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Abstract.

The data assimilation process, in which observational data is used to estimate the states and parameters of a dynamical model,

becomes seriously impeded when the model expresses chaotic behavior and the number of measurements is below a critical

threshold, Ls. Since this problem of insufficient measurements is typical across many fields, including numerical weather

prediction, we analyze a method introduced in Rey et al (2014a, b) to remedy this matter, in the context of the nonlinear shallow5

water equations on a β-plane. This approach generalizes standard nudging methods by utilizing time delayed measurements to

augment the transfer of information from the data to the model. We will show it provides a sizable reduction in the number of

observations required to construct accurate estimates and high-quality predictions. For instance, in Whartenby et al (2013) we

found that to achieve this goal, standard nudging requires observing approximately 70% of the full set of state variables. Using

time delays, this number can be reduced to about 33%, and even further if Lagrangian drifter information is also incorporated.10

1 Introduction

The ability to forecast the complex behavior of the earth’s coupled ocean, atmosphere system lies at the core of modern nu-

merical weather prediction (NWP) efforts. To successfully predict such behavior requires both a good model of the underlying

physical processes as well as an accurate estimate of the state of the model when the observations are completed and the

predictions begin. The latter is indispensable, even if one has a perfect model, as the accuracy of the prediction is crucially15

determined by the quality of the estimated initial state values: if the state of the model at the end of observation window is

inaccurate, the forecasts will be undependable.

Suppose one is given a D-dimensional dynamical model and L measurements are made at each observation time tn =

t0 +n∆t; n= 0,1, ...,N throughout an observation window [t0 ≤ t≤ tN = T ]. As discussed in Cardinali (2013) there are

now about 3-4 ×107 daily observations available to NWP models with order 108 (or more) degrees of freedom. In our earlier20

work Whartenby et al (2013) we showed that, using familiar nudging methods, a nonlinear shallow water flow on a β-plane

driven by Ekman pumping required about 70% of the 3N2 dynamical variables on an N ×N grid to be measured to result
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in accurate predictions. Using the time delay methods introduced in Rey et al (2014a, b) we show here that number can be

reduced to about 33% of the model state variables, and using information from 20 drifters as well, can be further reduced to

about 27% of the model state variables that must be observed. Increasing the number of drifters to 64, we have results showing

that only 16% of the total degrees of freedom of the model need be observed. These outcomes now bring the data assimilation

methods using time delays into the practical range where their use for improving the accuracy of forecasts such as those at5

ECMWF Cardinali (2013) may be feasible.

While we do not discuss it here in detail, the same results for a 4DVar assimilation method Evensen (2008); Bennett (1992)

should be expected. The key dynamical achievement in increasing the number of measurements at each observation time is to

control the growth of unstable directions in the local dynamics of the underlying dynamical equations. One can achieve this

control through additional measurements introduced into the cost function or action of a variational principle Abarbanel (2013)10

or via a nudging approach directly implemented in the dynamical equations, as here. The results appear to be equivalent.

A modified version of time delay nudging has been introduced by Pazo (2015), and, although their approach has not yet been

applied to geophysical flows, we have no doubt that they will also find the substantial improvement in reducing the number of

observations at each measurement time that we report here.

When the number L of measured state components is sparse compared with the total number of degrees of freedom D, L�15

D, the main issue is what to do when L < Ls. That is, when the number of available measurements is ‘insufficient’ to produce

accurate estimates and dependable predictions. This paper examines this situation and, in particular, explains how to augment

observational data taken from a complex system with additional information residing in the time delays of these measurements.

In particular, we show how using time delays in this way effectively reduces the number of physical measurements required to

solve the initialization problem. This in turn provides more reliable predictions, when the model is accurate, and also facilitates20

the identification of errors in the model. These benefits (among others) will be demonstrated here in calculations on a core

geophysical model: the nonlinear shallow water equations.

Although this discussion will focus solely on a specific geophysical system, the methods we describe here have broad

applicability across the quantitative study of the underlying physical or biological properties appearing in many complex

systems. The notable feature of high dimensional dynamics and sparse (L�D) measurements is typical in the process of25

examining the consistency of observed data and quantitative models of complex nonlinear systems: from functional nervous

systems to genetic transcription dynamics to complex earth systems models, among many other examples Abarbanel (2013).

2 Transferring Information from the Waveform of Observations to a Model

While the details of the discussion in this section may be found in Rey et al (2014a, b) we briefly repeat the ideas of time delay

nudging here. We emphasize that we introduce few additional tools in the time delay methods in this paper. Our goal is to30

demonstrate within the context of a nonlinear geophysical flow how the ideas can be used toward the practical goal of reducing

the number of physical measurements required to achieve an accurate initialization for predictions.
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In data assimilation we seek to use the information in observations to determine properties of a model that describes the

dynamics producing those observations. These properties include unknown parameters as well as the time dependence of

unobserved state variables. The model acts as a nonlinear filter coupling the observed states to the parameters and unobserved

states.

During a temporal observation or assimilation window [0≤ t≤ T ], we perform L observations y(tn) at each time tn =5

{t0, t1, t2, . . . , tN = T}. Between observations, the system moves itsD-dimensional state x(t) ahead in time via a deterministic

set of ordinary differential equations

dxa(t)
dt

= Fa(x(t)). (1)

If the dynamics of the system is described by partial differential equations (such as with the fluids in an earth systems model)

the ordinary differential equations may be realized by discretizing the partial differential equations on a grid, in which the grid10

label as well as the vectorial nature of the state variables are collected into the index a= {1, . . . ,D}. In addition, we assume

here for simplicity that the measurements y(t) are simply projections of the overall state of the system x(t). With the usual

noisy measurements we would have y`(t) = x`(t)+noise; `= 1,2, ...,L. This is not imperative however, as what follows may

be generalized to handle an arbitrary observation operator where y(t) = h(x(t)) + noise.

The main objective is to estimate the model state at the end of the assimilation window x(T ) using information from the15

sparse observations L�D, and then use this estimate to predict the system’s subsequent behavior for t > T using Eq. (1). The

accuracy of these predictions, when compared with additional measured data in the prediction window t > T , serves as a metric

to validate both the model and the assimilation method, through which the unobserved states of the system are determined. This

is crucial, because it establishes a necessary condition on L that is required to synchronize the model output with the data and

thereby obtain accurate estimates for the unobserved states of the system, which are also required to make good predictions.20

In the limit that the model is known precisely, a familiar strategy for transferring information from the measurements to the

model involves the addition of a coupling or control or nudging term to Eq. (1),

dxa(t)
dt

= Fa(x(t)) +
L∑

`=1

ga`(t)
[
y`(t)−x`(t)

]
. (2)

In this expression, g(t) is a D×L matrix, whose elements are nonzero, only when t= tn, in rows that correspond to measured

states. In this way, the coupling term perturbs the measured states of the system to drive the observed model states towards the25

data.

With enough observations L, a sufficiently strong coupling will alter the Jacobian of the dynamical system Eq. (2) so that all

its (conditional) Lyapunov exponents are negative. See Pecora & Carroll (1990); Abarbanel (1996); Kantz & Schreiber (2004).

This is important, as it establishes a necessary condition on L required to synchronize the model output with the data and

thereby obtain an accurate estimate for the unobserved states of the system which are also needed to make good predictions.30

This long-standing procedure, known as nudging in the geophysics and meteorology literature, has been shown Abarbanel et

al (2009) to fail when the number of measurements at a given time is smaller than a critical valueLs. An explicit example of this
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will be shown later in our discussion of geophysical shallow water flow. Since in practice however, additional measurements

are often scarce, we must find another means to overcome this deficit in L.

One way to proceed Rey et al (2014a, b); Pazo (2015) involves the recognition that additional information resides in the

temporal derivatives of the observations. In practice, however, this derivative information cannot be measured directly, so it

must be approximated via finite differences. For instance, one may approximate dy(tn)/dt with [y(tn + τ)− y(tn)]/τ where5

τ is some multiple of the time differences between measurements. The drawback here is that the derivative operation acts as

a high-pass filter, and is thus quite susceptible to measurement noise. Although convenient from an analytical perspective, the

derivative is not directly suitable for the purposes considered here.

Rather, we proposed a technique to extract additional information from the waveform of observations by establishing an

extended state space, created from an L×DM dimensional vector of the measurements and its time delays Rey et al (2014a,10

b). The components of this extended space measurement vector are denoted by

Y`,k(t) = y`(t+ (k− 1)τ); `= 1,2, ...,L; k = 1,2, ...,DM . (3)

This is a collection of DM -dimensional time delays (indexed by k) for each observed y`(tn).

This idea stems from a well-known technique in the analysis of nonlinear dynamical systems, where this structure is em-

ployed as a means of reconstructing unambiguous orbits of a partially observable system Aeyels (1981a, b); Mañé (1981);15

Sauer et al (1991); Takens (1981); Abarbanel (1996); Kantz & Schreiber (2004). In that nonlinear dynamical context, the

proxy space of time delayed observations serves as a way to invert the projection associated with measuring L <D compo-

nents of the underlying dynamics. The main idea is that the new information beyond y(tn) lies in y(tn+τ) itself; the derivative

operation is just another way of accessing this information.

In the present context, however, our use of time delay coordinates is quite distinct. Rather than reconstructing the topology20

of the attractor, we instead use the time delay construction to control the local instabilities in the dynamics. That is, for our pur-

poses, DM need only be large enough to effectively increase the amount of information transferred from the L measurements

to a value above the critical threshold, Ls.

For this task, we construct the corresponding time delay model vectors, whose components are given by

S`,k(x(t)) = x`(t+ (k− 1)τ); `= 1,2, ...,L; k = 1,2, ...,DM . (4)25

The dynamical rule for the vectors S`,k(x(t)) is given by,

dS`,k(x(t))
dt

=
D∑

a=1

∂S`,k(x(t))
∂xa(t)

Fa(x(t)) =
D∑

a=1

∂S`,k(x(t))
∂xa(t)

dxa
dt

. (5)

Following the idea expressed in Eq. (2), we introduce a control term in time delay space,

dS`,k(x(t))
dt

=
D∑

a=1

∂S`,k(x(t))
∂xa(t)

Fa(x(t)) +
DM∑

k′=1

L∑

`′=1

G`,k,`′,k′(t)
[
Y`′,k′(t)−S`′,k′(x(t))

]
. (6)

Transforming this rule back into the physical space of the x(t), we arrive at our required result,30

dxa(t)
dt

= Fa(x(t)) + gab(t)
∂xb(t)
∂S`,k

(x(t)) G`,k,`′,k′(t)
[
Y`′,k′(t)−S`′,k′(x(t))

]
(7)
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where repeated indices are summed over. There are two control terms: g(t) and G(t), which act respectively in physical space

and in time delay space. The result is at each step of the integration of the controlled (nudged) dynamical equations Eq. (2),

the added control term moves the full state vector in time delay space toward the full time delay measurement vector.

The matrix ∂x(t)/∂S(x(t)) determines the directions in phase space along which the controls are applied, and it is to be

understood as the generalized inverse of the LDM ×D rectangular matrix ∂S(x(t))/∂x(t). The latter is constructed from5

elements of the variational matrix Φab(t, tn) = ∂xa(t)/∂xb(tn) for t≥ tn starting at each time step tn by integrating the

variational equation

dΦab(t, tn)
dt

=
D∑

c=1

DF (x(t))acΦcb(t, tn) Φab(tn, tn) = δab, (8)

from t= tn to t= tn+τ(DM−1).DF (x(t))ab = ∂Fa(x(t))/∂xb(t) is the Jacobian of the vector field and δab is the Kronecker

delta. Both the map x(t)→ S(x(t)) and the variational equation Eq. (8) are computed using the uncoupled dynamics Eq. (1).10

For further details on this calculation, see Rey et al (2014a, b).

It is worth noting that in the limitDM = 1 the time delay formulation Eq. (7) reduces to the standard nudging control Eq. (2).

Two important differences however are realized when DM > 1: (1) information from the time delays of the observations is

presented to the physical model equations, and (2) all components of the model state x(t) are influenced by the control term,

not just the observed components. Consequently, the fixed parameters of the model may be estimated as a natural result of the15

synchronization process by including them as additional state variables, satisfying dpr(t)/dt= Fr(x(t)) = 0.

The main achievement of this technique is that it extracts additional information from the time-series of existing measure-

ments. The value of this statement will become more clear in the context of our simple geophysical example.

3 Twin Experiments

We test our time delay nudging procedure through a series of numerical simulations called ‘twin experiments’ Durandet al20

(2002); Blum et al (2009); Blum (2010). After solving the original dynamical equations Eq. (1) forward from some initial

condition x(0), the observed data is taken as the projection down to the L observed components. Gaussian noise N(0,σ) is

added to each component to simulate observation error, but the model itself is assumed known perfectly. So this framework

tests the estimation procedure, not the model. Removing the issue of model error allows us to assess the weaknesses and

strengths of the estimation algorithm and explore in detail the manner in which the unobserved variables are determined. When25

successful, it provides confidence that the method may be applied to real data. When it fails, it helps us figure out why.

In a twin experiment, the full state of the system is known at all times. However, in a true experiment we have only the

observed quantities to compare. In this case, we can monitor our process by calculating the observable synchronization error

between the model and the data,

SE(t)2 =
1
L

L∑

`=1

[
xs`(t)− ys` (t)

]2
, (9)30
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where we introduce the scaled variables xs`(t) = [x`(t)−xmin` (t)]/[xmax` (t)−xmin` (t)] and xmin/max` (t) are the minimum or

maximum values of x`(t), over the entire assimilation window. The same definition holds for ys` (t). This rescales all data and

observed model states to lie in the interval [0,1], so that each state component’s contribution to the synchronization error is

weighted approximately equally.

The synchronization error Eq. (9) involves only observable state variables, which makes it a more realistic way to monitor5

the success of the estimation, since the ‘true’ error is only known in the context of a twin experiment. Furthermore, when

the estimation is complete (at time t= T ), the coupling terms g(t) and G(t) are set to zero and the uncoupled dynamics

Eq. (1) are integrated forward from the estimated x(T ) to construct a forecast for t > T , which may then be compared with

additional observations y(t > T ). It is crucial to compare SE(t) for both estimates and predictions, as the former is just a

‘fit’ involving measured quantities, while the latter relies on accurate determination of the unmeasured variables as well. No10

additional information is passed from the data to the model during the prediction phase.

Thus, in a true experiment the prediction error should be used exclusively. Accurate estimates alone are not sufficient to

validate the model or indicate the success of the estimation procedure, as they do not any information about the unobserved

states.

We have previously shown that when the synchronization error Eq. (9) decreases in time to very small values, the full state15

x(T ) has been accurately estimated and the prediction is quite good Whartenby et al (2013) — assuming the model is known

precisely. On the other hand, when the synchronization error does not decrease to very small values, the full state x(T ) is not

well estimated and the prediction is unreliable. Moreover, the synchronization error appears to decrease only when the number

of time delayed observations L×DM , and the magnitude of the elements of the coupling matrices g and G are ‘large enough’.

The precise meaning of this statement will become apparent shortly, in the context of our simple geophysical example.20

4 Nonlinear Shallow Water Equations

To illustrate how time delays utilize information latent in the waveform of a time series of observations, we now describe in

detail its application to a model of shallow water flow on a mid-latitude β-plane. This geophysical fluid dynamical model,

previously examined by Pedlosky (1987) and Whartenby et al (2013), among many others, is at the core of earth system flows

used in NWP. Of course, production NWP models contain much more detail than this example, and those models also describe25

the dynamics over a whole sphere. We argue that the results presented here, for this simplified model, will be applicable for

establishing the initial state of those models and predicting their subsequent behavior. We do not underestimate the numerical

challenges implicit in this extrapolation.

As the depth of the atmosphere/ocean fluid layer (order 10− 15 km) is markedly less than the earth’s radius (6400 km), the

shallow water equations for two dimensional flow are an excellent approximation to the fluid dynamics in such a geometry.30

Three fields on a mid-latitude plane describe the fluid flow {u(r, t),v(r, t),h(r, t)}: the north-south velocity v(r, t), the east-

west velocity u(r, t), and the height of the fluid h(r, t), with r = {x,y}. The fluid is taken as a single, constant density layer

and is driven by wind stress τ(r, t) at the surface z = h(r, t) through an Ekman layer. These physical processes satisfy the

6
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Parameter Physical Quantity Value in Twin Experiments

∆t Time Step 36 s

∆X East-West Grid Spacing 50 km

∆Y North-South Grid Spacing 50 km

H0 Equilibrium Depth 5.1 km

f0 Central value of the Coriolis parameter 5 ×10−5 s−1

β Meridional derivative of the Coriolis parameter 2.0 ×10−11m−1s−1

F/ρ Wind Stress 0.2 m2s−3

A Effective Viscosity 10−4 m2s−1

ε Rayleigh Friction 2 ×10−8 s−1

Table 1. Parameters used in the generation of the shallow water ‘data’ for the twin experiment. All fields as well as {x,y, t} were scaled by

the values in the table, so all calculations were done with dimensionless variables.

following dynamical equations with u(r, t) = {u(r, t),v(r, t)},

∂u(r, t)
∂t

=−u(r, t) · ∇u(r, t)− g∇h(r, t) + u(r, t)× f(y) ẑ+A∇2u(r, t)− εu(r, t)

∂h(r, t)
∂t

=−∇ · (h(r, t)u(r, t))− ẑ · curl
[
τ(r, t)
f(y)

]
. (10)

The Coriolis force is linearized about the equator f(y) = f0 +βy and the wind-stress profile is selected to be τ(r, t) =

{F/ρ cos(2πy),0}. The parameter A represents the viscosity in the shallow water layer, ε is Rayleigh friction and ẑ is the5

unit vector in the z-direction. The values we have used for the model parameters are given in Table 1. With these fixed param-

eters the shallow water flow is chaotic, and the largest Lyapunov exponent for this flow is λmax = 0.0325/h≈ 1/31h.

We have analyzed this flow using the enstrophy conserving discretization scheme from Sadourny (1975) on a periodic

grid of size N2
∆ for N∆ = {16,32,64} with periodic boundary conditions. Using the twin-experiment framework with simple

nudging coupling controls given in Eq. (2), we estimated that approximately 70% of the D = 3N2
∆ degrees of freedom must be10

observed in order to synchronize the model output with the data. These results on the required number of observations agree

with previous calculations, presented in Whartenby et al (2013). The actual control in Eq. (2) was applied only in the observed

components and only along the diagonal.

As the results are consistent across the various grid sizes that were investigated, we restrict our discussion here to the case

where N∆ = 16, so that the total number of degrees of freedom D = 3N2
∆ = 768 and Ls ≈ 524 = 0.68D has been explicitly15

calculated for this case. We are confident that despite the numerical challenges associated with scaling the algorithm up to

larger D, the results presented here for N∆ = 16 will also remain valid for higher grid resolution.

In the discussion above, which included reference to the lectures of Cardinali Cardinali (2013), we see that the requirement

of having to observed 70% of the model dynamical variables exceeds the measurements now available by at least a factor of

two; more if the NWP model is larger yet.20
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5 Results with Time Delay Nudging for the Shallow Water Equations

We now demonstrate the capability of the time delay method to reduce the number of measurements required to generate

accurate predictions. In particular, no information about the tangential velocity fields is used to estimate the state. This strategy

was shown to fail in Whartenby et al (2013) with static DM = 1 nudging. With the addition of time delays however, it is

possible to estimate the full state (heights and velocities) when only height information is available.5

We assume height measurements alone are made at each grid point (i, j) for i, j = {1,2, . . . ,16 =N∆}, so L= 256< 524≈
Ls. The initial state x(t0) for the model and the data are taken to have the form,

h(i,j)(t0) =
(

πA0

N∆ ∆Y

)2 [
cos(ωφφ(r(i, j)) + δφ) + cos(ωθ θ(r(i, j)) + δθ)

]
+H0

u(i,j)(t0) =−A0
∂ψ(r(i, j))

∂x
v(i,j)(t0) =A0

∂ψ(r(i, j))
∂y

where the parameters H0 = 5100, A0 = 106 and10

ψ(r) = cos(ω′φφ(r) + δ′φ) sin(ω′θ θ(r) + δ′θ).

The functions φ and θ respectively evaluate the latitude and longitude at the point r(i,j) on the grid. The parameters ωφ,ωθ,ω′φ,ω
′
θ

and δφ, δθ, δ′φ, δ
′
θ are chosen arbitrarily to distinguish the initial conditions between the model and data. All fields as well as

{x,y, t} were scaled by the values in Table (1), so all calculations were done with dimensionless variables. Although the time

delay method is capable of estimating the model parameters, here they are treated as known.15

The coupling matrix G(t) is taken to be diagonal with different weights for the heights and for the velocities. In particu-

lar, Gu,v∆t= 0.5 and Gh∆t= 1.5 with ∆t= 0.01h= 36s. These are chosen because the height values are several orders

of magnitude larger than the flow velocities. For instance, the average heights are around 5000± 30m whereas average ve-

locities are approximately 0± 5m/s. The time delay space coupling g(t) is taken to be the identity matrix, as all the height

measurements are assumed to be known with equal precision.20

The time delay was selected to be τ = 10∆t= 0.1h, in order to maintain a balance between numerical stability and the

common criterion of independence between the components of S(x(t)). To further justify this choice, we also calculated the

first minimum of the average mutual information to be τ ≈ 30∆t. Hence, our selected value is smaller, though still consistent

with the standard convention. Furthermore, the results were reasonably stable to changing its value within a few ∆t.

To estimate the state, we integrated the modified differential equations Eq. (7) within a data assimilation window [0,T ]; T =25

5h= 500∆t with various DM = {1,6,8,10}. The coupling terms were switched off at t= T , and the estimate x(T ) was used

as initial conditions to generate predictions until t= 500h.

Short and long term synchronization error Eq. (9) trajectories SE(t) are plotted in Figure 1 for variousDM . ChoosingDM =

{1,6}, yields a synchronization error that remains around its initial value of 0.005 until the end of the five hour observation

window. After the coupling is switched off, the error rises very rapidly until stabilizing around 0.1 for the remainder of the30

prediction window. By contrast, for DM = {8,10} the synchronization error falls steeply to order 10−6 within the observation
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window. It then subsequently rises as eλmax(t−T ), where λmax agrees with the largest Lyapunov exponent calculated for this

flow. This exponential rate of growth is particularly evident in the long trajectory displayed in the Right Panel of Figure 1.

Since DM ≥ 8 produces error values several orders of magnitude smaller than those obtained with DM ≤ 6, we expect

the state estimates x(T ) obtained with DM ≥ 8 to be quite accurate when compared with the estimates for DM ≤ 6. These

estimates are now evaluated as they would be in a true experiment: no information about the unobserved states is used. We5

compare subsequent predictions on the observed heights with additional measured data, but in the prediction window t > 5

no information about the new measurements is passed back to the model. In Figure 2 the known (black), estimated (red), and

predicted (blue) height trajectories are shown for an arbitrarily selected grid point h(6,4)(t). Short and long term prediction

trajectories computed with DM = 6 are displayed in Figure 2 upper panels respectively. Corresponding results for DM = 8 are

shown in the lower panels. As anticipated, the predictions for DM = 8 are clearly superior to those obtained with DM = 6.10

Just a reminder note here, we used L = 256 = 33% of the total 768 dynamical variables as observed, then used time delay

information on the waveform of the measurements to provide the required additional information.

The failure of predictions obtained with DM = 6 is a result of poor estimates of the unobserved states (i.e. fluid velocities)

at t= T . Although in an actual experiment we would not be able to verify this statement directly, we may do so here in the

context of a twin experiment because the full state information is available. Velocity profiles u(6,4)(t) displaying short and long15

time comparisons between the known (black), estimated (red) and predicted (blue) values are given in Figure 3 for DM = 6

in the upper panels, and for DM = 8 in the lower panels. We find the situation is indeed as anticipated; the estimates and

predictions are quite unacceptable for DM = 6, whereas for DM = 8 they are highly accurate. The same striking improvement

in predictive accuracy was obtained for the other velocity component v(6,4)(t). These results are plotted in Fig. 4.

As this point is the key theme of this paper, we take the liberty of repeating that the number of physical measurements is20

just 33% of the overall dynamical variables. Using standard nudging (DM = 1) we found the same flow required L= 524 or

≈ 70% of the dynamical variables to be observed. The required additional information to make accurate estimates of all states

at t = 5 h comes from the waveform information in the time delays.

Predictions were also calculated for DM = 1 and DM = 10, but these results are not shown. They agree with the synchro-

nization error calculations in Figure 1, in that the predictions generated withDM = 10 are just as accurate as those forDM = 8.25

Likewise, predictions with DM = 1 (i.e. simple nudging) are very poor, in accordance with our previous results in Whartenby

et al (2013).

The success of this procedure when DM ≥ 8 is attributed to information transferred from the additional time delays. In

particular, our modification Eq. (7) to the dynamical equations alters the Jacobian of the dynamics DF(x(t)), adjusting the

conditional Lyapunov spectrum of the modified system in a manner dependent upon the coupling strengths G(t), g(t) and30

the presented data. When enough information is available, and the coupling is strong enough, these conditional Lyapunov

exponents will all be negative, allowing the coupled systems of data and model output to synchronize.

This outcome suggests, in turn, that reducing the coupling strength will have a detrimental effect on the quality of the

estimation procedure and the resulting prediction. We investigate this now, by performing the same calculations as above with

DM = 10 but reducing the coupling on the height so we haveGh∆t= gu∆t= gv∆t= 0.5. The synchronization error SE(t),35
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shown in Figure 4, Upper Left Panel, stabilizes to a level three orders of magnitude higher than was achieved withGh∆t= 1.5,

suggesting that the assimilation procedure has failed. This is confirmed in the remainder of Figure 4, which displays the known

(black), estimated (red) and predicted (blue) values for h(6,4)(t), u(6,4)(t), and v(6,4)(t), respectively. Although the height

estimate is rather good and the corresponding prediction is not terrible, at least for the first 15-20 hours after the end of the

assimilation window, the unobserved states are clearly not well estimated at any time t≤ T . This result demonstrates that5

proper choice of coupling is crucial to the success of the procedure. The fact that the height estimates appear to be rather

accurate also emphasizes the point that, in a true experiment, the success of the assimilation procedure must be evaluated

against the predictions—not the estimates.

In addition, until now we have conveniently chosen to observe the height field at all L=N2 grid locations. We now attempt

to reduce L even further, so as to relieve some of the demand on the data collection process. This could simulate for instance,10

finite resolution in satellite measurements. In particular, keeping all other parameters fixed, we executed our estimation proce-

dure using L= 252 and L= 248 height measurements chosen at arbitrary grid points. Note that these L values are rather close

to L= 256 =N2
∆ considered above. From the synchronization errors SE(t), displayed in the Upper Left Panel of Figure 6,

it is evident that for L= 252 rapid and accurate synchronization is still achieved, while for L= 248 it is not. In addition, the

known (black), estimated (red), and predicted values (blue) for h(6,4)(t) are shown in the other panels of Figure 6 for L= 24815

and L= 252 respectively. Results for the unobserved velocity fields agree as well, though these results are not shown. Thus, in

accordance with our previous results, the connection between the synchronization and accurate predictions remains intact.

Moreover, even with the additional time delays, it appears that it may not be possible to significantly reduce the number of

required height measurements. We remark, however, that the overall space of parameters appearing in our formalism has not

been thoroughly explored and that by further adjusting these parameters (G(t), g(t), DM ,and τ ), it may be possible to produce20

good predictions with even fewer observations. It may also be interesting to investigate this question as the grid resolution is

increased. One would expect, that at some point the resolution should be high enough to not necessitate further measurements.

5.1 Measurements with Gaussian Noise

In operational data assimilation in meteorology, one challenge is that the measurement contains observation error. An effective

assimilation algorithm must be robust under such noise contamination. We investigated the sensitivity to the initial condition25

noise for the DM = 8 and DM = 10 time delay data assimilation with L = 252 as described above in detail.

The shallow water model and the data generation were taken to be the same as above, but to the initial condition for the data

we added iid Gaussian white noise N(0,1) in the form

φdata(r, t0) = ψmodel(r, t0) +CdataN(0,1)

h
(i,j)
data(t0) = CheightN(0,1),30

and we selected Cdata = 106 and Cheight = 1652.

Figure 7 compares the synchronization error with and without noise in the observation. The synchronization error still falls

rapidly within the observation window and, after that, rises in an exponential manner as expected. Even with noise in the
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initial conditions propagating through the dynamical variables via the dynamical equations, choosing a sufficient time delay

dimension, here DM = 8 and DM = 10 still results in small synchronization error when observations are completed. The time

delay nudging method remains robust under imperfect observations.

6 Using Drifter Data with Time Delays

Another greatly expanding source of observations about ocean flows come now through measurements of the position r(t)5

of Lagrangian drifters Mariano et al (2000). Sparse observation is a bottleneck in modern data assimilation in oceanography.

Several papers have shown that Lagrangian observations can be a good supplement to the traditional observations which are

made on a fixed grid Kuznetsov et al (2003). The Lagrangian observations are used to estimate an Eulerian velocity field for

most assimilation schemes Molcard et al (2003); Piterbarg et al (2008); Salman et al (2006).

In this section, we combine the time delay method used in the previous twin experiment simulation with a data set from10

drifter measurements and assimilate the information they contain into estimates for the state variables {h(r, t),u(r, t),v(r, t)}.
Since the data type of the drifter measurements differs substantially from the velocity and height information, our target is to

show the time delay nudging method can be used in the data assimilation with drifters as well. Without a complicated setup

and fine-tuning the coupling coefficients, the assimilation method still provides a solid estimation of the state variables.

In this section, 20 drifter positions are measured within the estimation window, the initial deployment positions are cho-15

sen randomly across the N2
∆ grid locations. After the initial deployment, the drifters move between grid points providing

information not available from grid point measurements alone.

The dynamics of drifters is described as two-dimensional fluid parcel motion on the surface of the water layer. Since the

positions of drifters are continuous values, the velocities of the drifters are estimated by a smooth linear interpolation Press et

al (2015); Thompson and Emery (2014) of the discrete velocity field of the water layer.20

The initial conditions of the data ψdata(r, t0) and h(i,j)
data(r, t0) and of the model ψmodel(r, t0) and h(i,j)

model(r, t0) are related

by ψdata(r, t0) = C0ψmodel(r, t0) and h(i,j)
data(r, t0) = C0h

(i,j)
model(r, t0). We chose C0 = 1.0 + 0.1× η with η selected from a

uniform distribution in the interval [-1,1]. The velocity fields are found as above, using ψ(r, t0) as a stream function.

The time delayed nudging method with hybrid measurements can be written as a control added to the dynamical equations

in a combined state variable plus drifter time delay space. The observations are written as Ydrifter(t) = {Y`,k(t),Rdrifter(t)}25

and the total state variable is written as Sdrifter(t) = {S`,k(t),Sdrifter(t)}. The time delayed observations of drifter n=

1,2, ...,ND at location r(n)(t) are incorporated in

Rdrifter(t)}= {r(n)
obs(t),r

(n)
obs(t+ τ),r(n)

obs(t+ 2τ), ...,r(n)
obs(t+ (DM − 1)τ)}

A similar expression for the model drifter coordinates enters Sdrifter(t), which are determined by the Lagrangian equations

dr(n)(t)
dt

= u(r(n)
obs(t), t).30

In Figure 8 we present results for the synchronization error of observed quantities when we select DM = 8 and all other

parameters as in the previous calculations with no drifters. We present (in red) the synchronization error when we have L = 208
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observations of heights and ND = 20 drifter location observations, and we present (in blue) the same synchronization error

when L = 208 andND = 0 drifters are deployed. We see that with L = 208, namely 27% of the heights observed and 20 drifters

observed, we move into a regime where small synchronization error results within our five hour observation window. With no

drifters, L = 208 does not result in small synchronization errors, and this is consistent with the results reported just above.

We have further investigated how the geographic distribution of the drifters influences the size of the synchronization error,5

although these results are not displayed here. One striking result was that when L = 128 heights h(i,j)(t) were observed

over 6h without drifters, the synchronization error remained large. The homogeneous addition of ND = 64 drifters in a 30

minute observation window, reduced the synchronization error nearly to zero. This underlines the utility of adding time delay

coordinates to the observed drifter locations to extract further information useful to determining the state of the model for an

initial state for predictions Molcard et al (2003); Piterbarg et al (2008); Salman et al (2006).10

We have not yet explored how to make a balance between the number of drifters tracked and the number of height (or other)

measurements employed. It is clear, however, that drifter data can be of substantial use in estimating the state of a geophysical

flow using time delay coordinates to enhance the value of each existing drifter measurement.

7 Conclusions

In an earlier paper Whartenby et al (2013) we showed that using standard nudging, in which a control term such as Eq. (2) uses15

observations directly, requires 70% of the dynamical variables {u(r, t),v(r, t),h(r, t)} at every measurement time to establish

synchronization between model output and observations. In that paper, we utilized additional information from the waveform

of the time series to reduce the number of required measurements to about 30% of all dynamical variables. Further, using

information from drifters, which probe between grid points, we were able to show further reduction in the required number of

observations to achieve excellent predictions.20

Although we have done this all within our model of shallow water flow on a β-plane driven by surface winds, each step of our

work can be used to analyze increasingly realistic and complex models of the ocean, atmosphere system. When observations

are sparse, the time delay method may be the critical step in allowing accurate estimations of the full state of the model for use

in predictions. This in turn allows one to achieve accurate state estimates and predictions in cases where simple nudging (i.e.

DM = 1) fails, due to insufficient measurements L < Ls.25

These same issues regarding chaotic instability have also been observed in 4DVar variational calculations Evensen (2008),

which are now standard practice in data assimilation. For instance, given our assumption that the model is known precisely,

the strategy behind the strongly constrained 4DVar framework involves minimizing the least squares distance, or cost function,

between the observed states and the measurements,

N∑

n=0

L∑

`=1

[y`(tn)−x`(tn)]2, (11)30

subject to dynamical constraints imposed by the model Eq. (1).
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In our discussion so far we have taken the model to be precise, without model errors. This assumption can be relaxed

however, by incorporating the natural errors in the observations and the uncertainty in the initial model state into a statistical

physics path integral. In this formulation, one specifies an ‘action’ A0(X) on the path X, which is discretized in time through

the observation window [0,T ] such that its components are Xa:n = xa(tn) for a= {1,2, . . . ,D} and n= {1, . . . ,N}. The

conditional probability density on the path P (X) = exp[−A0(X)] determines the expected value of all functions of X. Knowing5

the form of the action allows one to compute conditional expected values of any function of X, including the path of maximum

likelihood and its statistical moments, which are used for uncertainty quantification. Instead of the precisely known data and

predictions shown here, one has expected state values along with error bars on the estimates and predictions. Our previous

work Whartenby et al (2013) is an example of this statistical calculation in the context of shallow water flow.

In practice the action is not known explicitly, and an approximation is constructed from conditional Markov transition prob-10

abilities P (x(n+1)|x(n)) for the state x(tn)→ x(tn+1) using a discrete time version of Eq. (1) as well as a rule that quantifies

the modification of the probability distribution associated with the transfer of information from noisy measurements Abarbanel

(2013). Under standard assumptions, the information transfer term in the action is essentially Eq. (11). The model error term,

assuming additive uncorrelated Gaussian errors is proportional to

N∑

n=0

D∑

a=1

[
dxa(tn)
dt

−Fa(x(tn))
]
Rf (a)

2

[
dxa(tn)
dt

−Fa(x(tn))
]
, (12)15

all expressed in discrete time. The inverse covariance matrix Rf accounts for the uncertainty associated with the reduced res-

olution in state space from the deterministic formulation. Using the term Eq. (12) along with the objective function Eq. (11)

relaxes the dynamical constraints associated with the equations of motion Eq. (1) to produce a form that is functionally equiva-

lent to weak constrained 4DVar—assuming no information about the initial condition or prior is known. Further details on this

derivation and the associated calculations can be obtained from Abarbanel (2013).20

Minimizing the action to determine the path is equivalent to the minimization of the synchronization error with model errors.

This equivalence can be made more precise by considering the continuous time limit, and writing the action as

A0(x(t), ẋ(t), t) =

tf∫

t0

dt

{
Rm(t, `)

2

L∑

`=1

(x`(t)− y`(t))2 +
Rf (a)

2

D∑

a=1

(
dxa(t)
dt

−Fa(x(t)))2

}
,

=

tf∫

t0

dtL(x(t), ẋ(t), t).

The extrema of this action are given by the Euler-Lagrange equations25

Rf (a)
{
d2xa(t)
dt2

+ (DF −DFT )ab
dxb(t)
dt

}
− 1

2
∂Fc(x(t))Fc(x(t))

∂xa(t)
=Rm(`, t)δa,`(x`(t)− y`(t)),

where DFab = ∂Fa(x)/∂xb. This equation, subject to the boundary conditions on pa(t)δxa(t) at t= t0, tf with

pa(t) =
∂L(x(t), ẋ(t), t)

∂ẋa(t)
,
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shows that ‘nudging’ comes in a natural manner in weak 4DVar as a balance between measurement error terms and model error

terms.

When L < Ls, this process is also plagued by multiple local minima, just as in the deterministic case considered here. The

main point of this discussion is that the problem of insufficient measurements appears to be quite general, affecting a broad

class of data assimilation techniques: from synchronization and nudging, to strong/weak optimization as well as stochastic5

methods like particle filters and Markov-Chain Monte Carlo. Whether or not the addition of time delays will benefit these other

methods is left for future work.

The framework presented here allows one to directly estimate the minimum number of observations at each measurement

time required for accurate predictions, Ls, under the assumption that the model is perfectly accurate. This is important because

in practice the actual available number of observations is naturally constrained, and our method provides a way to determine10

whether the available measurements provide enough information to adequately solve the initialization problem. If this cannot

be done, then any attempts at prediction on real data will almost surely fail. On the other hand, when the process succeeds, it

increases confidence that predictive failures associated with the assimilation of real data arise from inadequacies in the model.

When the model is wrong, as it typically will be in practice, this framework allows us to determine whether the model is at fault,

or whether we require more observations. This in turn allows us to focus more on improving the model, without concurrent15

concerns regarding the estimation procedure. In other words, when predictions fail, our strategy provides a useful diagnostic

framework to help determine where to concentrate our efforts: improving the model or collecting more data.

The inclusion of time delays comes of course with an additional computational cost, mainly associated with the integration

steps required to construct the time delay vectors and its Jacobian, as well as solving for the perturbation itself. The base-

line for comparison is the simple nudging algorithm Eq. (2), which is recovered in the limit DM = 1. Certainly, algorithmic20

improvements are required in order to reduce this overhead as much as possible. One idea is to reduce the resolution of the

model, initialize it with existing measurements, run the assimilation and then interpolate, to recapture the desired resolution

for forward prediction.

In summary, the transfer of information from measurements on a chaotic complex system to a quantitative model of the

processes in that system, is impeded when the number of measurements at each measurement time is too small. A sufficient25

number of required measurements Ls can be established by an examination of the model in a twin experiment, but the number

of possible measurements L may be such that L < Ls. This paper suggests, and explores in a key geophysical model of earth

system flow—the nonlinear shallow water equations—how one may extract further information from the time delays of the

measurements to overcome the impediments inherited from the dynamical instability.

To this end, we presented an algorithm that assumes no model error, and utilizes control terms to enable the synchronization30

of data with the model output and thereby estimate the full model state x(T ). This estimate was then used to generate predictions

for t > T and the quality of these predictions was used to evaluate the accuracy of this estimate. By adjusting various parameters

of the algorithm (e.g. number of time delays, the number of measurements, and the strength of the couplings) it was shown

how one may accurately initialize the model state prior to predictions using a sparse subset of observations.
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In addition, we have demonstrated the capability of our algorithm in application to a model of geophysical shallow wa-

ter flow, implemented with D = 3N2
∆ = 768 degrees of freedom. We expect that this formalism will generalize to systems

substantially larger than the one presented here, although we do not underestimate the numerical challenges involved in its

extension to say, the scale of existing NWP models with D ≈ 108−109 such as those presented in Cardinali (2013); ECMWF

(2013). A crucial issue here regarding memory scalability is the sparseness of the Jacobian matrix ∂S(x(t))/∂x(t), as storage5

of anO(D2) matrix is clearly impractical for very large models. Initial numerical results however, suggest that this matrix does

indeed have sparse structure, at least for the simple partial differential equations systems we have examined thus far. It also

appears that a similar trick using adjoint equations as what is done in incremental 4DVar may be applicable here. This strategy

will be reported elsewhere.

While we do not contend that the time delay construction will be beneficial for all data assimilation techniques, we recognize10

the issue of insufficient measurements as a critical bottleneck in our current ability to predict the behavior of complex, chaotic

systems. Such systems are quite typical in practice, and thus this issue warrants further investigation. Harking back to the

introduction, we note that in the report by Cardinali Cardinali (2013) she indicates that 30-40 million daily observations are

now available, and that many NWP models comprise 108 degrees of freedom. If we may extend the qualitative trends seen

here for shallow water flow, in which time delays provides successful predictions with order of only 30% of state variables15

observed, then there may be a role already now for time delay operations in existing production NWP computations.
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Figure 1. Synchronization error as a function of time, Eq. (9), computed with DM = {1,6,8,10}, gh ∆t= 1.5, gu ∆t= gv ∆t= 0.5 and

τ = 10∆t= 0.1h. Assimilation is performed for t≤ 5 h. Left PanelThe couplings are then switched off and trajectories are evolved with

the original dynamical equations Eq. (10) until t= 100h. Note that in the t≥ 5 window, the error in the trajectories grow roughly with the

largest Lyapunov exponent of the system λmax ≈ 1/31h. Synchronization is evident when DM = {8,10} and not for DM = {1,6}. This

suggests that accurate predictions will be obtained DM = {8,10}. Right Panel Same calculation extended to t = 500 h.
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Figure 2. Upper Left Panel Known (black), estimated (red) and predicted (blue) for the observed height values h(6,4)(t) at grid point (6,4)

for DM = 6. Observations are for 0≤ t≤ 5 h. Predictions are for 5≤ t≤ 100 h. In a true experiment, one may evaluate the validity of

the model and the estimation procedure in this way, by comparing observed data with additional measurements. In accordance with the

synchronization error results. Upper Right Panel Same calculation for DM = 6 for a prediction window 5≤ t≤ 500 h. Lower Left Panel

Same calculation except DM = 8. Prediction window is 5≤ t≤ 100 h. Lower Right Panel Same calculation except DM = 8. Prediction

window is 5≤ t≤ 500 h.
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Figure 3. Upper Left Panel Known (black), estimated (red) and predicted (blue) for the observed x-velocity values u(6,4)(t) at grid point

(6,4) for DM = 6. Observations are for 0≤ t≤ 5 h. Predictions are for 5≤ t≤ 100 h. In a true experiment, one may evaluate the validity

of the model and the estimation procedure in this way, by comparing observed data with additional measurements. In accordance with the

synchronization error results. Upper Right Panel Same calculation for DM = 6 for a prediction window 5≤ t≤ 500 h. Lower Left Panel

Same calculation except DM = 8. Prediction window is 5≤ t≤ 100 h. Lower Right Panel Same calculation except DM = 8. Prediction

window is 5≤ t≤ 500 h.
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Figure 4. Upper Left Panel Known (black), estimated (red) and predicted (blue) for the observed y-velocity values v(6,4)(t) at grid point

(6,4) for DM = 6. Observations are for 0≤ t≤ 5 h. Predictions are for 5≤ t≤ 100 h. In a true experiment, one may evaluate the validity

of the model and the estimation procedure in this way, by comparing observed data with additional measurements. In accordance with the

synchronization error results. Upper Right Panel Same calculation for DM = 6 for a prediction window 5≤ t≤ 500 h. Lower Left Panel

Same calculation except DM = 8. Prediction window is 5≤ t≤ 100 h. Lower Right Panel Same calculation except DM = 8. Prediction

window is 5≤ t≤ 500 h.
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Figure 5. Data assimilation results with DM = 10 and reduced coupling on the height component h(6,4)(t) at location (6,4), gh ∆t=

gu ∆t= gv ∆t= 0.5. All other parameters are the same. Upper Left Panel SEh(t) for 0≤ t≤ 200 h. Upper Right Panel Known (black),

estimated (red) and predicted (blue) for the observed height values h(6,4)(t) at grid point (6,4) forDM = 10. Observations are for 0≤ t≤ 5

h. Predictions are for 5≤ t≤ 100 h. Lower Left Panel Known (black), estimated (red) and predicted (blue) for the observed x-velocity

values u(6,4)(t) at grid point (6,4) for DM = 6. Observations are for 0≤ t≤ 5 h. Predictions are for 5≤ t≤ 100 h. Lower Right Panel

Known (black), estimated (red) and predicted (blue) for the observed y-velocity values v(6,4)(t) at grid point (6,4) forDM = 6. Observations

are for 0≤ t≤ 5 h. Predictions are for 5≤ t≤ 100 h.
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Figure 6. Synchronization error and known, estimated, and predicted height values for L = 248 height measurements at each observation

time and for L = 252 height measurements at each observation time. Upper Left Panel SEh(t) for L = 248 and L = 252 over 0≤ t≤ 5

h in the observation window, and 5≤ t≤ 500 h after the couplings are removed. Upper Right Panel Known (black), estimated (red), and

predicted (blue) values of the height h(6,4)(t) at gridpoint (6,4) for 0≤ t≤ 100 h for L = 248. Lower Panel Known (black), estimated (red),

and predicted (blue) values of the height h(6,4)(t) at gridpoint (6,4) for 0≤ t≤ 100 h for L = 252. This shows the rather sharp transition

between bad predictions (L = 248) and good predictions (L = 252).

23

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-22, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 22 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 7. The effect of noise levels in the initial condition for the solution of the model equations Eq. (10) on SEh(t). We show the results

for DM = {8,10} for added Gaussian noise N(0,σ) with σ = {0.2,0.5}. For this range of noise levels added to the initial condition for

generating the data in our twin experiments, we see that the detailed values of SEh(t) change. In the case of both DM = 8 and DM = 10,

SEh(t) still becomes quite small in the observation window 0≤ t≤ 5 h, suggesting that predictions for t≥ 5 will remain robustly accurate.
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Figure 8. SEh(t) for our standard twin experiment described in detail earlier when we utilize drifter information, and when we do not

utilize drifter information. When the number of observations of height is L = 208, we see that without drifter information (blue line) there is

no synchronization and correspondingly inaccurate predictions (not shown). When information from 20 Lagrangian drifters is added during

data assimilation using time delay nudging, SEh(t) decreases very rapidly (red line) indicating predictions will be very accurate (also not

shown). The efficacy of small numbers of drifters is clear in this example.
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