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Response to Reviewer 11

1) The reviewer suggests that we give more details on the 2012 Emilia se-2

quence.3

4

We agree to his request and shall include more details on the data and on5

their sources in Table 1 and two new figures (numbered as 4 and 5 in the6

revised version): a map showing the location of the events and a plot of their7

seismic moments.8

9

2) The reviewer also suggests that we expand the discussion of the model10

assumptions, in particular assumptions 4, 5 and 6.11

12

These assumptions are suggested by the features of the sequences we are13

describing, as recorded in seismic catalogues (e.g. Rovida et al., 2011). As-14

sumptions 4 and 5 follow from the observation that sequences are made of15
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distinct events, each one associated with the failure of a distinct fault in the16

system, and there is no reactivation of the same fault during a sequence.17

Assumption 6, stating that the sequence duration is short versus the in-18

tersequence time, is justified by seismic history, showing that intersequence19

intervals are in the order of centuries, while sequence durations are in the20

order of weeks or months. These comments will be added in section 2.21

22

3) The reviewer finds that the abstract is unclear and favors technical details23

rather than focusing on the general conclusions of the paper.24

25

The abstract will be rewritten and we shall stress that the key point of the26

model is to show that the knowledge of the order of activation of faults in27

a seismic sequence yields information on the state of the fault system be-28

fore and after the sequence. The concept of permutation is crucial to this29

aim, because the evolution of the system can be expressed as a sequence of30

permutations and the order of activation can be described by a particular31

permutation of the n faults.32

33

4) The reviewer suggests revising the text, particularly the results and con-34

clusions, to make it clear what is new and innovative and/or interesting and35

significant about this research.36

37

As stated in the Introduction, the aim of the paper is to answer some basic38

questions concerning seismic sequences. When we observe a sequence, we ac-39

2



knowledge that it is due to a system of n faults that fail one after the other.40

However, we do not know why the faults fail in that particular order. The41

order must be a consequence of the initial stress state of the fault system42

and of the mutual interaction between the faults of the system during the43

sequence. We show that the knowledge of the order of activation of faults in44

the sequence yields information on the state of the fault system before and45

after the sequence. To this aim, we introduce the concept of permutation of46

the n faults, ranking the faults according to the magnitudes of their Coulomb47

stresses. Such a permutation describes the state of the system at a given time48

and changes whenever a fault is activated. The order of activation itself can49

be described by a particular permutation of the faults. These considerations50

will be added in the Conclusions of the paper.51

52

5) The reviewer notices that the paper is missing references concerning the53

subject of fault interaction and triggering.54

55

Following this suggestion, we shall add references to Stein et al. (1992), Har-56

ris (1998), Stein (1999), Gomberg et al. (2000), Belardinelli et al. (2003).57

We shall also add a reference (Love, 1944) for the double-couple point source58

solution.59

60

6) The reviewer considers that the figures are not detailed well enough, and61

their motivation or use is not clear: this applies, in particular, to Figure 2.62

63
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Figure 2 is a graphical illustration of the evolution of a system made of three64

faults (n = 3). This case is considered because it can be illustrated graph-65

ically, owing to the small number of variables involved. Cases with n ¿ 366

would require higher dimensional spaces. The graphical representation al-67

lows a better understanding of the evolution of the state of the fault system68

during a seismic sequence. This explanation will be added at the beginning69

of section 7. The captions of figures 2 and 3 will be rewritten and more70

details will be added in the other captions.71

72

Response to Reviewer 273

1-2) The reviewer suggests a discussion of some results obtained by other74

authors with regard to the 2012 Emilia sequence.75

76

We agree with his request, though the aim of the present work is not to re-77

produce the details of any particular seismic sequence, but to show how the78

knowledge of the activation order of faults can give information on the stress79

state of a fault system. Convertito et al. (2013) suggest that dynamic trig-80

gering may have had a role in influencing the seismic sequence, in addition81

to the variation in permeability and pore-pressure effects due to a massive82

presence of fluids in the Po Plain basin. We neglected the effect of pore fluid83

diffusion, on the basis of general considerations in Appendix B, and did not84

consider dynamic triggering. If these effects are relevant and are introduced85
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in the calculations, they may alter the sequence of permutations and yield86

a final permutation different from (64). However, they will not change the87

general conclusions of the paper. A mention of the possible role of pore flu-88

ids will be added in section 2, when the argument is introduced. A short89

discussion will be added in section 8 and will be recalled at the end of the90

Conclusions.91

92

3) The reviewer mentions results obtained by Castro et al. (2013) from seis-93

mic spectra, suggesting that the events of the Emilia sequence generated94

relatively low stress drops.95

96

We shall mention this paper in section 8 and show that our model yields97

values ranging between 0.9 and 1.9 MPa, within the range obtained in that98

study.99

100

4) As suggested by the reviewer, references will be included in Table 1.101

List of relevant changes made in the manuscript102

1) A more explanatory version of the Abstract (p.1, lines 1–13);103

104

2) An expanded discussion of the model assumptions (p.2, lines 27–32; p.3,105

lines 1–2);106

107
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3) A mention of the possible role of pore fluids in the evolution of a seismic108

sequence (p.5, lines 18–19);109

110

4) Reasons for the application of the model to a system made of three faults111

(p.11, lines 7–10);112

113

5) Discussion of the role of dynamic triggering and pore fluids diffusion on114

the evolution of the 2012 Emilia sequence (p.13, lines 22–31);115

116

6) Estimate of the stress drops associated with the events of the 2012 Emilia117

sequence (p.14, lines 15–17);118

119

7) A more detailed version of the Conclusions (p.15, lines 10–23; p.16, lines120

14–15);121

122

8) Additional references about fault interaction and the double-couple point123

source solution (p.19, lines 3, 20, 21, 25; p.20, line 19);124

125

9) A more explanatory version of the Figure Captions (p.20, lines 28–34;126

p.21, lines 1–10);127

128

10) References and additional data in Table 1 (p.22);129

130

11) Location of the events of the 2012 Emilia sequence and the associated131
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seismic moments (p.25, Figure 4; p.26, Figure 5).132

133
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Abstract. We consider a fault system producing a sequence of seismic events of similar magnitudes. If the system is made of n

faults, there are n! possible sequences, differing from each other for the order of fault activation. Therefore the order of events

in a sequence can be expressed as a permutation of the first n integers. We investigate the conditions for the occurrence of a

seismic sequence and how the order of events is related to the initial stress state of the fault system. To this aim, we consider

n coplanar faults placed in an elastic half-space and subject to a constant and uniform strain rate by tectonic motions. We5

describe the state of the system by n variables that are the Coulomb stresses of the faults. If we order the faults according to

the magnitude of their Coulomb stresses, a permutation of the first n integers can be associated with each state of the system.

This permutation changes whenever a fault produces a seismic event, so that the evolution of the system can be described

as a sequence of permutations. A crucial role is played by the differences between Coulomb stresses of the faults. The order

of events implicit in the initial state is modified due to changes in the differences between Coulomb stresses and to different10

stress drops of the events. We find that the order of events is determined by the initial stress state, the stress drops and the

stress transfers associated with each event. Therefore the model allows the retrieval of the stress states of a fault system from

the observation of the order of fault activation in a seismic sequence. As an example, the model is applied to the 2012 Emilia

(Italy) seismic sequence and enlightens the complex interplay between the fault dislocations that produced the observed order

of events.15

1 Introduction

Seismic sequences are a characteristic aspect of seismic phenomenology. Recent examples in Italy are the 1997-98 Umbria-

Marche sequence (Morelli et al., 2000; Salvi et al., 2000; Santini et al., 2004) and the 2012 Emilia sequence (Scognamiglio

et al., 2012; Castro et al., 2013; Pezzo et al., 2013). We call "seismic sequence" a series of earthquakes generated by sources

located in a relatively small region (in the order of 100 km) and occurring in a time interval (in the order of few months) much20

shorter than the intervals during which the system is at rest. The interval elapsing between two seismic sequences in the same

region is in the order of several decades at least. We do not include in this definition aftershock sequences following a greater

event, that may have similar features but are strongly conditioned by the main shock.

Sequences are originated by fault systems that produce similar earthquakes as to mechanism and magnitude. A sequence

is typically made of a small number (< 10) of larger events having a medium magnitude, in general between 5 and 6, plus a25

greater number of smaller events. We take into account the larger events, neglecting the smaller ones.
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Since the faults of the system are close to each other, it is believed that fault interaction plays a major role in seismic

sequences. Fault interaction and its role in earthquake triggering have been widely studied (e.g. Stein et al., 1992; Harris, 1998;

Stein, 1999; Gomberg et al., 2000; Belardinelli et al., 2003; Steacy et al., 2005). Whenever a fault slips, it transfers stress to

neighbouring faults, thus anticipating the instant of time when they slip in their turn. Therefore the interaction has the effect of

concentrating the events in a shorter time interval, hence reducing the duration of the sequence (e.g. Tallarico et al., 2005).5

In the present paper, we consider a model of a fault system and investigate the conditions under which the system may

originate seismic sequences with the characteristics described above. In particular, we ask the following questions: 1) which

are the stress conditions under which a sequence may take place? 2) what determines the order of seismic events in the

sequence? 3) what makes the order of events change from one sequence to the following one? 4) is the observed order of events

informative about the state of stress before and after the sequence?10

The model is applied to the 2012 Emilia (Italy) seismic sequence, that was made of seven major events with similar focal

mechanisms and with magnitudes between 5 and 6, occurred in a time interval of 15 days.

2 The model

We consider a system made of n plane faults, that we assume to be coplanar and lined up, with the same strike and dip angles

(Fig. 1). The fault system is placed in an elastic half-space with Lamé constants λ and µ. We introduce a coordinate system (x,15

y, z) such that the x axis coincides with fault strike, y is the horizontal direction perpendicular to strike and z is depth. Let δ

be the dip angle of the faults.

We number the faults from 1 to n, starting from one end of the system. Let Ai be the area of the i-th fault and rij be the

distance between the centres of the i-th and the j-th fault. We introduce the following assumptions:

1) the fault system is subject to a strain rate ė, that is constant in time and uniform in space;20

2) the onset of seismic events is controlled by the average values of tangential traction and static friction on fault surfaces;

3) fault slip is a step function of time and does not produce overshooting;

4) each fault slips once and only once during a sequence;

5) there is no simultaneous slip of two or more faults and a finite time interval elapses between the failures of any two faults;

6) the duration of a sequence is much shorter than the interval between two consecutive sequences;25

7) the system is not subject to external stress perturbations.

Most of these assumptions are commonly introduced in seismic source models. Assumption 1 is reasonable, since by defi-

nition the n faults belong to the same seismogenic region, for which the same tectonic mechanism is observed. Assumptions

2 and 3 are based on the fact that we are not interested in the details of each event, that has a much shorter duration than the

duration of the sequence, but rather in the relationship between the n events. Assumptions 4, 5 and 6 are suggested by the30

features of the sequences we are describing. Sequences are made of distinct events, each one associated with the failure of a

distinct fault in the system, and there is no observation of reactivation of the same fault during a sequence. The duration of
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a sequence is typically of several weeks or few months, while the interval between two consecutive sequences may be even

centuries long (Rovida et al., 2011).

As to assumption 7, it is a fact that the evolution of a fault system can be altered by external perturbations. Any fault system

is not isolated, but is surrounded by other faults, that may transfer stress to it whenever they slip (e.g. Dragoni and Piombo,

2015). Generally, contributions from external faults may be numerous during an interseismic interval, but they are smaller than5

contributions from faults belonging to the system, due to greater distances and to different orientations of fault surfaces. Such

contributions may also partially cancel each other.

In the case of normal and reverse faults, we assume plane strain, according to the Anderson model (Anderson, 1951; Sibson,

1974; Turcotte and Schubert, 2002). The nonvanishing strain components are

eyy = ėt, ezz =− λ

λ+ 2µ
eyy (1)10

where ė is positive for tensile strain and negative for compressive strain. The stress components are

σxx = νσyy, σyy =
2µ

1− ν eyy (2)

where ν is the Poisson modulus. We introduce the stress rate

σ̇ =
2µ

1− ν ė (3)

The rates of normal and tangential traction on the faults are then15

σ̇n =− σ̇
2

(1− cos2δ), σ̇t =± σ̇
2

sin2δ (4)

where the upper sign in σt is for normal faults and the lower sign is for reverse faults. In the case of transcurrent faults, we

consider simple shear, with strain and stress components

exy = ėt, σxy = 2µexy (5)

In this case, we define20

σ̇ = 2µė (6)

and the rates of normal and tangential traction on the faults are

σ̇n = 0, σ̇t = σ̇ (7)

Let σi be the average tangential traction applied to the i-th fault in the slip direction and τi be the average static friction of the

i-th fault. We define the Coulomb stress (Stein, 1999) of the i-th fault as25

xi = σi− τi, i= 1,2, . . .n (8)
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Since the σi are always positive or zero, the xi range between −τi and zero. When xi = 0, an earthquake is generated by the

i-th fault. The rates of σi and τi are respectively

σ̇i = σ̇t, τ̇i = κσ̇n (9)

where κ is the coefficient of static friction. Then the rate of Coulomb stress is

ẋ= kσ̇ (10)5

where

k = sinδ(κsinδ± cosδ) (11)

for normal and reverse faults and

k = 1 (12)

for transcurrent faults. Then, in the absence of earthquakes, the Coulomb stress of the i-th fault changes in time as10

xi(t) = x0i + ẋt (13)

where x0i is the Coulomb stress at an arbitrary time t= 0.

Due to the presence of friction, the set of n faults is a nonlinear dynamical system. The Coulomb stresses xi can be considered

as the components of an n-dimensional vector x(t) describing the state of the system as a function of time. The possible states

of the system belong to an n-dimensional parallelepiped S, defined by the n disequalities15

−τi ≤ xi ≤ 0 (14)

According to assumption 5, all the components of x are different from each other. Therefore one (and only one) component

will vanish first, generating the first event in the sequence. Whenever an earthquake occurs, the fault dislocation produces a

static stress field that is transferred to the system and modifies the Coulomb stress of all faults, producing a sudden change in

x.20

In general, the change in Coulomb stress on the j-th fault due to the failure of the i-th fault can be written as

∆xij(t) = ∆σijH(t) + ∆σ′ij(t) (15)

where ∆σij is the coseismic change in tangential traction, H is the Heaviside function and ∆σ′ij is the change in traction due

to time-dependent processes, including pore fluid diffusion, afterslip and viscoelastic relaxation. Since we have assumed that

faults are coplanar, there are no changes in normal stress on the fault plane.25

The traction ∆σij could be calculated from the formulae for a rectangular dislocation in an elastic half-space collected by

Okada (1992). However, if rij > 1.5
√
Ai, the traction of a finite dislocation source is virtually indistinguishable from that of a
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point-like double-couple source in an unbounded medium (Love, 1944) and the latter simpler formula can be used (Appendix

A).

A Poisson solid (λ= µ) is considered. Accordingly, if mi is the seismic moment of the i-th fault, we have

∆σij =
5mi

12πr3ij
, i 6= j (16)

in the case of a strike-slip mechanism and5

∆σij =
mi

6πr3ij
, i 6= j (17)

in the case of a dip-slip mechanism. As to the stress change of the i-th fault, it is

∆σii =−∆σi (18)

where ∆σi is the static stress drop, that can be estimated from the average slip ui and the fault area Ai as

∆σi = C
µui√
Ai

(19)10

where C is a nondimensional constant of the order of unity determined by the geometry of the fault (Kanamori, 2001). Ac-

cording to discrete fault models (e.g. Dragoni and Piombo, 2015), the stress drop is a fraction

f = 2(1− ε) (20)

of static friction, where ε is the ratio between the average values of dynamic and static frictions, that we assume to be the same

for all faults.15

If the medium is porous and saturated with fluids, the coseismic stress field induces a fluid flow that changes the stress field

in turn (e.g. Wang, 2000; Piombo et al., 2005). As shown in Appendix B, the effect of fluid diffusion is at least one order of

magnitude smaller than coseismic stress transfer: for the sake of simplicity, we do not consider it in the following. However, in

some cases pore fluid diffusion may have a role in the evolution of a seismic sequence (e.g. Convertito et al., 2013).

As to afterslip and viscoelastic relaxation, the events we are considering are relatively small and it is assumed that they do not20

produce appreciable afterslip nor impose considerable stress to deeper ductile regions that may relax it afterwards. Viscoelastic

relaxation of lithospheric rocks may change the stress distribution in the long term as a consequence of larger earthquakes (e.g.

Dragoni and Lorenzano, 2015).

3 Evolution of the system

Let tk be the occurrence times of the events in the sequence (k = 1,2, . . .n), so that the durations of the interseismic intervals25

are

∆tk = tk+1− tk, k = 1,2, . . .n− 1 (21)
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Then the initial state is x(t1−). If the first event is due to the failure of the i1-th fault, x has a sudden change and its k

component becomes

xk(t1+) = xk(t1−) + ∆xi1k (22)

Afterwards, x changes continuously in time, as a consequence of tectonic loading, according to

xk(t) = xk(t1+) + ẋ(t− t1) (23)5

At t= t2, the second event takes place, due to the failure of the i2-th fault, so that x has another sudden change, and so on. At

the end of the sequence, the state is

xk(tn+) = xk(tn−) + ∆xink (24)

that can be written as

xk(tn+) = xk(t1−) + ẋ∆t+

n∑
j=1

∆xjk (25)10

where

∆t=

n−1∑
k=1

∆tk = tn− t1 (26)

is the duration of the sequence, that can be written as

∆t=−xin(t1−)

ẋ
− 1

ẋ

n∑
j=1

∆xijin , ij 6= in (27)

In Eq. (25) the difference between the final and the initial state is made of two terms: the first one is tectonic loading during the15

time interval ∆t; the second one is the effect of earthquakes. The latter term has the effect of concentrating in a shorter time

interval a series of events that otherwise would be farther in time. The shortening in duration is obtained by calculating how

much the instant tn of the last event is anticipated. The decrease in tn is due to the sum of the stresses that are transferred to

the in-th fault from the other n− 1 faults. From Eq. (27), the duration of the sequence in the absence of interaction is

∆t′ = ∆t+
1

ẋ

n∑
j=1

∆xijin , ij 6= in (28)20

The interseismic intervals (21) can be calculated as

∆tk =−xik+1
(tk+)

ẋ
, k = 1,2, . . .n− 1 (29)

During the interseismic intervals, the representative point x moves along a line defined by the parametric equations (13), that

is parallel to the line

x1 = x2 = · · ·= xn (30)25

Thanks to a rotation R, the coordinate system (x1, . . .xn) can be changed into a system (ξ1, . . . ξn) such that the ξn axis coin-

cides with line (30). Hence the evolution of the system can be more easily represented in the (n− 1)-dimensional hyperplane

ξn = 0. An example will be shown in section 7 for n= 3.
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4 Retrieval of the initial and final states

On the basis of the model, if we observe a seismic sequence, we can retrieve the state vector xk(t) at any time during the

sequence. In particular, we can calculate the state of the system at the beginning and at the end of the sequence.

Suppose that we observe a sequence made of n events that can be ascribed to the failure of n faults belonging to the same

system. Let t1, t2, . . . tn be the observed occurrence times of the events. From the knowledge of the fault geometry and of the5

seismic moments, we can calculate the stress transfer matrix ∆xij . If we know the strain rate ė from geodetic measurements,

we can calculate the stress rate ẋ from Eq. (10).

Consider the generic fault ik, that has produced the k-th event in the sequence. It is easy to see that the Coulomb stress of

fault ik at the beginning of the sequence is

xik(t1−) =−ẋ(tk − t1)−
k−1∑
j=1

∆xijik (31)10

Apart from the signs, the first term in the rhs is the stress accumulated on the fault from the beginning of the sequence up to

instant tk and the second term is the sum of stress transfers that fault ik has received from faults i1, i2, . . . ik−1 that slipped

before it. Hence, apart from the sign, the rhs is the total stress accumulated on fault ik since the beginning of the sequence.

This stress must cancel the initial Coulomb stress xik(t1−): hence the initial Coulomb stress must be the opposite of the

accumulated stress.15

As to the final state of fault ik, it is given by Eq. (25). If we replace xik(t1−) in (25) with its expression (31), we obtain

xik(tn+) = ẋ(tn− tk) +

n∑
j=k

∆xijik (32)

Since the Coulomb stress of fault ik was equal to zero at t= tk−, the final stress is equal to the tectonic stress accumulated in

the time interval from tk to tn plus the stress drop associated with the failure of fault ik and the stress transfers of the faults

ik+1, ik+2, . . . in that have slipped after fault ik.20

Hence the initial Coulomb stress of fault ik depends only on what happened before the instant tk, while the final Coulomb

stress depends only on what happened after tk. However, the retrieval of the complete state vector requires the knowledge of

the entire sequence. In section 8, we shall retrieve the initial and final states of a fault system in a real case.

The degree of heterogeneity of the xi can be expressed by their standard deviation

s=

[
1

n

n∑
i=1

(xi− x̄)2

]1/2
(33)25

where

x̄=
1

n

n∑
i=1

xi (34)

A relevant point for the subsequent evolution is whether the differences between the xi change during a sequence. We define

dij(t) = xi(t)−xj(t) (35)
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The dij form an antisymmetric matrix having n(n− 1) nonvanishing components that are related by (n− 1)2 equations.

Therefore dij is known if we know only n− 1 components, for example the d1j with j = 2,3, . . .n. Thanks to Eq. (32), we

obtain

dij(tn+)− dij(t1−) =

n∑
k=1

(∆xki−∆xkj) (36)

where the rhs is different from zero because the sum of stress transfers received by a fault during the sequence is in general5

different from that received by the other faults. In particular, faults located at the center of the system receive a greater total

stress than faults located at the ends, if the events have similar magnitudes. For instance, if n= 3, fault 2 receives a greater

stress transfer than faults 1 and 3.

5 The order of events

Since the components xi of the state vector are always different from each other, they can be ordered according to their10

magnitudes. Then, at any instant t of time, the set X of the xi(t) is a well-ordered set. This order controls the order of events

in the seismic sequence.

Let Nn be the set of the first n natural numbers. With each state x of the system we can associate a permutation α of Nn,

expressing the order of faults in relation to the value of their Coulomb stress:

α=

1 2 . . . n

i1 i2 . . . in

 (37)15

so that

xi1 = maxX (38)

xik = max(X −{xi1 ,xi2 , . . .xik−1
}) (39)

with k = 2,3, . . .n. Hence the parallelepiped S can be divided into a number n! of subsets Sj corresponding to the n! permu-20

tations of Nn. During the interseismic intervals, the permutation αj associated with the system does not change, because all

the xi increase with the same rate, according to Eq. (13). Therefore x remains in the same subset Sj . However, when an event

occurs, x switches to a different subset Sk, characterized by a permutation αk.

Suppose that, before the sequence, the permutation associated with the system is

α0 =

1 2 . . . n

i1 i2 . . . in

 (40)25
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implying that the first event is the failure of the i1-th fault. This event changes the magnitudes of all Coulomb stresses, so that

the new state of the system is associated with a different permutation

α1 =

 1 2 . . . n

j1 j2 . . . jn

 (41)

implying that the second event is the failure of the j1-th fault, and so on. After the (n− 1)-th event, the permutation is

αn−1 =

 1 2 . . . n

k1 k2 . . . kn

 (42)5

implying that the last event is the failure of the k1-th fault. Therefore the order of events in the sequence can be expressed as a

permutation

α∗ =

1 2 . . . n

i1 j1 . . . k1

 (43)

As to the order of events, the number of possible sequences in a system made of n faults is equal to n!. Since every fault may

slip only once in a sequence (assumption 4), there are n! alternatives for the initial permutation α0, but only (n− 1)! for α110

and (n− k)! for the generic permutation αk.

If the permutation after the n-th event is

αn =

1 2 . . . n

i j . . . k

 (44)

the duration of the interseismic interval preceding the next sequence is

∆T =−xi(tn+)

ẋ
(45)15

and the sequence will start with the failure of the i-th fault. In order to find out the relationship between the initial permutation

α0 and the order of events given by α∗, it is necessary to examine which are the orders of magnitude of the quantities controlling

the evolution of the system.

6 Discussion

The evolution of the system is controlled by the stress rate σ̇ and by the stress transfer matrix ∆xij . We calculate the typical20

values of these quantities for seismic sequences.

For many seismogenic regions, typical strain rates are in the order of 10−15 to 10−14 s−1. With µ= 30 GPa and ν = 0.25,

Eq. (3) and Eq. (6) yield stress rates |σ̇| in the order of 2 kPa a−1 for the lower value and of 20 kPa a−1 for the higher value of

strain rate. Calculation of ∆xij requires the knowledge of the seismic moments associated with each fault, of the fault areas

and of the distances between them. A typical seismic moment of an event in the sequence can be calculated by assuming an25

9



area Ai = 100 km2 and an average slip ui = 0.5 m, whence mi ' 1018 N m. With these values, Eq. (19) yields a stress drop

∆σi ' 1 MPa. This value corresponds to the stress that is accumulated in a time interval t0 = 500 a at a rate of 2 kPa a−1 or

t0 = 50 a at a rate of 20 kPa a−1. From Eq. (20) with a typical value ε= 0.7 (Scholz, 1990), we obtain ∆σi = 0.6τi.

As to the distance between the centers of two neighbouring faults, we may roughly assume r = 2
√
Ai = 20 km. Then,

according to Eq. (16) and Eq. (17), the stress ∆σij transferred from a fault to its first neighbours is in the order of 10 kPa, so5

that the maximum value of ∆σij (i 6= j) is in the order of one hundredth of stress drop. It must be noted that a greater value of

mi does not entail a proportionally greater value of ∆σij , because it implies a greater fault area and a greater distance between

faults.

An obvious effect of fault interaction is the shortening of time intervals between seismic events: for neighbouring faults, the

gained time ∆σij/|σ̇| ranges from 5 to 0.5 a according to the value of σ̇. Hence the maximum stress transferred by one event10

is equivalent to several months or several years of tectonic loading.

The magnitude of the differences dij between Coulomb stresses is critical for the occurrence of a sequence. A lower limit

for dij is set by the magnitude of transferred stress ∆σij (i 6= j). If dij is smaller than ∆σij , the failure of the i-th fault would

immediately produce the failure of the j-th fault, in contrast with assumption 5. Hence a condition for having a sequence of n

distinct events is dij >∆σij at any time.15

An upper limit for dij is set by the observed durations of seismic sequences. The dij must be small enough that a sequence

is completed within a few months, if we take into account the effect of stress transfer between faults. Hence we may assume

as an upper limit for dij the stress change ẋ δt that tectonic loading produces in a time δt�∆T (assumption 6) plus the sum

of transferred stresses ∆xij (i 6= j). A greater value for δt (several decades) can be assumed for lower stress rates, a smaller

value (several years) for higher stress rates.20

With this premise, we consider how the order α∗ of events in a sequence is determined. The quantities determining α∗ are

the initial stress state of the fault system, the stress drops and the stress transfers associated with each event.

The simplest case is when the stress drops are about equal to each other and the dij are always greater than the transferred

stresses ∆xij (i 6= j). If these conditions are fulfilled, the only effect of the k-th event is to shift the label ik to the last position

in the permutation αk, while the stress transfers ∆xikj do not change the relative positions of the other labels. So we can25

associate with each event a permutation

η =

i1 i2 . . . in

i2 i3 . . . i1

 (46)

such that

αk = ηαk−1 (47)

It follows that the order of events is given by the initial permutation, i.e. α∗ = α0. The final permutation αn is also equal to α0,30

but this does not imply the repetition of the order α∗ in the following sequence. According to Eq. (36), the new sequence will

start with different values of dij , that may produce a different order of events.
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Apart from the case just described, the order implied by α0 is generally changed during a sequence, because the dij have the

same order of magnitude as the ∆xij (i 6= j). In addition, if an event j has a stress drop that is considerably greater than the

others, the label ij will permanently occupy the last position in the permutation, thus altering the initial order. It follows that

the order of events is different from the initial order of stresses, i.e. α∗ 6= α0. The final permutation αn is also different from

α0.5

7 An example: the case n = 3

As an example, we consider a system made of three faults with strike-slip mechanism. This case is considered because it can

be illustrated graphically, owing to the small number of variables involved. Cases with n > 3 would require higher dimensional

spaces. The graphical representation allows a better understanding of the evolution of the state of the fault system during a

seismic sequence.10

For the sake of simplicity, we suppose that the faults are equal to each other, with distances r12 = r23 = 20 km between their

centers. With a strain rate ė= 10−14 s−1, the stress rate calculated from Eq. (6) is σ̇ ' 19 kPa a−1. For the sake of simplicity, we

suppose that the faults have the same static friction τ = 1 MPa and produce events with the same seismic moment m0 = 1018

Nm. The stress transfer matrix (15) is symmetric, with nondiagonal components ∆x12 ' 17 kPa and ∆x13 ' 2 kPa. With a

typical value ε= 0.7, Eq. (20) yields stress drops ∆xi = 600 kPa.15

We consider coordinates xi/τ . The parallelepiped S is a cube with unit edge, defined by the disequalities

−1≤ xi/τ ≤ 0 (48)

and can be divided into 6 subsets Sj corresponding to the 6 permutations of N3. During the interseismic intervals, the repre-

sentative point x(t) of the system draws an orbit parallel to the line

x1 = x2 = x3 (49)20

An event occurs whenever the point reaches one of the coordinate planes.

As anticipated in section 3, we can rotate the coordinate system so that the ξ3 axis coincides with line (49). It is easy to see

that

R =


b −c −a
−c b −a
a a a

 (50)

where25

a=
1√
3
, b=

1 + a

2
, c=

1− a
2

(51)

The projection of S on the plane ξ3 = 0 is a regular hexagon H with side a (Fig. 2a). It is divided into 6 equilateral triangles

Hk, that are the projections of the subsets Sk. We can follow the evolution of the system by looking at the projection P of the

11



representative point on H . During the interseismic intervals, P does not change, because the representative point moves on a

line perpendicular to H , and is close to the origin, because the dij are much smaller than τ . Whenever an event takes place, P

moves to a different subset of H .

Suppose that, at a certain instant t0 of the interseismic interval preceding a sequence, the state of the system is

x0 = x(t0) = (x01,x02,x03) (52)5

with x01 > x02 > x03. The associated permutation is then

α0 =

1 2 3

1 2 3

 (53)

and the representative point P0 belongs to the subset ofH labeled with 123 in Fig. 2b. We choose the vector x0 in order that the

sequence is made of 3 distinct events, occurring in the order given by α0. Then d12 and d13 must be positive, with d12 < d13.

According to the discussion in the previous section,10

∆x12 < d12 < d13 <∆x13 + ∆x23 + σ̇δt (54)

where we assume δt= 1 a, so that σ̇δt' 19 kPa. Then 17kPa< d12 < d13 < 38kPa and we choose d12 = 20 kPa and d13 =

25 kPa. At the beginning of the sequence, the state is

x(t1−) = (0,d21,d31) (55)

The mean is x̄=−15 kPa, with a standard deviation s= 10 kPa. The state immediately after the first event is15

x(t1+) = (∆x11,d21 + ∆x12,d31 + ∆x13) (56)

According to Eq. (47), the associated permutation is α1 = ηα0 with

η =

1 2 3

2 3 1

 (57)

and the representative point P1 belongs to the subset of H labeled with 231 in Fig. 2b. From Eq. (29), the time interval between

the first and the second event is ∆t1 = 66 d. At the end of this interval, the state is20

x(t2−) = (x1(t1+) + σ̇∆t1,0,x3(t1+) + σ̇∆t1) (58)

and the second event takes place. The state becomes

x(t2+) = (x1(t2−) + ∆x21,∆x22,x3(t2−) + ∆x23) (59)

The associated permutation is α2 = ηα1 and the representative point P2 belongs to the subset of H labeled with 312 in Fig. 2b.

The time interval between the second and the third event is ∆t2 = 56 d. At t= t3− the state is25

x(t3−) = (x1(t2+) + σ̇∆t2,x2(t2+) + σ̇∆t2,0) (60)

12



The third event takes place and the state becomes

x(t3+) = (x1(t3−) + ∆x31,x2(t3−) + ∆x32,∆x33) (61)

with α3 = ηα2, that coincides with α0. The representative point P3 belongs to the subset of H labeled with 123 in Fig. 2c.

According to Eq. (26), the duration of the sequence is ∆t= 122 d. In the absence of interaction, the duration would have been

∆t′ = 482 d from Eq. (28). The evolution of the three components in time is shown in Fig. 3.5

The final state is very different from the initial one, with a value of x̄ that is about 40 times greater, while s has not changed.

The differences between components are d12 = 5 kPa and d13 = 25 kPa, so that x2 has become closer to x1 and farther from

x3. In fact, the state no longer fulfills the condition d12 >∆x12 entailing that, when the next sequence occurs, the stress ∆x12

transferred to fault 2 by the slip of fault 1 will induce the immediate failure of fault 2.

According to Eq. (45), the duration of the time interval before the next sequence is ∆T ' 30 a. Even though the order of10

events in this sequence is the same as in the previous one, the durations of the intervals ∆tk are different. Moreover the stress

distribution is altered in such a way that α3 6= α0, entailing that even the order of events will be different in the following

sequence.

The example shows that, even in a simple case as the one considered, the changes in dij occurring in a sequence inevitably

change the characteristics of the following sequences. A further source of change intervenes when the events have different15

sizes, as shown in the following section.

8 The 2012 Emilia sequence

We consider the 2012 Emilia (Italy) seismic sequence, that was made of seven events with magnitudes between 5 and 6

(Pezzo et al., 2013). They occurred in the period between May 20th and June 3rd, 2012, and can be ascribed to a fault system

approximately lined up in the west-east direction, with a total length of about 50 km. The faults are all of thrust type and20

shallow hypocenters between 5 and 10 km of depth (Fig. 4).

The Emilia sequence has been studied in detail by several authors, who determined the locations and seismic moments of the

events (Scognamiglio et al., 2012), the source functions and seismic spectra (Castro et al., 2013) and the coseismic deformation

(Pezzo et al., 2013). Convertito et al. (2013) suggested that dynamic triggering caused by seismic waves might be the primary

factor to explain the evolution of the Emilia sequence, in addition to the variation in permeability and pore-pressure effects due25

to a massive presence of fluids in the Po Plain basin.

As stated in section 2, we neglect the effect of pore fluid diffusion, on the basis of considerations in Appendix B, as well as

the possible effect of seismic waves. Our aim is not to simulate the Emilia sequence in detail, but to use it as an example of

a complex sequence for which the present model can afford the retrieval of the initial and final stress states. If further effects

are relevant and are introduced in the calculations, they may alter the sequence of permutations and yield a different final30

permutation. However they would not change the general conclusions of the paper.
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According to the model, we approximate the real fault system with a set of n= 7 faults having the same strike and dip angles

and the same average depth. If we number the faults from west to east, the order of events is given by

α∗ =

1 2 3 4 5 6 7

5 6 7 4 3 2 1

 (62)

Therefore, fault slip started about the middle of the system and propagated eastward up to the end of the system (5, 6, 7); then

it propagated from the middle to the west end (4, 3, 2, 1) (Fig. 5).5

The data required for retrieving the initial and final states according to Eq. (31) and Eq. (32) are the elastic and frictional

properties of the medium (the rigidity µ, the Poisson ratio ν, the coefficient κ of static friction), the geometry of the faults (the

areas Ai, the distances rij , the dip angle δ), the strain rate ė, the occurrence times ti and the seismic moments mi of the events.

As to the elastic and frictional properties, we take µ= 30 GPa, ν = 0.25 and an effective coefficient of friction κ= 0.6.

The areas and the locations of the faults have been inferred by employing the distances between hypocenters along the strike10

direction as constraints (Caporali and Ostini, 2012; Serpelloni et al., 2012). The distances between the centres of the faults are

r12 = r23 = r67 = 5 km, r34 = r56 = 8 km, r45 = 12 km. The projection of the faults on a vertical plane is shown in Fig. 6.

We treat all sources as pure reverse, dip-slip faults with δ = 40◦, an average of the values given by Convertito et al. (2013).

The strain rate is ė=−3×10−15 s−1 (Caporali and Ostini, 2012). The moments mi are derived from the moment magnitudes

reported in Tramelli et al. (2014), whereas fault slips ui are calculated from mi and Ai. The data are shown in Table 1. From15

Eq. (19) with C = 1, the values of stress drops ∆σi are in the range between 0.9 and 1.9 MPa, consistent with the range

evaluated by Castro et al. (2013) from seismic spectra.

From these data we calculate the rate ẋ of Coulomb stress and the stress transfer matrix ∆xij . From Eq. (10), ẋ' 2 kPa

a−1. The initial state x(t1−) and the final state x(t7+) are shown in Fig. 7. The initial and final permutations are respectively

α0 =

1 2 3 4 5 6 7

5 4 7 1 2 3 6

 (63)20

α7 =

1 2 3 4 5 6 7

6 7 1 2 4 3 5

 (64)

The evolution of the system during the sequence shows that Eq. (47) does not hold for any value of k. Therefore α7 is different

from α0 and they are both different from α∗. This is a consequence of the heterogeneous distribution of seismic moment in

the fault system. In particular, the evolution of stress was conditioned by the first and the fourth event, due to the failures of25

faults 5 and 4 respectively, having greater seismic moments than the average. As a consequence of the greater stress drop, fault

5 permanently occupies the last position in all permutations from α1 to α7. The stress transfers associated with each event

also play a role in determining the evolution of the sequence, contributing to the rearrangement in the permutations. Due to the

many stress transfers to fault 6, Eq. (28) yields ∆t′ ' 46 a for the duration of the sequence in the absence of fault interaction,

a much longer time than the observed duration ∆t' 15 d.30
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Figure 6 shows that, at the beginning of the sequence, the mean Coulomb stress was x̄'−0.05 MPa, with a standard

deviation s' 0.03 MPa, whereas at the end of the sequence x̄'−1.2 MPa and s' 0.4 MPa. Therefore Coulomb stresses are

much more spread out after the sequence than before, since the standard deviation is one order of magnitude larger.

According to Eq. (64), the faults with the highest values of xi after the sequence are the 6th, 7th and 1st, showing that, in the

absence of external perturbations, the next sequence would start in the proximity of one end of the system, rather than in the5

middle as the 2012 sequence. According to Eq. (45), the next sequence will take place after an interseismic interval ∆T ' 440

a. This figure appears to be representative of typical recurrence times of moderate-size earthquakes in this area: the largest

event before the 2012 sequence was the Mw 5.5 November 17, 1570, Ferrara earthquake (Rovida et al., 2011).

9 Conclusions

The aim of this study was to enlighten the conditions allowing the occurrence of seismic sequences and the processes control-10

ling the order of events in a sequence. When we observe a sequence, we acknowledge that it is due to a system of n faults that

fail one after the other. However, we do not know why the faults fail in that particular order. The order must be a consequence

of the initial stress state of the fault system and of the mutual interaction between faults.

In order to unravel this problem, we introduced the concept of permutation of the n faults, ranking the faults according to

the magnitudes of their Coulomb stresses. Such a permutation describes the state of the system at a given time and changes15

whenever a fault is activated. The order of activation itself can be described by a particular permutation of the faults. We have

shown that the knowledge of the order of activation of faults in the sequence yields information on the state of the fault system

before and after the sequence.

The evolution of the fault system during a seismic sequence can be better understood if we consider the state space. Since

a permutation can be associated with each state of the system, the state space can be divided into n! subsets corresponding to20

the n! permutations. The permutation does not change as long as the system is at rest, so that the state remains in the same

subset of the state space. Whenever a seismic event takes place, the order of Coulomb stresses is changed and is expressed by

a different permutation: an event corresponds to a switch of the state vector to a different subset of the state space.

We are now in a position to answer the questions we asked in the Introduction.

1) The occurrence of seismic sequences requires particular stress conditions. A crucial role is played by the differences25

between the Coulomb stresses of faults. A lower limit for these differences is set by the magnitude of transferred stresses and

an upper limit by the observed durations of seismic sequences. This constrains their values in a narrow interval in the order of

tens of kPa.

2) The order of events in a sequence is determined by the initial distribution of Coulomb stresses, by the stress drops and

by the stress transfers associated with each event. The order of events that is implicit in the initial state is generally modified30

by the changes in the state vector intervening during the sequence. The dominant contribution to stress changes is given by

stress drops, that are typically hundred times greater than stress transfers. However stress transfers have a major role both in

anticipating the occurrence times of the events and in altering the order of events implicit in the initial state.
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3) The characteristics of consecutive sequences originated by a fault system are bound to change. The order implicit in the

initial stress distribution is generally changed during the sequence, because the stress transfers between faults have the same

order of magnitude as the differences in Coulomb stresses and because one or more events in the sequence may have greater

stress drops than the others. In all cases, the state of the system at the end of a sequence is different from the initial one,

entailing that the durations of the interseismic intervals between consecutive sequences and between events in a sequence are5

different.

4) The observation of a seismic sequence allows the retrieval of the state of stress at any time during the sequence. In

particular, we can calculate the state of stress at the beginning and at the end of the sequence. This has been done as an

application for the 2012 Emilia (Italy) seismic sequence, that was made of seven events with magnitudes between 5 and 6.

In this case, the evolution of stress was conditioned by the first and the fourth event, having greater seismic moments than10

the average. The model shows the complex interplay between fault dislocations that produced the observed order of events,

resulting in a greater stress heterogeneity at the end of the sequence. It predicts that, in the absence of external perturbations,

the next sequence will occur after an interseismic interval of a few centuries and will be completely different from the 2012

sequence. We neglected the effects of pore fluid diffusion and of dynamic triggering, that may have had a role in this case

(Convertito et al., 2013). These effects may change the details of the results, but not the general conclusions illustrated here.15

Appendix A

We consider two different sources: a point-like dislocation (a double couple of forces) in an unbounded elastic medium and a

finite square dislocation in an elastic half-space. For both sources, we calculate the tangential traction σt produced on the fault

plane in the slip direction, as a function of the distance from the source along the strike direction x.

We assume that the elastic medium is a Poisson solid with rigidity µ. The fault lays on the plane y = 0 and its center is in20

the origin of the coordinate system. Let ni be the unit vector perpendicular to the fault and mi be the unit vector in the slip

direction, so that

ni = (0,1,0), mi = (cosθ,0,sinθ), (A1)

where θ is the rake angle. The tangential traction in the slip direction is then

σt = σijminj , (A2)25

where σij is the stress tensor. We compare the tractions produced by the two sources in two cases: a strike-slip fault (θ = 0) and

a dip-slip fault (θ = π/2). In the two cases, we have σt = σxy and σt = σyz respectively. Let m0 be the scalar seismic moment

of the dislocation.

a) In the case of a point-like source, the moment tensor of the equivalent double couple has nonvanishing components

Mxy =−m0 cosθ, Myz =−m0 sinθ. (A3)30
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The displacement is

ui =MjkGij,k, (A4)

where

Gij =
1

8πµ

(
r,kk δij −

2

3
r,ij

)
(A5)

is the Somigliana tensor and5

r =
√
x2 + y2 + z2. (A6)

In the case θ = 0, we have

σt = µ(ux,y +uy,x). (A7)

Setting y = 0 and z = 0, we obtain

σt(r) =
5m0

12πr3
, (A8)10

where r = |x|. In the case θ = π/2, we have

σt = µ(uy,z +uz,y). (A9)

Setting again y = 0 and z = 0, we obtain

σt(r) =
m0

6πr3
. (A10)

b) The displacement produced by a finite, rectangular source in an elastic half-space was given by Okada (1992). We consider15

a square source with side L and center at depth L. The dip angle is δ = π/4. The analytical expressions of σt(r) are too

complicated to be reported here and we only show their graphs.

A comparison between the two solutions is shown in Fig. A1.

Appendix B

Solutions for a point-like dislocation in a homogeneous and isotropic poroelastic medium are given by Cheng and Detournay20

(1998) and Carvalho and Curran (1998). The stress field is made of a constant term (the coseismic stress) plus a time-dependent

term associated with fluid diffusion. We introduce a dimensionless variable

ξ(t) =
rij

2
√
ct

(B1)

where c is the hydraulic diffusivity and a coefficient

a=
νu− ν

(1− ν)(1− νu)
(B2)25
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where νu is the undrained Poisson modulus. When the i-th fault slips with moment mi, the additional tangential traction on

the j-th fault is

∆σ′ij(t) =
ami

2πr3ij
f(t) (B3)

where

f(t) =− 2√
π
ξe−ξ

2

+ 3
erf ξ

ξ2
− 6√

π

e−ξ
2

ξ
+ erfcξ (B4)5

for strike-slip and

f(t) =−3

4

erf ξ

ξ2
+

3

2
√
π

e−ξ
2

ξ
− 1

2
erfcξ (B5)

for dip-slip (Fig. B1). For t→∞, the traction (B3) approaches an asymptotic value

∆σ∞ij =
ami

2πr3ij
(B6)

for strike-slip and10

∆σ∞ij =− ami

4πr3ij
(B7)

for dip-slip. According to the choice of a Poisson solid, we take νu = 0.25. For a typical value ν = 0.2 under drained conditions

(e.g. Rice and Cleary, 1976), it results a' 0.1. Then the ratio |∆σ∞ij |/∆σij between the asymptotic poroelastic stress and the

coseismic stress is about 0.12 for strike-slip and 0.15 for dip-slip. These are the maximum values, that may be reached for

t� τ , where τ = r2ij/(4c) is the characteristic diffusion time. For distances of tens of km, τ is much longer than the typical15

duration of a seismic sequence, so that the poroelastic effect is at least one order of magnitude smaller than the coseismic stress

transfer.
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Figure Captions

Fig. 1 - Sketch of the model with n coplanar faults. The x axis is the strike direction. Distances rij between the i-th and the

j-th fault are computed from the fault centers.

Fig. 2 - Evolution of a system made of three faults (n= 3), represented in the state space: (a) The hexagon H , defined in

section 7, with its subsets labeled by the associated permutations; (b) States of the system during a seismic sequence: P0 is the30

initial state, Pi (i= 1,2,3) is the state after the i-th event of the sequence; (c) magnification of H showing the initial and final

states P0 and P3.

Fig. 3 - Evolution of a system made of three faults (n= 3): components of the state vector x as functions of time during the

seismic sequence shown in Fig. 2 (τ = 1 MPa, δt= 1 a). The steps labeled by i= 1, 2 and 3 correspond to the occurrence of

20



the events in the sequence.

Fig. 4 - Geographic location of the 2012 Emilia seismic sequence (Italy). Stars indicate the epicenters, numbers indicate the

order of fault activation.

Fig. 5 - Seismic moments mi of the events in the 2012 Emilia sequence. The upper scale indicates the fault number; the lower

scale the order of activation. The two strings of numbers yield the permutation α∗ in Eq. (62).5

Fig. 6 - Geometry of the model for the 2012 Emilia seismic sequence. The rectangles are the projections of faults on a vertical

plane. Faults are numbered from west to east. Stars indicate the hypocenters.

Fig. 7 - Components of the state vector x at the beginning (a) and at the end (b) of the 2012 Emilia seismic sequence, as

calculated from the model. Faults are numbered from west to east. The mean x̄ and the standard deviation s are shown.

Fig. A1 - Tangential traction produced by a dislocation in the slip direction on the fault plane in the case of a pointlike source10

in an unbounded medium (solid lines) and a finite source in a half-space (dashed lines): (a) strike-slip; (b) dip-slip.

Fig. B1 - Function f(t) in the case of strike-slip (solid line) and dip-slip (dashed line). Time is in units of the characteristic

diffusion time τ .
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Table 1. Data for the seismic events of the 2012 Emilia sequence. The origin times and the seismic moments mi are taken from Pezzo et al.

(2013) and Tramelli et al. (2014), respectively. The areas Ai take into account the analysis of Caporali and Ostini (2012) and Serpelloni et

al. (2012). Fault slips ui are calculated from mi and Ai. See Fig. 6 for fault numbers.

Event Fault

Origin time (UTC)

yyyy/mm/dd

hh:mm:ss

ti (d) mi (Nm) Ai (km
2) ui (m)

1 5 2012/05/20 02:03:52 0 8.9 · 1017 60 0.49

2 6 2012/05/20 02:07:31 0.0025 5.6 · 1016 16 0.12

3 7 2012/05/20 13:18:02 0.47 5.6 · 1016 16 0.12

4 4 2012/05/29 07:00:03 9.2 6.3 · 1017 60 0.35

5 3 2012/05/29 10:55:57 9.4 1.1 · 1017 16 0.23

6 2 2012/05/29 11:00:25 9.4 7.9 · 1016 16 0.16

7 1 2012/06/03 19:20:43 15 5.6 · 1016 16 0.12

Figure 1.
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Figure 2.

26 M. Dragoni and E. Lorenzano

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

ξ1

ξ 2

(a)

123

213
231

321

312

132

(a, a)

(−c, b)

(−b, c)

(−a,−a)

(c,−b)

(b,−c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

ξ1

ξ 2

(b)

P0

P1

P2

123

231

312

−0.04 −0.02 0 0.02 0.04
−0.04

−0.02

0

0.02

0.04

ξ1

ξ 2

(c)

P0

P3

123

Figure 2. Case n = 3: (a) The hexagon H with its subsets labeled by the associated permutation; (b)

States of the system during a seismic sequence: each point belongs to the subset labeled by the associated

permutation; (c) magnification of H showing the initial and final states.
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Figure 3.
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Figure 4.
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Figure 7.
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Figure A1.

30 M. Dragoni and E. Lorenzano
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Figure A1. Tangential traction produced by a dislocation in the slip direction on the fault plane in the case

of a pointlike source in an unbounded medium (solid lines) and a finite source in a half-space (dashed lines):

(a) strike-slip; (b) dip-slip. 28



Figure B1.
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