The model simulates daily states, but the original model outputs were only once per year. Outputs are 

needed for DA every once in 4 days, so that we modified the model code to output the model states every 4 days. In addition, 

the original model code assumed running for many years continuously, and the initial seed for the random number generator 

was fixed. Since in this study we stop the model every 4 days, and the same seed is repeated every time when we start the 30 

model. Therefore, we modified the model code to randomly generate the seed for the random number generator every time 

when we initiate the model. Other modifications are summarized in Appendix.  
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     Among the various model outputs ranging from individual tree height to soil water content (Sato et al., 2007, with updated 

information available from the package of version 2.71), we focus on LAI because it is a key to the vegetation model, and 

because previous studies show a promise in assimilating satellite-based LAI data with a static vegetation model (Stöckli et al., 

2011) and a non-individual-based DGVM (Demarty et al., 2007). We extend the previous studies to assimilate the LAI data 

with the individual-based DGVM. 5 

2.2 Particle filter-based DA 

     Individual-based DGVMs include highly nonlinear processes such as occasional establishment and death of individual 

plants. These processes produce and eliminate state variables, and the phase space changes time to time. DA methods that have 

been used in geophysical applications usually assume that the state variables are defined uniquely for the given dynamical 

system and that the phase space dimension stays the same. The widely-used ensemble Kalman filter, for example, finds the 10 

best linear combination of the ensemble with optimal fit to the observations, but it is not trivial to define a linear combination 

or even the ensemble mean for the variables missing in some ensemble members. Therefore, it would not be trivial to apply 

the widely-used DA methods to individual-based DGVMs. 

     Alternatively, particle filters run independent parallel simulations or particles and represent the probability density function 

(PDF) explicitly by assigning probability to each particle. Therefore, particle filters can handle non-Gaussianity and 15 

nonlinearity explicitly, and can be applied to the individual-based DGVMs in a straightforward manner (e.g., Garetta et al., 

2010) even though the phase space dimension is different for each particle. 

     Here we adopt an efficient particle filter approach known as the Sequential Importance Resampling (SIR:, Fig. 1) (Gordon 

et al., 1993). First, n parallel simulations are performed, and each simulation is considered as a particle representing the true 

state of the system with equal probability. Next, likelihood 𝑙𝑡
(𝑖)

is calculated for each particle using the Gaussian likelihood 20 

function: 

𝑙𝑡
(𝑖)

= p(𝑦𝑡|𝑥𝑡|𝑡−1
         (𝑖)

) =
1

√2𝜋∙𝜎2
exp {−

(𝑦𝑡−𝑥𝑡|𝑡−1
         (𝑖)

)2

2∙𝜎2 }         𝑓𝑜𝑟 𝑖 = 1, … , 𝑛.                                (1) 

Here, 𝑥𝑡|𝑡−1
         (𝑖)

denotes the simulated LAI of the ith particle at time t from the previous time step t-1, 𝑦𝑡  the observed LAI at time 

t, and σ the observation error standard deviation. Since the prior probability is uniform, Bayes’ rule gives that the posterior 

probability of the ith particle is proportional to 𝑙𝑡
(𝑖)

, i.e., the particles closer to the observation have more probability. Next, we 25 

resample the particles, so that each particle has equal probability. The particles with more probability (larger 𝑙𝑡
(𝑖)

) are duplicated, 

and the particles with less probability (smaller 𝑙𝑡
(𝑖)

) are removed. If n is sufficiently large, we can evaluate the posterior PDF 

accurately. Each resampled particle represents the true state of the system with equal probability and acts as the initial particle 

for the next time step. This Bayesian framework is repeated. 
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2.3 OSSE and the real-world experiment 

     We first perform ana series of idealized Observing System Simulation Experiment (OSSEExperiments (OSSEs). The OSSE 

(e.g., Atlas, 1997) is a widely-used approach in meteorological DA to test the general performance of a DA system and to 

evaluate the impact of specific observing systems. OSSE has the nature run, which is usually generated by running a simulation 

for a certain period. Observation data are simulated from the nature run by applying the observation operator, i.e., converting 5 

the model variables to the observed variables. Here, we add artificial random noise to simulate the observation error. DA 

experiments are initiated from the state independent of the nature run, and the simulated observations are assimilated. The 

resulting analyses and subsequent forecasts are compared with the nature run to evaluate the performance of DA. Once an 

OSSE is done, it is straightforward to extend the OSSE to the real world by simply replacing the simulated observations with 

the real-world observations. 10 

3 OSSE 

3.1 Experimental design 

     To generate the nature run, the SEIB-DGVM was initialized with the bare ground (i.e., no plant at the beginning) and 

was run for 107 years using the climate forcing data from year 2001 to 2010 available at the SEIB-DGVM webpage (http://seib-

dgvm.com/). Here, the 10-year forcing data are repeated for the 107-year simulation, and the last 7 years from year 101 to 107 15 

use the actual climate forcing of 2001 to 2007, so that we call year 101 to 107 to be 2001 to 2007. The daily climate data were 

generated by the procedure of Sato and Ise (2012) with updated information available at the SEIB-DGVM webpage, based on 

the monthly Climate Research Unit observation-based data (CRU-TS3.22 0.5-degree monthly climate time series) (Harris et 

al., 2014) and the daily data from the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric 

Research (NCAR) reanalysis (Kalnay et al., 1996). We chose the study area at one of the AsiaFlux sites, the Siberia Yakutsk 20 

Larch forest site at Spasskaya Pad, the middle basin of River Lena (62º 15' 18" N, 129º 14' 29" E). The observed climate data 

at this site were not directly used in this study, but these data may have been included in the NCEP/NCAR reanalysis. Field 

observationobserved carbon flux data are available as the ground truth to verify the DA results at this site.  Forced by the 

climate data, the SEIB-DGVM simulates the vegetation shifts from the bare ground to a grassland, and then to a forest. The 

two PFTs, the boreal deciduous needle leaved trees and C3 grass, are the dominant PFTs in this study area. Therefore, we do 25 

not consider the other PFTs in this study. following Sato et al. (2010). We call these two PFTs simply “forest” and “grass”. 

     The nature run (Fig. 2 a) was performed with the “true” parameter values Pmax = 15 μmolCO2 m-2 s-1 and Dor = 230 DOY 

(day of year) for forest and Pmax = 9 μmolCO2 m-2 s-1 and Dor = 270 DOY for grass, where Pmax and Dor stand for the 

maximum photosynthesis rate and the start date of the dormancy, respectively (Fig. 2 b). Hereafter we omit the units for Pmax 

(μmolCO2 m-2 s-1) and Dor (DOY) for simplicity. The LAI observations for the last 4 years from year 2004 to 2007 were 30 

created by adding independent Gaussian random noise to the LAI values from the nature run (Fig. 2 a) every 4 days, 
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assumingsimulating the MODIS LAI product. Here, the observation error standard deviation was given by 10 % of the nature 

run LAI value. The observed LAI < 0.5 are discarded and were not used for DA because the MODIS data for the real-world 

experiment did not include LAI < 0.5. There are too few data with real MODIS LAI < 0.5, and we assign the missing value in 

preprocessing. Since the LAI is observed only when 0.5 or larger, the LAI observation exists only in the summer season. 

     Next, 8000 particles (parallel simulations) were generated with uniformly perturbed parameters: Pmax = [0, 60] for forest, 5 

Pmax = [0, 15] for grass, Dor = [200, 300] for both. Here, [a, b] denotes random draws from the uniform distribution between 

a and b. These initial perturbation sizes are based on the previous studies (Kolari et., 2006; Zeng et al., 2011; Zhao et al., 2015; 

Takagi et al., 2015). We ran 8000 parallel simulations for 103 years for spin-up from the bare ground using the same climate 

forcing data as the nature run. In the course of the vegetation succession, these randomly perturbed parameter sets result in a 

variety of LAI simulations (Fig. 2 b). 10 

     The 8000 particles at the end of the 103-year spin-up runs are used as the initial conditions for DA. The simulated LAI 

observations are assimilated every 4 days. The nature run and particle filter use the same climate forcing data, so that the 

difference comes from the model parameter values. To avoid the exact duplications and convergenceThe particles continue to 

be the free runs until the first LAI observation is assimilated in the summer season. The state variables and model parameters 

are estimated together at DA, and the model systematic errors associated with the model parameters are corrected by DA with 15 

parameter estimation. No explicit bias correction is applied. To avoid the exact duplications after resampling, the model 

parameters Pmax and Dor are randomly perturbed for the duplicated particles. Here, random draws [-4, 4] are added to Pmax 

for forest and to Dor for both forest and grass, and [-1, 1] isare added to Pmax for grass because the initial Pmax perturbation 

size for grass is a quarter of that of forest. In case that these perturbed parameters exceed the corresponding initial parameter 

range, the excess value was bounced back from the limits. To assess the impact of DA, we also perform an experiment without 20 

DA (“NODA” hereafter), and compare to the experiment with DA (“TEST” hereafter). 

 

3.2 Results     

     Figure 3 shows the time series of LAI for NODA (left) and TEST (right). The observations (Fig. 3 a, redblue dots with 

error bars) cannot distinguish the forest and grass, but the model simulates LAIs for forest and grass separately (Fig. 3 b, c). 25 

Although the particles without DA are widely spread (left, gray areas), DA makes the particles much narrower (right) and 

consistent with the nature run (red curves). With DA, the median of the particles for forest is almost identical to the nature run 

for the entire 4 years (Fig. 3 b, right). As for grass, the median of the particles is also very close to the nature run with DA, but 

in the first three years the dormancy period is delayed (Fig. 3 c, right). 

     The model parameters are estimated accurately (Fig. 4). There is no direct observation of these parameters, so that the 30 

estimations are purely due to DA of the LAI observations. Although the particles of the NODA experiment are uniformly 

distributed (Fig. 4, left), DA makes the particles close to the true parameters (Fig. 4, right). Since we assimilated the LAI only 

when 0.5 or larger, DA has an impact only in the summer season when the leaves grow. It takes 1-4 years until the true values 
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fall within the quartiles of the particles. The Pmax estimates for both forest and grass show occasional jumps, but tend to stay 

around the true values (Fig. 4 a, b). Dor for forest seems the most accurate and stable after the dormancy period of the first 

year (Fig. 4 c). Dor for grass takes the longest; the estimation is not accurate until the dormancy of the fourth year (Fig. 4 d). 

This may be related to the previous results showing the erroneous estimates of the grass LAI near the dormancy period in the 

first 3 years (Fig. 3 c). The systematic errors in NODA come from the uncertain parameter settings. TEST can estimate the 5 

parameters through DA, and can reduce the systematic errors. This is different from the bias-correction strategy of the first 

guess.  

     Other model variables such as GPP, RE, NEE and biomass show large improvements (Fig. 5). Although the particles of the 

NODA experiment are widely spread, DA with only LAI observations greatly reduces the uncertainties for the four variables, 

and the estimations are generally reasonable. 10 

 

4 Sensitivity experiments for OSSE 

4.1 Sensitivity to the nature run 

     To investigate the sensitivity to the choice of the nature run, we performed similar two additional OSSEs, which we call 

“OSSE2” and “OSSE3”, by replacing thegenerating different nature runruns with other randomly-chosen different parameter 15 

sets. Also, we generated different  (Table 1). The random numbers for the observation errors. The  are also different. The other 

settings follow the TEST experiment. 

The results showed show that both OSSE2 and OSSE3 perform well in general. Namely, the LAI and parameters are 

estimated generally well (Fig. 6). We find the main difference between OSSE2 and OSSE3 in the parameters for grass (Fig. 6 

c, e). OSSE3 shows significantly larger uncertainties for the parameters for grass. In OSSE2, the Pmax value for grass is larger 20 

and produces more grass LAI. Since grass starts to grow earlier and stays longer than forest, it is critical to have LAI 

observations near the emerging and falling periods for estimating the grass parameters. Due to the larger Pmax value for grass 

in OSSE2, LAI can be observed with the observing threshold of LAI = 0.5 near the emerging and falling periods. By contrast, 

in OSSE3, the Pmax value for grass is smaller, and the small grass LAI < 0.5 cannot be observed. We can see this in the LAI 

time series (Fig. 6 a, right) near the tails in the spring and fall seasons every year. The uncertainties of LAI are not reduced 25 

year by year, corresponding to the large uncertainties of the grass parameters. In the summer, LAI becomes larger mostly due 

to forest, so that the forest parameters can be estimated well. 

 

4.2 Sensitivity to the initial perturbation size 

Here we investigate the sensitivity to the initial perturbation sizes with particle sizes ranging from 1000 to 16000. Table 2 30 

shows the three initial perturbation settings: small, moderate and large. For the TEST experiment, the moderate initial 
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perturbation sizes were used. We perform additional sensitivity experiments with the small and large initial perturbation 

sizes. Except for the initial perturbation sizes and the particle size, the experiments follow the TEST experiment.  

Tables 3 show the mean absolute errors (MAE) and the widths of the 1-99% quantiles, respectively, averaged over a year 

in 2007. We consider that the filter diverges when the MAE is larger than the half width of the 1-99 % quantiles, as shown by 

gray shades in the tables. The results show that the filter diverges for biomass in 10 out of 15 experiments. The 5 experiments 5 

that do not diverge are (4000; small), (8000; small), (16000; small), (8000; moderate) = TEST, and (16000; moderate), where 

( ; ) denotes (particle size; initial perturbation sizes). (1000; large) causes filter divergence for most variables and parameters. 

(2000; large) shows filter divergence for Dor for grass in addition to biomass. Sampling a wider interval with a smaller particle 

size generally reduces the particle density, or the effective number of the particles, so that the results seem to be reasonable.  

 10 

4.3 Sensitivity to the resampling perturbation size 

Here we investigate the sensitivity to the resampling perturbation sizes with particle sizes ranging from 500 to 16000, in 

a similar way as the previous subsection. Table 4 shows the three resampling perturbation settings: small, moderate, and 

large. For the TEST experiment, the moderate resampling perturbation sizes were used. 

Tables 5 show similar results with the different nature runs and random numberstables as Tables 3 but for the sensitivity 15 

to the resampling perturbation sizes. We use the similar notation of ( ; ) denoting (particle size; resampling perturbation setting). 

The results show that the filter diverges for biomass in 13 out of 18 experiments. The 5 experiments that do not diverge are 

(4000; large), (8000; moderate) = TEST, (8000; large), (16000; moderate), and (16000; large). (500; small) is most unstable, 

with more variable and parameter showing filter divergence. Resampling perturbations act as variance inflation in the ensemble 

filters (e.g., Anderson and Anderson 1999). It is known that variance inflation generally stabilizes the filter, and the results 20 

obtained here seem to be consistent. 

45 Real-world experiment 

45.1 Experimental settings 

     TheHere the OSSE wasis extended to the real world by replacing the simulated observations with the real observations. 

The sensitivity results in the previous section showed that the settings used for the TEST experiment provided stable filter 25 

performance; therefore, we follow the TEST experiment here with the moderate initial and resampling perturbation sizes and 

with 8000 particles.  

Since the OSSE used the actual climate forcing in 2004 to 2007, we used the quality -controlled MODIS LAI product of 

MCD15A3 for those years with flagged as “good quality”, “Terra or Aqua”, “detectors apparently fine for up to 50 %”, 

“significant clouds not present”, and “main method used with or without saturation”. We took the median of the LAI 30 

observations in the 10-km radius from the study site (62º 15' 18" N, 129º 14' 29" E). The gridded MODIS LAI data have the 
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grid resolution of 1 km, so thatThere are a number of missing data in the quality-controlled MODIS data. Therefore, if the 

number of the data in the 10-km radius area contains 314 grid points. If moreis less than 14 grids are missing300, we apply set 

these data as the missing data for DA. Since the MODIS data resolution is 1 km, the 10-km radius area contains about 314 

data. The observation error standard deviations are assigned to each LAI datum fromin the original sourceMODIS product 

(Knyazikhin et al., 1999). We rely on the estimate of the observation error standard deviations, and we took the median of the 5 

error standard deviations. in the same way as getting the LAI data. The observation error standard deviation is used in the 

particle filter when computing the likelihood function (Eq. 1).  

     The model-simulated NEE was validated with the field observation data at this AsiaFlux site (Ohta et al., 2001; 2008; 2014). 

The data was quality controlled by the steady-state test as indicated by the quality flag 0. Although the model simulates daily-

average NEE, the field observation data represent instantaneous NEE every 30 minutes. The observation data are missing 10 

frequently, and it is not trivial to derive daily averages. Therefore, the raw data are compared with the DA results directly. This 

allows only a rough verification about whether or not the simulated NEE is in a reasonable range, but this is the only possible 

verification with an independent source. 

 

45.2 Results 15 

     Figures 6, 7, 8, and 89 show similar time series to Figs. 3, 4, and 5, respectively, but with the real MODIS LAI observations. 

Although the particles of the NODA experiments are widely spread, DA makes the particles much narrower (right) for all 

variables and parameters. With DA, the median of LAI is very close to the observations, within the range of the observation 

error standard deviations (Fig. 67 a). The grass and forest LAIs are estimated separately (Fig. 67 b, c), but there is no direct 

observation or other verification truth to compare with. This is similar to the model parameters (Fig. 78) and other model 20 

variables (Fig. 89) except for NEE, for which direct field observation data are available. As in the OSSE results, the range of 

uncertainties for NEE is reduced significantly by DA (Fig. 89 c). Since the field observations are made instantaneously every 

30 minutes, the observation values (red) appear to have a wider range. However, the SEIB-DGVM simulates only daily-

average NEE, and it is not straightforward to compare the outputs from SEIB-DGVM with the field observations. We still find 

that the median of NEE becomes closer to the observations, particularly near the dormancy period. The simulated NEE 25 

generally stays within the reasonable range compared with the field observations. In general, the particle filter shows promising 

results with the real MODIS LAI data. 

 

56 Conclusion 

     We assimilated the satellite-based MODIS LAI data using a non-Gaussian ensemble DA system with the SEIB-DGVM 30 

based on the SIR particle filter approach. To the best of the authors’ knowledge, this is the first study to assimilate the fine 
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time-scale satellite data with an individual-based DGVM. We found that DA performed generally well both for OSSE and 

real-world experiment, so that the newly developed DA system greatly reduced the uncertainties of the state variables and 

model parameters.  were greatly reduced. Additional sensitivity experiments for OSSE revealed general robustness but some 

sensitivities to the nature run, initial and resampling perturbation sizes, and particle size, particularly for biomass. 

     Although we assimilated only LAI as a whole, the forest and grass LAIs were estimated separately. This suggests that the 5 

satellite-based DA reduce the uncertainties in the initial vegetation structure of the individual-based DGVM toward the 

simulation of the future vegetation change. Another notable results include that the model parameters of the individual-based 

DGVM were estimated successfully, and that the uncertainties in the unobserved model variables relevant to carbon cycle and 

vegetation states were also reduced significantly. Similarly to the previous studies with a static vegetation model (Stöckli et 

al., 2011) and a non-individual-based DGVM (Demarty et al., 2007), the results in the present study also suggest that LAI be 10 

the key to DA for phenology and carbon dynamics.  

     As a potential limitation, it is important to note that we have made strong assumptions in OSSE. For example, the only 

source of model imperfections was the model parameter uncertainties of the four parameters. It was also assumed that the 

observation error statistics were perfectly known. These conditions would have never been met in the real-world experiment.  

As the first step, this study focused on the methodological development of the data assimilation system with SEIB-DGVM 15 

and estimated only four parameters of two PFTs using LAI observations at a single location. As a next step, more parameters 

and distributions of more diverse PFTs should be considered at different locations. Local-scale experiments can be performed 

in parallel for different locations since the satellite-based LAI observations are available globally. The simulation with the 

initial states and parameter sets obtained from the SEIB-DGVM-based DA system would be expected to improve the estimates 

of the carbon cycle changes atover the global domainglobe. 20 
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