
Authors’ Response to Referee, Dr. S.G. Penny 
 
First, may we thank the referee for the thorough reading of our paper and for the 
detailed suggestions of changes and improvements. This document is our first response 
to your comments, and when the discussion period for the paper is completed, we will 
incorporate our comments here and responses to all commenters into a revised version 
of the paper.  Again, these remarks have been most helpful. 
 
The Authors: An, Rey, Ye and Abarbanel 
=================================           
 

1. Techniques for dealing with a sparse observational networks are critically 
important, particularly for ocean and climate reanalyses that attempt to 
reconstruct the past state of the Earth system (e.g. Compo et al., 2011; 
http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html). The 
experiment scenarios described here by the authors are perhaps most applicable 
to the estimation of the global ocean state after the introduction of satellite 
altimeters, e.g. TOPEX/Poseidon in late 1992  
(https://sealevel.jpl.nasa.gov/missions/topex/), with their final set of experiments 
having a potential application to leverage data from the Global Drifter Program 
(http://www.aoml.noaa.gov/phod/dac/index.php). Thus from a practical point of 
view, the time-delay method has potential merit for operational scale data 
assimilation (DA) and reanalysis. 

==============================     
 
We have examined the links you provide, and it does indeed look like fruitful directions 
for the use of the time delay method. We think it fair to evaluate ourselves critically and 
recognize that we may not be prepared to tackle, with present personnel levels and 
computational resources, something of this magnitude. However, we agree about the 
importance of this problem and appreciate your encouraging comments and suggested 
applications. There is no doubt in our mind that these items are in our future, and we 
look forward to pursuing them. 
========================================== 
 

2. Because of such potential, the authors should give a bit more explicit description 
about how these ideas compare to common methods like 4DVar or the 4D 
Ensemble Kalman Filter (EnKF), both of which utilize observations over an 
extended time window. The authors could give a more thorough depiction of how 
their ideas could be incorporated in these existing systems in order to facilitate a 
higher likelihood that an operational center might adopt the approach. 

=====================================    
Again, we agree in toto with the referee’s comments. We have taken a more cautious 
path to these comparisons with ExtKF, EnKF, and traditional 4DVar methods [but see 
our paper in NPG (Improved variational methods in statistical data assimilation J. Ye, N. 
Kadakia, P. J. Rozdeba, H. D. I. Abarbanel and J. C. Quinn Nonlin. Processes 
Geophys., 22, 205-213, doi:10.5194/npg-22-205-2015, 2015))]. 

http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html
https://sealevel.jpl.nasa.gov/missions/topex/
http://www.aoml.noaa.gov/phod/dac/index.php
http://www.nonlin-processes-geophys.net/22/205/2015/


The comparisons require, in our opinion, another paper dedicated to those, and, if we 
want to be fair about the comparisons, we feel we need to do them in cooperation with 
colleagues who have experience with those methods. We do have such colleagues at 
Scripps Institution of Oceanography, and we will be working with them on just these 
matters. 

We considered going into more detail in this paper and decided it might take away from 
its main point, which was to demonstrate the benefit of using time delays in a simple 
geophysical model, and its application to drifter measurements.  
====================      
 

3. The sea surface height is closely connected to the near surface currents via the 
geostrophic balance, particularly in midlatitudes. Thus it is expected that 
unobserved currents would be well constrained by proper estimation of the 
surface height. For example, sea surface heights and sea surface winds are 
used to construct an estimate of ocean surface currents for the OSCAR product 
(http://www.oscar.noaa.gov/index.html). However, the examples given by the 
authors could perhaps be described as a supplement for the tropical region 
where this relationship breaks down. For future work, a natural extension would 
be to address a slightly more sophisticated example consisting of multiple vertical 
layers and the modeling of the temperature and salinity components of the 
density. This experiment would give a better test of estimating unobserved 
variables. For example, observing only temperature while estimating salinity is a 
challenging problem for ocean reanalyses before the Argo era. 
 
============== 

 
Thank you for these suggestions. We will look closely at how the geostrophic balance 
plays into directing the dynamical outcome of our use of time-delays. However, as the 
geostrophic wind is related to the gradient of the height variable, it may be that this 
provides a different general constraint on the solutions to the shallow water equations. 
================================     
 

4. A brief statement could be made about the applicability of the time-delay 
approach, for example, to the tropical observing system of moored buoys 
(TAO/TRITON). These are stationary sensors generating data about once every 
10 minutes, but the majority of this data is not used in DA because most global 
scale ocean assimilation systems use analysis cycles that span multiple days. 
Even a coupled ocean/atmosphere DA system cycling every 6 hours could 
benefit from better use of this data. I suggest investigating the TPOS-2020 
(Tropical Pacific Observing System) effort for the potential to inform the future 
development of this and other observing systems (http://tpos2020.org). A 
weakness in the chosen experiments scenarios that should be acknowledged is 
that the approach has not been tested on time-delay observations with errors that 
are correlated in the time dimension. This is particularly important in ocean DA 
because errors of representativeness often dominate (versus instrument errors).  

http://www.oscar.noaa.gov/index.html
http://tpos2020.org/


 
================================     

 
This is an excellent suggestion. It would appear to provide information from an unused 
(by us, and it appears many others) data source for useful information about ocean 
models.  
==============================      

5. I suggest an experiment, perhaps for future work, in which you run 2 model 
resolutions. The high resolution run is treated as ‘truth’, from which observations 
are drawn. The low resolution model is what you are synchronizing via DA. Set 
up appropriately, this should give you ‘natural’ errors of representativeness in the 
observations that may be correlated in time with the errors of future or past 
observations. Does the time-delay method still work effectively in this experiment 
scenario? 
==============================              

 
This is another good idea. We actually considered including such an experiment, to 
investigate the impact of finite resolution and model errors arising from subgrid scale 
processes. Ultimately, we decided to leave these considerations for a future paper, and 
focus here on the perfect model scenario.  We see no impediment to the use of time 
delays in this scenario; indeed, it may provide information from “spatial delays” (also 
used in the past for nonlinear dynamical descriptions of waves propagating in nonlinear 
materials) presently not incorporated in our own work. 
==================================== 
 

6. The time-delay method is described in comparison to nudging as a baseline. I 
would like to see the authors compare a simple 4DVar to the time-delay method 
as well (via experiment) to give context into how their method compares to a 
more state-of-the-art DA. 

 
A thorough comparison is planned for a future paper, where we discuss in detail the 
connection between our method and 4DVar. The revised paper we will prepare notes 
this as future work. The simple answer at this time is that we know how to introduce 
time delays into what we call the action, often called the 4DVar cost function, and we 
have not yet used this augmented cost function (and our method of 4DVar as noted 
above) on this problem. 
 

7. It seems that the time-delay information for the observations and model state 
applied with what is essentially a diagonal coupling term emulates a similar effect 
as the cross-covariances that would in effect apply a non-diagonal coupling term 
to the innovations computed at different times throughout the window. The 
authors should discuss how the off-diagonal coupling used in most operational 
DA relates to the diagonal coupling with time-delay observations used here. 
==============================   

 



We agree with your statements here about the cross-correlations. The off-diagonal 
terms here arise from the generalized inverse of the time delayed innovations. The 
diagonal coupling term in time delay space could for instance damp the effect of 
measurements further in the future, which have more uncertainty due to dynamical 
instability.  
 
A similar effect could be achieved from 4DVar with a uniform prior and a time distributed 
observation error matrix, but we would rather discuss this in a future paper that more 
thoroughly explores the connection between time delayed nudging and 4DVar. 
 
====================================    
 

8. The impact of observation error on synchronization via the nudging approach is 
not addressed very thoroughly. I’d like to see some evaluation of the sensitivity to 
observation error in the assessment of the method. The authors should describe 
how their method is impacted by outliers in the observed data. Is the method 
sensitive to such outliers? I’d like to see an example. 
=========================     

 
When observation error is present, the model will synchronize to within the noise ball of 
the `true' solution, when the model is known perfectly and enough observations are 
present. We recognize however that for many DA methods the goal is to reduce the 
RMSE below the noise level, but this was not the case here as we chose to consider the 
sparsity of observations as the dominant effect, rather than observational noise. As a 
result, we elected to only include a brief investigation, to show that our method is not 
significantly impacted by very small observational errors.  
 
To be clear though, you are right that enough noise will ‘break’ this method, or at least 
severely impede its chances of success. The degree of regularization needed for the 
generalized inverse of dS/dx is commensurate with the observational errors of the 
system.  
 
In addition to these remarks, we use the synchronization error as our “monitor” of the 
reduction of the model output error to indicate when we have sufficient observations at 
each measurement time. These errors are limited by the noise in the observations. 
 
General Technical Corrections: 
 
We do not comment on these, really valuable—to us—comments. We have addressed 
each of them in our rewrite of the submitted paper, and on revision after the end of the 
NPG discussion period, we will note each change we have made built upon these 
detailed, and appreciated, comments.  Thank you. 
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Abstract. The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-

series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space

and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction,

the issue of whether the available observations are ‘sufficient’ for generating successful forecasts is still not well-understood.

An analysis by Whartenby et al (2013) found that in the context of the nonlinear shallow water equations on a �-plane,5

standard nudging techniques require observing approximately 70% of the full set of state variables. Here we examine the same

system using a method introduced by Rey et al (2014a), which generalizes standard nudging methods to utilize time delayed

measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required

to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70% can be reduced to

about 33% using time delays, and even further if Lagrangian drifter locations are also used as measurements..10

1 Introduction

The ability to forecast the complex behavior of global circulation in the coupled Earth system lies at the core of modern nu-

merical weather prediction (NWP) efforts. To successfully predict such behavior requires both a good model of the underlying

physical processes as well as an accurate estimate of the state of the model at the end of the analysis or observation window.

When the model is chaotic, even if it is known precisely, the accuracy of the prediction depends on the accuracy of the initial15

state estimate. This is due to sensitive dependence to the initial conditions, which was first identified by Lorenz (1963).

Here we consider an idealized situation where a perfect dynamical model describes the deterministic time evolution of a set

of D state variables. We also assume a set of L measurements are taken at each observation time from the physical system at a

uniform sampling interval �t, which is assumed to be small relative to the time scale of the dynamics.

Our main concern here is the case where the measurements are sparse in state space, so (L⌧D). Although this discussion20

will focus solely on a specific geophysical system (the shallow water equations), the methods we describe here have broad

applicability across the quantitative study of the underlying physical or biological properties appearing in many complex sys-
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tems. In particular, the situation of high dimensional dynamics and sparse measurements is typical in the process of examining

the consistency of observed data and quantitative models of complex nonlinear systems: from functional nervous systems to

genetic transcription dynamics, among many other examples (Abarbanel (2013)).

As discussed by Cardinali (2013), operational NWP models at the European Centre for Medium-Range Weather Forecasting

(ECMWF) now contain upwards of 108 degrees of freedom. These models are analyzed using 3� 4⇥ 10

7 daily observations,5

a large portion of which are often discarded. Given the scale of these calculations, the question of whether the remaining

observations are in fact ‘sufficient’ for producing accurate analyses and forecasts is of the utmost importance.

To clarify the term ‘sufficient’ we refer to the analysis by Whartenby et al (2013), which showed that familiar nudging

methods, when applied to a chaotic, shallow water flow on a �-plane driven by Ekman pumping, require observation of

roughly 70% of the 3N2
� dynamical variables. That is, to achieve accurate forecasts, these methods required measuring the10

height variable h and at least one of the two velocity variable u, v at each of the N� ⇥N� grid points. Additionally, the

prediction accuracy was shown to drop precipitously when the number of observations L drops below a critical threshold L
s

,

which was identified as the number of ‘required’ observations.

The existence of this critical threshold, despite the otherwise ideal circumstances, raises a number of questions. Most notably

this one: what can be done if the number of observations L is constrained to be less than L
s

? In examining this question, it is15

worth considering that the value L
s

depends on a number of factors, including the chosen data assimilation algorithm. This fact

suggests that one might be able to effectively reduce this threshold by modifying the algorithm in a way that more efficiently

utilizes the information in the available observations.

This paper will investigate this idea using the method introduced by Rey et al (2014a, b). This modifies a standard nudging

technique to include additional information in the time delays of the observations. In particular, we will show that by using time20

delays the estimate of 70% given by Whartenby et al (2013) can be reduced to roughly 33%, and can be even further reduced

if positional observations from Lagrangian drifters are also used. These outcomes suggest that time delays may be useful for

reducing the number of required observations to meet the practical constraints of operational NWP.

We now briefly describe the concept of time delayed nudging. Further details can be found in Rey et al (2014a, b).

2 Time delayed nudging25

The system is assumed to be described by a mathematical model, whose state is given by a D-dimensional vector x(t).

The model defines a dynamical rule for evolving the x(t) in time, which we assume can be represented as a set of ordinary

differential equations (ODEs)
dx(t)

dt
= F(x(t), t). (1)

If the dynamics of the system are described by partial differential equations (PDEs), such as with fluids in an earth systems30

model, these ODEs may be realized by discretizing the PDEs on a grid.

Measurements of the physical system are recorded during an observation window 0 t T =N�t, where L observations

y(t
n

) are taken at each time t
n

= n�t for n= 0,1, . . . ,N . The measurements y(t) are related to the state vector x(t) through
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a measurement operator, which for simplicity we take here to be a constant L⇥D projection matrix H, so that y(t) =H ·
x(t)+ noise. This assumption is not imperative however.

The overall objective is to estimate the full model state x(T ) at the end of the assimilation window using information from

observations, and then use this estimate to predict the system’s subsequent behavior for t > T using Eq. (1). The accuracy of

these predictions, when compared with additional measured data in the prediction window t > T , serves as a metric to validate5

both the model and the assimilation method, through which the unobserved states of the system are determined. This establishes

a necessary condition on L that is required to synchronize the model output with the data and thereby obtain accurate estimates

for the unobserved states of the system.

When the model is known precisely, a familiar strategy for transferring information from the measurements to the model

involves the addition of a coupling or control or nudging term to Eq. (1),10

dx(t)

dt
= F(x(t), t)+H† ·G(t) ·

�
y(t)�H ·x(t)

�
. (2)

where H† denotes the transpose, and G(t) is an L⇥L matrix that is nonzero only at times t
n

where measurements occur. For

simplicity, when G(t) is non-zero, it is assumed to be constant and diagonal, so the coupling terms only affect the measured

states.

This long-standing procedure, known as ‘nudging’ in the geophysics and meteorology literature, has been shown to fail15

when the number of measurements at a given time is smaller than a critical value L
s

(Abarbanel et al (2009)). This can be

understood by noting that the coupling term perturbs the observed model states, driving them towards the data. With enough

observations L, and a sufficiently strong coupling G(t), this control term alters the Jacobian of the dynamical system Eq. (2)

so that all its (conditional) Lyapunov exponents are negative — see e.g., Pecora & Carroll (1990); Abarbanel (1996); Kantz

& Schreiber (2004). That is, the log of the maximum eigenvalue of the matrix [�(T,t0)† ·�(T,t0)]1/2T is negative, where20

�(t, t0) is the solution to the variational equation

d�(t, t0)

dt
=DF̃(x(t), t) ·�(t, t0) �

ab

(t, t0) = �
ab

, (3)

along the trajectory given by Eq. (2) and

DF̃=DF(x(t), t)�H† ·G(t) ·H

is its Jacobian. That is, DF
ab

(x(t), t) = @F
a

(x(t), t)/@x
b

(t) and �
ab

is the Kronecker delta, so �(t0, t0) is an identity matrix.25

This establishes a necessary condition on L required to synchronize the model with the data. Numerical experiments have

shown that when this condition is not met, estimates are not accurate and predictions are unreliable (Abarbanel et al (2009);

Abarbanel (2013)). An example of this will be given later in our discussion of geophysical shallow water flow.

It is therefore important to understand for a given problem, whether L > L
s

. If this condition is not satisfied and additional

measurements cannot be made, then we must find another means to overcome this deficit in L.30

One way to proceed involves the recognition that additional information resides in the temporal derivatives of the obser-

vations. In practice, however, this derivative information cannot be measured directly, although it can be approximated via
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finite differences, for instance by approximating dy(t
n

)/dt with (y(t
n

+ ⌧)�y(t
n

))/⌧ where ⌧ is some multiple of the time

differences between measurements. The drawback here is that the derivative operation acts as a high-pass filter, and is thus

quite susceptible to noise in the measurements.

Alternatively, it has been known for some time in the nonlinear dynamics literature that this additional information in the

derivative is also available in the time delay of the measurements, y(t
n

+ ⌧). This process can be repeated as many times as5

needed to form a D
M

dimensional vector of time delays, which we call S(t).

This idea provides the basis for the well-established technique in the analysis of nonlinear dynamical systems, where this

structure is employed as a means of reconstructing unambiguous orbits of a partially observable system (see e.g., Aeyels

(1981a, b); Mañé (1981); Sauer et al (1991); Takens (1981); Kantz & Schreiber (2004); Abarbanel (1996)). By mapping to a

proxy space of time delayed observations, one is able invert the projection associated with measuring L <D components of10

the underlying dynamics, by using fact that new information beyond y(t
n

) lies in y(t
n

+ ⌧). The derivative operation is just

another (albeit less numerically robust) way of accessing this information.

Note that the time delay ⌧ and the embedding dimension D
M

are parameters that need to be chosen appropriately for

the system, although a number of useful heuristics are available (Abarbanel (1996)). Moreover, Takens (1981) proved that

that taking D
M

> 2D
A

, where D
A

is the fractal dimension of the attractor, is sufficient to unambiguously reconstruct the15

topology of the attractor. It is worth noting however that this condition is only sufficient, and the procedure often succeeds with

considerably a smaller value of D
M

.

In the estimation context, the time delays are used in a slightly different way. Instead of reconstructing the topology of the

attractor, they are used to control local instabilities in the dynamics, which cause errors in the analysis to grow. In other words,

D
M

does not need to embed the entire space. Rather, it only needs to be large enough to effectively increase the amount of20

information transferred from the L measurements to a value above the critical threshold, L
s

.

Using this idea Rey et al (2014a, b) proposed a technique to extract additional information from time delayed observations

by constructing an extended state space S(t), created from an L ·D
M

dimensional vector of the measurements and its time

delays. The components of this time delayed observation vector are denoted by

Y†
(t

n

) = {y†
(t

n

),y†
(t

n

+ ⌧), . . . ,y†
(t

n

+ ⌧ (D
m

� 1))}, (4)25

where D
M

is the dimension of the time delayed vector Y(t
n

), and ⌧ is the delay, which here is assumed to be an integer

multiple of �t. The corresponding time delay model vectors S(x(t)) are given by

S†
(x(t)) = {[H ·x(t)]†, [H ·x(t+ ⌧)]†, . . . , [H ·x(t+ ⌧ (D

m

� 1))]

†}, (5)

where the values x(t0 > t) are constructed by integrating the uncoupled dynamics, Eq. (1), forward in time. The time evolution

for S(x(t)) is given by the chain rule,30

dS(x(t))

dt
=DS(x(t)) ·F(x(t), t), (6)

where the Jacobian DS(x(t)) = @S(x(t))/@x(t) with respect to x(t) can be computed using the variational Eq. (3), by sub-

stituting the Jacobian of the uncoupled model DF̃!DF. Furthermore, in analogy with Eq. (2), we introduce a control term
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g(t) in time delay space

dS(x(t))

dt
=DS(x(t)) ·F(x(t), t)+g(t) ·

�
Y(t)�S(x(t))

�
. (7)

We then transform back to physical space, by multiplying both sides of this equation by [DS(x(t))]�1, to get

dx(t)

dt
= F(x(t), t)+G(t) · [DS(x(t))]�1 ·g(t) ·

�
Y(t)�S(x(t))

�
, (8)

Note there are now two control terms, G(t) and g(t), which act in physical and in time delay space respectively. Also, since5

DS(x(t)) is a (L ·D
m

)⇥D matrix, it is generally not square so its pseudoinverse [DS(x(t))]+ is used.

At each step of the integration of the controlled (nudged) dynamical equations Eq. (8), the control term perturbs the full

state vector in time delay space S(x(t)) toward the time delay measurement vector Y(t), allowing it to extract additional

information from the waveform of the existing measurements. The value of this statement will become more clear later on.

Furthermore, in the limit D
M

= 1 the time delay formulation Eq. (8) reduces to the standard nudging control Eq. (2).10

Two important differences however are realized when D
M

> 1. First, information from the time delays of the observations is

presented to the physical model equations. And second, all components of the model state x(t) are influenced by the control

term, not just the observed components. This, for example, allows fixed parameters p of the model may be estimated as a

natural result of the synchronization process by including them as additional state variables, satisfying dp(t)/dt= 0.

Also worth mentioning is that here we are not using time ‘delays’ but rather a time advanced formulation, which looks15

forward in time. The reason for this is related to the goal of controlling the propagation of errors on the unstable manifold

as the system is integrated forward in time, which are locally described by Eq. (3) so the time advanced construction is a

natural choice, although both formulations are acceptable. This also brings up a concern regarding what to do at the end of the

assimilation window. One option is to switch to a time delayed formulation, or perhaps a mixed formulation that uses delays

both forwards and backwards in time. Though comparing the performance of various choices would likely be interesting, we20

do not consider this issue further. Rather, our numerical experiments use only a time advanced formulation, by choosing the

end of the observation window so that the last observation y(T + ⌧ (D
M

� 1)) is always available.

There appear to be considerable similarities between this method and those of strong constraint 4DVar (Lewis et al, (1985);

Talagrand et al (1987)), which are now standard practice in data assimilation Rabier et al (2000). Although in this form,

time delay nudging certainly cannot handle a system of the size used in operational NWP, as the variational equation requires25

manipulating D⇥D matrices, it may be possible to avoid this issue, for instance by using adjoints, similar to what is done in

practice (Courtier et al (1994)). This formulation will be given in a subsequent paper.

Pazo (2016) gave a simplified version of time delay nudging that requires considerably less computation. Although their

approach has not yet been applied to geophysical flows, it is worth investigating whether it is also capable of achieving the

same reduction in L
s

.30

Furthermore, while it known that chaotic behavior in the model can cause serious issues for strong constraint 4DVar (Pires

et al (1996)), perhaps less well-known is that similar observability thresholds have also been observed in both nudging and

4DVar (Abarbanel et al (2009); Abarbanel (2013)), even with weak constraints (Quinn & Abarbanel (2010)). In fact, the value
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of L
s

appears remarkably consistent across a variety of formulations, which it may be a rather fundamental quantity. It is also

evident that Kalman related methods can do better if the observation operator is allowed to adapt to the unstable subspace (Law

et al (2014)). This is the related to the fact that the Riccati equation for the error covariance propagation targets the unstable

subspace (Trevisan & Palatella (2011); Gurumoorthy et al (2015)). Related ideas have appeared in the literature on assimilation

in the unstable subspace (Trevisan et al (2010); Palatella et al (2013)).5

We are currently working on unifying the motivating ideas behind time delay nudging with the variational action principle of

weak constraint 4DVar. This and other related connections to 4DVar will be given in a subsequent paper that will also compare

time delay method with a few other common data assimilation techniques.

For the moment however, no additional theory will be introduced. Instead, we focus its application to a core geophysical

model. Namely, the shallow water equations.10

3 Twin Experiments

We test our time delay nudging procedure through a series twin experiments (Durand et al (2002); Blum et al (2009); Blum

(2010)). After solving the original dynamical equations Eq. (1) forward from a preselected initial condition x(0), the observed

data is taken as the projection down to the L observed components. Gaussian noise N(0,�) is added to each component to

simulate observation error.15

To simulate the conditions of a true experiment we monitor our progress by calculating the observable synchronization error,

namely the root mean square deviation between the data and the observed model states,

SE(t
n

) =

r
1

L
|H ·xs

(t
n

)�ys

(t
n

)|2, (9)

where scaled variables have been introduced such that xs

`

(t) = [x
`

(t)�xmin

`

(t)]/[xmax

`

(t)�xmin

`

(t)] and xmin/max

`

(t) are the

minimum or maximum values of x
`

(t) over the entire assimilation window. The same definition holds for ys
`

(t). This rescales20

all data and observed model states to lie in the interval [0,1], so that each state component’s contribution to the synchronization

error is roughly equal. While this could make the result sensitive to outliers in the data, it did not appear to be an issue here.

When the estimation is completed at time t= T the coupling terms g(t) and G(t) are set to zero, and the uncoupled dynamics

Eq. (1) are integrated forward from the estimated x(T ) to construct a forecast for t > T , which may then be compared with

additional observations y(t > T ). Comparing against the forecast provides confidence that the unobserved state variables are25

also accurately estimated.

It was previously shown by Whartenby et al (2013) that when the synchronization error Eq. (9) decreases to very small

values, the full state x(T ) is accurately estimated and the forecast is quite good. Conversely, when this fails to occur, the full

state x(T ) is not well estimated and the prediction is unreliable.

In Rey et al (2014a, b), this contraction of the synchronization error was only observed when the number of time delayed30

observations L⇥D
M

, and the magnitude of the coupling matrices g(t), G(t) were ‘large enough’. The precise meaning of

this statement will become apparent shortly.
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4 Nonlinear Shallow Water Equations

We now describe the application of time delay nudging to a nonlinear model of shallow water flow on a mid-latitude �-plane.

This geophysical fluid dynamical model (previously examined by Pedlosky (1987) and Whartenby et al (2013), among many

others) is at the core of earth system flows used in NWP. Of course, operational models contain considerably more detail than

this example, and those models also describe the dynamics over a sphere. However, we suspect the results presented here5

for this simplified model will be applicable to more complex models as well, though we do not underestimate the numerical

challenges in this extrapolation.

As the depth of the coupled atmosphere ocean fluid layer (10� 15 km) is markedly less than the earth’s radius (6400 km),

the shallow water equations for two dimensional flow provide a good approximation to the fluid dynamics of the ocean. Three

fields on a mid-latitude plane describe the fluid flow {u(r, t),v(r, t),h(r, t)}: the north-south velocity v(r, t), the east-west10

velocity u(r, t), and the height of the fluid h(r, t), with r= {x,y}. The fluid is taken as a single, constant density layer and is

driven by wind stress ⌧(r, t) at the surface z = h(r, t) through an Ekman layer. These physical processes satisfy the following

dynamical equations with u(r, t) = {u(r, t),v(r, t)},

@u(r, t)

@t
=�u(r, t) ·ru(r, t)� grh(r, t)+u(r, t)⇥ (f(y) ẑ)+Ar2u(r, t)� ✏u(r, t)

@h(r, t)

@t
=�r ·

⇥
h(r, t)u(r, t)

⇤
� ẑ · curl


⌧(r, t)

f(y)

�
. (10)15

The Coriolis force is linearized about the equator f(y) = f0 +�y and the wind-stress profile is selected to be ⌧(r, t) =

{[F/⇢] cos(2⇡y),0}. The parameter A represents the viscosity in the shallow water layer, ✏ is Rayleigh friction and ẑ is the unit

vector in the z-direction. The values we have used for the model parameters are given in Table 1. With these fixed parameters the

shallow water flow is chaotic, and the largest Lyapunov exponent for this flow is estimated to be �
max

= 0.0325/h⇡ 1/31h,

measuring the average growth rate of random perturbations.20

We have analyzed this flow using the enstrophy conserving discretization scheme given by Sadourny (1975) on a grid of size

N2
� for N� = {16,32,64} with periodic boundary conditions. Using the twin-experiment framework, with simple nudging

given in Eq. (2) and a static observation operator, approximately 70% of the D = 3N2
� degrees of freedom must be observed in

order to synchronize the model output with the data (Whartenby et al (2013)). As the results are consistent across the various

grid sizes that were investigated, we restrict our discussion here to the case where N� = 16, so that the total number of degrees25

of freedom D = 3N2
� = 768. For this case, Whartenby et al (2013) estimated L

s

⇡ 524 = 0.68D using a uniform grid of

observations. In other words, the height field and one of the velocity fields at each grid point needed to be observed to achieve

reliable results.

Based on the discussion above and the lectures by Cardinali (2013), we see that the requirement of having to observe

70% of the model dynamical variables exceeds the measurements now available by at least a factor of two. This requirement30

is expected to be higher in practice, when the model and observations contain substantial errors. Furthermore, it is worth

investigating whether the number of required observations eventually stabilizes to some finite value as the model resolution

increases, but this is left for a future investigation.
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Parameter Physical Quantity Value in Twin Experiments

�t Time Step 36 s

�X East-West Grid Spacing 50 km

�Y North-South Grid Spacing 50 km

H0 Equilibrium Depth 5.1 km

f0 Central value of the Coriolis parameter 5 ⇥10�5 s�1

� Meridional derivative of the Coriolis parameter 2.0 ⇥10�11m�1s�1

F/⇢ Wind Stress 0.2 m2s�3

A Effective Viscosity 10�4 m2s�1

✏ Rayleigh Friction 2 ⇥10�8 s�1

Table 1. Parameters used in the generation of the shallow water ‘data’ for the twin experiment. All fields as well as {x,y, t} were scaled by

the values in the table, so all calculations were done with dimensionless variables.

5 Results with Time Delay Nudging for the Shallow Water Equations

We now demonstrate that the time delay method is capable of reducing L
s

, by showing that it can construct successful estimates

and predictions without directly observing the horizontal velocity fields. This strategy was shown to fail by Whartenby et al

(2013) with static (D
M

= 1) nudging. Thus, we assume height measurements alone are made at each grid point (i, j) for

i, j = {1,2, . . . ,16 =N�}, so L= 256< 524⇡ L
s

, as estimated by Whartenby et al (2013).5

The initial state x(t0) for the model and the data are taken to have the form,

h(i,j)
(t0) =

✓
⇡A0

N��Y

◆2 ⇥
cos(!

�

�(r(i,j))+ �
�

)+ cos(!
✓

✓(r(i,j))+ �
✓

)

⇤
+H0

u(i,j)
(t0) =A0

@ (r(i,j))

@y
v(i,j)(t0) =�A0

@ (r(i,j))

@x
(11)

where the parameters H0 = 5100m, A0 = 10

6 and

 (r) = cos(!0
�

�(r)+ �0
�

) sin(!0
✓

✓(r)+ �0
✓

). (12)10

The functions � and ✓ respectively evaluate the latitude and longitude at the point r(i,j) on the grid. All fields as well as the

variables {x,y, t} were scaled by the values in Table (1), to make them dimensionless. The parameters !
�

,!
✓

,!0
�

,!0
✓

and

�
�

,�
✓

,�0
�

,�0
✓

are chosen arbitrarily, so that the phase and period of the initial condition are different for truth and the estimate.

Also, although the method is capable of estimating the static model parameters, here they are considered known.

The coupling matrix G(t) is taken to be diagonal, with different weights for the heights and for the velocities. In particular,15

G
u,v

�t= 0.5 and G
h

�t= 1.5 with �t= 0.01h= 36s. The values of G
h

are larger than G
u

,G
v

, since the average height is

5000±30m, three orders of magnitude higher than the average velocity 0±5m/s. The time delay space coupling g(t) is taken
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to be the identity matrix, as all the height measurements are assumed to be known with equal temporal precision throughout

the observation window.

The time delay was selected to be ⌧ = 10�t= 0.1h, in order to maintain a balance between numerical stability and the

common criterion of independence between the components of S(x(t)). The first minimum of the average mutual information

was also calculated to be ⌧ ⇡ 30�t, which is reasonably close to our choice, and the results did not change if its value was5

shifted by a few �t.

5.1 Choosing DM

The state was estimated by integrating the coupled differential equations Eq. (8) from t= 0 to T = 5h= 500�t with various

D
M

= {1,6,8,10}. The coupling terms were then switched off at t= T to generate predictions until t= 500h.

Short and long term synchronization error Eq. (9) trajectories SE(t) are plotted in Figure 1 for various D
M

. Choosing D
M

=10

{1,6}, yields a synchronization error that remains around its initial value of 0.005 until the end of the five hour observation

window. After the coupling is switched off, the error rises very rapidly until stabilizing around 0.1 for the remainder of the

prediction window. By contrast, for D
M

= {8,10} the synchronization error falls steeply to order 10�6 within the observation

window. It then subsequently rises as e�max

(t�T ), where �
max

⇡ 1/31h agrees with the largest Lyapunov exponent calculated

for this flow. This exponential rate of growth is particularly evident in the long trajectory displayed in the Right Panel of Figure15

1.

Since D
M

� 8 produces error values several orders of magnitude smaller than those obtained with D
M

 6, we expect

the state estimates x(T ) obtained with D
M

� 8 to be quite accurate when compared with the estimates for D
M

 6. These

estimates are now evaluated as they would be in a true experiment, by comparing predictions on the observed heights with

additional data. In Figure 2 the known (black), estimated (red), and predicted (blue) height trajectories are shown for an20

arbitrarily selected grid point h(6,4)
(t). Short and long term prediction trajectories computed with D

M

= 6 are displayed in

Figure 2 upper panels respectively. Corresponding results for D
M

= 8 are shown in the lower panels. As anticipated, the

predictions for D
M

= 8 are clearly superior to those obtained with D
M

= 6.

The failure of predictions obtained with D
M

= 6 is a result of poor estimates of the unobserved states (i.e. fluid velocities)

at t= T . Although in an actual experiment we would not be able to verify this statement directly, we may do so here. Velocity25

profiles u(6,4)
(t) displaying short and long time comparisons between the known (black), estimated (red) and predicted (blue)

values are given in Figure 3 for D
M

= 6 in the upper panels, and for D
M

= 8 in the lower panels. We find the situation is

indeed as anticipated; the estimates and predictions are quite unacceptable for D
M

= 6, whereas for D
M

= 8 they are highly

accurate. The same striking improvement in predictive accuracy was obtained for the other velocity component v(6,4)(t). These

results are plotted in Fig. 4.30

Predictions were also calculated for D
M

= 1 and D
M

= 10, but these results are not shown. They agree with the synchro-

nization error calculations in Figure 1, in that the predictions generated with D
M

= 10 are just as accurate as those for D
M

= 8.

Likewise, predictions with D
M

= 1 (i.e. simple nudging) are very poor, in accordance with Whartenby et al (2013).
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5.2 Reducing the coupling strength

In the previous discussion it was suggested that reducing the coupling strength will have a detrimental effect on the quality of

the estimation procedure and the resulting prediction. We investigate this now, by performing the same calculations as above

with D
M

= 10 but reducing the coupling on the height so we have G
h

�t=G
u

�t=G
v

�t= 0.5. The synchronization error

SE(t), shown in Figure 5, Upper Left Panel, stabilizes to a level three orders of magnitude higher than was achieved with5

G
h

�t= 1.5, suggesting failure. This is confirmed in the remainder of Figure 4, which displays the known (black), estimated

(red) and predicted (blue) values for h(6,4)
(t), u(6,4)

(t), and v(6,4)(t), respectively. Although the height estimate is rather good

and the prediction is not terrible, at least for the first 15-20 hours after the end of the assimilation window, the unobserved states

are clearly not well estimated at any time t T . This result demonstrates that proper choice of coupling is required, although

we have not developed a systematic way of choosing these values. The fact that the height estimates appear to be rather accurate10

also emphasizes the point that, in a true experiment, the success of the assimilation procedure must be evaluated against the

forecasts—not the analyses.

5.3 Further reducing the number of measurements

In addition, until now we have conveniently chosen to observe the height field at all L=N2
= 256 grid locations. We now

attempt to reduce L even further, by repeating the analysis with L= 252 and L= 248 height measurements, chosen at arbitrary15

grid points. From the results displayed in the Upper Left Panel of Figure 6, it is evident that for L= 252 rapid and accurate

synchronization is still achieved, while for L= 248 it is not. In addition, the known (black), estimated (red), and predicted

values (blue) for h(6,4)
(t) are shown in the other panels of Figure 6 for L= 248 and L= 252 respectively. Results for the

unobserved velocity fields agree as well, though these results are not shown.

Thus, even with time delays, it may not be possible to significantly reduce the number of required height measurements.20

We remark however, that the overall space of parameters appearing in our study has not been thoroughly explored. Additional

refinement of the parameters G(t), g(t), D
M

,and ⌧ may further reduce this constraint, for instance by allowing G(t) to be

non-diagonal.

5.4 Noise in the observations

We now repeat the above calculations for L= 252 with Gaussian noise N(0,�) added to the height observations. A comparison25

is shown in Figure 7 for � = {0.2,0.5} and D
M

= {8,10}. The synchronization error still falls rapidly within the observation

window, although not to O(10

�5
), as in the noiseless case. In the prediction window, it rises in an exponential manner as

expected. These results were included to show that the method appears to be relatively robust to small errors in the observations.

A more thorough examination of the impact of imperfect observations will be given elsewhere.
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5.5 Using drifter data

Another quite important source of observations about ocean flows is being provided by position measurements r(t) of La-

grangian drifters (Mariano et al (2002)). Such observations have been shown to be a good supplement to the traditional ob-

servations made on a fixed grid (Kuznetsov et al (2003)) and they can also be used to estimate an Eulerian velocity field

(Molcard et al (2003); Piterbarg et al (2008); Salman et al (2006)). In this section, we combine the time delay method5

with a data set from drifter measurements to show that they can provide accurate estimates for the grid state variables

{h(r(i,j), t),u(r(i,j), t),v(r(i,j), t)}, without much additional effort.

We monitor the positions of N
D

drifters deployed at randomly chosen grid locations and afterwards allowed to move freely

to provide spatially continuous measurements between grid points. The dynamics of drifters are described as two-dimensional

fluid parcel motion on the surface of the water layer, which are determined by the Lagrangian equations10

dr(n)(t)

dt
= u(r(n)(t), t)

where r(n)(t) is the position of the nth drifter and this equation was simulated by linear interpolation of the discrete velocity

fields (Press et al (2015); Thompson and Emery (2014)). Hybrid measurements are incorporated into the time delay nudging

method by combining the grid variables and the collective drifter positions

R†
(t) = {[r(1)(t)]†, [r(2)(t)]†, . . . , [r(ND

)
(t)]†}15

into a single hybrid state vector. The corresponding time delayed vectors are Y
drifter

(t) = {Y
grid

(t),Y
drifter

(t)} and

S
drifter

(t) = {S
grid

(t),S
drifter

(t)} respectively, where

Y†
drifter

(t) = {R†
data

(t),R†
data

(t+ ⌧), . . . ,R†
data

(t+ ⌧ (D
M

� 1))}

S†
drifter

(t) = {R†
model

(t),R†
model

(t+ ⌧), . . . ,R†
model

(t+ ⌧ (D
M

� 1))}.

In contrast to the previous results, where the initial conditions for the grid variables were taken to differ in both phase and

frequency between the true solution and the estimate, here the initial conditions only vary in amplitude. That is, the initial20

conditions of the data  
data

(r(i,j), t0) and h
data

(r(i,j), t0) and of the model  
model

(r(i,j), t0) and h
model

(r(i,j), t0) are related

by  
data

(r(i,j), t0) = C0 model

(r(i,j), t0) and h
data

(r(i,j), t0) = C0hmodel

(r(i,j), t0). We choose C0 = 1.0+0.1⌘, with ⌘

selected from a uniform distribution in the interval [�1,1]. The velocity fields are found as above, using  (r, t0) as a stream

function. This was done in order to improve the results, as we found that the drifter results were more sensitive to the choice

of initial condition than the results from the previous section, without drifters. Plots showing the initial positions of drifters for25

the two cases considered below (N
D

= 20 and N
D

= 64) are shown in Figure 8. They were also deactivated when they reached

the boundary of the grid, so the number of operational drifters decreases throughout the estimation window.

In Figure 9, we show the synchronization error of observed quantities when for D
M

= 8, keeping all other parameters

the same as in the previous calculations. We present (in red) the synchronization error for L = 208 height observations and

N
D

= 20 drifter observations, and we show (in blue) the same synchronization error when L= 208 and N
D

= 0 drifters are30
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deployed. With L= 208, namely, observing 27% of the heights and 20 drifters, the synchronization error converges to a small

value within the five hour observation window. Without drifters, the estimation fails.

Furthermore, by increasing the number of drifters to N
D

= 64 within a 30 minute observation window, synchronization

can be achieved with L= 128 height observations. Snapshots of the fields at different times throughout the estimation and

prediction window are shown in Figure 10 for comparison.5

Thus, although we have not yet explored how to balance between the number of drifters tracked and the number of height

(or other) measurements employed, it is clear from these preliminary results that drifter data can be useful for improving the

observability of the system, and that the time delay method provides a way to incorporate this information into the analysis.

6 Discussion and Summary

The transfer of information from measurements of a chaotic dynamical system to a quantitative model of the system is im-10

peded when the number of measurements at each measurement time is below an approximate threshold L
s

, which can be

established in a twin experiment. Whartenby et al (2013) previously showed that for a nonlinear model for shallow water

flow, a standard nudging technique given by Eq. (2) requires direct observation of roughly 70% of the dynamical variables

{h(r, t),u(r, t),v(r, t)} at each measurement time to synchronize the model output with the observations.

Here we have demonstrated how information in the time delays of the observations may be used to reduce this requirement15

to about 30%, in which only the height fields need be observed. Moreover, it appears L
s

can be even further reduced by adding

positional information from drifters, which interpolate the height field at locations between grid points.

Although all this has been done on a simplified model of shallow water flow, implemented with only D = 3N2
� = 768

degrees of freedom, the process can be used to analyze increasingly realistic and complex models of coupled earth systems.

Since the successful analysis of simulated data is typically a prerequisite for success with real data, when the model is wrong20

(as it generally will be in practice) this methodology provides some idea as to whether the model is at fault, or whether more

observations are needed.

Furthermore, we expect that this formalism will generalize to systems substantially larger than the one presented here,

although we do not underestimate the numerical challenges involved in its extension to say, the scale of operational NWP

models. We also suspect this issue of insufficient measurements to be a critical limitation in our current ability to predict the25

behavior of complex, chaotic systems. Since such systems are quite typical in practice, these issues need to be examined with

more realistic models.

Harking back to the introduction, we note that in the report by Cardinali (2013) indicates that 30-40 million daily obser-

vations are now available at the ECMWF, and that many NWP models comprise upwards of 108 degrees of freedom. If the

qualitative trends shown here, in which time delays provide successful predictions with only 30% of the state variables ob-30

served, can be extended to substantially larger systems, then this method may indeed be useful for improving the forecasts of

existing operational NWP models.
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Figure 1. Synchronization error SE(t), defined in Eq. (9), computed with D
M

= {1,6,8,10}, G
h

�t= 1.5, G
u

�t= g
v

�t= 0.5 and

⌧ = 10�t= 0.1h. Assimilation is performed for t 5 hr. Left Panel The couplings are then switched off and predictions are generated

using the original dynamical equations Eq. (10) until t= 100h. In the prediction window (t� 5), the error in the trajectories grow roughly

with the largest Lyapunov exponent of the system �
max

⇡ 1/31h. Synchronization is evident when D
M

= {8,10} and not for D
M

= {1,6},

suggesting that accurate predictions will be obtained D
M

= {8,10}. Right Panel The same calculation, but extended to t = 500 hr.
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Figure 2. Upper Left Panel Known (black), estimated (red) and predicted (blue) for the observed height values h(6,4)(t) at grid point (6,4)

for D
M

= 6. Observations are for 0 t 5 hr. Predictions are for 5 t 100 hr. Upper Right Panel The same calculation for D
M

= 6

for a longer prediction window 5 t 500 hr. Lower Left Panel The same calculation except D
M

= 8. Prediction window is 5 t 100

hr. Lower Right Panel The same calculation except D
M

= 8. Prediction window is 5 t 500 hr.
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Figure 3. Upper Left Panel Known (black), estimated (red) and predicted (blue) for the observed x-velocity values u(6,4)(t) at grid point

(6,4) for D
M

= 6. Observations are for 0 t 5 hr. Predictions are for 5 t 100 hr. Upper Right Panel The same calculation for

D
M

= 6 for a longer prediction window 5 t 500 hr. Lower Left Panel The same calculation except D
M

= 8. Prediction window is

5 t 100 hr. Lower Right Panel The same calculation except D
M

= 8. Prediction window is 5 t 500 hr.

19



Figure 4. Upper Left Panel Known (black), estimated (red) and predicted (blue) for the observed y-velocity values v(6,4)(t) at grid point

(6,4) for D
M

= 6. Observations are for 0 t 5 hr. Predictions are for 5 t 100 hr. Upper Right Panel The same calculation for

D
M

= 6 for a longer prediction window 5 t 500 hr. Lower Left Panel The same calculation except D
M

= 8. Prediction window is

5 t 100 hr. Lower Right Panel The same calculation except D
M

= 8. Prediction window is 5 t 500 hr.
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Figure 5. Data assimilation results with D
M

= 10 and reduced coupling on the height component h(6,4)(t) at location (6,4), g
h

�t=

g
u

�t= g
v

�t= 0.5. All other parameters are the same. Upper Left Panel SE(t) for 0 t 200 hr. Upper Right Panel Known (black),

estimated (red) and predicted (blue) for the observed height values h(6,4)(t) at grid point (6,4) for D
M

= 10. Observations are for 0 t 5

hr. Predictions are for 5 t 100 hr. Lower Left Panel Known (black), estimated (red) and predicted (blue) for the observed x-velocity

values u(6,4)(t) at grid point (6,4) for D
M

= 6. Observations are for 0 t 5 hr. Predictions are for 5 t 100 hr. Lower Right Panel

Known (black), estimated (red) and predicted (blue) for the observed y-velocity values v(6,4)(t) at grid point (6,4) for D
M

= 6. Observations

are for 0 t 5 hr. Predictions are for 5 t 100 hr.
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Figure 6. Synchronization error and known, estimated, and predicted height values for L = 248 height measurements at each observation

time and for L = 252 height measurements at each observation time. Upper Left Panel SE(t) for L = 248 and L = 252 over 0 t 5 h

in the observation window, and 5 t 500 h after the couplings are removed. Upper Right Panel Known (black), estimated (red), and

predicted (blue) values of the height h(6,4)(t) at gridpoint (6,4) for 0 t 100 h for L = 248. Lower Panel Known (black), estimated (red),

and predicted (blue) values of the height h(6,4)(t) at gridpoint (6,4) for 0 t 100 h for L = 252. This shows the rather sharp transition

between bad predictions (L = 248) and good predictions (L = 252).
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Figure 7. The effect of noise levels in the initial condition for the solution of the model equations Eq. (10) on SE(t). We show the results

for D
M

= 8 and 10 for added Gaussian noise N(0,�) with � = 0.2 and 0.5. For this range of noise levels added to the initial condition for

generating the data in our twin experiments, we see that the detailed values of SE(t) change. In the case of both D
M

= 8 and D
M

= 10,

SE(t) still becomes quite small in the observation window 0 t 5 h, suggesting that predictions for t� 5 will remain robustly accurate.

Figure 8. Initial positions for Left Panel N
D

= 20 drifters and Right Panel N
D

= 64 drifters.
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Figure 9. SE(t) for our standard twin experiment described in detail earlier when we utilize drifter information, and when we do not utilize

drifter information. When the number of observations of height is L = 208, we see that without drifter information (blue line) there is no

synchronization and correspondingly inaccurate predictions (not shown). When information from 20 Lagrangian drifters is added during data

assimilation using time delay nudging, SE(t) decreases very rapidly (red line) indicating predictions will be very accurate (also not shown).

The efficacy of small numbers of drifters is clear in this example.
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Figure 10. Comparison of the estimated and predicted fields {h(t),u(t),v(t)} between the truth (Left Column) and analyses, run with

observations of 128 height variables, both with (Center Column) and without drifters (Right Column). Snapshots are taken 3 min (Upper

Row) into the assimilation window, at 30 min the end of the assimilation window (Center Row), and 90 min into the prediction window

(Bottom Row).
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