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Abstract. We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-
organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible
site, the model successfully reproduces the statistical signatures of seismicity. The energy ¢(magnitude) distributions closely
follow power-law probability density functions (PDFs) with scaling exponent —5/3, consistent with the expectations of the
Gutenberg-Richter (GR) law, for a wide range of the targeted-triggering probability values. Additionally, for targeted trigger-
ing probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is
not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show
remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed
model has key advantages, foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of
earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile.
We believe that the critical-targeting probability parametrizes the memory that is inherently present in earthquake-generating

regions.

1 Introduction

The sandpile model, introduced as a representative system for illustrating self-organized criticality (SOC) (Bak, Tang, Wiesen-
feld, 1987), has opened up new avenues for the use of discrete cellular automata (CA) models in capturing the salient features
of many systems in nature (Olami, Feder, Christensen, 1992; Drossel and Schwabl, 1992; Malamud and Turcotte, 2000; Piegari
et al., 2006; Juanico et al., 2008). Seismicity, which is rife with power-law statistical distributions (Saichev and Sornette, 2006),
is an interesting test case for such approaches. Despite the complexity of the processes in the earth’s crust that limit our ability
for accurate, short-term prediction of events, it is worth noting that many statistical features of seismicity, as obtained from
substantially complete earthquake records, can be recovered using simple CA models.

One of the earliest attempts for sandpile-based modelling of earthquake distributions is by Bak and Tang (1989), who used a
two-dimensional sandpile to show the power-law Gutenberg-Richter (GR) distributions of earthquake energies (Gutenberg and
Richter, 1954). Subsequent authors also noted that the simple sandpile produces power-law distributions of earthquake waiting

times upon introducing a threshold magnitude (Paczuski et al., 2005). Additional parameters have been introduced in the model
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to account for other features of seismicity. Ito and Matzusaki (1990) introduced aftershock triggering to the sandpile model to
recover the aftershock frequencies and the hypocenter distributions, which also follow power-law decays. To represent a scale
invariant distribution of earthquake faults, Barriere and Turcotte (1991) incorporated a power law distribution of box sizes in
the CA model, and recovered not only the GR distribution but the occurrence of foreshocks. On the other hand, Steacy et al.
(1996) investigated the effect of a heterogeneous strength distribution and found that the power-law exponent of the magnitude
distribution is dependent on the degree of the heterogeneity. Inspired by the sandpile design, Olami, Feder, Christensen (1992)
used a CA implementation of the earlier Burridge-Knopoff model Burridge-and KnepeH1967) that incorporates dissipative
terms and inhomogeneous energy redistribution rules to capture key elements of seismicity, along with foreshocks and after-
shocks Hergarten—andNeugebaver2002), In another work, Jagla (2013) has shown that the GR law can be recovered in a
forest-fire model, with the fires interpreted as the earthquake occurrences.

The introduction of additional parameters to subsequent models indicates that the original sandpile is not able to capture key
features of seismicity. For one, the cascade mechanisms in the grid tend to deplete the stress in the entire system in a single
avalanche event, which is in contrast with that of earthquakes which-tendto-—releasethe-enersy, in a sequence of correlated
events. Additionally, the single triggering at random locations will tend to produce normal distributions of interoccurrence
distance and times, which, again, deviates from those observed in records of seismicity. Finally, the conservative sandpile with
symmetric nearest-neighbor redistribution rules does not take into account the dissipation-and-assymmetry, that may be present
in actual earthquake-generating zones.

In this work, we adhere to the key features of the sandpile model, and introduce a very simple modification: for a fraction
of the iteration times, whieh-is-determined randomly, we direct the triggering into the most susceptible site in the grid. In this
case, the avalanche-areas are deemed to be analogous to the energy-efthe earthquake occurrence. Interestingly, this very simple
modification in the sandpile rule enabled us to recover, simultaneously, the distributions of energy, interevent distances, and

interevent times;-that are comparable to those obtained from substantially complete earthquake records.

2  Model Specifications

The model utilizes a two-dimensional space discretized into a grid of L x L cells arranged in a square lattice. The cells contain
continuous-valued information states ¢ representing the local measure of susceptibility to rupture. At time ¢ = 0, the states
are initialized to have values within [0, 0,ax), Where, in this case, we set oay = 1.0 as the relative measure of the rupture
threshold.

The dynamical evolution of the grid is guided by rules patterned after the Zhang sandpile that uses continuous-valued
states (Zhang, 1989). We choose an asynchronous update rule, such that every discrete time step, the grid is triggered by
adding a constant value v to a single location (z,y), o(x,y,t+1) = o(z,y,t) +v, with all the other sites initially-unperturbed.
The asynchronicity is-deemed-te represent the nonuniformity of crustal motion that drives the accumulation of elastic potential
energy at faults. Moreover, the model introduces a targeted triggering probability p that the most susceptible site, i.e. the site

with the highest o value in the grid, will receive the driving term v. Triggering is therefore applied to the most susceptible
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site with probability p; and to a randomly chosen site with probability 1 — p. The value of p represents a memory term, and
parameterizes the tendency of fracture to occur at more susceptible locations along an earthquake generating zone.

In the event when a leeal cell matches or exceeds a maximum possible value o, ax, the local region is deemed to rupture.
No new trigger is added to the system during such events; instead, the stress from the collapsing site is transferred to the four
nearest neighbors in the grid, o(z + 1,y +1,t) = o(z £ 1,y £ 1,t) + Lo (z,y,t), leading to the relaxation of the original site,
o(x,y,t) — 0. Such relaxations may produce a cascade of subsequent stress redistributions and relaxations in the grid when
one or more of the neighbors are themselves driven to the threshold. Fhe-number-of-affected-sites—in-thegrid; A-is-used-asa

Prior calibrations show that v = 10~3 produce power-law avalanche-size distributions comparable to the GR law, and that
tmax = {1,4,16} X 107 iterations, where the first 10% are neglected for transient behavior, produces substantial number of
avalanche events for L = {256,512,1024} grids, respectively. We investigated the case of different targeted triggering prob-
abilities p = {0,1 x 10* 5 x 10* 1}, where the integer k is from -5 to -1 to scan a wide range of possible system behav-
iors. For each of the p values, we track all nonzero A; and V; and their avalanche origins and occurrence times (z;,y;,t;),
where ¢ denotes the temporal index of occurrence of an event. The spatial and temporal separations of successive events,
Ri=[(z; —xi—1)?+ (yi —yi—1)?]"/? and T} = t; — ;_, are computed, and the probability density functions (PDFs) of all A,
R, and T are plotted.

Records of very low-magnitude earthquakes are oftentimes incomplete, because they are both too weak for detection and
because their occurrence is orders of magnitude in frequency as compared with the higher-magnitude ones. In the model,
however, we can resolve all the avalanches, even the smallest ones that affect only single neighborhoods. To mimic the effect
of the non-retention of the smallest earthquakes, we employed a thresholding procedure in the analyses by setting A, =
{5,10,50,100,500,1000,5000} such that all events with A < Ay, are removed from the sequence. Because the A PDF is just
expected to be cut off below A;;, we observed how the statistical distributions of R and 7" will be affected upon employing
different A;;, values.

Finally, as a way of comparison and verification, we compare the model statistics with those obtained from actual earthquake
catalogs from Japan (JP), Philippines (PH), and Southern California (SC), as investigated in a previous work by Batac and Kantz
(2014). The JP records are obtained from the Japan University Network Earthquake Catalog (JUNEC), with approximately
137,000 events from July 1985-December 1998; the PH earthquakes are composed of 70,000+ events from 1973 to 2012,
as obtained from the Preliminary Determination of Earthquakes (PDE) Catalog; while the SC records are from the Southern
California Earthquake Catalog (SCEC) containing 516,000+ events from 1982 to 2012 (events due to man-made activities are

removed). We compared the behaviors of the model and data statistics using scaling factors derived from model parameters.

3 Model Results

Figure 1(a) shows the avalanche size probability-density-funetions(PDFs) for the different values of the targeted triggering

probability p. For the broad range of p values considered, the distributions are found to be comparable to a power-law A~¢
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Figure 1. Avalanche size and earthquake energy PDFs. For all figures, lines corresponding to the power-law trend with exponent v = 1.6 are

|
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provided as guides to the eye. (a) Model results show similar behaviors despite the large differences in p, signifying the retention of sandpile
chaareteristies, The obtained power-law distributions are comparable to the power-law trends in the energy distributions from (b) Japan, JP;
(c) Philippines, PH; and (d) Southern California, SC. In (b)-(d), the horizontal axes scales are preserved; shaded regions denote energy values

with substantial completeness, which will be used for subsequent analyses.

In Figure 2(a), we observe that the original sandpile p = 0 produces unimodal statistics, whose tails decay towards the largest

possible distance v/2L in the finite grid. The simple sandpile, therefore, is not capable of replicating the observed earthquake
separation distance distributions, which are found to exhibit bimodality due to the difference in the characteristic times of the

correlated aftershock sequences and the independent mainshocks (Baiesi and Paczuski, 2004; Zaliapin et al., 2008; Touati et
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Continuous-state sandpiles have been known to have avalanche size scaling exponents greater than 1.0, the exponent of the discrete Bak-Tang-Wiesenfeld (BTW) sandpile. Lübeck (1997) conducted large-scale simulations of a similar Zhang sandpile and obtained exponents slightly higher than 1.2, which can go even higher for large driving rates ν. In a similar model that incorporated non-conservation, Piegari et al. (2006) obtained power-law exponents that approach 1.6 in the conservative limit for the same order or magnitude of ν that we used. The higher exponents and the effect of the driving rates are also verified by an equivalent conservative model and actual sand avalanche experiments by Juanico et al. (2008), and in other asynchronous updating models (Paguirigan et al., 2015). 

The resulting power-law exponent is deemed to be a result of the accumulation of stress at various locations: because the triggering is done at only a single site every time, there is little global connectivity among critical sites, resulting in a preponderance of smaller, isolated avalanches. The fact that the distributions are almost similar regardless of the value of p indicates that the targeted triggering probability has minimal effect on the avalanching mechanism of the grid, such that the system preserves the SOC characteristics of the original sandpile. In contrast, the OFC model, for example, tends to lose the universality of the exponents upon the introduction of nonconservation (Olami, Feder, Christensen, 1992). 
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al., 2009; Batac and Kantz, 2014). This inspired the introduction of p, which is a random occurrence in time but is inherently
affecting the spatial distribution of events in the grid. We do note here that the parameter p is just the probability to target the
most susceptible site in the lattice, unlike previous implementations that actually pre-select the next targeting location within
the vicinity of the previous avalanche (Ito and Matzusaki, 1990). Indeed, without the imposition of such a spatial bias, the
replication of the short- R regimes is not guaranteed. Interestingly, however, the plots in Figure 2(a) show increased probability
of occurrence of the short- R distances upon introducing nonzero p. From this, we can deduce that the most susceptible sites in
the lattice are most likely to be found within the vicinity of a previous large avalanche, a fact that was not exploited by earlier
similar models. In fact, in the biased case p = 1, we recovered unimodal statistics, as shown in Figure 2(a), albeit at a shorter
characteristic distance; for the L = 256 grid, the average location of the most susceptible site from the previous avalanche
origin was obtained to be around 21 cell lengths. Midway between these two extremes (p = 0 for the original, and p = 1 for
the completely biased sandpile), we can find a suitable value of p where reasonable comparison with empirical data can be
obtained.

The interevent time distributions are shown in Figure 3(a), for L = 256 and t,,,x = 107 iterations. We observe the expected
shift of the tail cutoff towards shorter 7" values as p is increased; triggering the highly-susceptible sites will more likely result
in a new avalanche event, thereby shortening the average waiting time. The resulting distributions are for the case wherein all
the events are included in the sequence; we expect a lengthening of the tails of the distributions when we neglect other events

below the threshold A;y,.

4 Discussion
4.1 Energy Distributions and the Gutenberg-Richter Law

The GR law, which is usually presented in terms of the magnitudes M and as a complementary cumulative distribution function
(CCDF), logy M, = a—bA4 can be shown to be equivalent to an energy £/ CCDF that behaves as E~2/3 from the definition of
A4 and by assuming b = 1, which is the case for most complete records (Jagla, 2013). By noting that the CCDF is effectively
an integral of the PDF, the earthquake energy PDF will then behave as E~°/3 -which-is-comparable-to-the-model-obtained
expenents. In Figure 1(b)-(d), similar power-law trends have been obtained for the JP, PH, and SC records, which have different
levels of catalog completeness, as indicated by the extent of the power-law regimes. To minimize the problems associated with
the inherent incompleteness of smaller-energy events (Zaliapin and Ben-Zion, 2015), we impose a threshold magnitude m, for
succeeding analyses such that earthquake events with magnitudes lower than my are dropped from consideration. The range
of such magnitudes considered, which are well within the power-law regimes of the plots, are shaded in Figure 1(b)-(d):

m,€ [2.5,3.5] for JP and SC and m, € [4.5,4.8] for PH.
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Figure 2. (Color online) Interevent distance statistics of model, with rescaling for comparison with actual earthquake separation distance

data. (a) For a L = 256 grid, higher p results in the preponderance of short-R values. The trends of the model closely mimic those of the

data for (b) JP, (c) PH, and (d) SC, where calibration was done by comparing the modes of the shuffled-sequences—as-showninthe-insets
ef(b)(d) Larger grids in (b)-(d) result in the capablhty to rephcate the shorter R regimes. flihe—eﬁesswer—pemt—bewzeeﬂ—d-&t-a—aﬂd—s-haﬁﬂed
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In keeping with the earlier sandpile-based approaches where the avalanche size A is used for comparison with earthquake energies (Bak and Tang, 1989; Ito and Matzusaki, 1990), we present in Figure 1 the PDFs of A with those of E from the seismogenic regions considered. It is worth emphasizing that similar power-law trends result from the introduction of the parameter p, regardless of how large its relative value is. We note, however, that aside from the avalanche size A, there are other parameters that can be used to track the extent of the avalanche event. One such measure is the number of activations V , wherein the sites repeatedly affected by the avalanching process gets to be counted multiple times. Previous works have shown that V and A in discrete models may in fact have actual associations with the seismic moment and fracture area, respectively, and may exhibit nontrivial scaling relations (Landes and Lippiello, 2016). We present in Figure 4(a) the distributions obtained upon tracking V . 
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Figure 3. (Color online) Interevent time statistics of model, resealed-te-eorrespond-to-actual-earthquake-waiting-time-data; (a) For a L = 256

grid, higher p results in the shift of the distribution to shorter 7" values. To obtain substantial power-law regimes, we used the results for the
L = 1024 grid to replicate the waiting time statistics of (b) JP, (c) PH, and (d) SC. By preserving the fraction of events left upon imposing
thresholding, we obtained A, values of (b) 5 x 103 for JP; (¢) 5 x 10° for PH; and (d) 5 x 10® for SC. The shortest waiting times in the data
are scaled to be a unit of iteration. The finite total iteration times resulted in model distributions that are not able to capture the very long tails

of those of the empirical data, especially for (d) SC, which has the longest period among the catalogs considered.

4.2 Spatial Separation of Earthquake Events

In the original asynchronous sandpile models, one only recovers unimodal statistics for interevent distances. This is due to
the stochastic nature of the triggering: the next location to be perturbed is drawn from an oftentimes uniform distribution, i.e.
all sites are likely to be triggered next. Additionally, the nature of internal cascading within the sandpile grid results in the

depletion of all the critical sites within the extent of the avalanche area. The same cannot be said of earthquakes: after the
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The V PDFs also show a behavior similar to those of their corresponding A: there are minimal changes upon scanning for different p values. The distributions also follow power-law behaviors V −β with β around 1.4 to 1.5 (the case of β = 1.45 is plotted as a guide to the eye in Figure 4(a)). The parameter V is a better representation of the energy E in earthquakes, and the obtained scaling exponent β is still deemed to be close to the earthquake energy scaling exponents. The fact that the model can replicate the energy statistics is a vital first requirement for any discrete model of earthquakes. Additionally, the preservation of the power-law exponent for almost any value of p indicates that the model does not deviate significantly from the original sandpile behavior, and may exhibit (self-organized) criticality. 


To understand the scaling relations between V and A, we plot the V (activated cells) vs. A (affected cells) in Figure 4(b) and note that the scaling relations, which are higher than linear, change for higher p. The case of p = 0 (randomly-triggered sandpile) results in a V (A) ∝ A1.5 scaling. On the other hand, for p = 1 (sandpile with targeted triggering), the behavior appears to shift towards V (A) ∝ A1.3 for very large A values. This lower scaling exponent of the activation for large avalanche sizes is expected for targeted triggering; because the most susceptible site is always targeted, there is minimal accumulation of near-critical sites near the location of the avalanche origin, which results in lower number of reactivations of affected sites near an avalanche event. 
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release of elastic potential energy at a fault location, the subsequent crustal motion may tend to favor other fractures near the
vicinity of the earlier event, to release the remaining stored energy.

Interestingly, the addition of the simple targeted triggering probability p have enabled us to recover statistical distributions
that are comparable to those observed in regional earthquake records, up to a scaling factor. Eigure 2(b)(d)shows-the-interevent
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It should be noted that without any form of spatial clustering, the characteristic separation distance is limited by the finite system size. Rescaling is therefore conducted by comparing the characteristic sizes (modes) of the memoryless cases of the model (p = 0) and the data (shuffled sequence). The interevent distance distributions of the shuffled sequences are shown as the black symbols in Figure 5, while the corresponding model p = 0 distribution is shown in Figure 2(a), with both clearly showing unimodal statistics. 
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4.3 Temporal Separation of Earthquake Events

The temporal separation of aftershocks and mainshocks that have different characteristic waiting times is an intuitive result that
is both well-known and widely studied (Zaliapin et al., 2008; Touati et al., 2009; Batac and Kantz, 2014; Batac, 2645), The
proposed model, therefore, must also show these features to be able to compare reasonably well with the temporal distributions
of seismicity. In the following, we compare the results of the model having p* = 0.007 and grid dimension L = 1024, which
has been shown to have comparable R statistics with empirical data.

In comparing model and empirical temporal interevent statistics, one does not have the similar advantage of having a finite
“space.” The goal of rescaling in time is to recover the relatively short 7" regimes first; theoretically, the longest 1" will be
recovered if the model is allowed to run for very long iteration times. Additionally, in rescaling the time, one should take
into account the fact that the earthquake record is thresholded by m, effectively lengthening the average time between the
occurrence of two events. Ideally, if all the events, no matter how weak, can be detected and recorded, we would not have long
tails in the waiting time distribution of earthquakes. This is also observed in sandpile-based models; previous approaches have
shown that the waiting time distribution will be Poisson distributed when all the events are considered, but will begin to show

apparent power-law characteristics upon thresholding (Paczuski et al., 2005; Juanico et al., 2008).
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Upon getting the rescaling factor, we scan through the possible p values to obtain p values that will result in comparable R distributions between model and data. We observe that the model parameters that will correspond to the empirical distributions upon such a simple rescaling ranges from p∗ ≈ 0.004−0.007. Figure 2(b)-(d) shows the interevent distances between successive 
earthquakes in the different regional records considered, superimposed with the rescaled statistics of the model. 
The rescaled model statistics for p = 0.007 show good agreement with interevent distances from the three seismogenic regions. As expected, larger grid sizes will result in a better discrimination of shorter R, i.e. one pixel unit will correspond to shorter actual distance units. In our case, for the largest grid size used (L = 1024), we find that the scaling factors obtained by matching the modes result in the following correspondence with a unit cell length: 1.3 km for JP, 1.2 km for PH, and 0.5 km for SC. The distributions are found to be similar regardless of the threshold magnitude Ath considered due to the finite system size; even upon removing the weakest events, the avalanche origins are confined within the grid, resulting in the same Prob(R). 
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For our purpose, we arbitrarily chose the following threshold avalanche sizes for removing weaker events: for comparison
with JP and SC, which are both taken to have m,= 2.5, we used Ay, =5 X 102; on the other hand, for PH, with relative
completeness beyond m,= 4.5, Ay, =5 X 10° is used. The values of A;, are obtained by maintaning the fraction of events left
after neglecting the weaker events. Still, because of the limited number of regional data sets considered that does not allow for
further testing their correspondence, we emphasize that the values of the A;; obtained does not necessarily translate into an
exact equivalence with the threshold magnitude m for the data.

Upon removing the events with A < Ay, we obtained the modes of both the data and the model for visual comparison. This
resulted in slight differences in the rescaling factors for the different data sets. One iteration of the model corresponds to: 0.006
s for JP; 0.004 s for PH; and 0.002 s for SC. Figure 3(b)-(d) above show the rescaled model distributions alongside the those
of the empirical data, showing qualitative similarities in their trends.

Apart from recovering the qualitative trends in the 7" PDFs, we conducted additional analyses to check if the model results
also show spatiotemporal clustering and separation behaviors. In Figure 5, we mark the location of R*, the characteristic
separation distance where the empirical distributions and those of the shuffled sequences begin to show comparable trends.
The R* value of the region;takeafrem the results of Batac and Kantz (2014), is deemed to be a good marker for separating
“nearby” and “far away” events, Using R%, we separated the corresponding waiting times 7" into the sets T;,, = {T|R < R*}

and T,,; = {T|R > R*}. Figure 6 shows the relative frequency plots of 7', superimposed with those of T}, and T,,;, for the

empirical data and the rescaled model values.

%W%M%MW%MIM%WIW

4.4 Model Advantages and Insights on Empirical Modeling

Introducing the parameter p into the sandpile driving is a straightforward way of incorporating memory into the system. This
simple parameter holds a distinct advantage over other models that introduced additional parameters, because it spans a wide

range of possible statistical distributions in erersy—(avalanche-size}, space, and time, without actually biasing the location of
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We note that a similar procedure done using the rescaled model statistics results in comparable R∗ values. 
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As shown in Figure 6(a)-(c), for all the seismogenic regions considered, the distributions of Tin and Tout differ significantly from that of the total T . The relative frequency plots of T in all cases can be shown to be a crossover between Tin and Tout that have different modes. As expected, the Tout distributions do not coincide due to the different periods involved in the catalogs considered. The Tin distribution, on the other hand, all show modes at short T values, suggesting a strong dependence among the interevent properties in space and time (Livina et al., 2005). This conditional distribution therefore quantifies the spatiotemporal clustering observed in earthquakes, particularly among aftershock sequences that result from the correlated mechanisms: “nearby” events are also more likely to be separated by shorter waiting times. 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In Figure 6(d)-(f), we observe that despite the shorter iteration times being considered, the model was able to show the separation of the Tin and Tout distributions, a feature that is also found in empirical data (Batac and Kantz, 2014) and in other earthquake models (Touati et al., 2009). Moreover, it is particularly interesting to note that the rescaled Tin statistics of model and corresponding Tin from the earthquake data show comparable trends, especially for shorter waiting times, as shown in the insets. The Tin statistics has been shown to correspond with the statistics of aftershocks, as shown in studies of fresh aftershock statistics from empirical data (Batac, 2016). This suggests that the correlated mechanisms in actual earthquake systems that produce the Tin distributions are also present in the model. 
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Figure 6. (Color online) Conditional relative frequency distributions of 75, and 15+ for (a)-(c) earthquake data and (d)-(f) corresponding
rescaled model results, plotted with the relative frequency plot of all 7. Nearby (Far away) events have higher (lower) chance of having
short waiting times and lower (higher) chance of having long waiting times, as can be seen from the modes of the conditional frequency

distributions. The insets of (d)-(f) show that the T;,, PDFs of model and rescaled data have significant overlap, signifying the similarities in

their correlated origins.

5 Conclusions

In summary, we have presented a simple cellular automata model inspired by the original sandpile model. The model avoids

introducing biased rules, and instead incorporates a probability of targeting the most susceptible site in the grid, reminiscent
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Being a single parameter, the correspondence between p and actual properties of the earthquake-generating system may be difficult, if not impossible, to ascertain. At best, we may think of p as a combined effect of many different factors on the ground that lead to the preferential triggering of a location. 

We believe that this parameter, which, for earthquakes, show comparable statistics for the range p∗ ≈ 0.004 − 0.007, may be introduced in other sandpile-based models of other events in nature deemed to be showing self-organized (critical) characteristics. It may be possible to quantify the extent of “memory” of these systems through the value of the parameter p that best replicates their statistical distributions. 
Moreover, a deeper analysis of the other regimes of p may lead to a better comparison between the model and other similar protocols. For example, for higher values of p, the model may exhibit extremal dynamics, resulting in more avalanche events due to the tendency to always trigger the most susceptible site. On the other hand, for very low values of p, the dynamics may be comparable to other models that employ uniform loading. Knowing these limits, and establishing how similar and/or different the model is from other discrete models may help put the results in a better context. 
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of the assumed fracture mechanism of actual earthquake systems. Within a small range of values p* ~ 0.004 — 0.007, we have
observed that the model statistics show comparable trends with empirical distributions of earthquake enetgies in energy, space,
and time, upon simple rescaling.

The work has also uncovered an important property of the sandpile grid: the most susceptible sites lie within the vicinity
of a previous large avalanche event. Previous sandpile-based models that synchronously update all lattice sites, or those that
asynchronously update at random locations, are not able to exploit this important property, preventing the possibility of di-
rectly modelling earthquakes using the sandpile paradigm. The introduction of such a targeting probability without destroying
the sandpile properties may hint at self-organized critical mechanisms at work in the grid. The fact that the simple targeted
triggering probability simultaneously recovers these important statistical features of earthquakes is a simple yet novel concept

that has not been exploited by previously-proposed discrete models based on the sandpile,
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