Referee 1
General comments:

* Parameters of the JSBACH land surface model are tuned for two forest sites in Finland.
Photosynthesis and evapotranspiration estimates derived from eddy covariance
measurements are used to calculate cost functions to be minimized. The optimization is able
to correct for the main shortcomings of the model in the description of the annual cycle but
is not sufficient to improve the representation of extreme events such as droughts. This
shows that basic processes are missing in JSBACH. This kind of result is not new. The
authors should do a better job in explaining what is new and original in their optimization
approach. From a modelling perspective, a discussion is lacking about the
reliability/robustness of JSBACH with respect to other models. From a methodology point
of view, several issues need to be clarified. Spin-up must be performed for any new set of
parameter values and it is not clear whether the authors made this effort or not. The purpose
of the parameter classification (class I, II, and III) is not clear. The classification itself is not
properly described, nor justified. Although the paper is reasonably well written, part of the
method description is found in the Result section and should be moved to the Methods
section. The Abstract need to be improved.

To our knowledge the Adaptive Metropolis algorithm has not been used in parameter sampling of
LSMs. The reasons why we chose this algorithm were that it is robust in the terms of starting point
and initial proposal covariance matrix of the parameters, even with multiple chains the use of this
algorithm is straightforward and the use of multiple chains reduce the risk of the chains getting
stuck.

We have added results from other models on these sites with further references and we have added
section 2.3 “Model spin up and runs” to clarify the use of spin up. The use of single spin up is
discussed at question 5.

The main purpose of the parameter classification was to reduce repetition — instead of writing
LoGro phenology model parameters we can use Class III parameters. It has now been made clear in
the text what are the distinctions of use between the different classes (no difference between II and
II1, and I is used only for the seasonal tuning). No methods should be found anymore in the Result
section.

Particular comments:

1. P. 1, Abstract: A summary of the main findings regarding the usefulness of the optimization
technique used in this study is lacking. Key results and conclusions must be listed.

We have added the requested findings in the abstract.
2. P. 3, L. 31: Why not including the spin-up into the calibration? Please clarify.

The purpose of the spin-up is to drive the model into a (semi)steady state at which point we have
equilibrated the more slowly changing variables. During this process the variable values are
unrealistic — for example LAI will take at least a decade to reach adequate levels, hence ET and
GPP are also affected and should not be included in the metric. We have added a new subsection 2.3
“The JSBACH model spin up and runs” to clarify the use of the spin-up.

3. P.4, L.7: Some Class II and Class III parameters can also be "site-specific". For example,
soil water retension parameters are highly site-specific. Please clarify what you mean by
"site specific".
Our use of the term “site-specific” was taken from the point of view of a straightforward approach
when making site simulations with a regional model. There the most effective parameters are
optimised in order to improve the model performance at a site, neglecting the weak signals from
other parameters. These dominating parameters may then incorrectly be called site specific,
although the other parameters might also experience variability from site to site. In regional



modelling you anyway have to make compromises because of lack of data and let some of the
parameters represent a larger region than their actual spatial variability allows. In JSBACH only
one of the parameters examined (vegetative fraction of the grid cell) can vary site by site within a
single run (so for regional runs all the parameters are the same). Since we also calibrate maximum
LALI for the sites separately along with the carboxylation (and electron transport) rate for Hyytiala, it
seemed straightforward to use the term “site specific” for these parameters. We have now removed
this ambiguous definition from the manuscript.

4. P.5, L. 11-12: This argument is not valid as some Class II and Class III parameters listed in
Table 1 can be site-specific. Do you mean that Class I parameters are observed and do not
need any analysis ?

The reasoning to leave out Class I parameters from the analysis is that we consider the initial tuning
as part of the model and experiment initialization. Hence the analysis of these parameters is not
meaningful as they are used only to ensure a proper initial state for the daily and half-hourly
tunings.

5. P.6, L. 22: Is using a single spin-up valid ?

The single spin-up defines a reasonable initial state for the model since the robust initialization had
already been done and the parameters in daily and half-hourly tunings affect the more “fine
grained” processes (that also have a more immediate affect) in the model.

However we calculated the cost functions for tuned variables using this single spin-up and the
reported values in Table 5 (where the spin-ups are generated using the tuned values) and the
differences in the cost functions are less than 1 % (daily) and less than 0.1 % (half-hourly).
Approximately 6 % of parameters tested in the MCMC process yield a cost function value below a
corresponding threshold for daily tuning and significantly less than 0.1 % for half-hourly tuning.
With this we would claim that the approach is valid for our experiments although this claim should
not be generalized.

6. P.7,L.8: Does this mean that class I parameters other than maximum LAI are not
considered as site-specific ?

This question has been touched above as we discussed the term “site specific”. In this study only
maximum LAT (of the given parameters) differs between the two sites. This claim holds also for
Class II and III parameters.

7. P.9, L. 4: This paragraph is difficult to understand because the methods were not
sufficiently described and symbols were not defined before. Methods, as well as
"L1", and all the other symbols of Table 5 (including "HC", "HV", "SV") should be
defined/presented in Sect. 2. Not here in the result Section

We have now replaced Y signs with corresponding cost function abbreviations in Table 5, defined
these and “L1,E1,G1” within the cost function definitions. Additionally abbreviations “HC”, “HV”
and “SV” are now define in subsection 2.3.

8. P.9, L. 6 ("half as large"): Half as large as what ?

We have now amended the sentence [additions]: “As expected the L.1 for Sodankyla is not as
dominant as for Hyytidla since the measured maximum of LAI [for Hyytidld] is roughly half as
large [as for Sodankyld], which directly lowers the LAI component in cost function (1).”

9. P.9,L. 14 ("ET is a more turbulent flux than GPP"): What do you mean ? GPP is not a
turbulent flux at all. The turbulent CO2 flux is NEE, not GPP. GPP is not directly measured
by eddy covariance techniques.

This is absolutely true. What we were trying to say (briefly) is that the time series for ET is much
more erratic in comparison to GPP and the residuals of observed and (JSBACH) modelled GPP are
smaller in comparison to ET (as we also divide the residuals with the mean of observed values in
cost function 2). This sentence has now been amended.



10. P.9, L. 27: The JSBACH model simulations don’t look very good. How does JSBACH
perform with respect to other models at these two sites ? Please give basic scores in terms
of half-hourly fluxes, such as RMSD, ubRMSD and mean bias.

We have added RMSE and bias estimates of the given time series to Table 6 and compare these to
PRELES model (unfortunately no RMSE/RMSD type of estimates are given for PRELES).

11. P. 11, L. 1: How can this be explained ? Shortcomings in the representation of the soil
moisture stress ? How could these shortcomings be attenuated ? Using another
photosynthesis model ?

The shortcomings are rather attributed to (Gao et al 2016) the lack of explicit dependence of
stomatal conductance to air humidity that leads to deviating behavior between model and
observations under severe soil moisture stress. The shortcomings can be attenuated by
implementing explicit dependence of conductance on VPD. This may require selection of
different formulation of photosynthesis model.

Editorial comments:
1. P. 18 (Table 1): Parameters’ units are lacking.
Units have been added to Table 1.
2. P. 19 (Table 4): Parameters’ units are lacking.
Units have been added to Table 4.
3. P. 20 (Table 5, "highlighted values™): I don’t see any highlighted value.

This table was previously in another form and the mention of the highlighted values is redundant.
We have also amended Table 5 and removed the mention of highlighted values.

Referee 2
Major Comments

1) To estimate the distribution of parameters B of a model F based on data Y given by
experiments X, connected by the standard expression ‘Y= F(X,B) + eps’, the distribution of
the measurement error ‘eps’ should be known. But here the authors give almost no
information of any of these to a reader not already familiar with JSBACH and the
measurements. Certainly it is not possible to give all details, but the basic parts of the
underlying modeling and numerical solution should be described, maybe in an
Appendix, not to leave F(X,B) as a fully black box for the reader. See comments 4), 6) and
7) below.

We have now added a description about the measurement errors to the manuscript (at the end of
section 2.1 Measurements, sites and instrumentation) and reference to the MPI-ESM model
description (which includes JSBACH). The main equation have also been added to “Appendix A:
Parametric equations within JSBACH”.

2) To optimize the model parameters the Adaptive Metropolis (AM) method is chosen. It
is, however, a sampling method rather than optimization. The motivation and benefits
of the choice should be given: instead of a point estimate, samples of the full
distribution of possible parameter values are obtained, together with (nonlinear)
correlation information, sensitivity, identifiability of parameters, etc.

We have complemented and expanded our description of the AM method in chapter 2.5 “Parameter
sampling”.

3) The parameter estimation is based on the two cost functions on p. 4 and 5. But no info is
given here on the assumed statistics of the expressions, only a hint on Gaussian distribution
later on p. 7. Usually, the sum of squares of the residuals is divided by the respective
estimated variance of measurement error. Here, the residuals are normalized by the
observations. This can be quite acceptable if no ‘true’ error statistics is available, and the



sampling is done in the spirit of studying the identifiability and correlations of the
parameters. However, this should be done explicit in the text.

We have added coupling of likelihood function and cost functions to the article, as well as
description about measurement errors. We have also added our motivation for normalizing the sums
with a mean of observations (we have only a general type of error for the point estimates).

4) For the general audience (not familiar with JSBACH) at least the basics of the numerical
approach used in JSBACH should be given, together with the CPU demands of the runs.
Now only an implicit statement (‘ ...interval is looped over to generate a 30 year
spin up ..., line 30 , p.3) is given that would indicate that JSBACH is a dynamic
model that has to be initialized or run into a (quasi) steady-state to compare with
observations ? Or is this due to the uncoupled version used here? The concept and use
of spin-up should be clarified.

The CPU demands have now been added to the start of section 3 “Model tuning”. The JSBACH
itself is roughly 100 000 lines of code (in Fortran). In approach it is an process based model so the
processes in JSBACH mimic those in nature e.g. differential equations for heat diffusion in soil. In
solving these, various methods are used, such as replacing nonlinear terms with truncated Taylor
expansions. We have now included a reference to Echam (atmospheric component of MPI-ESM)
model description which includes JSBACH. We have also added section 2.3 “The JSBACH model
spin up and runs” to clarify the use of the spin-up (to equilibrate e.g. LAI and as suggested above to
bring the model into a steady state).

5) How much does the uncoupling impact the results in general? The authors mention
(P.10, line 13-15) that the lack of coupling of the LSM model to atmosphere
generates an erroneous energy balance. This aspect should be discussed or commented
more explicitly.

We have now briefly discussed the uncoupling in the beginning of section “2.2 JSBACH model”.
This question is not a trivial one and could actually be a topic for another (couple) of papers. In our
simulations nighttime and wintertime negative evapotranspiration values are attributed to surface
temperatures that are slightly lower than air temperatures from the meteorological drivers. This,
accompanied with turbulent mixing that is driven with prescribed wind speed and obviously not
suppressed enough under these stable stratification situations maintain condensation at the surface
throughout periods that lack diabatic heating by the shortwave radiation from the sun. Holtslag et al.
2007 (http://edepot.wur.nl/37199) have emphasized the importance of the mutual consistence
among the drivers regulating temperature and momentum in order to achieve realistic magnitudes of
turbulent fluxes under stable conditions.

6) The discussion in Section 2.5, parameter posterior distribution vs PCA, is not clear. The
authors ‘perform a PCA analysis transforms of the covariance matrices ...” — but do not
tell what covariance ? My guess would be that they actually mean the matrix of the AM
samples of parameter vectors, and compute the PCA of it to get the eigenvectors of the
least identified parameter directions. This can lead to correct conclusions, assuming that
the nonlinear correlations between the parameters are not too strong. That, on the
other hand, is typically indicated by plotting the 2D scatter plots of parameter
marginal distributions. So I would recommend the authors to show them as well, and
clarify the discussion on how PCA was used.

Originally we meant a covariance matrix derived from the tested parameter samples, which was
then divided by the root of the product of variances (which does produce the correlation matrix). We
have now revised this section and omitted the mention of “covariance” in favor of the correlation
(since this could also be nuisance to readers unfamiliar with the method). We have also added
kernel density estimates instead of the different parameters (we tried the 2D scatter plots but it was
difficult to get any information from these visually).

7) No information is given on how the studied parameters appear in the model. It is well-


http://edepot.wur.nl/37199

known that the parametrizations strongly impact the identifiability. A good example is
the logistic function, where centering and scaling typically removes correlations. So
this point should be made explicit by showing the formulas, at leastin case of the
LoGro phenology model where high correlations appear ‘since the parameters are
intimately connected’ (L.30, p.7).

We have now added “Appendix A: Parametric equations within JSBACH?” that give the main
equations for all parameters examined.

8) The measurements consist of the CO2 fluxes as given by the eddy covariance method. But
the cost functions are given in terms of ‘observed’ and modeled GPP,ET and LAI. The
connection between CO2 fluxes and those cost function expressions should be given.

This connection has now been added to section 2.1 “Measurements, sites and instrumentation”.
Minor comments

1. In addition to the PCA/MCMC analysis of least identified parameters, the authors
study which parameters are the most relevant for the change of the cost function. They
introduce an OAT (one-at-a-time) method of their own (?). The relation of it to well-
known methods such as the MOAT (Morris-OAT, see the reference below) could be
make more clear. Also, it is not clear what the ‘tuned parameter’ (p.5, Step 1) is: the mean of
the sampled values, or the maximum likelihood (minimum cost function) value? I would
gather that the ‘reference value’ is the initial/default value of optimization. These
points should be made clear.

We have now added a more thorough description about our OAT method. The definition of tuned
parameters has been added to the start of section “Parameter analysis”.

2. Only the cost functions are givenin the text, not the likelihood used in the sampling.
If it is Gaussian as indicated on p.7, it should be mentioned that the ‘f’ function of step 2.,
p. 4, actually is the exponential function of the (negative) cost function.

These clarifications have now been added to the manuscript.

3. P4line 15: The sentence ‘A sample in the parameter has a value ...” could be removed.
Instead, the term ‘chain’ could be explained for a reader unfamiliar with MCMC.

The sentence mentioned has been removed and we have added a short description of the MCMC
chain.

4. P4, line 16: edit the sentence ‘The algorithm is used ...” something like “The algorithm can
be used’ or ‘is used here’, since the basic form of the AM algorithm is or a single
chain. Maybe add a reference to parallel chain adaptive MCMC

This has been amended and we have added two references for parallel chain adaptive MCMC.
5. P. 6, line 20/Step 3: ‘Initial covariance’ means the initial proposal covariance for MCMC
sampling ?
Yes — added “proposal” to text.

6. P. 6, lines 17 and 27: it would be good to know here how many parameters were
used for the 10000 sample long chains.

The number of parameters has now been added.
7. P. 7, Section 3.3: motivate why only maximum LAI is retuned for Sodankyla.

We have now added our motivation to use Sodankyld as a validation site to optimization done with
another boreal forest site.

8. P.8, line 20: edit ‘Given into account’ to ‘Taking into account’
Amended.
9. P9, lines 18-25: clarify the discussion. As the tuning aims at the ‘best parameter’,



how could they be different?

They should not be different. This part of the discussion was to point out that we have not made any
gross mistakes/violations is the tuning.

10. The contents of Table 3 should be clarified, preferably in the bulk text where PCA is
discussed. While the meaning of ‘weight’ is OK, the way the two most dominant parameters
are calculated should be told to the reader.

The basis of calculations has been added to the bulk of text where PCA is discussed.
11. Overall, the English language could be double-checked (‘the’ added in several places, etc)

As stated by the editor, the language will be checked prior to publishing, if the manuscript is
accepted. Although we have made some efforts to recheck the language.
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Constraining ecosystem model with Adaptive Metropolis algorithm
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Abstract. We examined parameter optimization in JSBACH ecosystem model, applied for two boreal forest sites (Hyytidld and
Sodankyld) in Finland. We identified and tested key parameters in soil hydrology and forest water and carbon exchange related
formulations and optimized them using the Adaptive Metropolis algorithm fer-(AM) for Hyytidld with a five year calibration

penod (2000 2004) followed by a four year validation period (2005 2008) We-were-able-to-improve-the-modelled-seasonal;

site, where optimizations were not made.

The tuning provided estimates for full distribution of possible parameter, along with information about correlation, sensitivity
and identifiability. Some parameters were correlated with each other due to phenomenological connection between carbon
uptake and water stress or other connections due to the set-up of the model formulations. The latter holds especially for
vegetation phenology parameters. The least identifiable parameters include phenology parameters, parameters connecting
relative humidity and soil dryness, and the field capacity of the skin reservoir. These soil parameters were masked by the
large contribution from vegetation transpiration.

In addition to leaf area index and maximum carboxylation rate, the most effective parameters adjusting GPP and ET fluxes in
seasonal tuning were related to soil wilting point, drainage and moisture stress imposed on vegetation. For daily and half-hourly
Mstlwnmstnnmrtwpwwrmthe ratio of leaf internal COz— concentration to external CO;relative-humidity
52 and the parameter connecting relative humidity and soil dryness. Effectively the seasonal
tuning transferred water from soil moisture into ET, and daily and half-hourly tunings reversed this process.

The seasonal tuning improved the month-to-month development of GPP and ET, and produced the most stable estimates
of water use efficiency. When compared to the seasonal tuning, the daily tuning is worse on the seasonal scale. However,
daily parametrization reproduced the observations for average diurnal cycle best, except the GPP for Sodankyld validation
period, where half-hourly tuned parameters were better. In general, the daily tuning providing the most reduction in model-data
mismatch,

The models response to drought was unaffected by our parametrizations and further studies are needed into enhancing the
dry response in JSBACH.
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1 Introduction

Inverse modelling of ecosystem model parameters against in situ observations is an established way to tune model parameters
{see-e-g—Scharnagletal52011)(e.g. ?) . As observation sites have their own characteristics, it is necessary to make local site
simulations for model evaluation and calibration as they may reveal new insight into model behaviour and promete-guide
further development. Model-data fusion has been applied for boreal forest sites by e.g. Peltoniemi-et-al-20H5a)- Wu-—et-al-

S . TAZUUS e 0 0 0 0 .

In this study we perform site level parameter optimization in the JSBACH model (Reieket-al52043;see-alseKnorretal;
2005-and-Kaminski-et-al52043)(222) . JSBACH is the land surface component of the Earth System model of Max Planck

Institute for Meteorology (MPI-ESM)), used to simulate water and carbon storages and fluxes in the soil-vegetation-atmosphere

continuum. The water and carbon fluxes are coupled in the model and thus modification of parameters related to one compo-
nent usually has an effect on the others as well. The optimization process and the optimized values are also affected by the
assimilation frequency and interval in minimizing the model-data mismatch. This effect can be studied in numerous ways e.g.
Santaren-et-al—(201+4)-? varied the length of assimilation interval while Matheny-et-ak—20+4)-? focused on the diurnal error
patterns.

The motivation for this study comes from results showing that CMIP5 model simulations, one of which is MPI-ESM, have
systematic evapotranspiration biases over continental areas (Mueler-and-Seneviratne-2014)(?) . These kinds of biases have
significant implications for climate change projections (Beé-and-—Terray,—2008)-(?) but also have distinctive behaviour on a
regional scale. In addition a comparative study of the Gross-Primary-Production-gross primary production (GPP) of Finnish
forests (Peltoniemi-et-al520156)(?) revealed that JSBACH has an insufficient response to water limitation in Finland — it tends
to overestimate GPP and evapotranspiration during dry periods. This is especially apparent in the dry year 2006 as JSBACH is
unable to transfer the reduced rainfall into lower levels of GPP.

In this study we apply the JSBACH ecosystem model for Hyytidld (Kelari-et-al5—2009-and-Suni-et-al52003)-(2?) and
Sodankyld (Fhum-etal;2008-and-Aurela;2005)(2?) sites. We identify key parameters in soil hydrology and evapotranspiration
related formulations and test their effectiveness with elementary methods. We study the effect of different timescales (seasonal,
daily and half-hourly) on the assimilation process and the effect of this on the optimized parameter values. Several optimizations
are performed using the Adaptive Metropolis (AM) algorithm during-over a five year calibration period (2000-2004) followed
by a four year validation period (2005-2008).

The goals of this study are to test the applicability of the AM optimization method for JSBACH and the impact of different
temporal resolutions on the optimization process, and to improve the models response to environmental drivers, focusing on

dryness.
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2 Materials and methods
2.1 Measurement-Measurements, sites and instrumentation

In this study we use site level data from two Finnish measurement sites: Hyytidld (61°51°N, 24°17°E, 180 m a.s.l.) and
Sodankyld (67°22°N, 26°38’E, 179 m a.s.l.). These well-established sites have long continuous measurement data sets repre-
senting well the southern and northern boreal Finnish coniferous evergreen forests. The data used in this study is available for
the scientific community through various databases such as FLUXNET (doi:10.17616/R36K9X).

Hyytidld site is a Finnish Scots pine (Pinus sylvestris) forest (Kelari-et-al5-2009)(?) , planted in 1962 after burning and
mechanical soil preparation. The soil type in Hyytiila is Haplic Podzol on glacial till and the site is of medium fertility (Ketari
et-al52009)(?) . The forest also has sparse understory of Norway Spruce (Picea abies) and scattered deciduous trees. The
maximum of measured all-sided leaf area index (LAI) is 6.5 m? m~2 for the Scots pine. The carbon dioxide (CO5) and water
vapour (H>O) fluxes between vegetation and atmosphere has-have been measured in Hyytiéld continuously since 1997 ¢Vesata

The Sodankyld forest, at-in Sodankyld at the Finnish Meteorological Institute’s Arctic Research Centre, is also a Scots
pine forest (Pinus sylvestris) with maximum measured LAI of 3.6 m?> m~2 as determined from a forest inventory in early
autumn (Fhum-et-al52007)(?) . The forest on Fluvial Sandy Podzol has been naturally regenerated after forest fires with tree
age ranging approximately from 50 to 100 years. The sparse ground vegetation consists of lichens (73%), mosses (12%) and
ericaceous shrubs (15%). The CO, and H>O flux measurements in Sodankyld have been running since 2000 (Aurela2005)(?) .

The CO2 and HyO fluxes were measured by the micrometeorological eddy covariance (EC) method which provides a direct
measurement of €O,-exchange-between-atmosphere-and-btespheres-the mass and energy exchange between the atmosphere
and the biosphere averaged on an ecosystem scale. In the EC method, the €O-flux is obtained as the covariance of the high fre-
quency (10 Hz) observations of vertical wind speed and the €O;-concentration(Baldoechi-2003constituent in question (?) . The
€O, fluxes were corrected for the storage change below the measurement height to accurately estimate the net ecosystem COy_
exchange (NEE). The gross primary production (GPP) was derived by subtracting the modelled respiration (R) from the NEE
observation (GPP=NEE-R) utilizing standard flux partitioning procedures (??) . By using the same parameterisations as in the
partitioning, the NEE and GPP time series were gap-filled for comparison with the model results. The daily evapotranspiration
(ET) sums were calculated from HoO flux data that were gap-filled based on the mean diurnal cycles or regressions on available

radiative energy
The EC instrumentation in Hyytidld consisted of a Solent 1012R3 three-axis sonic anemometer (Gill Instruments Ltd.,

Lymington, UK) and a LI-6262 closed-path CO2/H2O gas analyser (Li-Cor Inc., Lincoln, NE, USA), while in Sodankyl4 a
USA-1 (METEK GmbH, Elmshorn, Germany) anemometer and a-an LI-7000 (Li-Cor., Inc., Lincoln, NE, USA) elosed-path

closed-path gas analyser was used. The EC fluxes were calculated as half-hourly averages taking into account the required
corrections. The measurement systems and the post-processing procedures are-have been presented in more detail for Hyytidld

Kelari-et-al;2004-and-MammareHa-et-al52009)-and-by ? and ? , and for Sodankyld (Aurela; 2005-and-Aurela-et-al—2009)by

Zand?.
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The measurement error in the EC flux data may be classified into two categories: systematic errors and random errors. The
main systematic errors (density fluctuations, high-frequency losses, calibration issues) are mostly corrected for as part of the
post-processing of the data, and the random errors tend to dominate the uncertainty of the instantaneous fluxes. The random
error is often assumed Gaussian but can be more accurately approximated by a symmetric exponential distribution (?) . It
increases linearly with the magnitude of the flux, with a standard deviation typically less than 20% of the flux 2?2 .

2.2 The JSBACH model

JSBACH is a process based ecosystem model and the land surface component of the Earth System model of Max Planck
Institute for Meteorology (MPLESM). We used JSBACH offline using an observational atmospheric data set to force the model.
Implications of this one-way coupling with the atmosphere include lack of feedback from the surface energy balance to the
atmosphere, i.¢. latent and sensible heat fluxes and surface thermal radiation do not directly affect prescribed air temperature or
humidity. Similarly the feedback of surface to the vertical transfer coefficients within the atmospheric surface layer is missing
as the wind speed that drives mixing is prescribed. Furthermore, we use different griddin
ESM grid, for effects see ?? and different time resolution (we have measurements every 30 minutes. We give here a general
introduction to JSSBACH whereas a more complete model description can be found in ? .

In JSBACH the land surface is a fractional structure where the land grid-cells are divided into tiles representing the most
prevalent vegetation classes called plant functional types (PFTs) within each grid cell (Reiek-et-al52643)(?) . The grid cell

is first divided into bare soil and vegetative area which is furthermore fractionally divided into PFTs. The model was setup

in our case site level instead of an

to effectively use only one tile, coniferous evergreen trees. Henceforth all model and process descriptions are considered in
relation to coniferous evergreen trees and no distinction between PFT specific and general parameters are made in this study.

Coniferous evergreen trees are characterized by a set of parameters that control vegetation related biological and physical
processes accounting for the land-atmosphere interactions. We made use of expert knowledge to set these parameters for our
local sites and verified that they are in line with those presented by Hagemann(2002)-and-Hagemann-and-Stacke(2015)2? .

The seasonal development of LAI is regulated by air temperature and soil moisture with a specific maximum LAI as a
limiting value. The cycle is driven by a pseudo soil temperature that is a weighted running mean of air temperature. The
predictions of phenology are produced by the Logistic Growth Phenology (LoGro-P) model of JSBACH.

Photosynthesis is described by the biochemical photosynthesis model (Farguhar-etal;1980)—Folowing Kattge-et-al2009)
(2)_. Following ? we set the maximum carboxylation rate at 25 degrees Celsius to 1.9 times the maximum electron transport
rate at 25 degrees Celsius.

The photosynthetic rate is resolved in two steps. First the stomatal conductance under conditions with no water stress is
assumed to be controlled by photosynthetic activity (Sehulze-et-al5—1994)(?) . Here the leaf internal CO, concentration is
assumed to be a constant fraction of ambient concentration which allows for an explicit resolution of the photosynthesis {see
e-g-—Knorr1997)(?) . Then the impact of soil water availability is accounted for by a soil moisture dependent multiplier that is
identical for each canopy layer (Knor1997)(?) .
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Radiation absorption is estimated by a two stream approximation within a three-layer canopy (Selters1985)(?) . Especially
in the sparse canopies the radiation absorption is affected by clumping of the leaves which is here taken into account according

to the formulation by Knort(1997)? .

2.3 The JSBACH model spin up and runs

Before tuning the JSBACH model, some of the more slowly changing variables (e.g. LAI) need to be equilibrated in order to

bring the model into a (semi)steady state. We achieve this by running the model through a spin up period generated by looping
the measurement interval over itself, During this period the necessary variables are equilibrated and their values become
acceptable for the tuning process. At the end of the spin up a restart file is generated so that the model can be restarted from
this state.

We use half-hourly measurements from years 1999-2008 for Hyytiéld. The measurementinterval-is-looped-overto-generate
a-30-yearspin-up-to-aceumulate-sufficientsoil-moistare-contentand--Al-The-spin up finishes at the end of 1999 and is followed
by a calibration period (abbreviated as HC for Hyytidlé calibration) of 2000-2004 and a validation period (HV) of 2005-2008,
including an exceptionally dry summer in 2006. The setup for Sodankyli is similar but we use measurements from 2000-2008,

where the spin up finishes at the end of 2008. The model is then restarted from the start of 2000 and-but we only examine

the Sodankyld validation period (SV) of 2005-2008)-. The main reason to exclude the Sodankyli calibration period is that

essentially we do not calibrate (or tune) the model for Sodankyld and we do not want to appear to do so.
The meteorological data used to drive the climate were air temperature, air pressure, atmospheric CO» concentration, pre-

cipitation, specific humidity, short- and longwave radiation, potential shortwave radiation and wind speed.
2.4 The parameters

The JSBACH model was modified to fit our custom-built testbed so that all parameters of interest could be read from an

external file. We examined 15 parameters (Table 1) that are for convenience separated into three classes. Speeifie-parameters

phenolegy-medel-The class I parameters are used differently from those of class II and III — namely class I parameters are

only tuned in the seasonal tuning (explained in detail in chapter 3.1). Additionally the only destinction between class II and

III parameters is that the latter belong to a specific part of JSBACH called the Logistic Growth Phenology model (LoGro-P) —
there is no difference in how these parameters are used. We also note that the only parameter (of those examined) that can va
from site to site is ve the vegetative fraction of a grid cell).
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2.5 Parameter estimationsampling

The parameter estimation-sampling in this study was done with the Adaptive Metropolis (AM) algorithmwhich-produces-the

stertor-probability-distributionsfor-the- parameters-using Bayestan-methods. The AM algorithm is an adaptive Markov Chain

Monte Carlo (MCMC) process described below (it is not strictly Markovian but satisfies the necessary ergodicity requirements).

AM is based on the classical Metropolis algorithm, extended with the adaptation of the parameter proposal distribution. Due
to the adaptive nature of AM, it does not rely on the choice of the initial proposal distribution. AM is a sampling method

that produces estimates of the full distribution of possible parameter values (unlike straightforward optimiztion methods), thus

enabling e.g. the study of parameter identifiability, sensitivity and (nonlinear) correlation — this information is paramount to

understanding the optimization process in contrast to merely receiving the optimized parameter values. The rigorous mathe-
matical presentation of the AM algorithm is presented in detail in Haario-et-at-2004H)? .

The AM algorithm draws samples (set-sets of parameters) from the parameter space to generate probability distributions for

the parameters.

parameter-space—The-algorithm-is-used-The consecutive draws form an MCMC chain. We used the algorithm simultaneously
for several independent chains that are parallel adaptations of the algorithmic process (e.g. ??) — we take several random

starting points and launch the algorithm for each of these simultaneously. The history of all chains is used for updating the
proposal covariance matrix that describes how the parameters relate to one another. Our initial proposal covariance matrix had

diagonal elements with-corresponding to 1/200 of each-parametersrangethat-wasset-as-extensivethe respective parameter’s
range. The first sample for each chain was chosen at random within this range. The algorithmic process can be described with

few steps:

1. Draw a new sample (x’) of the parameter space from the vicinity of the current sample (x) using the current proposal

covariance matrix.

2. Calculate the acceptance ratio (a) for the drawn sample. This is the value of a likelihood function (f), that is proportional

to the desired probability distribution, at the drawn sample divided by the value at the current sample (a = f(x')/ f(z)).

3. Accept the new candidate (x’) with the probability a (if a > 1, we always accept). If the candidate was rejected, the
current sample (x) is reused as a basis of the next draw and repeated in the chain. Update the covariance matrix and draw

a new sample.

The-eost-funetion{1H-We obtain the likelihood function (f) from the cost functions (cf) described below by assuming gaussian

error statistics and settin —<f_ In general to estimate the distribution of parameters of any model based on some

data, we require some information about the underlying measurement and modelling errors. We treat the JSBACH model as
described by the equation y = M (x,0) + e, Here y are the observations, X is the model state vector, 6 are the current parameters

and e is the model-data mismatch. Since we only have a robust estimate for the measurement errors and no true error statistics
for the model, the full error (e) is treated as gaussian white noise.
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The cost function (1) used in this study for seasonal tuning is based on summary statistics of gross primary production (GPP)

and evapotranspiration (ET) along with the maximum of leaf area index (LAI). Cost function {1-(1) calculates the relative error

in total GPP, ET and growing season maximum of LAI against observations (these are respectively denoted as G, 4 and L

and sums them up. Overlined variables refer to the mean value of that variable for a given period (calibration or validation),

subscripts denote observation or modelled..

—

Cflilf +1

GPP'IU,OdG”G(]Q (Gppmod - GPPobs > 2G1
e ﬁobserv ed

GPP(){)SC'I"I,'8117 GPPobs ﬁobs

o . _ 2
_ ETm,odGllCd 2 ETmod _ ETObS 2 +1 — HlaX(LAI’mUdCHEd) ’
~ HlaX(LAIobserved) B

D

The second cost function {2)+(2) is a slightly modified mean squared error estimate used for daily (cf5) and half-hourly (cf3)

tuning. With multiple variables there is always the problem of having one variable dominating over the others. Since no true
errors were available, it was decided to normalize the residuals using the mean of observations in cost function (2). This way
the resulting function is sensitive to changes in both variables - AM is used as a noise-resistant optimizer and sampling is done
in the spirit of studying the identifiability and correlations of the parameters. The components are denoted as Gy, E» for daily.
and G, I3 for half-hourly tuning. intwisedi i i

GPP pserved ~ Ngpp GPP s " Ngr ﬁobsammd

2
1 Z Gppmodelled - Gppobser'ved 2 1 Z (G-Ppmod - GPPobs) G2,3+ 1 ZETmodelled - ETobserﬂedQ -

<max(

—
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2

As noted above-previously JSBACH was used uncoupled from the other components of the full MPI-ESM. This has a
tendency to lead to biased results in the model runs as has been recently studied by Palmenech-et-al+26145)? . Especially in
the high latitudes evapotranspiration can be unrealistic during winter since night-time is longer and temperatures low. In order
to improve the credibility of our results, we masked the evapotranspiration values of the coldest periods, and only took into

account those from May to September for each year in both cost functions.

2.6 Parameter analysis

After-tuning-the-model(explained-in-detail-in-the-next-seetion) The optimized parameter values are taken as the mean values
of all chains in the sampling process. In a case that the parameter chains converge to a limit of a predescribed range of allowed
values, the maximum a posteriori (MAP) value is used instead. After tuning the model, we analysed different aspects of this
process. Only-ctass H-and-Hlparameters-were-part-of-Class 1 parameters are excluded from this analysis since we-wanted-to

i tfi sthey are used to bring the model to an “acceptable initial state” hence we regard them as a part
of the model initialization (our motivation is explained in chapter 3.1).
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We calculated the eerrelation—correlations and correlation matrices between different parameters to-see-hew-they-affected

one-another-and-for different tunings using the tested parameter vectors in the AM process. Then we performed a pr1n01pa1
component analysis (PCA) 6

matrices to get the eigenvectors (v;) and eigenvalues (e;) of the least identifiable parameters in the tuning process with the
given data. The PCA analysis-transforms-the-covarianee-transforms the correlation matrix into an orthogonal form where the
eigenvector related to the greatest eigenvalue is the least convergent with the given data. This-information-We then calculate

the weight (w; ) for each component (or vector v;, note that the weights sum up to one). We also determine the most

[t

dominant parameters for each component (v;) by similar dividing the length of the vector towards that parameter by the length
of the whole vector (weight of vector components).

The information derived with PCA could be extracted by analysing the parameters posterior probability distributions but

PCA yields a simple, straightforward method for the same purpose. The main caveat of the standard PCA method is that it is

not applicable to cases with strong nonlinear correlations. Therefore we also calculate kernel density estimates (KDE) for the
parameters to show that there are no nonlinear correlations. The KDE method places a gaussian distribution (kernels) centered
at each parameter of the MCMC chain and then sums these kernels to produce an estimate for the whole distribution. The
bandwith is calculated using the Scott’s rule (2) .

We also wanted to examine which parameters contributed the most to the change in the cost function values as we switched
from one parameter set to another. This was done by calculating the change in the cost function values of the tuned parameter
set and a set where one parameter has been reverted to the value the tuning started with (hencefort the reference value — for
seasonal tuning the default values and for daily and half-hourly tunings the seasonally tuned values). We call this method

here “relative effectiveness” since we want to analyse the effect of the parameters to the cost function. For each tuned set of

parameter values, the relative effectiveness of a parameter is calculated as follows:

1. Change one parameter from the set of tuned parameter values to a reference value and calculate the difference in the cost

function for the changed set and the tuned set.
2. Return the changed parameter to the tuned value and repeat for all parameters. Sum up the differences.

3. The relative effectiveness for each parameter is the difference obtained from step 1 divided by the sum from step 2.

The relative effectiveness is similar to a class of methods commonly referred to as one-at-a-time (OAT) or one-factor-at-a-

time (OFAT). These methods are generally used to acquire robust information about model behaviour when one parameter at

a time is changed to a new or-better-value-(see-Murphy-et-at—2004)—Sinee-and hopefully a better value (e.g. ?) . The main
difference of our method to classical methods such as Morris QAT (?) is that in such methods the change in values is (usually)
random, where as we have fixed values. Additionally our point of view is from the optimized parameters to the original state
1000we have already optimized the parameters (as a groupwﬁh—fh&dfffefeﬂ%ee%ftmeﬁeﬂ%—wetﬁe%heﬁeﬂaedﬁﬁfeveﬁﬁe—%ee
) and merely want some robust and easily.
@W@Q@gmmmm- This method does not reveal
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information about how well the parameters constrain the cost function (e.g. we could have a highly dominating parameter that
would optimize to the default value and hence the relative effectiveness would be zero), rather which parameters contribute

most to the change in cost function values.

21y gnd coefficient of determination

Lastly we calculate the root mean squared error (RMSE,

r2) for the time series generated by the different tunings (o, is observed and m, is modelled).

3 Model tuning

The model was optimized for Hyytidld with the AM algorithm using three different time scales: seasonal, daily and half-hourly

tuning, which are described below. Tuning was done on a powerful laptop with an Intel Core i7-3520M processor. We removed
unwanted output streams from the model and tweaked the I/O. With a single core the spin up generation takes approximately.
150 seconds, the run through calibration period with daily output takes 20 seconds and with half-hourly output 320 seconds.
We used daily output also for the seasonal tuning,

3.1 Seasonal tuning

The fundamental motivation for the seasonal tuning is to ensure that the model reproduces the observed growing season
maximum of LAI since we have previously noticed that JSBACH underestimates LAI en-a-at the site level (even the default
value of A, 4. is lower than the measured maximum for Hyyti#ld). The reason for this approach was to enhance the vegetation
transpiration and to emphasize the model response to precipitation. We also want to ensure that the model performs adequately
well in terms of seasonal cumulative GPP and ET. The seasonal tuning was done in three consecutive steps each using the cost

function (1)(1). The procedure is as follows:

1. Tuning of all three class I parameters with four independent chains each consisting of 3000 samples. This step required

a 30-year spin up for each sample separately.

2. Testing of class II and III parameters each separately with 24 evenly separated values for an extensive range and tuning
those nine parameters that didn’t yield a negligible difference in the maximal and minimal values in the objective func-
tion. The consequent tuning was done with eight independent chains each consisting of 10 000 samples. A single spin

up, common for all samples, used optimal parameter values from step 1 and default values for the rest of the parameters.

3. Retuning all the previously tuned 12 parameters with eight independent chains each consisting of 10 000 samples. Initial

proposal covariance was generated from previous step and spin up was generated separately for each sample.

At the end of seasonal tuning, class I parameters were fixed and a single spin up was generated to be used with daily and

half-hourly tuning. This approach is computationally justifiable (as we do not have to rerun the spin up at each iteration of

the algorithm) and is also acceptable from a modelling point of view since the robust site level scaling has already been done.
Vegetative fraction of a grid cell remained at its default value of 0.52 and carboxylation rate at 25 degrees Celsius was lowered

to 45.0 (and electron transport rate to 85.5).
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3.2 Daily and half-hourly tuning

The difference in daily and half-hourly tuning is the time interval used in the model output and observations in the cost
function {2)(2). For both tuning runs we first tested the response of class II and III parameters against the cost function (2}
(2) and removed those parameters that yielded only negligible or no response (as in step 2 in Seasonal tuning). The rest of the
parameters (twelve) were then tuned using eight independent chains each consisting of 10 000 samples.

It should be noted that even though the cost function (2)«(2) formulation is the same for daily and half-hourly tuning, the

values of the cost function are not directly comparable. Half-hourly tuning uses 48 ¢

aning-values per day, and the resulting diurnal pattern

resembles the form of the normal distribution. In daily tuning we use an average of these values. In practice the component and
cost function values will be higher for half-hourly tuning.

3.3 Tuning for Sodankyli

After tuning the model for Hyytidld we took the parameter set from seasonal tuning and retuned only the maximum LAI
parameter (A;,q;) with the cost function (H~(1) for Sodankyld. This was done because the measured LAI for Sodankyld is
approximately half of that of Hyytiéld. The other parameter values were taken from the respective Hyytidld tuning runs and

spin ups were generated similarly to Hyytidld spin ups so that we could use the Sodankyl4 results to validate the tuning process.

4 Results and discussion

The parameters and cost function components involved in the different phases of the optimization process need to be studied
before the performance of the optimization method can be evaluated.

As noted above, we decided to reject the unreliable wintertime ET values. This masking leaves out the start of the growing
season, which reduces the reliability of some of the tuned parameters, including all the LoGro phenology model parameters
(class III), which mostly affect the timing of the spring event and regulate the development of the LAI towards the peak season.
However, as a result of the tuning processes, all the analysed parameters were revealed to have unimodal posterior probability
distributions, with different skewness’s and deviations.

We analysed the correlations and effectiveness of the parameters in the seasonal, daily and half-hourly optimizations on the
Hyytiéla site for the calibration period. We also analysed the contributions from the cost function components referring to ET,
GPP and LAI and generated the time series and daily cycles of GPP and ET for both Hyytidld and Sodankyla sites. For all
these examinations, individual spin ups were generated using the optimized parameter values.

The parameter correlations (Table 2) do not reveal much information, which is common for larger systems where the under-
lying parameter dependencies are more complex. Usually more sophisticated methods are used to analyse the parameters, but

we omit these examinations here since pairwise Kernel density estimates (Fig. 1) did not reveal any new insights.

10
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The strongest correlation was between the ratio of leaf internal CO5 concentration to external COy (fco3) and fraction of
soil moisture above which transpiration is unaffected by soil moisture stress (w;s,;,) in all the tunings. This positive correlation
strengthens as we increase the temporal resolution (and the complexity of the underlying cost function). This is due to the
carbon assimilation being limited by the amount of carbon available but also by a linear water stress factor (which takes the
value of zero at the wilting point (w,,;;;) and one at the w;,), which is checked at each time step. Most of the other parameters
with high correlations are those of the LoGro phenology model, where we would expect high correlation since the parameters
are intimately connected.

Approximately half of the parameters with high correlation are also the least identifiable (Table 3) with the given data and
cost function. This means that the values these parameters acquire, as a result of the tuning process, are the most unreliable — it
does not reflect on the parameters contribution to the cost function. The PCA merely highlights where most of the parametric
unreliability lies.

The PCA analysis revealed that most of the unreliability is explained by a handful of parameters. Disregarding those of the
LoGro phenology model, the two most dominantly unreliable parameters in every tuning were the fraction depicting relative
humidity based on soil dryness (W) and the maximum field capacity of the skin reservoir (wsgiy, ). Both of these parameters
affect the amount of water available for evaporation from bare soil and are both subject to changes in other parameters. Bare soil

evaporation is also dominated by vegetative transpiration, which explains why these two parameters are the most unreliable.
4.1 The parameters and their relative effectiveness

The default and optimized parameter values from the different tuning metrics are presented in Table 4 along with their relative
effectiveness. The reference values for seasonal tuning are the default values. Since we fixed class I parameters with seasonal
tuning, the realistic reference values for daily and half-hourly tunings are the seasonal parameter values. Here we note that
using one spin up for all daily and half-hourly optimization runs is computationally justifiable but generates errors as the
general spin up differs from those generated by the optimized parameters. These errors are relatively small but give rise to e.g.
the negative relative effectiveness values in daily and half-hourly parametrizations.

Most seasonally tuned parameters are near their default values and the most effective parameters are the fraction of soil
moisture above which transpiration is unaffected by soil moisture stress (wysp), the fraction of soil moisture at permanent
wilting point (wp.,;,) and the fraction of field capacity above which fast drainage occurs (wg,.). For daily and half-hourly
tunings the most important parameters are the ratio of leaf internal CO, concentration to external CO; (fc3) and the fraction
depicting relative humidity (wpqm). It should be noted that wyp,,,, was one of the least identifiable parameters for seasonal
tuning. Given-Taking into account the importance of these parameters on transpiration and soil moisture estimations, we took
a closer look at modelled soil moisture and evapotranspiration components for the calibration period (taking into account only
values from May to September for each year as explained in chapter Uncoupled model runs).

When we compare the model output streams with seasonal against those with default parametrization, we notice that the av-
erage evapotranspiration for the calibration period has increased 15%. Most of this is due to added transpiration (18% increase)

but also increased evaporation (6%). In addition drainage was accelerated by 11%. These increases are mostly compensated by

11
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a 15% reduction in average soil moisture. In addition soil moisture values that are under the limit when transpiration is affected
by soil moisture stress (below the value of wy),) increased 2.3%.

The daily and half-hourly tunings lower the average evapotranspiration by 22% and 35% respectively when compared to
the seasonal values. Transpiration is decreased by 28% and 37% whereas evaporation is increased by 0.5% and decreased
by 28%, respectively for daily tuning and half-hourly tuning. Soil moisture is increased by 11% and 8% and the amount of
values below wy, is decreased by 62% for daily tuning and increased by 7% for half-hourly tuning. As a curiosity, both
the adjustment parameter in stability functions (cp) and the fraction of precipitation intercepted by canopy (p;,¢) have been

significantly increased with daily tuning and returned to seasonally tuned values with half-hourly tuning.
4.2 The cost function components

Using the optimized values (parametrizations) we calculated the components of each cost function for Hyytidld calibration
period and Hyyti4ld and Sodankyld validation period (Table 5).

Firstly we note that with the default parameters L; dominates >1—cf; for Hyytiédld and contributes to approximately 90%
to its value. As expected the L; for Sodankyld is not as dominant as for Hyytiild since the measured maximum of LAI for
Hyytidld is roughly half as large as for Sodankyld, which directly lowers the LAI component in cost function (})(1). The L,
contribution is significantly reduced with the seasonally tuned parameters as was our intention and even though LAI plays no
part in daily and half-hourly tunings, the differences in the maximum value are negligible.

Secondly the value of E; component (error in seasonal ET) with default parametrization is significantly increased in daily
and especially half-hourly parametrizations. Simultaneously the value of (1 is significantly lowered. The component values
for seasonal parametrization are better than the default values with the exception of F; for Hyytidld validation period.

Thirdly for cost function {2)-(2) the pairwise ratio of dominating E; or G; components in all tunings is 5:1. On average
E5/E5 contributes to approximately 60% of ucfo/255cf3. This translates to ET being twice as significant as GPP in cost
function {2)(2). The main reason for ET dominating GPP is that ET is a-mere-turbulent-flux-than-more erratic in comparison
o GPP and the residuals of ET (divided by the mean value) are larger than the residuals of GPP. The daily and half-hourly
tunings themselves work as intended as they lower the corresponding cost function value. It is noteworthy to mention that the
G component gets its lowest value for both validation periods with the half-hourly parametrization even though G5 calculates
GPP errors on a daily scale.

Lastly we examine how the algorithm and cost functions have performed. The best parameter set (lowest cost function value)
for a given cost function, in each of the three different periods (HC, HV, SV), is the same that was used in the corresponding

tuning process. For example the lowest value for 31— f; (cost function for seasonal tuning) in Sodankylé validation period

(0.07) coincides with the seasonally tuned parameters. This is expected as the tuning process aims at the “best” parameter value
which reassures us that no gross mistakes (human errors) have been made. The relation holds true for every cost function with

the exception of 31— f; for Hyytidld validation period, where the lowest value is reached with the daily tuned parameters (we

note that the absolute difference between daily and seasonally tuned parameters is small). Hence we can confidently state that

12
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the algorithm and cost functions have performed as intended, especially since the optimised parameters work for Sodankyl as

well, where no optimization (besides the site specific maximum of LAI) was applied.
4.3 Time series

The overall structure of the model time series was not affected by the parametrizations obtained with different tunings (Fig. +

2 and Fig. 23). Some time series characteristics have been enhanced and others reduced but the timing of the peaks and dips

in GPP and ET are the same as before. The corresponding RMSE and bias estimates are given in Table 6. In comparison we

estimated the PRELES model biases for Hyytiili from Fig. 5 in ? . These estimates give a bias of 0.8 1 E-6 ke m—2s ! (0.07 mm
m_2d~1) for ET and -1.45E-7 mol[CO>] m 25! (-0. —2d—1) for GPP. Additionally the coefficient of determination

r?) for GPP in H

0.96 (?) with most above 0.9 (??) . For additional comparisons see also e.g. ? . Note that our estimates are calculated usin
only values from the start of May to the end of September.

The best seasonal performance was obtained by seasonal tuning as we previously noticed from the cost function components

tidld is in range of 0.74—0.76 for all tunings whereas the values reported in literature range from 0.68 (?) to

(Table 5). Even though the optimization is done on the seasonal level, especially the GPP cycle is noticeably improved from
that generated by the default parameters. This tuning also gives rise to the most stable (least fluctuating) water use efficiency
(WUE), when calculated as a pointwise ratio of GPP and ET. We use WUE here only as a diagnostic variable to examine the
balance between the GPP and ET.

When compared to the seasonal tuning, the daily tuning is worse on the seasonal scale and lowers both the ET and GPP
cycles. WUE follows the observations better but starts to give rise to some fluctuation. With half-hourly tuning this behaviour
is further enhanced and especially ET is lowered to too low levels which manifests the high WUE values. The worsening in the

model time series with daily and half-hourly tunings are explained by biases in the diurnal cycle.
4.4 Diurnal cycles

Average diurnal cycles with different parametrizations (Fig. 34) show that modelled night-time ET values are too low when
compared to the observed and this behaviour was not affected by the tunings. Low night-time values are compensated by too
high midday values in the default and seasonal tuning so that the average daily and seasonal values are on an acceptable level.
For the daily and half-hourly tuning, the algorithm lowers the daytime values, which results in too low average daily and
half-hourly values. It is noteworthy to mention that with the default setting we get too low GPP for Hyytidld but too high for
Sodankyld. The unrealistic wintertime and the biased night-time ET values actually have the same origin. Since we do not have
the coupling from the land surface model (LSM) back to the atmosphere, we get an erroneous energy balance as we lose the
energy released by condensation.

Disregarding the default parametrization we notice that seasonal parametrization show the highest values, daily in the middle
and half-hourly show the lowest values. Daily parametrization reproduces the observations for average diurnal cycle better than
the others in every occasion except the GPP for Sodankyld, where half-hourly tuning is better (verified by pointwise RMSE

from the average diurnal cycle). We also notice that Sodankyld daily patterns, and to some extent Hyytidld as well, are slightly
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out of phase. Our current understanding is that this is (at least partly) due to a slightly misaligned sensor (which can cause
significant errors on high latitudes), measuring radiation fluxes. Fortunately this affects mainly the cost function for half-hourly

tuning since it is the only one operating on the densest half-hourly timescale.
4.5 Dry event

Dry period in the summer 2006 can be clearly located by the massive drawdown in observed GPP, and to a lesser extent in ET,
at Hyytidld (Fig. +2). In a closer look at this event (Fig. 45) it is evident that none of our parametrization schemes were able to
capture it correctly. As it was with the time series, the overall structure of the daily time series during this event remains the
same (there are no divergent aspects in the model output between the different tunings).

During the drought event (defined here as 31.7.—15.8.2006) the soil moisture is on average 27% lower for default, daily
and half-hourly tuning and 40% lower for seasonal tuning when compared to the corresponding values from other years —
seasonal tuning has the lowest overall soil moisture. During this event the modelled soil moisture decreases monotonically for
all tunings and reaches the lowest values on 13th of August, after which it starts to rise. During the period the modelled ET
and GPP are predominantly higher than the observations. WUE on the other hand follows the “observations” remarkably well

and deviates from the observed only towards the end of the event when modelled ET drops to near zero values, coinciding with

the lowest modelled soil moisture values. ? examines deviation in the dependencies of GPP and ET to vapour pressure deficit
(YPD) between model and observation results under the most severe soil moisture stress conditions at the end of the prolonged
period of soil water scarcity (that occurred in 2006). This can be attributed to the lack of explicit dependence of the modeled
stomatal conductance on the atmospheric humidity.

5 Conclusions

Initially we tuned the model to produce near measured seasonal ET, GPP and especially maximum LAI to enhance the vegeta-
tion transpiration and to emphasize the response to precipitation. This was done successfully with seasonal tuning in the hopes
of bringing forth the underlying model responses to dryness. With the consecutive daily and half-hourly tunings, we managed
to improve the average diurnal cycles of both ET and GPP, but failed in reproducing the low ET and GPP levels during the dry
event in 2006. Effectively we first (seasonal tuning) transferred water from soil moisture into (too high levels of) ET, and later
(with daily and half-hourly tunings) transferred some of it back.

In addition to the site-speeifie-parametersmaximum LAI (A, ,.) and maximum carboxylation rate (Vi p4e). the most
effective parameters in the seasonal tuning were the fraction of soil moisture above which transpiration is not affected by soil
moisture stress (wysp,) and the critical fraction of field capacity above which fast drainage occurs for soil water content (wg;-).
The reduction in ET and GPP was mostly accounted for by lowering the approximate ratio of leaf internal CO5 concentration to
external CO5 (fc3), which reduces the amount of carbon available for photosynthesis. For daily tuning ET was further reduced
by the increase of the fraction of precipitation intercepted by canopy (p;,:) and lower relative humidity fraction (wp.,, — air

humidity is based on soil dryness).

14



10

15

20

25

30

Despite the fact that we were unable to enhance the dry response of the model, we are confident in saying that the algorithm

itself worked well and performed as intended with the daily tuning providing the most reduction in model-data mismatch.

ReeentlyKnaveretal«2045)We optimized twelve parameters simultaneously (with daily and half-hourly tunings) used eight
fairly short chains (8000 samples). With daily tuning the resulting estimates are well matured, but with half-hourly tuning the
arameter deviations are larger (which is probably due modelling inefficiencies and noise in measurements). Nevertheless all

optimization procedures worked well in regards on what was optimized (seasonality, daily averages or diurnal cycle).

Recently ? found canopy conductance formulation to be a key factor in prescribing the transfer of carbon and water between

terrestrial biosphere and the lower atmosphere. Additionally ? found that during prolonged period of soil water scarcity, the

lack of explicit dependence of the stomatal conductance on the atmospheric humidity is one of the contributing factors on
this issue. Further studies into enhancing the dry response in JSBACH are needed and these studies should inelade-revisiting

canopy-and-stomatal-conductanceformulationsreflect these latest findings.
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Appendix A: Parametric equations within JSBACH

In this appendix we present the main equations that the parameters in this study affect.
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A1l Logistic Growth Phenology (LoGro-P) model

The parameters from the LoGro-P model that we are interested here, are mainly used to determine the spring event for JSBACH. The
maximum all sided leaf area index (Amge) is also part of this model, hence we introduce this first and then deal with the spring event. Ayaz.
is used to calculate LAI at each timestep by a logistic equation (A1), Here k is the growth and p the shedding rate, both of which further

—To determine the date of the spring event we first introduce a few
additional variables, namely the heatsum (S7(d)), the number of chill days (C(d)) and the critical heatsum (S¢rs+(d)). Also T'(d) denotes
the mean temperature at day d.

d
Sr(d)= > max(T(d') = Tu,0) (A2)
d'=dg

) B

3 - trma y - - £ ara Heatsum St (d) cumulates the amount
of “heat” above the parameter T,;; after the previous growing season. The actual starting date do of the Effeects—ofLand-and-Climate
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—~The number of chill days is calculated as the
number of days when the mean temperature is below 7,;,. Here H () denotes the Heaviside step function and the summation starts at the da
d,) of the last autumn event.

Scrit(d) = S’mzn + Srangeeic(d)/c'decay (A4)

N ana—N aa—r

abereal-Seets-pine-forest Bereal Enviren—Res14:-764-783:2009-The critical heatsum (S.,.;;) decreases as the number of chill days C(d
increases. The spring event happens when:

)

S1d) 2 Seru(d) 83)

NMea a a am A a A Q

dot—1HoH75/2009FFECHAH79-14,2009Pseudo soil temperature (75(t)) at time ¢ is calculated as an average air temperature (7') with an
exponential memory loss (71},5). Pseudo soil temperature is used in determining the autumn event (when it falls below a certain treshold). In
the equation /V is the normalization constant and 7 is the length of a time step.

Na Va
1

A2 Photosynthesis

The Farquhar model is based on the observation that the assimilation rate in the chloropast is limited either by the carboxylation rate (V) or

the transport rate (Jg) of two electrons freed during the photoreaction. The total rate of carbon fixation A is given by the following equation,
where R is the so called dark respiration:

A= min(Vc, JE) — Ry (AT)
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128134 -det:10-1002/2013G61058055,2044-Oxygenation of the Rubisco molecule reduces the carboxylation rate, which is given as:

VC = VC,maz CZ _ F*

(A8)

Ci+Ke(1+0:/Ko)

v-Here C'; and O; are the leaf internal C'O5 and O
concentrations, I', is the CO5 compensation point, K~ and Ko are Michaelis-Menten constants parametrizing the dependence on CO

and

C: = fesCe (49)

20+4—Here J(I) is a function of radiation intensity I in the photosynthetically active band, the maximum electron transport rate J, and

the quantum efficiency for photon capture o .

oql

V Jaz + g 1?

J(I) = Jmaz

A3 Soil water

In JSBACH the soil water budget is based on several reservoirs (e.g. skin, soil, bare soil, rain intercepted by canopy etc.) and the different

formulations are plentiful. We present here only the most crucial of these. Changes in soil water (w) due to rainfall (RR), evapotranspiration
ET), snow melt (M), surface runoff (Rs) and drainage (D) are calculated with a geographically varying maximum field capacity (wy.).
Ow

P~ a1
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25-629-662-1994-The interception parameter (p;n:) also affects the amount of water intercepted by vegetation and bare soil which further

affects evaporation etc. The skin reservoir is limited by wsg;, and excess water is transferred to soil water. Likewise when the soil water
content (in relation to maximum field capacity) is greater than parameter wy

drainage below this threshold).

the excess water is rapidly drained (in addition to the limited

~Evaporation from wet surfaces
FE,,s) depends on air densit , specific humidit , saturation specific humidity (gs) at surface temperature (7’s) and pressure (ps) and

aerodynamic resistance (1, = C,|vn| ", these are heat transfer coefficient and horizontal velocity).

qa — qs(Ts, ps
p ( )

Eys =

from vegetation (73) is likewise formulated but additionally depends on the stomatal resistance of canopy (7).

Ga — Qs(Ts,Ps)
Te+ 1T

Ty=p

—The stomatal resistance is given as a
minimal stomatal resistance of the canopy without water stress (7.,,:,,, depends on photosynthetically active radiation and LAI) divided by a

water stress factor (fys). Thatis » = 1.,/ fws. The water stress factor depends on how much water is in the soil in relation to the maximum

field capacity (ws = ws/wg¢.) when compared to the limit when transpiration is no longer affected by soil moisture stress (w;s,) and the

ermanent wilting point (Wpwp ).
1 wyr > Wtsp
— wf—w
fws = BT Wy S WE S Wisp (A15)

0 wr < Wpwp

—Evaporation from dry bare soil
FE;) is similarly defined as:

E, = an - h(Is(Tsvps)

the surface relative to soil dryness:

qa

h = max |whum (1 — cos(mwy)),min | 1, ————
" ( ( f)) ( QS(Tsaps)

N———

] (A17)

&

The total evapotranspiration is a weighted average of , T, and

—~F, where the weights are based on e.g. fill levels of reservoirs (similar

to w¢ above) and vegetative fraction of the grid cell (vegaz).

19



20



Wy
0.6 D.Qg 3
Y
Clq
028

10.0
30
90
Y
Gy

3.0
@ 0.5
Pint
0

Whum
&) 025

5 25.0
Y
T,
5.0

Tys
5.0 25.0
£

Q
<

=

N

9| Y

0.7
@ Wisp
0.5

0@ -

>N

Whum Wikin
0.25 0.281e-5 5e-4

Wit
0.25 0.4
&
t/—j

)

S

p
!

=)

0 ] 1) [© [ -

<= U=

Pint min Wisp
0.4 0.5 0.0 30.0 0.5 0.7

(CRSSRAVANS— RV

&_

AEIEIE

)[4 [3 = o] = b ] [l [ [ -

Tah
3.0 10.0 3.0
&

C3
0.7 0.8
Y

fos 0:7 @

- [E) ]

"GIRE

-BHREB
~EDEE R

“OPEEBE

~BIB) & @ @l @
~ARNEEREER

‘DOEERE0EE S-

"B EBI B R E B R B
2P @R R EE R R R B

er triangle) and half-hourly tunin

Figure 1. Kernel density estimates of the last 20 000 parameter samples with daily (u

ensional normal distribution (u

corres
(blue).

21



10

Default

ET 1E6 (kgm2s7!)
T

v
Vis
v

GPP 1E6 (mol[CO,] m~2s7!)
T

WUE (g[C] kg™'[H,0])

!
"
o

- N
5 (PN i

-
\ *

A

noouyn
,

AR

.
N\
\ ~

14

0
1.5.-1.10.2005

1.5.-1.10.2006

0
1.5.-1.10.2005

1.5.-1.10.2006

O L
1.5.-1.10.2005 1.5.-1.10.2006

Seasonal

0
1.5.-1.10.2005

0
1.5.-1.10.2005

1.5.-1.10.2006

Daily

1.5.-1.10.2005

1.5.-1.10.2006

0
1.5.-1.10.2005

1.5.-1.10.2006

O L
1.5.-1.10.2005 1.5.-1.10.2006

IS
o

N
o

Half-hourly

0
1.5.-1.10.2005

1.5.-1.10.2006

0
1.5.-1.10.2005

1.5.-1.10.2006

O L
1.5.-1.10.2005 1.5.-1.10.2006

Figure 2. Hyytidld 7-day running mean time series for different tunings for the first two summers of the validation period. Solid black line

represents the observations.
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Table 1. Parameter descriptions with references to equations in appendix A. *These parameters were tested but yielded no or only minimal

response to cost functions and were thus removed from the trial.

Parameter
A max
Yrar¥ ¢ maa

VeEmax

Cdecay *
Smin
Sr'ange *
Tps

Units

<o

Class

I
1

1I
I
II
II
II
II
II
II
II
II
I

I
I
I
111

Desciption
Maximum all-sided leaf area index that vegetation can reach.
Farquhar model maximum carboxylation rate at 25°C of the enzyme Rubisco (coupled with

maximum electron transport rate at 25°C with a factor of 1.9)—  [¢ = y mol(CO3) m 25!

Fraction of vegetative soil in a grid cell. The rest is bare soil.

Farquhar model efficiency for photon capture at 25°C.

Adjustment parameter used in stability functions for momentum and heat —(?) .

Ratio of C3-plant internal/external CO2 concentration.

Fraction of precipitation intercepted by the canopy.

Critical fraction of field capacity above which fast drainage occurs for soil water content.
Fraction depicting relative humidity based on soil dryness.

Fraction of soil moisture at permanent wilting point.

Maximum water content of the skin reservoir of bare soil.

Fraction of soil moisture above which transpiration is not affected by soil moisture stress.
Depth for correction of surface temperature for snow melt.

LoGro phenology: alternating temperature. Cutoff temperature used for calculating heatsum to
determine the spring event {when-greater-or-equal-to-eritical-heatsum)-and the number of chill
days since the last autumn event.

LoGro phenology: memory loss parameter for chill days.

LoGro phenology: minimum value of critical heat sum.

LoGro phenology: maximal range of critical heat sum.

LoGro phenology: memory loss parameter for calculating pseudo soil temperatureas-an-average

AL

A4
A4
53
A6
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Table 2. Highest correlations between parameters.

Tuning parameters r

seasonal fes  wisp 049
Tt Qq 0.40

daily fes Wisp 0.52

War Wisp 0.52
Taw T -048
Tort  Smin 047
half-hourly  fcs  wesp  0.68
Pint  Wskin -0.44

Table 3. Significant components of principal component analysis for the different tunings. Weight-is-the-eigenvaluefor-that-component
squared-and-divided-by-the-sum-of-the-squares-of-all-eigenvalues—The given parameters are the most dominant within the component and

ratio is how many times larger the factor related to the first parameter is when compared to that of the second. Coverage reveals how much

of the component is accounted for by the given parameters (sum of the weights of given vector components).

Component weight parameters ratio  coverage
seasonal 1. 0.996 Whum  Wskin 2.1 > 99%
daily 1. 0.717 Tps Wekin 1.4 >99%
daily 2. 0.261 Whum ~ Wisp 23 >99%
half-hourly 1.  0.530 Tps - - >99%
half-hourly 2.  0.310 Wskin  Whum 1.7 96%
half-hourly 3.  0.121 Talt - - > 99%
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Table 4. Default and optimized parameter values using the last 20 000 samples (if no value is given, the parameter was not part of that tuning
and the default value was used instead). The percentage next to a parameter value is the effectiveness of that parameter for that tuning. The

reference values for seasonal tuning are the default values and for daily and half-hourly tunings the seasonal values.

Parameter- Parameter default seasonal daily half-hourly
Qg 0.28 026 7% 030 3% 027 1%
Cp 5.0 - - 88 7% 50 0%

fes 0.87 088 8% 072 70% 0.76 68%
Dint 0.25 027 1% 049 4% 027 0%
War 0.9 0.79 14% 087 1% 075 -1%

Whum 0.5 054 1% 025 14% 037 22%

Wpwp 0.35 028 10% 034 0% 031 -1%

Wskin  [m] 2.0E-4 3.1E4 6% 3.0E4 0% 22E4 6%

Wisp 0.75 0.64 53% 0.60 1% 075 3%
Tt [°C] 4.0 81 0% 69 1% 69 2%
Smin  [°C] 10.0 - - 23.0 -0% 147  -0%
Tps [°C] 10.0 - - 210 -0% 124 -0%

Table 5. Cost function components for each parametrization for Hyytiéla calibration (HC), validation (HV) and Sodankyli validation (SV)
iehli i i izatton—L1, E1 and G are the LAIL, ET and GPP
components in cost function {H)(1), represented by >rcf; and used for seasonal tuning. Likewise 2 and G2 are the components in cost
function {2)+(2) for daily values (352cf2), whereas E3 and G'5 are for half-hourly values (333cf3). Note that the values of 32—cf2 and 33-cf3

are not directly comparable.

periods.

L1 FE, G1 FEs Go Es Gg gf,C\iL\{ ETQJ\IQV ETQJS?}V

HC  default 0.396  0.021 0.036 0306 0.191 1.126 0.681 0.45 0.50 1.8
seasonal 5.0E-5 1.7E-4 57E-6 0343 0.161 1326 0.720 2.3E-4 0.50 2.0
daily 7.4E-5 0.055 1.4E-4 0.206 0.149 0.906 0.683 0.06 0.36 1.6
half-hourly 1.0E-4  0.128 54E-3 0.276 0.151 0.864 0.661 0.13 0.43 1.5

HV  default 0396  0.002 0.028 0.226 0.157 1.027 0.479 0.43 0.38 1.5
seasonal 9.3E-5 0.011 7.5E-4 0300 0.134 1.370 0.459 0.01 0.43 1.8
daily 14E-4  0.007 35E4 0.164 0.124 0981 0.446 7E-3 0.29 1.4
half-hourly 1.1E-4  0.058 29E-3 0.182 0.118 0.748 0.412 0.06 0.30 1.2

SV default 0.108 4.0E-3 0.140 0423 059 1.660 1.795 0.25 1.02 35
seasonal 59E-3 1.8E-5 0.068 0.467 0411 1.786 1.429 0.07 0.88 32
daily 6.1E-3 0.063 0.048 0.289 0352 1.258 1.294 0.12 0.64 2.6
half-hourly ~ 5.9E-3 0.164  0.022 0379 0290 1.246 1.185 0.19 0.67 2.4
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Table 6. RMSE and bias of ET and GPP calculated from half-hourly data for first two summers of validation period for Hyytidld

corresponding to Fig. 2) and last two summers of validation period for Sodankyli (corresponding to Fig. 3).

ET (kgm2s™ 1) GPP (mol(CO2) m—2s™1)
Hyytidla Sodankyld Hyytiéla Sodankyld
RMSE bias  RMSE bias  RMSE bias  RMSE bias_
default 203E5  131E6  227ES  231E6  3.09E:6  877E7  3.6E:6  -9.19E-7
seasomal  2.37E:5  -432E-6  235E5  1.09E-6 3.10BE-6  -2.00E7  289E6  -5.97E7
daily 203E5  074E6  200E5  S.00E-6  3.06E-6 -1.O7E7  2.74E:6  -4.57E-7

halfhourly ~ LO9E:S — 277E:6  204E:5  TM4E:6 2046 3397 267B6 2797
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