
Responses to referees and the editor

We thank again both referees and the editor for providing valuable feedback to our manuscript. All 
requested changes have been made to the manuscript. There were however two comments from the 
editor we felt should be addressed. Additionally we have made few other minor corrections to the 
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Editorial comments

4. Caption of Figure 1. The contours correspond to [...] normal distribution. Do you mean 
normalized (but not Gaussian !) ?

We mean two dimensional gaussian distributions. The density within a given contour corresponds to
a density within the corresponding contour of a two dimensional gaussian distribution (so the 
integral over this contour is the same for both).

5. P. 8, l. 18 (and p. 12, l. 27), what is the coefficient of determination (the correlation 
coefficient ) ?

The equation for calculating the coefficient of determination has been added to page 8. This is 
generally not the same as the correlation coefficient (as there are multiple definitions for it).
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Abstract. We examined parameter optimization in JSBACH ecosystem model, applied for two boreal forest sites (Hyytiälä and

Sodankylä) in Finland. We identified and tested key parameters in soil hydrology and forest water and carbon exchange related

formulations and optimized them using the Adaptive Metropolis algorithm (AM) for Hyytiälä with a five year calibration

period (2000–2004) followed by a four year validation period (2005–2008). Sodankylä acted as an independent validation site,

where optimizations were not made.5

The tuning provided estimates for full distribution of possible parameter
:::::::::
parameters, along with information about corre-

lation, sensitivity and identifiability. Some parameters were correlated with each other due to phenomenological connection

between carbon uptake and water stress or other connections due to the set-up of the model formulations. The latter holds

especially for vegetation phenology parameters. The least identifiable parameters include phenology parameters, parameters

connecting relative humidity and soil dryness, and the field capacity of the skin reservoir. These soil parameters were masked10

by the large contribution from vegetation transpiration.

In addition to leaf area index and maximum carboxylation rate, the most effective parameters adjusting GPP and ET
::
the

:::::
gross

::::::
primary

::::::::::
production

:::::
(GPP)

::::
and

:::::::::::::::
evapotranspiration

:::::
(ET) fluxes in seasonal tuning were related to soil wilting point, drainage

and moisture stress imposed on vegetation. For daily and half-hourly tunings the most important parameters were the ratio of

leaf internal CO2 concentration to external CO2 and the parameter connecting relative humidity and soil dryness. Effectively15

the seasonal tuning transferred water from soil moisture into ET, and daily and half-hourly tunings reversed this process.

The seasonal tuning improved the month-to-month development of GPP and ET, and produced the most stable estimates

of water use efficiency. When compared to the seasonal tuning, the daily tuning is worse on the seasonal scale. However,

daily parametrization reproduced the observations for average diurnal cycle best, except the GPP for Sodankylä validation

period, where half-hourly tuned parameters were better. In general, the daily tuning providing the most reduction in model-20

data mismatch.

The models response to drought was unaffected by our parametrizations and further studies are needed into enhancing the

dry response in JSBACH.
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1 Introduction

Inverse modelling of ecosystem model parameters against in situ observations is an established way to tune model parameters

(e.g. ?). As observation sites have their own characteristics, it is necessary to make local site simulations for model evaluation

and calibration as they may reveal new insight into model behaviour and guide further development. Model-data fusion has

been applied for boreal forest sites by e.g. ?????.5

In this study we perform site level parameter optimization in the JSBACH model (???). JSBACH is the land surface com-

ponent of the Earth System model of Max Planck Institute for Meteorology (MPI-ESM), used to simulate water and carbon

storages and fluxes in the soil-vegetation-atmosphere continuum. The water and carbon fluxes are coupled in the model and

thus modification of parameters related to one component usually has an effect on the others as well. The optimization process

and the optimized values are also affected by the assimilation frequency and interval in minimizing the model-data mismatch.10

This effect can be studied in numerous ways e.g. ? varied the length of assimilation interval while ? focused on the diurnal

error patterns.

The motivation for this study comes from results showing that CMIP5 model simulations, one of which is MPI-ESM, have

systematic evapotranspiration biases over continental areas (?). These kinds of biases have significant implications for climate

change projections (?) but also have distinctive behaviour on a regional scale. In addition a comparative study of the gross15

primary production (GPP) of Finnish forests (?) revealed that JSBACH has an insufficient response to water limitation in

Finland – it tends to overestimate GPP and evapotranspiration during dry periods. This is especially apparent in the dry year

2006 as JSBACH is unable to transfer the reduced rainfall into lower levels of GPP.

In this study we apply the JSBACH ecosystem model for Hyytiälä (??) and Sodankylä (??) sites. We identify key parameters

in soil hydrology and evapotranspiration related formulations and test their effectiveness with elementary methods. We study20

the effect of different timescales (seasonal, daily and half-hourly) on the assimilation process and the effect of this on the

optimized parameter values. Several optimizations are performed using the Adaptive Metropolis (AM) algorithm over a five

year calibration period (2000–2004) followed by a four year validation period (2005–2008).

The goals of this study are to test the applicability of the AM optimization method for JSBACH and the impact of different

temporal resolutions on the optimization process, and to improve the models response to environmental drivers, focusing on25

dryness.

2 Materials and methods

2.1 Measurements, sites and instrumentation

In this study we use site level data from two Finnish measurement sites: Hyytiälä (61◦51’N, 24◦17’E, 180 m a.s.l.) and

Sodankylä (67◦22’N, 26◦38’E, 179 m a.s.l.). These well-established sites have long continuous measurement data sets repre-30

senting well the southern and northern boreal Finnish coniferous evergreen forests. The data used in this study is available for

the scientific community through various databases such as FLUXNET (doi:10.17616/R36K9X).
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Hyytiälä site is a Finnish Scots pine (Pinus sylvestris) forest (?), planted in 1962 after burning and mechanical soil prepara-

tion. The soil type in Hyytiälä is Haplic Podzol on glacial till and the site is of medium fertility (?). The forest also has sparse

understory of Norway Spruce (Picea abies) and scattered deciduous trees. The maximum of measured all-sided leaf area index

(LAI) is 6.5 m2 m−2 for the Scots pine. The carbon dioxide (CO2) and water vapour (H2O) fluxes between vegetation and

atmosphere have been measured in Hyytiälä continuously since 1997 (?).5

The Sodankylä forest, in Sodankylä at the Finnish Meteorological Institute’s Arctic Research Centre, is also a Scots pine

forest (Pinus sylvestris) with maximum measured LAI of 3.6 m2 m−2 as determined from a forest inventory in early autumn

(?). The forest on Fluvial Sandy Podzol has been naturally regenerated after forest fires with tree age ranging approximately

from 50 to 100 years. The sparse ground vegetation consists of lichens (73%), mosses (12%) and ericaceous shrubs (15%).

The CO2 and H2O flux measurements in Sodankylä have been running since 2000 (?).10

The CO2 and H2O fluxes were measured by the micrometeorological eddy covariance (EC) method which provides a direct

measurement of the mass and energy exchange between the atmosphere and the biosphere averaged on an ecosystem scale.

In the EC method, the flux is obtained as the covariance of the high frequency (10 Hz) observations of vertical wind speed

and the constituent in question (?). The CO2 fluxes were corrected for the storage change below the measurement height to

accurately estimate the net ecosystem CO2 exchange (NEE). The gross primary production (GPP) was derived by subtracting15

the modelled respiration (R) from the NEE observation (GPP=NEE-R) utilizing standard flux partitioning procedures (??). By

using the same parameterisations as in the partitioning, the NEE and GPP time series were gap-filled for comparison with the

model results. The daily evapotranspiration (ET) sums were calculated from H2O flux data that were gap-filled based on the

mean diurnal cycles or regressions on available radiative energy

The EC instrumentation in Hyytiälä consisted of a Solent 1012R3 three-axis sonic anemometer (Gill Instruments Ltd.,20

Lymington, UK) and a LI-6262 closed-path CO2/H2O gas analyser (Li-Cor Inc., Lincoln, NE, USA), while in Sodankylä a

USA-1 (METEK GmbH, Elmshorn, Germany) anemometer and an LI-7000 (Li-Cor., Inc., Lincoln, NE, USA) closed-path gas

analyser was used. The EC fluxes were calculated as half-hourly averages taking into account the required corrections. The

measurement systems and the post-processing procedures have been presented in more detail for Hyytiälä by ? and ?, and for

Sodankylä by ? and ?.25

The measurement error in the EC flux data may be classified into two categories: systematic errors and random errors. The

main systematic errors (density fluctuations, high-frequency losses, calibration issues) are mostly corrected for as part of the

post-processing of the data, and the random errors tend to dominate the uncertainty of the instantaneous fluxes. The random

error is often assumed Gaussian but can be more accurately approximated by a symmetric exponential distribution (?). It

increases linearly with the magnitude of the flux, with a standard deviation typically less than 20% of the flux ??.30

2.2 The JSBACH model

JSBACH is a process based ecosystem model and the land surface component of the Earth System model of Max Planck

Institute for Meteorology (MPI-ESM). We used JSBACH offline using an observational atmospheric data set to force the model.

Implications of this one-way coupling with the atmosphere include lack of feedback from the surface energy balance to the
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atmosphere, i.e. latent and sensible heat fluxes and surface thermal radiation do not directly affect prescribed air temperature or

humidity. Similarly the feedback of surface to the vertical transfer coefficients within the atmospheric surface layer is missing

as the wind speed that drives mixing is prescribed. Furthermore, we use different gridding (in our case site level instead of

an ESM grid , for effects see ?? and different time resolution (we have measurements every 30 minutes
::::
since

:::
we

:::
use

:::
site

:::::
level

:::
data

::
(a
::::::
single

::::
grid

:::::
point),

:::
the

::::
grid

:::::::::
resolution

::::
does

:::
not

:::::
affect

:::
the

::::::
results

::::
(??) . We give here a general introduction to JSBACH5

whereas a more complete model description can be found in ?.

In JSBACH the land surface is a fractional structure where the land grid-cells are divided into tiles representing the most

prevalent vegetation classes called plant functional types (PFTs) within each grid cell (?). The grid cell is first divided into

bare soil and vegetative area which is furthermore fractionally divided into PFTs. The model was setup to effectively use only

one tile, coniferous evergreen trees. Henceforth all model and process descriptions are considered in relation to coniferous10

evergreen trees and no distinction between PFT specific and general parameters are made in this study.

Coniferous evergreen trees are characterized by a set of parameters that control vegetation related biological and physical

processes accounting for the land-atmosphere interactions. We made use of expert knowledge to set these parameters for our

local sites and verified that they are in line with those presented by ??.

The seasonal development of LAI is regulated by air temperature and soil moisture with a specific maximum LAI as a15

limiting value. The cycle is driven by a pseudo soil temperature that is a weighted running mean of air temperature. The

predictions of phenology are produced by the Logistic Growth Phenology (LoGro-P) model of JSBACH.

Photosynthesis is described by the biochemical photosynthesis model (?). Following ? we set the maximum carboxylation

rate at 25 degrees Celsius to 1.9 times the maximum electron transport rate at 25 degrees Celsius.

The photosynthetic rate is resolved in two steps. First the stomatal conductance under conditions with no water stress is20

assumed to be controlled by photosynthetic activity (?). Here the leaf internal CO2 concentration is assumed to be a constant

fraction of ambient concentration which allows for an explicit resolution of the photosynthesis (?). Then the impact of soil

water availability is accounted for by a soil moisture dependent multiplier that is identical for each canopy layer (?).

Radiation absorption is estimated by a two stream approximation within a three-layer canopy (?). Especially in the sparse

canopies the radiation absorption is affected by clumping of the leaves which is here taken into account according to the25

formulation by ?.

2.3 The JSBACH model spin up and runs

Before tuning the JSBACH model, some of the more slowly changing variables (e.g. LAI) need to be equilibrated in order to

bring the model into a (semi)steady state. We achieve this by running the model through a spin up period generated by looping

the measurement interval over itself. During this period the necessary variables are equilibrated and their values become30

acceptable for the tuning process. At the end of the spin up a restart file is generated so that the model can be restarted from

this state.

We use half-hourly measurements from years 1999–2008 for Hyytiälä. The spin up finishes at the end of 1999 and is

followed by a calibration period (abbreviated as HC for Hyytiälä calibration) of 2000–2004 and a validation period (HV) of
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2005–2008, including an exceptionally dry summer in 2006. The setup for Sodankylä is similar but we use measurements from

2000–2008, where the spin up finishes at the end of 2008. The model is then restarted from the start of 2000 but we only

examine the Sodankylä validation period (SV) of 2005–2008. The main reason to exclude the Sodankylä calibration period is

that essentially we do not calibrate (or tune) the model for Sodankylä and we do not want to appear to do so.

The meteorological data used to drive the climate were air temperature, air pressure, atmospheric CO2 concentration, pre-5

cipitation, specific humidity, short- and longwave radiation, potential shortwave radiation and wind speed.

2.4 The parameters

The JSBACH model was modified to fit our custom-built testbed so that all parameters of interest could be read from an external

file. We examined 15 parameters (Table 1) that are for convenience separated into three classes. The class I parameters are used

differently from those of class II and III – namely class I parameters are only tuned in the seasonal tuning (explained in detail10

in chapter 3.1). Additionally the only destinction between class II and III parameters is that the latter belong to a specific part

of JSBACH called the Logistic Growth Phenology model (LoGro-P) – there is no difference in how these parameters are used.

We also note that the only parameter (of those examined) that can vary from site to site is vegmax (the vegetative fraction of a

grid cell).

2.5 Parameter sampling15

The parameter sampling in this study was done with the Adaptive Metropolis (AM) algorithm. The AM algorithm is an

adaptive Markov Chain Monte Carlo (MCMC) process described below (it is not strictly Markovian but satisfies the necessary

ergodicity requirements). AM is based on the classical Metropolis algorithm, extended with the adaptation of the parameter

proposal distribution. Due to the adaptive nature of AM, it does not rely on the choice of the initial proposal distribution.

AM is a sampling method that produces estimates of the full distribution of possible parameter values (unlike straightforward20

optimiztion methods), thus enabling e.g. the study of parameter identifiability, sensitivity and (nonlinear) correlation – this

information is paramount to understanding the optimization process in contrast to merely receiving the optimized parameter

values. The rigorous mathematical presentation of the AM algorithm is presented in detail
:::::
given in ?.

The AM algorithm draws samples (sets of parameters) from the parameter space to generate probability distributions for

the parameters. The consecutive draws form an MCMC chain. We used the algorithm simultaneously for several independent25

chains that are parallel adaptations of the algorithmic process (e.g. ??)
::::::::::
(see e.g. ??) – we take several random starting points

and launch the algorithm for each of these simultaneously. The history of all chains is used for updating the proposal covariance

matrix that describes how the parameters relate to one another. Our initial proposal covariance matrix had diagonal elements

corresponding to 1/200 of the respective parameter’s range. The first sample for each chain was chosen at random within this

range. The algorithmic process can be described with few steps:30

1. Draw a new sample (x’) of the parameter space from the vicinity of the current sample (x) using the current proposal

covariance matrix.
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2. Calculate the acceptance ratio (a) for the drawn sample. This is the value of a likelihood function (f ), that is proportional

to the desired probability distribution, at the drawn sample divided by the value at the current sample (a= f(x′)/f(x)).

3. Accept the new candidate (x’) with the probability a (if a≥ 1, we always accept). If the candidate was rejected, the

current sample (x) is reused as a basis of the next draw and repeated in the chain. Update the covariance matrix and draw

a new sample.5

We obtain the likelihood function (f ) from the cost functions (cf ) described below by assuming gaussian error statistics

and setting f = exp−cf
::::::::
f = e−cf . In general to estimate the distribution of parameters of any model based on some data, we

require some information about the underlying measurement and modelling errors. We treat the JSBACH model as described

by the equation y =M(x,θ) + e. Here y are the observations, x is the model state vector, θ are the current parameters and e is

the model-data mismatch. Since we only have a robust estimate for the measurement errors and no true error statistics for the10

model, the full error (e) is treated as gaussian white noise.

The cost function (1) used in this study for seasonal tuning is based on summary statistics of gross primary production (GPP)

and evapotranspiration (ET) along with the maximum of leaf area index (LAI). Cost function (1) calculates the relative error

in total GPP, ET and growing season maximum of LAI against observations (these are respectively denoted as G1, E1 and L1)

and sums them up. Overlined variables refer to the mean value of that variable for a given period (calibration or validation),15

subscripts denote observation or modelled.
:::::
model

:::::
result.

cf1 =

G1︷ ︸︸ ︷(
GPPmod −GPP obs

GPP obs

)2

+

E1︷ ︸︸ ︷(
ETmod −ET obs

ET obs

)2

+

L1︷ ︸︸ ︷(
max(LAImod)−max(LAIobs)

max(LAIobs)

)2

(1)

The second cost function (2) is a slightly modified mean squared error estimate used for daily (cf2) and half-hourly (cf3)

tuning. With multiple variables there is always the problem of having one variable dominating over the others. Since no true

errors were available, it was decided to normalize the residuals using the mean of observations in cost function (2). This way20

the resulting function is sensitive to changes in both variables – AM is used as a noise-resistant optimizer and sampling is done

in the spirit of studying the identifiability and correlations of the parameters. The components are denoted as G2, E2 for daily

and G3, E3 for half-hourly tuning.

cf2,3 =

G2,3︷ ︸︸ ︷
1

NGPP

∑(
GPPmod −GPP obs

GPP obs

)2

+

E2,3︷ ︸︸ ︷
1

NET

∑(
ETmod −ET obs

ET obs

)2

(2)

As noted previously JSBACH was used uncoupled from the other components of the full MPI-ESM. This has a tendency to25

lead to biased results in the model runs as has been recently studied by ?. Especially in the high latitudes evapotranspiration can

be unrealistic during winter since night-time is longer and temperatures low. In order to improve the credibility of our results,

we masked the evapotranspiration values of the coldest periods, and only took into account those from May to September for

each year in both cost functions.
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2.6 Parameter analysis

The optimized parameter values are taken as the mean values of all chains in the sampling process. In a case that the parameter

chains converge to a limit of a predescribed
:::::
bound

::
of

:::
an

:
a
:::::
priori

:::::::::
prescribed range of allowed values, the maximum a posteriori

(MAP) value is used instead. After tuning the model, we analysed different aspects of this process. Class I parameters are

excluded from this analysis since they are used to bring the model to an “acceptable initial state” hence we regard them as a5

part of the model initialization (our motivation is explained in chapter 3.1).

We calculated the correlations and correlation matrices between different parameters for different tunings using the tested

parameter vectors in the AM process. Then we performed a principal component analysis (PCA) on the correlation matrices

to get the eigenvectors (vi) and eigenvalues (ei) of the least identifiable parameters in the tuning process with the given data.

The PCA transforms the correlation matrix into an orthogonal form where the eigenvector related to the greatest eigenvalue10

is the least convergent
:::::::::
identifiable with the given data. We then calculate the weight (wi =

√
e2i∑
i e

2
i

) for each component (or

vector vi, note that the
:::::::
squared weights sum up to one). We also determine the most dominant parameters for each component

(vi) by similar dividing the length of the vector towards that parameter by the length of the whole vector (weight of vector

components).

The information derived with PCA could be extracted by analysing the parameters posterior probability distributions but15

PCA yields a simple, straightforward method for the same purpose. The main caveat of the standard PCA method is that it is

not applicable to cases with strong nonlinear correlations. Therefore we also calculate kernel density estimates (KDE) for the

parameters to show that there are no nonlinear correlations. The KDE method places a gaussian distribution (kernels) centered

at each parameter of the MCMC chain and then sums these kernels to produce an estimate for the whole distribution. The

bandwith is calculated using the Scott’s rule (?).20

We also wanted to examine which parameters contributed the most to the change in the cost function values as we switched

from one parameter set to another. This was done by calculating the change in the cost function values of the tuned parameter

set and a set where one parameter has been reverted to the value the tuning started with (hencefort the reference value – for

seasonal tuning the default values and for daily and half-hourly tunings the seasonally tuned values). We call this method

here “relative effectiveness” since we want to analyse the effect of the parameters to the cost function. For each tuned set of25

parameter values, the relative effectiveness of a parameter is calculated as follows:

1. Change one parameter from the set of tuned parameter values to a reference value and calculate the difference in the cost

function for the changed set and the tuned set.

2. Return the changed parameter to the tuned value and repeat for all parameters. Sum up the differences.

3. The relative effectiveness for each parameter is the difference obtained from step 1 divided by the sum from step 2.30

The relative effectiveness is similar to a class of methods commonly referred to as one-at-a-time (OAT) or one-factor-at-a-

time (OFAT). These methods are generally used to acquire robust information about model behaviour when one parameter at a

time is changed to a new and hopefully a better value (e.g. ?). The main difference of our method to classical methods such as
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Morris OAT (?) is that in such methods the change in values is (usually) random, where as we have fixed values. Additionally

our point of view is from the optimized parameters to the original state – we have already optimized the parameters (as a group)

and merely want some robust and easily comprehensible information about the effect of changes in parameter values to the

cost functions. This method does not reveal information about how well the parameters constrain the cost function (e.g. we

could have a highly dominating parameter that would optimize to the default value and hence the relative effectiveness would5

be zero), rather which parameters contribute most to the change in cost function values.

Lastly we calculate the root mean squared error (RMSE,
√∑

i
(oi−mi)2

n ), bias (
∑

i
oi−mi

n ) and
::
the

:
coefficient of determi-

nation (r2
:::::::::::::::::
r2 = 1−

∑
i(oi−mi)

2∑
i(oi−oi)2

) for the time series generated by the different tunings (oi is observed and mi is modelled).

3 Model tuning

The model was optimized for Hyytiälä with the AM algorithm using three different time scales: seasonal, daily and half-hourly10

tuning, which are described below. Tuning was done on a powerful laptop with an Intel Core i7-3520M processor. We removed

unwanted output streams from the model and tweaked the I/O. With a single core the spin up generation takes approximately

150 seconds, the run through calibration period with daily output takes 20 seconds and with half-hourly output 320 seconds.

We used daily output also for the seasonal tuning.

3.1 Seasonal tuning15

The fundamental motivation for the seasonal tuning is to ensure that the model reproduces the observed growing season

maximum of LAI since we have previously noticed that JSBACH underestimates LAI at the site level (even the default value

of ∆max is lower than the measured maximum for Hyytiälä). The reason for this approach was to enhance the vegetation

transpiration and to emphasize the model response to precipitation. We also want to ensure that the model performs adequately

well in terms of seasonal cumulative GPP and ET. The seasonal tuning was done in three consecutive steps each using the cost20

function (1). The procedure is as follows:

1. Tuning of all three class I parameters with four independent chains each consisting of 3000 samples. This step required

a 30-year spin up for each sample separately.

2. Testing of class II and III parameters each separately with 24 evenly separated values for an extensive range and tuning

those nine parameters that didn’t yield a negligible difference in the maximal and minimal values in the objective func-25

tion. The consequent tuning was done with eight independent chains each consisting of 10 000 samples. A single spin

up, common for all samples, used optimal parameter values from step 1 and default values for the rest of the parameters.

3. Retuning all the previously tuned 12 parameters with eight independent chains each consisting of 10 000 samples. Initial

proposal covariance was generated from previous step and spin up was generated separately for each sample.

At the end of seasonal tuning, class I parameters were fixed and a single spin up was generated to be used with daily and30

half-hourly tuning. This approach is computationally justifiable (as we do not have to rerun the spin up at each iteration of
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the algorithm) and is also acceptable from a modelling point of view since the robust site level scaling has already been done.

Vegetative fraction of a grid cell remained at its default value of 0.52 and carboxylation rate at 25 degrees Celsius was lowered

to 45.0 (and electron transport rate to 85.5).

3.2 Daily and half-hourly tuning

The difference in daily and half-hourly tuning is the time interval used in the model output and observations in the cost function5

(2). For both tuning runs we first tested the response of class II and III parameters against the cost function (2) and removed

those parameters that yielded only negligible or no response (as in step 2 in Seasonal tuning). The rest of the parameters

(twelve) were then tuned using eight independent chains each consisting of 10 000 samples.

It should be noted that even though the cost function (2) formulation is the same for daily and half-hourly tuning, the values

of the cost function are not directly comparable. Half-hourly tuning uses 48 values per day, and the resulting diurnal pattern10

resembles the form of the normal distribution. In daily tuning we use an average of these values. In practice the component and

cost function values will be higher for half-hourly tuning.

3.3 Tuning for Sodankylä

After tuning the model for Hyytiälä we took the parameter set from seasonal tuning and retuned only the maximum LAI param-

eter (∆max) with the cost function (1) for Sodankylä. This was done because the measured LAI for Sodankylä is approximately15

half of that of Hyytiälä. The other parameter values were taken from the respective Hyytiälä tuning runs and spin ups were

generated similarly to Hyytiälä spin ups so that we could use the Sodankylä results to validate the tuning process.

4 Results and discussion

The parameters and cost function components involved in the different phases of the optimization process need to be studied

before the performance of the optimization method can be evaluated.20

As noted above, we decided to reject the unreliable wintertime ET values. This masking leaves out the start of the growing

season, which reduces the reliability of some of the tuned parameters, including all the LoGro phenology model parameters

(class III), which mostly affect the timing of the spring event and regulate the development of the LAI towards the peak season.

However, as a result of the tuning processes, all the analysed parameters were revealed to have unimodal posterior probability

distributions, with different skewness’s and deviations.25

We analysed the correlations and effectiveness of the parameters in the seasonal, daily and half-hourly optimizations on the

Hyytiälä site for the calibration period. We also analysed the contributions from the cost function components referring to ET,

GPP and LAI and generated the time series and daily cycles of GPP and ET for both Hyytiälä and Sodankylä sites. For all

these examinations, individual spin ups were generated using the optimized parameter values.
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The parameter correlations (Table 2) do not reveal much information, which is common for larger systems where the under-

lying parameter dependencies are more complex. Usually more sophisticated methods are used to analyse the parameters, but

we omit these examinations here since pairwise Kernel density estimates (Fig. 1) did not reveal any new insights.

The strongest correlation was between the ratio of leaf internal CO2 concentration to external CO2 (fC3) and fraction of

soil moisture above which transpiration is unaffected by soil moisture stress (wtsp) in all the tunings. This positive correlation5

strengthens as we increase the temporal resolution (and the complexity of the underlying cost function). This is due to the

carbon assimilation being limited by the amount of carbon available but also by a linear water stress factor (which takes the

value of zero at the wilting point (wwilt) and one at the wtsp), which is checked at each time step. Most of the other parameters

with high correlations are those of the LoGro phenology model, where we would expect high correlation since the parameters

are intimately connected.10

Approximately half of the parameters with high correlation are also the least identifiable (Table 3) with the given data and

cost function. This means that the values these parameters acquire, as a result of the tuning process, are the most unreliable – it

does not reflect on the parameters contribution to the cost function. The PCA merely highlights where most of the parametric

unreliability lies.

The PCA analysis revealed that most of the unreliability is explained by a handful of parameters. Disregarding those of the15

LoGro phenology model, the two most dominantly unreliable parameters in every tuning were the fraction depicting relative

humidity based on soil dryness (whum) and the maximum field capacity of the skin reservoir (wskin). Both of these parameters

affect the amount of water available for evaporation from bare soil and are both subject to changes in other parameters. Bare soil

evaporation is also dominated by vegetative transpiration, which explains why these two parameters are the most unreliable.

4.1 The parameters and their relative effectiveness20

The default and optimized parameter values from the different tuning metrics are presented in Table 4 along with their relative

effectiveness. The reference values for seasonal tuning are the default values. Since we fixed class I parameters with seasonal

tuning, the realistic reference values for daily and half-hourly tunings are the seasonal parameter values. Here we note that

using one spin up for all daily and half-hourly optimization runs is computationally justifiable but generates errors as the

general spin up differs from those generated by the optimized parameters. These errors are relatively small but give rise to e.g.25

the negative relative effectiveness values in daily and half-hourly parametrizations.

Most seasonally tuned parameters are near their default values and the most effective parameters are the fraction of soil

moisture above which transpiration is unaffected by soil moisture stress (wtsp), the fraction of soil moisture at permanent

wilting point (wpwp) and the fraction of field capacity above which fast drainage occurs (wdr). For daily and half-hourly

tunings the most important parameters are the ratio of leaf internal CO2 concentration to external CO2 (fC3) and the fraction30

depicting relative humidity (whum). It should be noted that whum was one of the least identifiable parameters for seasonal

tuning. Taking into account the importance of these parameters on transpiration and soil moisture estimations, we took a closer

look at modelled soil moisture and evapotranspiration components for the calibration period (taking into account only values

from May to September for each year as explained in chapter Uncoupled model runs).
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When we compare the model output streams with seasonal against those with default parametrization, we notice that the av-

erage evapotranspiration for the calibration period has increased 15%. Most of this is due to added transpiration (18% increase)

but also increased evaporation (6%). In addition drainage was accelerated by 11%. These increases are mostly compensated by

a 15% reduction in average soil moisture. In addition soil moisture values that are under the limit when transpiration is affected

by soil moisture stress (below the value of wtsp) increased 2.3%.5

The daily and half-hourly tunings lower the average evapotranspiration by 22% and 35% respectively when compared to

the seasonal values. Transpiration is decreased by 28% and 37% whereas evaporation is increased by 0.5% and decreased

by 28%, respectively for daily tuning and half-hourly tuning. Soil moisture is increased by 11% and 8% and the amount of

values below wtsp is decreased by 62% for daily tuning and increased by 7% for half-hourly tuning. As a curiosity, both

the adjustment parameter in stability functions (cb) and the fraction of precipitation intercepted by canopy (pint) have been10

significantly increased with daily tuning and returned to seasonally tuned values with half-hourly tuning.

4.2 The cost function components

Using the optimized values (parametrizations) we calculated the components of each cost function for Hyytiälä calibration

period and Hyytiälä and Sodankylä validation period (Table 5).

Firstly we note that with the default parameters L1 dominates cf1 for Hyytiälä and contributes to approximately 90% to its15

value. As expected the L1 for Sodankylä is not as dominant as for Hyytiälä since the measured maximum of LAI for Hyytiälä

is roughly half as large as for Sodankylä, which directly lowers the LAI component in cost function (1). The L1 contribution

is significantly reduced with the seasonally tuned parameters as was our intention and even though LAI plays no part in daily

and half-hourly tunings, the differences in the maximum value are negligible.

Secondly the value of E1 component (error in seasonal ET) with default parametrization is significantly increased in daily20

and especially half-hourly parametrizations. Simultaneously the value of G1 is significantly lowered. The component values

for seasonal parametrization are better than the default values with the exception of E1 for Hyytiälä validation period.

Thirdly for cost function (2) the pairwise ratio of dominating Ei or Gi components in all tunings is 5:1. On average E2/E3

contributes to approximately 60% of cf2/cf3. This translates to ET being twice as significant as GPP in cost function (2). The

main reason for ET dominating GPP is that ET is more erratic in comparison to GPP and the residuals of ET (divided by25

the mean value) are larger than the residuals of GPP. The daily and half-hourly tunings themselves work as intended as they

lower the corresponding cost function value. It is noteworthy to mention that the G2 component gets its lowest value for both

validation periods with the half-hourly parametrization even though G2 calculates GPP errors on a daily scale.

Lastly we examine how the algorithm and cost functions have performed. The best parameter set (lowest cost function value)

for a given cost function, in each of the three different periods (HC, HV, SV), is the same that was used in the corresponding30

tuning process. For example the lowest value for cf1 (cost function for seasonal tuning) in Sodankylä validation period (0.07)

coincides with the seasonally tuned parameters. This is expected as the tuning process aims at the “best” parameter value,

which reassures us that no gross mistakes (human errors) have been made. The relation holds true for every cost function with

the exception of cf1 for Hyytiälä validation period, where the lowest value is reached with the daily tuned parameters (we note
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that the absolute difference between daily and seasonally tuned parameters is small). Hence we can confidently state that the

algorithm and cost functions have performed as intended, especially since the optimised parameters work for Sodankylä as

well, where no optimization (besides the site specific maximum of LAI) was applied.

4.3 Time series

The overall structure of the model time series was not affected by the parametrizations obtained with different tunings (Fig.5

2 and Fig. 3). Some time series characteristics have been enhanced and others reduced but the timing of the peaks and dips

in GPP and ET are the same as before. The corresponding RMSE and bias estimates are given in Table 6. In comparison we

estimated the PRELES model biases for Hyytiälä from Fig. 5 in ?. These estimates give a bias of 0.81E-6 kg m−2s−1 (0.07 mm

m−2d−1) for ET and -1.45E-7 mol[CO2] m−2s−1 (-0.15 g(C) m−2d−1) for GPP. Additionally the coefficient of determination

(r2) for GPP in Hyytiälä is in range of 0.74–0.76 for all tunings whereas the values reported in literature range from 0.68 (?)10

to 0.96 (?) with most above 0.9 (??). For additional comparisons see also e.g. ?. Note that our estimates are calculated using

only values from the start of May to the end of September.

The best seasonal performance was obtained by seasonal tuning as we previously noticed from the cost function components

(Table 5). Even though the optimization is done on the seasonal level, especially the GPP cycle is noticeably improved from

that generated by the default parameters. This tuning also gives rise to the most stable (least fluctuating) water use efficiency15

(WUE), when calculated as a pointwise ratio of GPP and ET. We use WUE here only as a diagnostic variable to examine the

balance between the GPP and ET.

When compared to the seasonal tuning, the daily tuning is worse on the seasonal scale and lowers both the ET and GPP

cycles. WUE follows the observations better but starts to give rise to some fluctuation. With half-hourly tuning this behaviour

is further enhanced and especially ET is lowered to too low levels which manifests the high WUE values. The worsening in the20

model time series with daily and half-hourly tunings are explained by biases in the diurnal cycle.

4.4 Diurnal cycles

Average diurnal cycles with different parametrizations (Fig. 4) show that modelled night-time ET values are too low when

compared to the observed and this behaviour was not affected by the tunings. Low night-time values are compensated by too

high midday values in the default and seasonal tuning so that the average daily and seasonal values are on an acceptable level.25

For the daily and half-hourly tuning, the algorithm lowers the daytime values, which results in too low average daily and

half-hourly values. It is noteworthy to mention that with the default setting we get too low GPP for Hyytiälä but too high for

Sodankylä. The unrealistic wintertime and the biased night-time ET values actually have the same origin. Since we do not have

the coupling from the land surface model (LSM) back to the atmosphere, we get an erroneous energy balance as we lose the

energy released by condensation.30

Disregarding the default parametrization we notice that seasonal parametrization show the highest values, daily in the middle

and half-hourly show the lowest values. Daily parametrization reproduces the observations for average diurnal cycle better than

the others in every occasion except the GPP for Sodankylä, where half-hourly tuning is better (verified by pointwise RMSE
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from the average diurnal cycle). We also notice that Sodankylä daily patterns, and to some extent Hyytiälä as well, are slightly

out of phase. Our current understanding is that this is (at least partly) due to a slightly misaligned sensor (which can cause

significant errors on high latitudes), measuring radiation fluxes. Fortunately this affects mainly the cost function for half-hourly

tuning since it is the only one operating on the densest half-hourly timescale.

4.5 Dry event5

Dry period in the summer 2006 can be clearly located by the massive drawdown in observed GPP, and to a lesser extent in ET,

at Hyytiälä (Fig. 2). In a closer look at this event (Fig. 5) it is evident that none of our parametrization schemes were able to

capture it correctly. As it was with the time series, the overall structure of the daily time series during this event remains the

same (there are no divergent aspects in the model output between the different tunings).

During the drought event (defined here as 31.7.–15.8.2006) the soil moisture is on average 27% lower for default, daily10

and half-hourly tuning and 40% lower for seasonal tuning when compared to the corresponding values from other years –

seasonal tuning has the lowest overall soil moisture. During this event the modelled soil moisture decreases monotonically for

all tunings and reaches the lowest values on 13th of August, after which it starts to rise. During the period the modelled ET

and GPP are predominantly higher than the observations. WUE on the other hand follows the “observations” remarkably well

and deviates from the observed only towards the end of the event when modelled ET drops to near zero values, coinciding with15

the lowest modelled soil moisture values. ? examines deviation in the dependencies of GPP and ET to vapour pressure deficit

(VPD) between model and observation results under the most severe soil moisture stress conditions at the end of the prolonged

period of soil water scarcity (that occurred in 2006). This can be attributed to the lack of explicit dependence of the modeled

stomatal conductance on the atmospheric humidity.

5 Conclusions20

Initially we tuned the model to produce near measured seasonal ET, GPP and especially maximum LAI to enhance the vegeta-

tion transpiration and to emphasize the response to precipitation. This was done successfully with seasonal tuning in the hopes

of bringing forth the underlying model responses to dryness. With the consecutive daily and half-hourly tunings, we managed

to improve the average diurnal cycles of both ET and GPP, but failed in reproducing the low ET and GPP levels during the dry

event in 2006. Effectively we first (seasonal tuning) transferred water from soil moisture into (too high levels of) ET, and later25

(with daily and half-hourly tunings) transferred some of it back.

In addition to the maximum LAI (∆max) and maximum carboxylation rate (VC,max), the most effective parameters in the

seasonal tuning were the fraction of soil moisture above which transpiration is not affected by soil moisture stress (wtsp) and

the critical fraction of field capacity above which fast drainage occurs for soil water content (wdr). The reduction in ET and

GPP was mostly accounted for by lowering the approximate ratio of leaf internal CO2 concentration to external CO2 (fC3),30

which reduces the amount of carbon available for photosynthesis. For daily tuning ET was further reduced by the increase of
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the fraction of precipitation intercepted by canopy (pint) and lower relative humidity fraction (whum – air humidity is based

on soil dryness).

Despite the fact that we were unable to enhance the dry response of the model, we are confident in saying that the algorithm

itself worked well and performed as intended with the daily tuning providing the most reduction in model-data mismatch.

We optimized twelve parameters simultaneously (with daily and half-hourly tunings) used eight fairly short chains (80005

samples). With daily tuning the resulting estimates are well matured, but with half-hourly tuning the parameter deviations are

larger (which is probably due modelling inefficiencies and noise in measurements). Nevertheless all optimization procedures

worked well in regards on what was optimized (seasonality, daily averages or diurnal cycle).

Recently ? found canopy conductance formulation to be a key factor in prescribing the transfer of carbon and water between

terrestrial biosphere and the lower atmosphere. Additionally ? found that during prolonged period of soil water scarcity, the10

lack of explicit dependence of the stomatal conductance on the atmospheric humidity is one of the contributing factors on

this issue. Further studies into enhancing the dry response in JSBACH are needed and these studies should reflect these latest

findings.
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Appendix A: Parametric equations within JSBACH

In this appendix we present the main equations that the parameters in this study affect.

A1 Logistic Growth Phenology (LoGro-P) model

The parameters from the LoGro-P model that we are interested here, are mainly used to determine the spring event for JSBACH. The

maximum all sided leaf area index (∆max) is also part of this model, hence we introduce this first and then deal with the spring event. ∆max30
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is used to calculate LAI at each timestep by a logistic equation (A1). Here k is the growth and p the shedding rate, both of which further

depend on temperature and soil moisture.

d∆

dt
= k∆(1− ∆

∆max
)− p∆ (A1)

To determine the date of the spring event we first introduce a few additional variables, namely the heatsum (ST (d)), the number of chill

days (C(d)) and the critical heatsum (Scrit(d)). Also T (d) denotes the mean temperature at day d.5

ST (d) =

d∑
d′=d0

max(T (d′)−Talt,0) (A2)

Heatsum ST (d) cumulates the amount of “heat“ above the parameter Talt after the previous growing season. The actual starting date d0

of the summation need not be known since it is enough to start the summation “reasonably late“ after the last growth season.

C(d) =

d∑
d′=da

H (Talt−T (d)) (A3)

The number of chill days is calculated as the number of days when the mean temperature is below Talt. Here H() denotes the Heaviside10

step function and the summation starts at the day (da) of the last autumn event.

Scrit(d) = Smin +Srangee
−C(d)/Cdecay (A4)

The critical heatsum (Scrit) decreases as the number of chill days C(d) increases. The spring event happens when:

ST (d)≥ Scrit(d) (A5)

Pseudo soil temperature (Ts(t)) at time t is calculated as an average air temperature (T ) with an exponential memory loss (Tps). Pseudo15

soil temperature is used in determining the autumn event (when it falls below a certain treshold). In the equation N is the normalization

constant and τ is the length of a time step.

Ts(t) =
1

N

t∑
n=−∞

T (n)e
−(t−n) τ

Tps (A6)

A2 Photosynthesis

The Farquhar model is based on the observation that the assimilation rate in the chloropast is limited either by the carboxylation rate (VC ) or20

the transport rate (JE) of two electrons freed during the photoreaction. The total rate of carbon fixation A is given by the following equation,

where Rd is the so called dark respiration:

A= min(VC ,JE)−Rd (A7)

Oxygenation of the Rubisco molecule reduces the carboxylation rate, which is given as:

VC = VC,max
Ci−Γ?

Ci +KC(1 +Oi/KO)
(A8)25

Here Ci and Oi are the leaf internal CO2 and O2 concentrations, Γ? is the CO2 compensation point, KC and KO are Michaelis-

Menten constants parametrizing the dependence on CO2 and O2 concentrations. Furthermore leaf internal CO2 concentration depends on

the external concentration CE by:

Ci = fC3CE (A9)
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Likewise the electron transport rate is given as:

JE = J(I)
Ci−Γ?

4(Ci + 2Γ?)
(A10)

Here J(I) is a function of radiation intensity I in the photosynthetically active band, the maximum electron transport rate Jmax and the

quantum efficiency for photon capture αq .

J(I) = Jmax
αqI√

J2
max +α2

qI2
(A11)5

A3 Soil water

In JSBACH the soil water budget is based on several reservoirs (e.g. skin, soil, bare soil, rain intercepted by canopy etc.) and the different

formulations are plentiful. We present here only the most crucial of these. Changes in soil water (ws) due to rainfall (R), evapotranspiration

(ET ), snow melt (M ), surface runoff (Rs) and drainage (D) are calculated with a geographically varying maximum field capacity (wfc).

ρ
∂ws

∂t
= (1− pint)R+ET +M −Rs−D (A12)10

The interception parameter (pint) also affects the amount of water intercepted by vegetation and bare soil which further affects evaporation

etc. The skin reservoir is limited by wskin and excess water is transferred to soil water. Likewise when the soil water content (in relation to

maximum field capacity) is greater than parameter wdr , the excess water is rapidly drained (in addition to the limited drainage below this

threshold).

Evaporation from wet surfaces (Ews) depends on air density (ρ), specific humidity (qa), saturation specific humidity (qs) at surface15

temperature (Ts) and pressure (ps) and aerodynamic resistance (ra = Ch|vh|−1, these are heat transfer coefficient and horizontal velocity).

Ews = ρ
qa− qs(Ts,ps)

ra
(A13)

Transpiration from vegetation (Tv) is likewise formulated but additionally depends on the stomatal resistance of canopy (r).

Tv = ρ
qa− qs(Ts,ps)

ra + r
(A14)

The stomatal resistance is given as a minimal stomatal resistance of the canopy without water stress (rmin, depends on photosynthetically20

active radiation and LAI) divided by a water stress factor (fws). That is r = rmin/fws. The water stress factor depends on how much water

is in the soil in relation to the maximum field capacity (wf = ws/wfc) when compared to the limit when transpiration is no longer affected

by soil moisture stress (wtsp) and the permanent wilting point (wpwp).

fws =


1 wf ≥ wtsp

wf−wpwp
wtsp−wpwp

wpwp ≤ wf ≤ wtsp

0 wf ≤ wpwp

(A15)

Evaporation from dry bare soil (Es) is similarly defined as:25

Es = ρ
qa−hqs(Ts,ps)

ra
(A16)

Here h is relative humidity at the surface relative to soil dryness:

h= max

[
whum(1− cos(πwf )),min

(
1,

qa
qs(Ts,ps)

)]
(A17)

The total evapotranspiration is a weighted average of Ews, Tv and Es, where the weights are based on e.g. fill levels of reservoirs (similar to

wf above) and vegetative fraction of the grid cell (vegmax).30
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Figure 1. Kernel density estimates of the last 20 000 parameter samples with daily (upper triangle) and half-hourly tunings. The contours

correspond to densities in a
:
two dimensional normal

::::::
gaussian distribution (µx,µy = 0,σx,σy = 1) with 2σ (black), 1.5σ (green), σ (brown),

0.5σ (blue).
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Figure 2. Hyytiälä 7-day running mean time series for different tunings for the first two summers of the validation period. Solid black line

represents the observations.
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Figure 3. Sodankylä 7-day running mean time series for different tunings for the last two summers of the validation period. Solid black line

represents the observations.
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Figure 4. Average diurnal cycle from May to September for the validation period.
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Table 1. Parameter descriptions with references to equations in appendix A. *These parameters were tested but yielded no or only minimal

response to cost functions and were thus removed from the trial.

Parameter Units Class Desciption

∆max - I Maximum all-sided leaf area index that vegetation can reach. A1

VC,max � I Farquhar model maximum carboxylation rate at 25◦C of the enzyme Rubisco (coupled with

maximum electron transport rate at 25◦C with a factor of 1.9) [�= µ mol(CO2) m−2 s−1].

A8

vegmax - I Fraction of vegetative soil in a grid cell. The rest is bare soil. -

αq - II Farquhar model efficiency for photon capture at 25◦C. A11

cb - II Adjustment parameter used in stability functions for momentum and heat (?). -

fC3 - II Ratio of C3-plant internal/external CO2 concentration. A9

pint - II Fraction of precipitation intercepted by the canopy. A12

wdr - II Critical fraction of field capacity above which fast drainage occurs for soil water content. -

whum - II Fraction depicting relative humidity based on soil dryness. A17

wpwp - II Fraction of soil moisture at permanent wilting point. A15

wskin m II Maximum water content of the skin reservoir of bare soil. -

wtsp - II Fraction of soil moisture above which transpiration is not affected by soil moisture stress. A15

ssm* m II Depth for correction of surface temperature for snow melt. -

Talt
◦C III LoGro phenology: alternating temperature. Cutoff temperature used for calculating heatsum to

determine the spring event and the number of chill days since the last autumn event.

A2, A3

Cdecay* - III LoGro phenology: memory loss parameter for chill days. A4

Smin
◦C III LoGro phenology: minimum value of critical heat sum. A4

Srange* ◦C III LoGro phenology: maximal range of critical heat sum. A4

Tps
◦C III LoGro phenology: memory loss parameter for calculating pseudo soil temperature. A6

Table 2. Highest correlations between parameters.

Tuning parameters r

seasonal fC3 wtsp 0.49

Talt αq 0.40

daily fC3 wtsp 0.52

wdr wtsp 0.52

Talt Tps -0.48

Talt Smin 0.47

half-hourly fC3 wtsp 0.68

pint wskin -0.44
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Table 3. Significant components of principal component analysis for the different tunings. The given parameters are the most dominant

within the component and ratio is how many times larger the factor related to the first parameter is when compared to that of the second.

Coverage reveals how much of the component is accounted for by the given parameters (sum of the weights of given vector components).

Component weight parameters ratio coverage

seasonal 1. 0.996 whum wskin 2.1 > 99%

daily 1. 0.717 Tps wskin 1.4 > 99%

daily 2. 0.261 whum wtsp 2.3 > 99%

half-hourly 1. 0.530 Tps - - > 99%

half-hourly 2. 0.310 wskin whum 1.7 96%

half-hourly 3. 0.121 Talt - - > 99%

Table 4. Default and optimized parameter values using the last 20 000 samples (if no value is given, the parameter was not part of that tuning

and the default value was used instead). The percentage next to a parameter value is the effectiveness of that parameter for that tuning. The

reference values for seasonal tuning are the default values and for daily and half-hourly tunings the seasonal values.

Parameter default seasonal daily half-hourly

αq 0.28 0.26 7% 0.30 3% 0.27 1%

cb 5.0 - - 8.8 7% 5.0 0%

fC3 0.87 0.88 8% 0.72 70% 0.76 68%

pint 0.25 0.27 1% 0.49 4% 0.27 0%

wdr 0.9 0.79 14% 0.87 1% 0.75 -1%

whum 0.5 0.54 1% 0.25 14% 0.37 22%

wpwp 0.35 0.28 10% 0.34 0% 0.31 -1%

wskin [m] 2.0E-4 3.1E-4 6% 3.0E-4 0% 2.2E-4 6%

wtsp 0.75 0.64 53% 0.60 1% 0.75 3%

Talt [◦C] 4.0 8.1 0% 6.9 1% 6.9 2%

Smin [◦C] 10.0 - - 23.0 -0% 14.7 -0%

Tps [◦C] 10.0 - - 21.0 -0% 12.4 -0%
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Table 5. Cost function components for each parametrization for Hyytiälä calibration (HC), validation (HV) and Sodankylä validation (SV)

periods. L1,E1 andG1 are the LAI, ET and GPP components in cost function (1), represented by cf1 and used for seasonal tuning. Likewise

E2 and G2 are the components in cost function (2) for daily values (cf2), whereas E3 and G3 are for half-hourly values (cf3). Note that the

values of cf2 and cf3 are not directly comparable.

L1 E1 G1 E2 G2 E3 G3 cf1 cf2 cf3

HC default 0.396 0.021 0.036 0.306 0.191 1.126 0.681 0.45 0.50 1.8

seasonal 5.0E-5 1.7E-4 5.7E-6 0.343 0.161 1.326 0.720 2.3E-4 0.50 2.0

daily 7.4E-5 0.055 1.4E-4 0.206 0.149 0.906 0.683 0.06 0.36 1.6

half-hourly 1.0E-4 0.128 5.4E-3 0.276 0.151 0.864 0.661 0.13 0.43 1.5

HV default 0.396 0.002 0.028 0.226 0.157 1.027 0.479 0.43 0.38 1.5

seasonal 9.3E-5 0.011 7.5E-4 0.300 0.134 1.370 0.459 0.01 0.43 1.8

daily 1.4E-4 0.007 3.5E-4 0.164 0.124 0.981 0.446 7E-3 0.29 1.4

half-hourly 1.1E-4 0.058 2.9E-3 0.182 0.118 0.748 0.412 0.06 0.30 1.2

SV default 0.108 4.0E-3 0.140 0.423 0.596 1.660 1.795 0.25 1.02 3.5

seasonal 5.9E-3 1.8E-5 0.068 0.467 0.411 1.786 1.429 0.07 0.88 3.2

daily 6.1E-3 0.063 0.048 0.289 0.352 1.258 1.294 0.12 0.64 2.6

half-hourly 5.9E-3 0.164 0.022 0.379 0.290 1.246 1.185 0.19 0.67 2.4

Table 6. RMSE and bias of ET and GPP calculated from half-hourly data for first two summers of validation period for Hyytiälä (corre-

sponding to Fig. 2) and last two summers of validation period for Sodankylä (corresponding to Fig. 3).

ET (kg m−2s−1) GPP (mol(CO2) m−2s−1)

Hyytiälä Sodankylä Hyytiälä Sodankylä

RMSE bias RMSE bias RMSE bias RMSE bias

default 2.03E-5 -1.31E-6 2.27E-5 2.31E-6 3.09E-6 8.77E-7 3.16E-6 -9.19E-7

seasonal 2.37E-5 -4.32E-6 2.35E-5 1.09E-6 3.10E-6 -2.00E-7 2.89E-6 -5.97E-7

daily 2.03E-5 -0.74E-6 2.06E-5 5.00E-6 3.06E-6 -1.07E-7 2.74E-6 -4.57E-7

halfhourly 1.69E-5 2.77E-6 2.04E-5 7.14E-6 2.94E-6 3.39E-7 2.67E-6 -2.79E-7

24


