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Abstract: An extension method of the conditional nonlinear optimal perturbation 17 

about parameter (CNOP-P) is adopted to study the soil parameter optimization for the 18 

Hulunbeier Steppe within the common land model (CoLM) with the differential 19 

evolution (DE) method. Using National Center for Environmental 20 

Prediction/Department of Energy (NCEP/DOE) Atmospheric Model Intercomparison 21 

Project-Ⅱ  (AMIP-Ⅱ ) 6-hourly Reanalysis Gaussian Grid data and National 22 

Meteorological Center (NMC) Reanalysis 6-hourly surface fluxes data, three 23 

experiments (Ⅰ and Ⅱ) were designed to study the impact of the percentages of 24 

sand and clay of the shallow soil in CoLM on simulating the shallow soil moisture. To 25 

study the shallow soil moisture and the latent heat flux simultaneously, experiment 26 

(Ⅲ) is designed. The optimal parameters obtained by the extended CNOP-P method 27 

are used to predict the shallow soil moisture in the following month. In all the three 28 

experiments, after optimization stage, the optimal soil parameters could significantly 29 

improve the simulation ability of CoLM in the Inner Mongolia to the shallow soil 30 

moisture at the stage of prediction; the optimal parameters attained by the 31 

double-parameter optimal experiment could make CoLM simulate the shallow soil 32 

moisture better than the single-parameter optimal experiment in the optimization slot. 33 

Moreover, the results of experiments (Ⅰand Ⅱ) justify the conclusion that the more 34 

accurate the atmospheric forcing data and observation data are, the more effective the 35 

results of optimization will be. 36 

Keywords: CNOP-P, parameter optimization, shallow soil moisture, CoLM, Inner 37 

Mongolia 38 

1. Introduction 39 

With the population explosion, the atmospheric environment pollution, the marine 40 

ecological deterioration, the land erosion and desertification, the sharp drop in fores 41 

resources, the acid harm, the extinction of species, the water pollution and the toxic 42 

waste pollution, global warming has recently been a serious problem that more and 43 

more scientists are concerned with. Global worming will result in the global climate 44 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-13, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 27 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

3 
 

change including glacial ablation, sea level rise, floods, landslides, debris flow and so 45 

on. In addition, with global warming, the atmospheric temperature increases and the 46 

evaporation increases, so there is a severer trial in the areas which usually lack of rain 47 

with arid climate, the semi-arid areas which were not covered with plants well may be 48 

degenerated into the semi-desert areas, and so global warming may induce the 49 

acceleration of the desertification in the inland areas. 50 

China is one of the countries which are severely affected by desertification. 51 

Desertification in Northern China has been an important problem which needs to be 52 

solved urgently for national economic and social development, with the wide 53 

distribution and rapid development of the desertification. In China, Inner Mongolia 54 

Autonomous Region is the most serious region affected by the desertification , and in 55 

recent years, there are great temperature and precipitation changes(Su et al., 2008; 56 

Han et al., 2010; Zhang et al., 2014), which can influence the climate of Inner 57 

Mongolia. So, it is necessary to predict accurately the variables, such as temperature, 58 

precipitation, soil moisture and latent heat et al., which are very important to study the 59 

drought degree of Inner Mongolia Autonomous Region so that it could supply some 60 

help for the management and control of desertification, especially for the agricultural 61 

and animal husbandry production. 62 

Hulunbeier Steppe is located in the northeast grassland of China's Inner Mongolia 63 

Autonomous Region, west of the Greater Khingan Mountains. The Greater Khingan 64 

Mountains separates the Hulunbuir Steppe into two kinds of climate. The eastern 65 

ridge is the monsoon climate and the western ridge is the continental climate from the 66 

point of the climate types. From the point of the annual precipitation types, the eastern 67 

ridge is the semi-humid climate and the western ridge is a semi-arid climate. The 68 

special geographical position of Hulunbuir brings about that the total characteristics in 69 

climate of Hulunbiur Steppe is cold and dry in winter, hot and rainy in summer and 70 

the annual and daily temperature differences are large. Since 1999, the climate of 71 

Hulunbiur became unusual: the annual precipitation is low, the spring is droughty and 72 

windy, the summer continues the high temperature, water evaporation capacity 73 

increases and the level of drought increases. Located in the arid and semi-arid area of 74 
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North China, the Hulunbiur Steppe is one of the important livestock husbandry bases 75 

and high quality natural pastures in China, so, it is extremely important to study the 76 

land surface of the Hulunbiur Steppe. 77 

The land surface processes mainly study all the processes which are closely related 78 

to the atmosphere movement at the underlying surface. They contain the complex soil 79 

water heat transmission and vegetation physiological and biochemical processes. 80 

They are one of the fundamental biochemical and physical processes which could 81 

affect atmospheric circulation and climatic change. In order to understand the land 82 

surface processes better, it is worth improving the land surface models (LSMs). Sun 83 

(2005) pointed out that the parameter values in some physical processes are inaccurate, 84 

and the simulations of LSMs are also inaccurate with the impact of inaccurate 85 

parameter values. So, it is meaningful to optimize the parameters of LSMs. Some 86 

researchers have investigated the parameter optimization in LSMs. With the 87 

Chameleon Surface Model (CHASM), Xia et al. (2002, 2004a, 2004b) studied the 88 

adaptability of different parameter optimization methods in LSMs. Their results show 89 

that the parameter optimization in LSMs could improve LSMs in some respects. 90 

Bastidas et al. (2006) adopted the multicriteria method to optimize the parameters in 91 

four different LSMs at five stations. Their researches indicate that the parameter 92 

optimization can improve LSMs. Li et al. (2011a, 2011b) optimized parameters in a 93 

LSM with the expanded CNOP method and their work show that the expanded CNOP 94 

method can improve the simulation ability of the LSM. So, with a suitable method, 95 

the parameter optimization of LSMs could be carried out effectively. There are several 96 

parameter optimization methods suitable to LSMs like the Shuffled Complex 97 

Evolution (SCE-UA) method, the Multistep Auromatic Calibration Scheme (MACS), 98 

the Multi-Objective Complex Evolution (MOCOM-UA) method and the difference 99 

evolution (DE) method. All the prior three methods use a complex method named the 100 

complex evolution method, need massive computation, require tedious programming 101 

and have poor transferability. DE method has a rapid computability, a strong 102 

transferability and a simple designed structure. So, DE method is suitable to execute 103 

the parameter optimization of LSMs. 104 
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Soil moisture is important to many hydrological, biogeochemical and biological 105 

processes. It plays a key role in processes of the complex soil water heat transmission 106 

and vegetation physiological and biochemical, and also has a direct impact on the soil 107 

properties, field climate and the decomposition of nutrients. In addition, soil moisture 108 

is one of the important conditions for the movement of the microbes in the soil and 109 

the breeding of crops. It is affected seriously by the soil property, the atmosphere, the 110 

vegetation and so on. If the soil moisture is too high, it is easy to worsen the soil 111 

aeration, affect the life action of crops such as the growth and the respiration of the 112 

root of crops and the activity of the microbes in the soil. Thereafter, soil moisture can 113 

affect plowing and sowing a field, as well as the soil temperature. For government 114 

agencies and private companies, who are concerned with weather and climate, 115 

geotechnical engineering, flood control, water quality, soil erosion, slope failure, and 116 

so on, information about soil moisture is very essential. So the investigation of the 117 

ability of land surface models to simulate shallow soil moisture is very important in 118 

the aspect of the improvement of environment, the development of the agriculture and 119 

the control of desertification.  120 

The conditional nonlinear optimal perturbation (CNOP) method is put forward and 121 

developed by Mu et al. (2003, 2010) respectively. The approach of conditional 122 

nonlinear optimal perturbation related to parameter (CNOP-P) is used to attain the 123 

optimal parameter perturbation, whose nonlinear evolution in the forecast stage gains 124 

the optimal value and it is one special case of CNOP. CNOP method has been 125 

employed to investigate the response of a grassland ecosystem to climate change and 126 

human activities (Mu and Wang, 2007; Sun and Mu, 2011), ENSO predictability (Mu 127 

and Duan, 2003; Duan et al., 2004; Duan and Mu, 2006, 2009; Duan et al., 2008; 128 

Duan et al., 2009a, 2009b; Duan and Luo, 2010; Duan and Zhang, 2010; Mu et al., 129 

2010), the sensitivity analysis to the eutrophication of lakes (Wang et al., 2012) and so 130 

on, and a series of research results are achieved. Sun and Mu (2013, 2014) used the 131 

CNOP-P method to study the maximal variation in estimating the net primary 132 

production (NPP). The results show that CNOP-P method can capture the 133 

characteristic of nonlinear dynamical system As CNOP-P could make the dynamic 134 
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system have the largest nonlinear development in the forecast stage, and it regards 135 

both the sensitivity of the objective parameter to the dynamic system and the 136 

influence of the nonlinearity of the dynamic system to the evolution from the initial 137 

moment to the forecast stage, CNOP-P method could possibly be extended and then 138 

applied to the area of parameter optimization in LSMs. Wang and Huo (2013) used 139 

the extended CNOP-P method and DE method to optimal some parameters in CoLM, 140 

and the results showed that after optimization, the simulation ability of CoLM can be 141 

improved to some degree in the North China Plain. So the expanded CNOP-P method 142 

and DE method are suitable to be employed to optimize the parameters in CoLM. So, 143 

it is reasonable to optimize the parameters with the expanded CNOP-P method and 144 

DE method to improve the simulating ability of soil moisture in the CoLM in the 145 

Hulunbiur Steppe. 146 

As a state-of-the-art land surface model, Common Land Model (CoLM) is 147 

developed by Dai et al. (2001). This model combines the best features of three other 148 

land surface models, such as the Land Surface Model of Bonan (1996), the 149 

Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson et al. (1993) and the 150 

1994 version of theChinese Academy of Sciences Institute of Atmo-spheric Physics 151 

LSM (IAP94) (Dai and Zeng, 1997). Luo et al. (2008), Xin et al. (2006) , Song et al. 152 

(2009a, 2009b), Zheng et al. (2009), Meng and Cui (2007) simulate China areas with 153 

CoLM, their results indicate that CoLM could simulate China well. So, in this paper, 154 

CoLM is employed to investigate the simulation of soil moisture in the Hulunbiur 155 

Steppe. 156 

The percentage of sand and the percentage of clay in soil are important to the soil 157 

structure and they are different in different kinds of soil. Soil texture, which is related 158 

to the crop production and the field management, is an important soil characteristic 159 

and it is determined by the content of sand, clay and silt in the soil. Soil moisture 160 

could infect the proportion that water drains through the soil, water holding capacity, 161 

soil tilth, organic matter content, and drainage largely. As clayey soil has a larger 162 

water holding capacity than sandy soil, water could move more freely through the 163 

sandy soil than the clayey soil. Furthermore, in CoLM, the thermal conductivity of 164 
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soil solid, the saturated matrix potential, the specific heat capacity of soil solid, the 165 

saturated hydraulic conductivity, and the porosity are produced according to the 166 

percentage of sand and the percentage of clay in soil. Therefore, we chose the 167 

percentage of sand and the percentage of clay as the optimal parameters in CoLM in 168 

this paper.  169 

Actually, we have adopted the expanded CNOP-P method to study the impact of 170 

sand and clay in North China Plain (Wang and Huo, 2013). The results show that the 171 

expanded CNOP-P method and DE method are efficient to optimize the parameters 172 

sand and clay, and the parameters after optimization could make CoLM simulates the 173 

shallow soil moisture better in this area. In addition, we get the conclusion that the 174 

optimization results are affected by the atmospheric forcing data and the observations 175 

of the shallow soil moisture, and the more accurate the data are, the more significant 176 

the optimization results may be. In the purpose of investigating the impact of the 177 

percentage of sand and clay in the soil on the soil moisture in CoLM in Hulunbiur 178 

Steppe, a special arid and semiarid area, and comparing with the results of our former 179 

research, the same three experiments (I-III) as Wang and Huo (2013) are designed. In 180 

this paper, we will check this suspect with these three experiments. 181 

2. The extension of CNOP-P 182 

2.1 Definition of CNOP-P 183 

In works of Mu et al. (2003, 2010), CNOP method is put forward and developed. 184 

CNOP-P is aimed at the parameter perturbation and it is one special case of CNOP. 185 

Here, we introduce this approach for reader’s convenience. Let a nonlinear dynamic 186 

system be described as following equations: 187 

 

0 0

, , , [0, ]

|t

w
M w P x t T

t

w w


  


 

                                                   (1)  188 

where 1 2( , ) ( ( , ), ( , ), , ( , ))mw x t w x t w x t w x t  is a model-state vector, M  is a nonlinear 189 

partial differential operator, n , 1 2( , , , )nx x x x , 0 T   , 0w  is the initial value, 190 

1 2( , , , )lP P P P  is a parameter vector and 1,2, ,i l  , iP  is a model parameter 191 

invariant with time t . 192 
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Suppose that ( )w   is the solution of Eq. (1) at time   and M  is the nonlinear 193 

evolution operator from time 0 to time   corresponding to the operator M , then the 194 

following equation will be established: 195 

0( ) ( , )w M w P  .                                                      (2) 196 

If ( ; )W T P  is the solution of Eq. (1) at time T  corresponding to the parameter 197 

vector P  and the initial value 0w , and ( ; ) ( ; )W T P w T p  is the solution of Eq. (1) at 198 

time T  corresponding to the initial value 0w  and the parameter vector P p , then 199 

the following relations will be established: 200 

0( ; ) ( , )TW T P M w P ,                                                    (3) 201 

0( ; ) ( ; ) ( , )TW T P w T p M w P p   ,                                           (4) 202 

where P  is a parameter perturbation vector and ( ; )w T p  could indicate the departure 203 

level of the solution of Eq. (1) at time T  with the basic state ( ; )W T P , which is 204 

caused by the parameter perturbation vector p . 205 

We choose an appropriate norm || ||  based on the detail physical background. The 206 

objective function under the given constraint condition || || ( 0)p     is defined as 207 

the following relation: 208 

( ) ( ( ; ))J p G w T p ,                                                               (5) 209 

where function ( )G   evaluates the departure level which has been described in the 210 

previous paragraph. The parameter perturbation vector 'p  is the conditional 211 

nonlinear optimal parameter perturbation (CNOP-P), if and only if the parameter 212 

perturbation vector 'p  satisfies the following relation: 213 

max
( ') ( )

|| ||
J p J p

p 


 .                                                    (6) 214 

So CNOP-P is the parameter perturbation vector which could make the objective 215 

function under the given constraint condition attain the maximum, i.e. it is the 216 

parameter perturbation vector that could cause the largest departure level of the 217 

dynamic system at time T . 218 

2.2 Extension of CNOP-P 219 
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In this paper, we use the extension of CNOP-P method proposed by Li et al. (2011a, b) 220 

to optimize the parameter of CoLM. Detailed introduction about the extension of 221 

CNOP-P can also be found in the work of Wang and Huo (2013). Here, we also give a 222 

simple introduction about it. 223 

The parameter perturbation vector 'p  is considered as the extended CNOP-P if 224 

and only if: 225 

max
( ') ( )J p J p

P p 


  ,                                                  (7) 226 

where P  means the original parameter vector, p  is the parameter perturbation 227 

vector,   refers to the value range of the parameter vector and ( )J p  means the 228 

objective function about p  with the following form: 229 

0 0( ) ( ( , ) )TJ p G M w P p O    ,                                           (8) 230 

where 0 T  refers to the time period from time 0 to time T , 0 0( , )TM w P p   is the 231 

simulations from time 0 to time T , O  is the model state observation vector from 232 

time 0 to time T  and the function ( )G   evaluates the departure degree between the 233 

simulations and the observations from time 0 to time T . 234 

Therefore, the extended CNOP-P is the parameter perturbation vector satisfying the 235 

constraint condition that could make the simulations closest to the observations. The 236 

method to get the extended CNOP-P is called the extension of CNOP-P method and it 237 

could be employed to conduct the parameter optimization of the land surface model. 238 

3. The optimization method adopted to calculate CNOP-P 239 

CoLM is a complex model, and the calculation of CNOP-P with the nonlinear 240 

optimization method depending on the adjoint method would need a lot of 241 

computational resource. It is against the standard that we should employ the 242 

optimization method with a little calculation cost. So we use the differential evolution 243 

method (DE method) as the optimization method in our experiments. 244 

In 1995, Storn and Price (1995) proposed DE method to solve the Chebyshev 245 

Polynomial fitting Problem firstly. Liu et al. (2007) found that DE method is effective 246 

to solve the complex optimization problems. DE method is a parallel, random and 247 
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global direct-search algorithm based on the population evolution with the character of 248 

sharing information in populations and remembering group optimal solutions. As a 249 

novel direct search method, DE method use a greedy genetic algorithm to maintain 250 

the excellent population member based on the real number encoding with excellent 251 

convergence properties. Given the randomly generated initial population, DE method 252 

solves the optimization on the basis of the theory of survival of the fittest, in 253 

accordance with the fitness value of every population. It has been applied and 254 

developed by many scholars to solve different problems (He and Wang, 2008; Yu et 255 

al., 2009). Sun and Mu (2009) have found that DE method is effective to obtain 256 

CNOP. Wang and Huo (2013) have used this method to calculate the extension of 257 

CNOP-P effectively. Their work show that it is effective to employ DE method to 258 

handle nonlinear and non-differentiable cost functions if the gradient of the cost 259 

function is hard to obtain or even not obtained. As the cost function about the 260 

parameters may become non-differentiable with the adjustment of the parameter, it is 261 

applicable to optimize the parameters in LSMs with DE method. 262 

4. Experimental design and the numerical results 263 

In this paper, NCEP/DOE AMIP-Ⅱ 6-hourly Reanalysis Gaussian Grid data and 264 

NMC Reanalysis 6-hourly surface fluxes data at NCEP/NCAR Center at the 265 

Hulunbiur Steppe (48.5705 ,120 )N E   are used. NMC Reanalysis 6-hourly surface 266 

fluxes data, which is currently kept using near real-time observations, is one product 267 

of NCEP/NCAR Reanalysis Ⅰ, which is the first of its kind of National Oceanic and 268 

Atmospheric Administration (NOAA). NCEP/DOE AMIP-Ⅱ 6-hourly surface fluxes 269 

data is one product of NCEP/DOE Reanalysis Ⅱ, which is the second version of 270 

NCEP/NCAR Reanalysis Ⅰ and starts from the beginning of the major satellite era 271 

with a better version of the model used, more observations added and assimilation 272 

errors corrected. Both NCEP/DOE AMIP-Ⅱ 6-hourly Reanalysis Gaussian Grid data 273 

and NMC Reanalysis 6-hourly surface fluxes data are used to investigate the 274 

simulation ability of CoLM to the shallow soil moisture. For convenience, we will call 275 
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NCEP/DOE AMIP-Ⅱ 6-hourly Reanalysis Gaussian Grid data dataset Ⅰ and NMC 276 

Reanalysis 6-hourly surface fluxes data dataset Ⅱ in the following part of this paper. 277 

Dataset Ⅰ are the revise of dataset Ⅱ and they are more accurate than dataset Ⅱ. 278 

We will similarly call the percentage of sand in soil sand and the percentage of clay in 279 

soil clay. For the sake of investigating the impact of sand and clay on the shallow soil 280 

moisture, we designed two experiments (Ⅰ and Ⅱ), and simulated the shallow soil 281 

moisture in the following one month with the optimal parameters, which are gained in 282 

the duration of optimization. We select the root mean square deviation as the objective 283 

function with following form: 284 

2

1

( )
n

i i
i

r

s o

f
n






 ,                                                            (9)  285 

where rf  refers to the root mean square deviation, n  means the integral time steps, 286 

is  represents the simulation value and io  is the observation value at time i . 287 

4.1 Experiment Ⅰ and the results 288 

4.1.1 Experiment Ⅰ 289 

The forcing data in dataset Ⅰ, which contain the precipitation and the large-scale 290 

precipitation, the specific humidity and the air temperature at 10 m above the ground, 291 

the wind component in northward direction and eastward direction at 10 m above the 292 

ground, the atmospheric pressure, the atmospheric longwave radiation and the 293 

incident solar radiation at surface, are used in CoLM in experiment Ⅰ. Here, we took 294 

the forcing data in dataset Ⅰ as the observation data, and compared the data in dataset 295 

Ⅰ with the simulation data of CoLM at the same time. 296 

Generally speaking, CoLM might simulate the shallow soil moisture better after the 297 

double-parameter optimal experiment about sand and clay simultaneously than the 298 

single-parameter optimal experiment about sand or clay. So, we carried out both the 299 

single-parameter optimal experiment related to sand and clay separately and the 300 

double-parameter optimal experiment related to sand and clay simultaneously in this 301 

experiment. Through this experiment, we could check whether the optimal results are 302 

correct in the optimization slot at first, and verify whether the optimal parameters, 303 
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which are obtained in the optimization slot, could make CoLM simulate the shallow 304 

soil moisture better at the stage of prediction, and whether the optimal parameters, 305 

which are attained in the double-parameter optimal experiment at the stage of 306 

optimization, could make the simulation ability of CoLM to the shallow soil moisture 307 

the best in the prediction slot. Notice that sand and clay (units: %) are independent 308 

inputs in CoLM, and both in the single-parameter experiment and the 309 

double-parameter experiment, these parameters should satisfy the constraint 310 

condition: 311 

0 sand+clay 100  , 0 sand 100  , 0 clay 100  . 312 

4.1.2 The numerical results of experiment Ⅰ 313 

Through a large number of numerical experiments during many different time ranges, 314 

the numerical results show that the optimal parameters could make CoLM simulate 315 

the shallow soil moisture more accurately. Considering the climate change of Inner 316 

Mongolia (Su et al., 2008; Han et al., 2010), in order to better illustrate this 317 

conclusion, we choose the data in 2005 to carry on the process of spin-up and the 318 

process of spin-up reaches a length of 10 years. We choose the time range from May, 319 

2005 to July, 2005 as the time slot of optimization, and choose August, 2005 as the 320 

time slot of prediction in this experiment. 321 

Table 1 and Table 2 show the numerical results of experiment Ⅰ. In Table 1 and 322 

Table 2, sand optimization refers to the optimization to sand only, clay optimization 323 

means the optimization to clay only, and sand-clay optimization refers to the 324 

optimization to sand and clay simultaneously. In order to better display the difference 325 

of the shallow soil moisture simulated by CoLM before and after optimization, we 326 

add the mean deviation as the reference function in Table 2. The mean deviation is as 327 

following: 328 

1

| |
n

i i
i

m

s o

f
n






  ,                                                     (10)

  329 

where mf  refers to the mean deviation, n  represents the integral time steps, is  is 330 
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the simulation value at time i  and io  refers to the observation value at time i . 331 

Table 1 displays the values of sand and clay before and after optimization, and 332 

Table 2 shows the objective function value and the reference function value before 333 

and after optimization both in the optimization slot and the prediction slot. In Table 2, 334 

obj1  refers to the objective function value at the stage of optimization, obj2  refers 335 

to the objective function value at the stage of prediction, ref1  refers to the reference 336 

function value at the stage of optimization and ref2  refers to the reference function 337 

value at the stage of prediction. It is also the case in all subsequent tables. From Table 338 

2, we know that the objective function value and the reference function value are both 339 

smaller after the sand optimization, the clay optimization and the sand-clay 340 

optimization. In addition, it is clear that the extent of diminution is the largest after the 341 

sand-clay optimization in the optimization slot. So CoLM could simulate the shallow 342 

soil moisture better after each optimization and CoLM could simulate the shallow soil 343 

moisture the best after the sand-clay optimization in the optimization slot. Moreover, 344 

in the prediction slot, the root mean square deviation and the mean deviation are both 345 

smaller after the sand optimization, the clay optimization and the sand-clay 346 

optimization. And the objective function value and the reference function value are 347 

both the smallest after the sand-clay optimization at the stage of prediction. That is to 348 

say, CoLM could predict the shallow soil moisture better at the stage of prediction and 349 

the prediction effect is the best after the sand-clay optimization. 350 

To better illustrate the improvement, Figure 1 and Figure 2 are given to 351 

demonstrate the numerical results of experiment Ⅰ graphically. Figure 1 shows the 352 

simulations of the shallow soil moisture before and after sand optimization, the clay 353 

optimization and the sand-clay optimization in the optimization slot and the prediction 354 

slot. Figure 2 shows the corresponding scatter diagram of Figure 1. Here, obs  stands 355 

for the observation, sim1  means the simulation before the optimization, sim2   356 

means the simulation after the sand optimization, sim3 means the simulation after 357 

the clay optimization and sim4  means the simulation after the sand-clay 358 

optimization. It is also the case in all subsequent figures. 359 
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All of the above tables and figures show that, CoLM could simulate the shallow 360 

soil moisture better with the reasonable collocation of sand and clay. Sand is large and 361 

clay is relatively small before the optimization, so the soil water holding capacity is 362 

poor and the soil infiltration capacity is relatively good before the optimization. Hence 363 

it is easy for water to infiltrate into the deep soil layer and the simulation of the 364 

shallow soil moisture of CoLM before the optimization is relatively small. After sand 365 

optimization, sand becomes smaller, the soil water holding capacity is better, and the 366 

simulation of the shallow soil moisture of CoLM is larger than ever. That is to say, 367 

CoLM simulates the shallow soil moisture better after sand optimization. After the 368 

clay optimization, clay is larger and the penetrability of water is worse. So, the 369 

shallow soil moisture simulated by CoLM is larger, and the ability of simulating the 370 

shallow soil moisture of CoLM become better after the clay optimization. Sand and 371 

clay reach an appropriate combination after the sand-clay optimization, and the soil 372 

water holding capacity is better. Therefore, the simulation of the shallow soil moisture 373 

of CoLM is larger and the ability of simulating the shallow soil moisture of CoLM is 374 

better after the sand-clay optimization.  375 

4.2 Experiment Ⅱ and the results 376 

4.2.1 Experiment Ⅱ 377 

In experiment Ⅱ, the forcing data and the observation data described in the section 378 

4.1.1 are replaced by the corresponding data in dataset Ⅱ. Also, we will conduct the 379 

single-parameter optimal experiment related to sand and clay separately, and the 380 

double-parameter optimal experiment related to sand and clay simultaneously in the 381 

optimization slot. And then we will compare the simulations of CoLM with the 382 

observation data both in the optimization slot and the prediction slot. 383 

4.2.2 The numerical results of experiment Ⅱ 384 

Like the results of experiment Ⅰ, by a large amount of numerical experiments for 385 

many different time ranges, the numerical results show that the optimal parameters 386 

could make CoLM simulate the shallow soil moisture better. In order to illustrate this 387 
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conclusion more specifically, we also choose the data in 2005 to conduct the process 388 

of spin-up and the process of spin-up reaches a length of 10 years. We still choose the 389 

time slot from May, 2005 to July, 2005 as the optimization slot and August, 2005 as 390 

the prediction slot in experiment Ⅱ. 391 

Table 3 and Table 4 display the results of experiment Ⅱ. In these tables, sand 392 

optimization, clay optimization and sand-clay optimization mean the same as in table 393 

1 and table 2. We also add the mean deviation as the reference function in Table 4, just 394 

like what we have done in Table 2, so that we can better exhibit the difference 395 

between the shallow soil moisture simulated by CoLM before and after optimization. 396 

From Table 4, we can see that the objective function value and the reference function 397 

value are both smaller after sand optimization, clay optimization and sand-clay 398 

optimization. Moreover, we can see that, in the optimization slot, the diminution is the 399 

largest after sand-clay optimization. This means that CoLM could simulate the 400 

shallow soil moisture better after each optimization and, after sand-clay optimization 401 

in the optimization slot, the ability to simulate the shallow soil moisture of CoLM is 402 

the best. In addition, in the prediction slot, the root mean square deviation and the 403 

mean deviation are both smaller after the sand optimization, the clay optimization and 404 

the sand-clay optimization. And the objective function value and the reference 405 

function value are both the smallest after the clay optimization at the stage of 406 

prediction. This means that CoLM could predict the shallow soil moisture better at the 407 

stage of prediction and the prediction effect is the best after the clay optimization. 408 

In order to better illustrate the improvement, we offer Figure 3 and Figure 4 to 409 

display the numerical results of experiment Ⅱ. Figure 3 shows the simulations of the 410 

shallow soil moisture before and after sand optimization, clay optimization and 411 

sand-clay optimization at the optimization slot and the prediction slot. Figure 4 shows 412 

the corresponding scatter diagrams of Figure 3. 413 

Table 3 and Table 4 show that CoLM could simulate the shallow soil moisture 414 

better with the reasonable proportion of sand and clay in soil. Sand is large and clay is 415 

relatively small before the optimization, so the soil water holding capacity is poor and 416 

the soil infiltration is relatively good before the optimization. Therefore water is easy 417 
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to infiltrate into the deep soil layer and the simulation of the shallow soil moisture of 418 

CoLM before the optimization is relatively small. After the sand optimization, sand is 419 

smaller and hence the soil water holding capacity is better. Consequently, after the 420 

sand optimization, the simulation of shallow soil moisture of CoLM is larger and 421 

CoLM could simulate the shallow soil moisture better. After the clay optimization, 422 

clay is larger and therefore the penetrating quality of water is worse. For this reason, 423 

the shallow soil moisture simulated by CoLM is larger and the ability of simulating 424 

the shallow soil moisture of CoLM is better after the clay optimization. After the 425 

sand-clay optimization, sand and clay reach an appropriate combination and so the 426 

soil water holding capacity is better. Hence the simulation of the shallow soil moisture 427 

of CoLM is larger and the ability to simulate the shallow soil moisture of CoLM is 428 

better after the sand-clay optimization. All the results of experiments (I and II) are 429 

similar to Wang and Huo (2013), except that, for the NMC Reanalysis 6-hourly 430 

surface fluxes data, at the stage of prediction, the cost function are much smaller than 431 

those in Wang and Huo (2013).  432 

Now let’s focus on the peak about the shallow soil moisture in experiments (Ⅰand433 

Ⅱ). For this case, we show the convective precipitation and large scale precipitation 434 

in Figure 5. Comparing the precipitation with the shallow soil moisture simulated at 435 

the stage of optimization and the stage of prediction, we find that the precipitation is 436 

almost in accord with the occurrence of the peak, which means the simulations of the 437 

shallow soil moisture are rational. 438 

4.3 Experiment Ⅲ and the results 439 

4.3.1 Experiment Ⅲ 440 

Latent heat flux, as an important component of Earth's surface energy budget, is the 441 

flux of heat from the Earth's surface to the atmosphere that is associated with 442 

evaporation of water at the surface and subsequent condensation of water vapor in the 443 

troposphere. It is very common to measure latent heat flux with the Bowen ratio 444 

technique, or by eddy covariance.  445 

For testing the ability of CoLM to simulate the latent heat flux, in this experiment, 446 
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the shallow soil moisture and the latent heat flux are both chosen as the objective 447 

variables. We choose the weighted root mean square deviation as the objective 448 

function with the following form: 449 

1 1 1 2 2( ) ( )r rf w f w f     ,                                                     (11) 450 

where 1f  is the weighted root mean square deviation; 1  means the shallow soil 451 

moisture, 2  is the latent heat flux; 1w  and 2w , the weight coefficients, satisfy the 452 

condition: 1 2 1w w  , and their values are decided based on the dimensions of the 453 

shallow soil moisture and the latent heat flux; 1( )rf   and 2( )rf   represent the root 454 

mean square deviations corresponding to the shallow soil moisture and the latent heat 455 

flux respectively as formulated by Eq. (9). 456 

In this experiment, we use both dataset  and dataset  to optimize the same Ⅰ Ⅱ457 

parameters as experiments  and  in the time slot of optimization. And we predict Ⅰ Ⅱ458 

the shallow soil moisture and the latent heat flux in the time slot of prediction. 459 

4.3.2 The numerical results of experiment Ⅲ 460 

The numerical results of experiment  are Ⅲ given in Tables 5-8. Table 5 and Table 6 461 

show the results with dataset , and Table 7 and Table 8 with dataset . Ⅰ Ⅱ We add the 462 

reference function of weighted mean deviation in Table 5 and Table 7 to better display 463 

the variation of the shallow soil moisture before and after optimization. The reference 464 

function of weighted mean deviation refers to the following relation:  465 

2 1 1 2 2( ) ( )m mf w f w f     ,                                                      (12) 466 

where 2f  means the weighted mean deviation; 1  is the shallow soil moisture; 2  467 

is the latent heat flux; the weight coefficients, 1w  and 2w , satisfy the condition: 468 

1 2 1w w  ,  and their values are chosen based on the dimensions of the shallow soil 469 

moisture and the latent heat flux; 1( )mf   represents the mean deviation corresponding 470 

to the shallow soil moisture formulated by Eq. (10); 2( )mf   means the mean 471 

deviation corresponding to the latent heat flux formulated by Eq. (10). 472 

Table 5 and Table 7 show the objective function values and reference function 473 

values before and after parameter optimization. Table 6 and Table 8 show the 474 

percentage of sand and the percentage of clay in soil before and after parameter 475 
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optimization. The results are consistent with the results in experiment Ⅰ and 476 

experiment Ⅱ.  477 

From what we have discussed above, the extended application of CNOP-P method 478 

in CoLM is reasonable and efficient. 479 

5. Discussions and Conclusions 480 

From the above three experiments, we can see that the optimized parameters after 481 

sand optimization, clay optimization and sand-clay optimization could make CoLM 482 

simulate the objective variable(s) better at the stage of optimization, and it is the best 483 

after sand-clay optimization. Moreover, the optimized parameters could enable CoLM 484 

to improve its ability of simulation observably at the stage of prediction in these three 485 

experiments. The difference of the numerical results between experiment Ⅰ and 486 

experiment Ⅱ is that, at the stage of prediction, the optimal parameters after the 487 

sand-clay optimization attained in experiment Ⅰ could make CoLM simulate the 488 

shallow soil moisture the best, which is rational, but in experiment Ⅱ, the optimal 489 

parameters attained by clay optimization could make the ability of simulating the 490 

shallow soil moisture of CoLM the best, which is not line with the common sense. 491 

These conclusions are similar to Wang and Huo (2013), although the climate of the 492 

research areas is different, one is a arid and semiarid area, and the other is subhumid 493 

temperate climate. At the same time, dataset Ⅰ are the revise of dataset Ⅱ, and 494 

dataset Ⅰ are more accurate than dataset Ⅱ. As we all know, the simulating ability 495 

of CoLM depends on the accuracy of data, such as forcing data, initial data, boundary 496 

data and so on, and in general, the more accurate the data are, the more reliable the 497 

simulations will be. In our works, we got similar results for both arid and semiarid and 498 

subhumid area, so, we can guess that the factor affecting optimal results and 499 

simulating ability mainly is the accuracy of dataset. The more accurate the dataset are, 500 

the more trustworthy the optimal results will be. 501 

The conclusions obtained in this work also show that the extended application of 502 

CNOP-P method in CoLM is reasonable and efficient. But we just investigated two 503 

special parameters and in one special area, i.e. the Hulunbiur Steppe. It will be 504 
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beneficial and helping to lay solid foundations for ecosystem management to consider 505 

more important parameters in CoLM in arid and semiarid areas. 506 

507 
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Figure captions 646 

FIG.1 Sequence diagram of the shallow soil moisture (unit: 
3 3m m

) in the experiment 647 

Ⅰ. (a): at the stage of optimization; (b): at the stage of prediction. 648 

 649 

FIG.2 Scatter diagram of the shallow soil moisture (unit: 
3 3m m

) in the experiment Ⅰ. 650 

(a): at the stage of optimization; (b): at the stage of prediction. 651 

 652 

FIG.3 Sequence diagram of the shallow soil moisture (unit: 
3 3m m

) in the experiment 653 

Ⅱ. (a): at the stage of optimization; (b): at the stage of prediction. 654 

 655 

FIG.4 Scatter diagram of the shallow soil moisture (unit: 
3 3m m

) in the experiment Ⅱ. 656 

(a): at the stage of optimization; (b): at the stage of prediction. 657 

 658 

FIG.5 Convective precipitation and large scale precipitation in experiment Ⅰ and 659 

experiment Ⅱ. (a): at the stage of optimization in the experiment Ⅰ; (b): at the stage 660 

of prediction in the experiment Ⅰ; (c): at the stage of optimization in the experiment 661 

Ⅱ; (d): at the stage of prediction in the experiment Ⅱ. 662 
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Fig. 2 669 
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Fig. 3 672 
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Fig. 4 675 
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Fig. 5 679 
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Table captions 680 

Table 1. Comparison of sand and clay (unit: %) before and after optimization in the 681 

experiment Ⅰ. 682 

 683 

Table 2. Comparison of the objective function values and the referential function 684 

values before and after optimization in the experiment Ⅰ.  685 

 686 

Table 3. Comparison of sand and clay (unit: %) before and after optimization in the 687 

experiment Ⅱ. 688 

 689 

Table 4. Comparison of the objective function values and the referential function 690 

values before and after optimization in the experiment Ⅱ.  691 

 692 

Table 5. Comparison of the objective function values and the referential function 693 

values before and after optimization with dataset  in the experiment Ⅰ Ⅲ.  694 

 695 

Table 6. Comparison of sand and clay (unit: %) before and after optimization with 696 

dataset  in the experimentⅠ  Ⅲ. 697 

 698 

Table 7. Comparison of the objective function values and the referential function 699 

values before and after optimization with dataset  in the experiment Ⅱ Ⅱ.  700 

 701 

Table 8. Comparison of sand and clay (unit: %) before and after optimization with 702 

dataset  inⅡ  the experiment Ⅱ. 703 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-13, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 27 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

34 
 

 704 

Table 1.  705 

The 

parameter 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

Sand 37.5 15.458379 37.5 28.841991 

Clay 26 26 43.715421 40.281376 

 706 

Table 2.  707 

Function 

value 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

obj1 0.098224 0.056424 0.050492 0.049054 

ref1  0.087392 0.050470 0.043871 0.042262 

obj2  0.069606 0.045452 0.040497 0.036333 

ref2  0.063743 0.041387 0.035004 0.031494 

 708 

Table 3.  709 

The 

parameter 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

Sand 37.5 11.215094 37.5 42.190752 

Clay 26 26 52.195857 54.614659 

 710 

Table 4.  711 

Function 

value 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

obj1  0.061491 0.038930 0.036811 0.036528 

ref1  0.053017 0.032882 0.030984 0.029458 

obj2  0.058472 0.032212 0.017816 0.033081 

ref2  0.057880 0.030818 0.014367 0.030414 
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Table 5. 712 

Function 

value 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

obj1 0.190404 0.135727 0.131815 0.128480 

ref1  0.138981 0.107459 0.105064 0.099933 

obj2  0.135303 0.104008 0.086822 0.083889 

ref2  0.117531 0.083503 0.065347 0.062849 

 713 

Table 6. 714 

The 

parameter 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

Sand 37.5 11.227582 37.5 37.489331 

Clay 26 26 46.279844 46.089471 

 715 

Table 7. 716 

Function 

value 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

obj1 0.214117 0.156524 0.152562 0.146493 

ref1  0.169689 0.119458 0.115074 0.110053 

obj2  0.172814 0.150163 0.154181 0.143004 

ref2  0.141641 0.117755 0.122391 0.111130 

 717 

Table 8. 718 

The 

parameter 

Before the 

optimization 

After sand 

optimization 

After clay 

optimization 

After sand-clay 

optimization 

Sand 37.5 11.860160 37.5 25.993371 

Clay 26 26 36.664604 40.290898 

 719 
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