

1

2

3

4 **Extended Application of the CNOP-P method in the Inner Mongolia using the
5 Common Land Model**

6

7 Bo Wang^{a,b,d}, Zhenhua Huo^{c,d}, Yujing Yuan^e, Shang Wu^b

8 ^a Institute of Applied Mathematics, Henan University, 475004 Kaifeng, China

9 ^b School of Mathematics and Statistics, Henan University, 475004 Kaifeng, China

10 ^c University of Chinese Academy of Sciences, 100049, Beijing, China

11 ^d LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029,
12 Beijing, China

13 ^e School of Mathematics, Shandong University, 250100 Jinan, China

14

15 *Correspondence to:* Bo Wang (wangbo_sdu@163.com)

16

17 **Abstract:** An extension method of the conditional nonlinear optimal perturbation
18 about parameter (CNOP-P) is adopted to study the soil parameter optimization for the
19 Hulunbeier Steppe within the common land model (CoLM) with the differential
20 evolution (DE) method. Using National Center for Environmental
21 Prediction/Department of Energy (NCEP/DOE) Atmospheric Model Intercomparison
22 Project- II (AMIP- II) 6-hourly Reanalysis Gaussian Grid data and National
23 Meteorological Center (NMC) Reanalysis 6-hourly surface fluxes data, three
24 experiments (I and II) were designed to study the impact of the percentages of
25 sand and clay of the shallow soil in CoLM on simulating the shallow soil moisture. To
26 study the shallow soil moisture and the latent heat flux simultaneously, experiment
27 (III) is designed. The optimal parameters obtained by the extended CNOP-P method
28 are used to predict the shallow soil moisture in the following month. In all the three
29 experiments, after optimization stage, the optimal soil parameters could significantly
30 improve the simulation ability of CoLM in the Inner Mongolia to the shallow soil
31 moisture at the stage of prediction; the optimal parameters attained by the
32 double-parameter optimal experiment could make CoLM simulate the shallow soil
33 moisture better than the single-parameter optimal experiment in the optimization slot.
34 Moreover, the results of experiments (I and II) justify the conclusion that the more
35 accurate the atmospheric forcing data and observation data are, the more effective the
36 results of optimization will be.

37 *Keywords:* CNOP-P, parameter optimization, shallow soil moisture, CoLM, Inner
38 Mongolia

39 **1. Introduction**

40 With the population explosion, the atmospheric environment pollution, the marine
41 ecological deterioration, the land erosion and desertification, the sharp drop in fores
42 resources, the acid harm, the extinction of species, the water pollution and the toxic
43 waste pollution, global warming has recently been a serious problem that more and
44 more scientists are concerned with. Global worming will result in the global climate

45 change including glacial ablation, sea level rise, floods, landslides, debris flow and so
46 on. In addition, with global warming, the atmospheric temperature increases and the
47 evaporation increases, so there is a severer trial in the areas which usually lack of rain
48 with arid climate, the semi-arid areas which were not covered with plants well may be
49 degenerated into the semi-desert areas, and so global warming may induce the
50 acceleration of the desertification in the inland areas.

51 China is one of the countries which are severely affected by desertification.
52 Desertification in Northern China has been an important problem which needs to be
53 solved urgently for national economic and social development, with the wide
54 distribution and rapid development of the desertification. In China, Inner Mongolia
55 Autonomous Region is the most serious region affected by the desertification, and in
56 recent years, there are great temperature and precipitation changes(Su et al., 2008;
57 Han et al., 2010; Zhang et al., 2014), which can influence the climate of Inner
58 Mongolia. So, it is necessary to predict accurately the variables, such as temperature,
59 precipitation, soil moisture and latent heat et al., which are very important to study the
60 drought degree of Inner Mongolia Autonomous Region so that it could supply some
61 help for the management and control of desertification, especially for the agricultural
62 and animal husbandry production.

63 Hulunbeier Steppe is located in the northeast grassland of China's Inner Mongolia
64 Autonomous Region, west of the Greater Khingan Mountains. The Greater Khingan
65 Mountains separates the Hulunbuir Steppe into two kinds of climate. The eastern
66 ridge is the monsoon climate and the western ridge is the continental climate from the
67 point of the climate types. From the point of the annual precipitation types, the eastern
68 ridge is the semi-humid climate and the western ridge is a semi-arid climate. The
69 special geographical position of Hulunbuir brings about that the total characteristics in
70 climate of Hulunbuir Steppe is cold and dry in winter, hot and rainy in summer and
71 the annual and daily temperature differences are large. Since 1999, the climate of
72 Hulunbuir became unusual: the annual precipitation is low, the spring is droughty and
73 windy, the summer continues the high temperature, water evaporation capacity
74 increases and the level of drought increases. Located in the arid and semi-arid area of

75 North China, the Hulunbiur Steppe is one of the important livestock husbandry bases
76 and high quality natural pastures in China, so, it is extremely important to study the
77 land surface of the Hulunbiur Steppe.

78 The land surface processes mainly study all the processes which are closely related
79 to the atmosphere movement at the underlying surface. They contain the complex soil
80 water heat transmission and vegetation physiological and biochemical processes.
81 They are one of the fundamental biochemical and physical processes which could
82 affect atmospheric circulation and climatic change. In order to understand the land
83 surface processes better, it is worth improving the land surface models (LSMs). Sun
84 (2005) pointed out that the parameter values in some physical processes are inaccurate,
85 and the simulations of LSMs are also inaccurate with the impact of inaccurate
86 parameter values. So, it is meaningful to optimize the parameters of LSMs. Some
87 researchers have investigated the parameter optimization in LSMs. With the
88 Chameleon Surface Model (CHASM), Xia et al. (2002, 2004a, 2004b) studied the
89 adaptability of different parameter optimization methods in LSMs. Their results show
90 that the parameter optimization in LSMs could improve LSMs in some respects.
91 Bastidas et al. (2006) adopted the multicriteria method to optimize the parameters in
92 four different LSMs at five stations. Their researches indicate that the parameter
93 optimization can improve LSMs. Li et al. (2011a, 2011b) optimized parameters in a
94 LSM with the expanded CNOP method and their work show that the expanded CNOP
95 method can improve the simulation ability of the LSM. So, with a suitable method,
96 the parameter optimization of LSMs could be carried out effectively. There are several
97 parameter optimization methods suitable to LSMs like the Shuffled Complex
98 Evolution (SCE-UA) method, the Multistep Automatic Calibration Scheme (MACS),
99 the Multi-Objective Complex Evolution (MOCOM-UA) method and the difference
100 evolution (DE) method. All the prior three methods use a complex method named the
101 complex evolution method, need massive computation, require tedious programming
102 and have poor transferability. DE method has a rapid computability, a strong
103 transferability and a simple designed structure. So, DE method is suitable to execute
104 the parameter optimization of LSMs.

105 Soil moisture is important to many hydrological, biogeochemical and biological
106 processes. It plays a key role in processes of the complex soil water heat transmission
107 and vegetation physiological and biochemical, and also has a direct impact on the soil
108 properties, field climate and the decomposition of nutrients. In addition, soil moisture
109 is one of the important conditions for the movement of the microbes in the soil and
110 the breeding of crops. It is affected seriously by the soil property, the atmosphere, the
111 vegetation and so on. If the soil moisture is too high, it is easy to worsen the soil
112 aeration, affect the life action of crops such as the growth and the respiration of the
113 root of crops and the activity of the microbes in the soil. Thereafter, soil moisture can
114 affect plowing and sowing a field, as well as the soil temperature. For government
115 agencies and private companies, who are concerned with weather and climate,
116 geotechnical engineering, flood control, water quality, soil erosion, slope failure, and
117 so on, information about soil moisture is very essential. So the investigation of the
118 ability of land surface models to simulate shallow soil moisture is very important in
119 the aspect of the improvement of environment, the development of the agriculture and
120 the control of desertification.

121 The conditional nonlinear optimal perturbation (CNOP) method is put forward and
122 developed by Mu et al. (2003, 2010) respectively. The approach of conditional
123 nonlinear optimal perturbation related to parameter (CNOP-P) is used to attain the
124 optimal parameter perturbation, whose nonlinear evolution in the forecast stage gains
125 the optimal value and it is one special case of CNOP. CNOP method has been
126 employed to investigate the response of a grassland ecosystem to climate change and
127 human activities (Mu and Wang, 2007; Sun and Mu, 2011), ENSO predictability (Mu
128 and Duan, 2003; Duan et al., 2004; Duan and Mu, 2006, 2009; Duan et al., 2008;
129 Duan et al., 2009a, 2009b; Duan and Luo, 2010; Duan and Zhang, 2010; Mu et al.,
130 2010), the sensitivity analysis to the eutrophication of lakes (Wang et al., 2012) and so
131 on, and a series of research results are achieved. Sun and Mu (2013, 2014) used the
132 CNOP-P method to study the maximal variation in estimating the net primary
133 production (NPP). The results show that CNOP-P method can capture the
134 characteristic of nonlinear dynamical system As CNOP-P could make the dynamic

135 system have the largest nonlinear development in the forecast stage, and it regards
136 both the sensitivity of the objective parameter to the dynamic system and the
137 influence of the nonlinearity of the dynamic system to the evolution from the initial
138 moment to the forecast stage, CNOP-P method could possibly be extended and then
139 applied to the area of parameter optimization in LSMs. Wang and Huo (2013) used
140 the extended CNOP-P method and DE method to optimal some parameters in CoLM,
141 and the results showed that after optimization, the simulation ability of CoLM can be
142 improved to some degree in the North China Plain. So the expanded CNOP-P method
143 and DE method are suitable to be employed to optimize the parameters in CoLM. So,
144 it is reasonable to optimize the parameters with the expanded CNOP-P method and
145 DE method to improve the simulating ability of soil moisture in the CoLM in the
146 Hulunbiur Steppe.

147 As a state-of-the-art land surface model, Common Land Model (CoLM) is
148 developed by Dai et al. (2001). This model combines the best features of three other
149 land surface models, such as the Land Surface Model of Bonan (1996), the
150 Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson et al. (1993) and the
151 1994 version of the Chinese Academy of Sciences Institute of Atmo-spheric Physics
152 LSM (IAP94) (Dai and Zeng, 1997). Luo et al. (2008), Xin et al. (2006), Song et al.
153 (2009a, 2009b), Zheng et al. (2009), Meng and Cui (2007) simulate China areas with
154 CoLM, their results indicate that CoLM could simulate China well. So, in this paper,
155 CoLM is employed to investigate the simulation of soil moisture in the Hulunbiur
156 Steppe.

157 The percentage of sand and the percentage of clay in soil are important to the soil
158 structure and they are different in different kinds of soil. Soil texture, which is related
159 to the crop production and the field management, is an important soil characteristic
160 and it is determined by the content of sand, clay and silt in the soil. Soil moisture
161 could infect the proportion that water drains through the soil, water holding capacity,
162 soil tilth, organic matter content, and drainage largely. As clayey soil has a larger
163 water holding capacity than sandy soil, water could move more freely through the
164 sandy soil than the clayey soil. Furthermore, in CoLM, the thermal conductivity of

165 soil solid, the saturated matrix potential, the specific heat capacity of soil solid, the
166 saturated hydraulic conductivity, and the porosity are produced according to the
167 percentage of sand and the percentage of clay in soil. Therefore, we chose the
168 percentage of sand and the percentage of clay as the optimal parameters in CoLM in
169 this paper.

170 Actually, we have adopted the expanded CNOP-P method to study the impact of
171 sand and clay in North China Plain (Wang and Huo, 2013). The results show that the
172 expanded CNOP-P method and DE method are efficient to optimize the parameters
173 sand and clay, and the parameters after optimization could make CoLM simulates the
174 shallow soil moisture better in this area. In addition, we get the conclusion that the
175 optimization results are affected by the atmospheric forcing data and the observations
176 of the shallow soil moisture, and the more accurate the data are, the more significant
177 the optimization results may be. In the purpose of investigating the impact of the
178 percentage of sand and clay in the soil on the soil moisture in CoLM in Hulunbiur
179 Steppe, a special arid and semiarid area, and comparing with the results of our former
180 research, the same three experiments (I-III) as Wang and Huo (2013) are designed. In
181 this paper, we will check this suspect with these three experiments.

182 **2. The extension of CNOP-P**

183 **2.1 Definition of CNOP-P**

184 In works of Mu et al. (2003, 2010), CNOP method is put forward and developed.
185 CNOP-P is aimed at the parameter perturbation and it is one special case of CNOP.
186 Here, we introduce this approach for reader's convenience. Let a nonlinear dynamic
187 system be described as following equations:

$$188 \begin{cases} \frac{\partial w}{\partial t} = M(w, P), x \in \Omega, t \in [0, T] \\ w|_{t=0} = w_0 \end{cases} \quad (1)$$

189 where $w(x, t) = (w_1(x, t), w_2(x, t), \dots, w_m(x, t))$ is a model-state vector, M is a nonlinear
190 partial differential operator, $\Omega \in \mathbb{R}^n$, $x = (x_1, x_2, \dots, x_n)$, $0 < T < \infty$, w_0 is the initial value,
191 $P = (P_1, P_2, \dots, P_l)$ is a parameter vector and $\forall i = 1, 2, \dots, l$, P_i is a model parameter
192 invariant with time t .

193 Suppose that $w(\tau)$ is the solution of Eq. (1) at time τ and M_τ is the nonlinear
194 evolution operator from time 0 to time τ corresponding to the operator M , then the
195 following equation will be established:

196 $w(\tau) = M_\tau(w_0, P).$ (2)

197 If $W(T; P)$ is the solution of Eq. (1) at time T corresponding to the parameter
198 vector P and the initial value w_0 , and $W(T; P) + w(T; p)$ is the solution of Eq. (1) at
199 time T corresponding to the initial value w_0 and the parameter vector $P + p$, then
200 the following relations will be established:

201 $W(T; P) = M_T(w_0, P),$ (3)

202 $W(T; P) + w(T; p) = M_T(w_0, P + p),$ (4)

203 where P is a parameter perturbation vector and $w(T; p)$ could indicate the departure
204 level of the solution of Eq. (1) at time T with the basic state $W(T; P)$, which is
205 caused by the parameter perturbation vector p .

206 We choose an appropriate norm $\|\cdot\|$ based on the detail physical background. The
207 objective function under the given constraint condition $\|p\| \leq \delta (\delta > 0)$ is defined as
208 the following relation:

209 $J(p) = G(w(T; p)),$ (5)

210 where function $G(\cdot)$ evaluates the departure level which has been described in the
211 previous paragraph. The parameter perturbation vector p' is the conditional
212 nonlinear optimal parameter perturbation (CNOP-P), if and only if the parameter
213 perturbation vector p' satisfies the following relation:

214 $J(p') = \max_{\|p\| \leq \delta} J(p).$ (6)

215 So CNOP-P is the parameter perturbation vector which could make the objective
216 function under the given constraint condition attain the maximum, i.e. it is the
217 parameter perturbation vector that could cause the largest departure level of the
218 dynamic system at time T .

219 **2.2 Extension of CNOP-P**

220 In this paper, we use the extension of CNOP-P method proposed by Li et al. (2011a, b)
221 to optimize the parameter of CoLM. Detailed introduction about the extension of
222 CNOP-P can also be found in the work of Wang and Huo (2013). Here, we also give a
223 simple introduction about it.

224 The parameter perturbation vector p' is considered as the extended CNOP-P if
225 and only if:

$$226 \quad J(p') = \max_{P + p \in \omega} J(p), \quad (7)$$

227 where P means the original parameter vector, p is the parameter perturbation
228 vector, ω refers to the value range of the parameter vector and $J(p)$ means the
229 objective function about p with the following form:

$$230 \quad J(p) = -G(M_{0 \rightarrow T}(w_0, P + p) - O), \quad (8)$$

231 where $0 \rightarrow T$ refers to the time period from time 0 to time T , $M_{0 \rightarrow T}(w_0, P + p)$ is the
232 simulations from time 0 to time T , O is the model state observation vector from
233 time 0 to time T and the function $G(\cdot)$ evaluates the departure degree between the
234 simulations and the observations from time 0 to time T .

235 Therefore, the extended CNOP-P is the parameter perturbation vector satisfying the
236 constraint condition that could make the simulations closest to the observations. The
237 method to get the extended CNOP-P is called the extension of CNOP-P method and it
238 could be employed to conduct the parameter optimization of the land surface model.

239 **3. The optimization method adopted to calculate CNOP-P**

240 CoLM is a complex model, and the calculation of CNOP-P with the nonlinear
241 optimization method depending on the adjoint method would need a lot of
242 computational resource. It is against the standard that we should employ the
243 optimization method with a little calculation cost. So we use the differential evolution
244 method (DE method) as the optimization method in our experiments.

245 In 1995, Storn and Price (1995) proposed DE method to solve the Chebyshev
246 Polynomial fitting Problem firstly. Liu et al. (2007) found that DE method is effective
247 to solve the complex optimization problems. DE method is a parallel, random and

248 global direct-search algorithm based on the population evolution with the character of
249 sharing information in populations and remembering group optimal solutions. As a
250 novel direct search method, DE method use a greedy genetic algorithm to maintain
251 the excellent population member based on the real number encoding with excellent
252 convergence properties. Given the randomly generated initial population, DE method
253 solves the optimization on the basis of the theory of survival of the fittest, in
254 accordance with the fitness value of every population. It has been applied and
255 developed by many scholars to solve different problems (He and Wang, 2008; Yu et
256 al., 2009). Sun and Mu (2009) have found that DE method is effective to obtain
257 CNOP. Wang and Huo (2013) have used this method to calculate the extension of
258 CNOP-P effectively. Their work show that it is effective to employ DE method to
259 handle nonlinear and non-differentiable cost functions if the gradient of the cost
260 function is hard to obtain or even not obtained. As the cost function about the
261 parameters may become non-differentiable with the adjustment of the parameter, it is
262 applicable to optimize the parameters in LSMs with DE method.

263 **4. Experimental design and the numerical results**

264 In this paper, NCEP/DOE AMIP- II 6-hourly Reanalysis Gaussian Grid data and
265 NMC Reanalysis 6-hourly surface fluxes data at NCEP/NCAR Center at the
266 Hulunbiur Steppe ($48.5705^{\circ}N, 120^{\circ}E$) are used. NMC Reanalysis 6-hourly surface
267 fluxes data, which is currently kept using near real-time observations, is one product
268 of NCEP/NCAR Reanalysis I, which is the first of its kind of National Oceanic and
269 Atmospheric Administration (NOAA). NCEP/DOE AMIP- II 6-hourly surface fluxes
270 data is one product of NCEP/DOE Reanalysis II, which is the second version of
271 NCEP/NCAR Reanalysis I and starts from the beginning of the major satellite era
272 with a better version of the model used, more observations added and assimilation
273 errors corrected. Both NCEP/DOE AMIP- II 6-hourly Reanalysis Gaussian Grid data
274 and NMC Reanalysis 6-hourly surface fluxes data are used to investigate the
275 simulation ability of CoLM to the shallow soil moisture. For convenience, we will call

276 NCEP/DOE AMIP- II 6-hourly Reanalysis Gaussian Grid data dataset I and NMC
277 Reanalysis 6-hourly surface fluxes data dataset II in the following part of this paper.
278 Dataset I are the revise of dataset II and they are more accurate than dataset II.
279 We will similarly call the percentage of sand in soil sand and the percentage of clay in
280 soil clay. For the sake of investigating the impact of sand and clay on the shallow soil
281 moisture, we designed two experiments (I and II), and simulated the shallow soil
282 moisture in the following one month with the optimal parameters, which are gained in
283 the duration of optimization. We select the root mean square deviation as the objective
284 function with following form:

$$285 f_r = \sqrt{\frac{\sum_{i=1}^n (s_i - o_i)^2}{n}}, \quad (9)$$

286 where f_r refers to the root mean square deviation, n means the integral time steps,
287 s_i represents the simulation value and o_i is the observation value at time i .

288 **4.1 Experiment I and the results**

289 **4.1.1 Experiment I**

290 The forcing data in dataset I, which contain the precipitation and the large-scale
291 precipitation, the specific humidity and the air temperature at 10 m above the ground,
292 the wind component in northward direction and eastward direction at 10 m above the
293 ground, the atmospheric pressure, the atmospheric longwave radiation and the
294 incident solar radiation at surface, are used in CoLM in experiment I. Here, we took
295 the forcing data in dataset I as the observation data, and compared the data in dataset
296 I with the simulation data of CoLM at the same time.

297 Generally speaking, CoLM might simulate the shallow soil moisture better after the
298 double-parameter optimal experiment about sand and clay simultaneously than the
299 single-parameter optimal experiment about sand or clay. So, we carried out both the
300 single-parameter optimal experiment related to sand and clay separately and the
301 double-parameter optimal experiment related to sand and clay simultaneously in this
302 experiment. Through this experiment, we could check whether the optimal results are
303 correct in the optimization slot at first, and verify whether the optimal parameters,

304 which are obtained in the optimization slot, could make CoLM simulate the shallow
305 soil moisture better at the stage of prediction, and whether the optimal parameters,
306 which are attained in the double-parameter optimal experiment at the stage of
307 optimization, could make the simulation ability of CoLM to the shallow soil moisture
308 the best in the prediction slot. Notice that sand and clay (units: %) are independent
309 inputs in CoLM, and both in the single-parameter experiment and the
310 double-parameter experiment, these parameters should satisfy the constraint
311 condition:
312 $0 \leq \text{sand} + \text{clay} \leq 100$, $0 \leq \text{sand} \leq 100$, $0 \leq \text{clay} \leq 100$.

313 **4.1.2 The numerical results of experiment I**

314 Through a large number of numerical experiments during many different time ranges,
315 the numerical results show that the optimal parameters could make CoLM simulate
316 the shallow soil moisture more accurately. Considering the climate change of Inner
317 Mongolia (Su et al., 2008; Han et al., 2010), in order to better illustrate this
318 conclusion, we choose the data in 2005 to carry on the process of spin-up and the
319 process of spin-up reaches a length of 10 years. We choose the time range from May,
320 2005 to July, 2005 as the time slot of optimization, and choose August, 2005 as the
321 time slot of prediction in this experiment.

322 Table 1 and Table 2 show the numerical results of experiment I. In Table 1 and
323 Table 2, sand optimization refers to the optimization to sand only, clay optimization
324 means the optimization to clay only, and sand-clay optimization refers to the
325 optimization to sand and clay simultaneously. In order to better display the difference
326 of the shallow soil moisture simulated by CoLM before and after optimization, we
327 add the mean deviation as the reference function in Table 2. The mean deviation is as
328 following:
329

$$f_m = \frac{\sum_{i=1}^n |s_i - o_i|}{n} , \quad (10)$$

330 where f_m refers to the mean deviation, n represents the integral time steps, s_i is

331 the simulation value at time i and o_i refers to the observation value at time i .
332 Table 1 displays the values of sand and clay before and after optimization, and
333 Table 2 shows the objective function value and the reference function value before
334 and after optimization both in the optimization slot and the prediction slot. In Table 2,
335 obj1 refers to the objective function value at the stage of optimization, obj2 refers
336 to the objective function value at the stage of prediction, ref1 refers to the reference
337 function value at the stage of optimization and ref2 refers to the reference function
338 value at the stage of prediction. It is also the case in all subsequent tables. From Table
339 2, we know that the objective function value and the reference function value are both
340 smaller after the sand optimization, the clay optimization and the sand-clay
341 optimization. In addition, it is clear that the extent of diminution is the largest after the
342 sand-clay optimization in the optimization slot. So CoLM could simulate the shallow
343 soil moisture better after each optimization and CoLM could simulate the shallow soil
344 moisture the best after the sand-clay optimization in the optimization slot. Moreover,
345 in the prediction slot, the root mean square deviation and the mean deviation are both
346 smaller after the sand optimization, the clay optimization and the sand-clay
347 optimization. And the objective function value and the reference function value are
348 both the smallest after the sand-clay optimization at the stage of prediction. That is to
349 say, CoLM could predict the shallow soil moisture better at the stage of prediction and
350 the prediction effect is the best after the sand-clay optimization.
351 To better illustrate the improvement, Figure 1 and Figure 2 are given to
352 demonstrate the numerical results of experiment I graphically. Figure 1 shows the
353 simulations of the shallow soil moisture before and after sand optimization, the clay
354 optimization and the sand-clay optimization in the optimization slot and the prediction
355 slot. Figure 2 shows the corresponding scatter diagram of Figure 1. Here, obs stands
356 for the observation, sim1 means the simulation before the optimization, sim2
357 means the simulation after the sand optimization, sim3 means the simulation after
358 the clay optimization and sim4 means the simulation after the sand-clay
359 optimization. It is also the case in all subsequent figures.

360 All of the above tables and figures show that, CoLM could simulate the shallow
361 soil moisture better with the reasonable collocation of sand and clay. Sand is large and
362 clay is relatively small before the optimization, so the soil water holding capacity is
363 poor and the soil infiltration capacity is relatively good before the optimization. Hence
364 it is easy for water to infiltrate into the deep soil layer and the simulation of the
365 shallow soil moisture of CoLM before the optimization is relatively small. After sand
366 optimization, sand becomes smaller, the soil water holding capacity is better, and the
367 simulation of the shallow soil moisture of CoLM is larger than ever. That is to say,
368 CoLM simulates the shallow soil moisture better after sand optimization. After the
369 clay optimization, clay is larger and the penetrability of water is worse. So, the
370 shallow soil moisture simulated by CoLM is larger, and the ability of simulating the
371 shallow soil moisture of CoLM become better after the clay optimization. Sand and
372 clay reach an appropriate combination after the sand-clay optimization, and the soil
373 water holding capacity is better. Therefore, the simulation of the shallow soil moisture
374 of CoLM is larger and the ability of simulating the shallow soil moisture of CoLM is
375 better after the sand-clay optimization.

376 **4.2 Experiment II and the results**

377 **4.2.1 Experiment II**

378 In experiment II, the forcing data and the observation data described in the section
379 4.1.1 are replaced by the corresponding data in dataset II. Also, we will conduct the
380 single-parameter optimal experiment related to sand and clay separately, and the
381 double-parameter optimal experiment related to sand and clay simultaneously in the
382 optimization slot. And then we will compare the simulations of CoLM with the
383 observation data both in the optimization slot and the prediction slot.

384 **4.2.2 The numerical results of experiment II**

385 Like the results of experiment I, by a large amount of numerical experiments for
386 many different time ranges, the numerical results show that the optimal parameters
387 could make CoLM simulate the shallow soil moisture better. In order to illustrate this

388 conclusion more specifically, we also choose the data in 2005 to conduct the process
389 of spin-up and the process of spin-up reaches a length of 10 years. We still choose the
390 time slot from May, 2005 to July, 2005 as the optimization slot and August, 2005 as
391 the prediction slot in experiment II.

392 Table 3 and Table 4 display the results of experiment II. In these tables, sand
393 optimization, clay optimization and sand-clay optimization mean the same as in table
394 1 and table 2. We also add the mean deviation as the reference function in Table 4, just
395 like what we have done in Table 2, so that we can better exhibit the difference
396 between the shallow soil moisture simulated by CoLM before and after optimization.
397 From Table 4, we can see that the objective function value and the reference function
398 value are both smaller after sand optimization, clay optimization and sand-clay
399 optimization. Moreover, we can see that, in the optimization slot, the diminution is the
400 largest after sand-clay optimization. This means that CoLM could simulate the
401 shallow soil moisture better after each optimization and, after sand-clay optimization
402 in the optimization slot, the ability to simulate the shallow soil moisture of CoLM is
403 the best. In addition, in the prediction slot, the root mean square deviation and the
404 mean deviation are both smaller after the sand optimization, the clay optimization and
405 the sand-clay optimization. And the objective function value and the reference
406 function value are both the smallest after the clay optimization at the stage of
407 prediction. This means that CoLM could predict the shallow soil moisture better at the
408 stage of prediction and the prediction effect is the best after the clay optimization.

409 In order to better illustrate the improvement, we offer Figure 3 and Figure 4 to
410 display the numerical results of experiment II. Figure 3 shows the simulations of the
411 shallow soil moisture before and after sand optimization, clay optimization and
412 sand-clay optimization at the optimization slot and the prediction slot. Figure 4 shows
413 the corresponding scatter diagrams of Figure 3.

414 Table 3 and Table 4 show that CoLM could simulate the shallow soil moisture
415 better with the reasonable proportion of sand and clay in soil. Sand is large and clay is
416 relatively small before the optimization, so the soil water holding capacity is poor and
417 the soil infiltration is relatively good before the optimization. Therefore water is easy

418 to infiltrate into the deep soil layer and the simulation of the shallow soil moisture of
419 CoLM before the optimization is relatively small. After the sand optimization, sand is
420 smaller and hence the soil water holding capacity is better. Consequently, after the
421 sand optimization, the simulation of shallow soil moisture of CoLM is larger and
422 CoLM could simulate the shallow soil moisture better. After the clay optimization,
423 clay is larger and therefore the penetrating quality of water is worse. For this reason,
424 the shallow soil moisture simulated by CoLM is larger and the ability of simulating
425 the shallow soil moisture of CoLM is better after the clay optimization. After the
426 sand-clay optimization, sand and clay reach an appropriate combination and so the
427 soil water holding capacity is better. Hence the simulation of the shallow soil moisture
428 of CoLM is larger and the ability to simulate the shallow soil moisture of CoLM is
429 better after the sand-clay optimization. All the results of experiments (I and II) are
430 similar to Wang and Huo (2013), except that, for the NMC Reanalysis 6-hourly
431 surface fluxes data, at the stage of prediction, the cost function are much smaller than
432 those in Wang and Huo (2013).

433 Now let's focus on the peak about the shallow soil moisture in experiments (I and
434 II). For this case, we show the convective precipitation and large scale precipitation
435 in Figure 5. Comparing the precipitation with the shallow soil moisture simulated at
436 the stage of optimization and the stage of prediction, we find that the precipitation is
437 almost in accord with the occurrence of the peak, which means the simulations of the
438 shallow soil moisture are rational.

439 **4.3 Experiment III and the results**

440 **4.3.1 Experiment III**

441 Latent heat flux, as an important component of Earth's surface energy budget, is the
442 flux of heat from the Earth's surface to the atmosphere that is associated with
443 evaporation of water at the surface and subsequent condensation of water vapor in the
444 troposphere. It is very common to measure latent heat flux with the Bowen ratio
445 technique, or by eddy covariance.

446 For testing the ability of CoLM to simulate the latent heat flux, in this experiment,

447 the shallow soil moisture and the latent heat flux are both chosen as the objective
448 variables. We choose the weighted root mean square deviation as the objective
449 function with the following form:

450
$$f_1 = w_1 \cdot f_r(\theta_1) + w_2 \cdot f_r(\theta_2), \quad (11)$$

451 where f_1 is the weighted root mean square deviation; θ_1 means the shallow soil
452 moisture, θ_2 is the latent heat flux; w_1 and w_2 , the weight coefficients, satisfy the
453 condition: $w_1 + w_2 = 1$, and their values are decided based on the dimensions of the
454 shallow soil moisture and the latent heat flux; $f_r(\theta_1)$ and $f_r(\theta_2)$ represent the root
455 mean square deviations corresponding to the shallow soil moisture and the latent heat
456 flux respectively as formulated by Eq. (9).

457 In this experiment, we use both dataset I and dataset II to optimize the same
458 parameters as experiments I and II in the time slot of optimization. And we predict
459 the shallow soil moisture and the latent heat flux in the time slot of prediction.

460 **4.3.2 The numerical results of experiment III**

461 The numerical results of experiment III are given in Tables 5-8. Table 5 and Table 6
462 show the results with dataset I, and Table 7 and Table 8 with dataset II. We add the
463 reference function of weighted mean deviation in Table 5 and Table 7 to better display
464 the variation of the shallow soil moisture before and after optimization. The reference
465 function of weighted mean deviation refers to the following relation:

466
$$f_2 = w_1 \cdot f_m(\theta_1) + w_2 \cdot f_m(\theta_2), \quad (12)$$

467 where f_2 means the weighted mean deviation; θ_1 is the shallow soil moisture; θ_2
468 is the latent heat flux; the weight coefficients, w_1 and w_2 , satisfy the condition:
469 $w_1 + w_2 = 1$, and their values are chosen based on the dimensions of the shallow soil
470 moisture and the latent heat flux; $f_m(\theta_1)$ represents the mean deviation corresponding
471 to the shallow soil moisture formulated by Eq. (10); $f_m(\theta_2)$ means the mean
472 deviation corresponding to the latent heat flux formulated by Eq. (10).

473 Table 5 and Table 7 show the objective function values and reference function
474 values before and after parameter optimization. Table 6 and Table 8 show the
475 percentage of sand and the percentage of clay in soil before and after parameter

476 optimization. The results are consistent with the results in experiment I and
477 experiment II.

478 From what we have discussed above, the extended application of CNOP-P method
479 in CoLM is reasonable and efficient.

480 **5. Discussions and Conclusions**

481 From the above three experiments, we can see that the optimized parameters after
482 sand optimization, clay optimization and sand-clay optimization could make CoLM
483 simulate the objective variable(s) better at the stage of optimization, and it is the best
484 after sand-clay optimization. Moreover, the optimized parameters could enable CoLM
485 to improve its ability of simulation observably at the stage of prediction in these three
486 experiments. The difference of the numerical results between experiment I and
487 experiment II is that, at the stage of prediction, the optimal parameters after the
488 sand-clay optimization attained in experiment I could make CoLM simulate the
489 shallow soil moisture the best, which is rational, but in experiment II, the optimal
490 parameters attained by clay optimization could make the ability of simulating the
491 shallow soil moisture of CoLM the best, which is not line with the common sense.

492 These conclusions are similar to Wang and Huo (2013), although the climate of the
493 research areas is different, one is a arid and semiarid area, and the other is subhumid
494 temperate climate. At the same time, dataset I are the revise of dataset II, and
495 dataset I are more accurate than dataset II. As we all know, the simulating ability
496 of CoLM depends on the accuracy of data, such as forcing data, initial data, boundary
497 data and so on, and in general, the more accurate the data are, the more reliable the
498 simulations will be. In our works, we got similar results for both arid and semiarid and
499 subhumid area, so, we can guess that the factor affecting optimal results and
500 simulating ability mainly is the accuracy of dataset. The more accurate the dataset are,
501 the more trustworthy the optimal results will be.

502 The conclusions obtained in this work also show that the extended application of
503 CNOP-P method in CoLM is reasonable and efficient. But we just investigated two
504 special parameters and in one special area, i.e. the Hulunbiur Steppe. It will be

505 beneficial and helping to lay solid foundations for ecosystem management to consider
506 more important parameters in CoLM in arid and semiarid areas.
507

508 **Author contribution**

509 Bo Wang designed the experiments and wrote up the manuscript with contributions
510 from all co-authors, Zhenhua Huo carried the experiments out, and Yujing Yuan and
511 Shang Wu helped to check the model code and the simulations.

512

513 **Acknowledgements**

514 This research was supported by the National Natural Science Foundation of China
515 (Grant No. 40805020); the Open Subject of LASG, IAP, CAS(No. 201401); the
516 foundation for Young University Key Teacher by the Educational Department of
517 Henan Province (No. 2014GGJS-021); the Emerging Cross and Characteristic
518 Discipline Plan of Henan University(No. 0000A40450). The authors are grateful to
519 NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for the availability of the NCEP
520 Reanalysis and NCEP_Reanalysis 2 data from their website
521 (<http://www.esrl.noaa.gov/psd>).

522

523 **References**

524 Bastidas, L. A., Hogue, T. S., Sorooshian, S., Gupta, H.V., and Shuttleworth, W. J.:
525 Parameter sensitivity analysis for different complexity land surface models using
526 multicriteria methods, *J. Geophys. Res.*, 111, 2006, doi: 10.1029/2005JD006377.

527 Bonan, G. B.: A land surface model (LSM version 1.0) for ecological, hydrological,
528 and atmospheric studies: Technical description and user's guide. NCAR Tech. Note
529 NCAR/TN-417+STR, 150 pp, 1996.

530 Dai, Y. J. and Coauthors: Common Land Model (CLM): Technical Documenta-
531 tion and User's Guide. <http://globalchange.bnu.edu.cn/research/models>, 2001.

532 Dai, Y. J. and Zeng Q.-C.: A land surface model (IAP94) for climate studies, Part I:
533 Formulation and validation in off-line experiments. *Adv. Atmos. Sci.*, 14, 433–460,
534 1997.

535 Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Wilson, M. F.:
536 Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to
537 Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp, 1993.

538 Duan, W. S., Mu, M. and Wang, B.: Conditional nonlinear optimal perturbations as
539 the optimal precursors for El Nino–Southern Oscillation events. *J. Geophys. Res.*, 109,
540 D23105, 2004.

541 Duan, W. S. and Mu, M.: Investigating decadal variability of El Nino–Southern
542 Oscillation asymmetry by conditional non-linear optimal perturbation. *J. Geophys.*
543 *Res.*, 111, C07015, 2006.

544 Duan, W. S., Xu, H. and Mu, M.: Decisive role of nonlinear temperature advection in
545 El Nino and La Nina amplitude asymmetry. *J. Geophys. Res.*, 113, C01014, 2008.

546 Duan, W. S. and Mu, M.: Conditional nonlinear optimal perturbation: applications to
547 stability, sensitivity, and predictability. *Science in China (D) : Earth Sciences*, 52, 7,
548 883-906, 2009.

549 Duan, W. S., Xue, F. and Mu, M.: Investigating a nonlinear characteristic of ENSO
550 events by conditional nonlinear optimal perturbation. *Atmos. Res.*, 94, 10-18, 2009a.

551 Duan, W. S., Liu, X. C., Zhu, K. Y. and Mu, M.: Exploring the initial error that causes
552 a significant spring predictability barrier for El Nino events. *J. Geophys. Res.*, 114,
553 C04022, 2009b.

554 Duan, W. S. and Luo, H. Y.: A new strategy for solving a class of nonlinear
555 optimization problems related to weather and climate predictability. *Adv. Atmos. Sci.*,
556 4, 741-749, 2010.

557 Duan, W. S. and Zhang, R.: Is model parameter error related to spring predictability
558 barrier for El Nino events? *Adv. Atmos. Sci.*, 5, 1003–1013, 2010.

559 Han, F., Niu, J. M., Liu, P. T., Na, R. S. , Zhang Y. N., Wan G. H.: Impact of Climate
560 Change on Forage Potential Climatic Productivity in Desert Steppe in Inner Mongolia.
561 *Chin. J. Grassl.*, 32(5), 57-65, 2010. (in Chinese)

562 He, Y. C. and Wang, X. Z.: Solution of Hard Constrained Optimization Problem
563 Based on Modified Differential Evolution Algorithm. *Comput. Eng.*, 34, 193-217,
564 2008. (in Chinese)

565 Li, H. Q., Guo, W. D., Sun, G. D. and Zhang, Y. C.: Using conditional nonlinear
566 optimal perturbation method in parameter optimization of land surface processes
567 model. *Acta. Phys. Sin.*, 60, 019201, 1-7, 2011a. (in Chinese)

568 Li, H. Q., Guo, W. D., Sun, G. D., Zhang, Y. C. and Fu, C.B.: A new approach for
569 parameter optimization in land surface model. *Adv. Atmos. Sci.*, 28(5), 1056-1066,
570 doi: 10.1007/s00376-010-0050-z, 2011b.

571 Liu, B., Wang, L., and Jin, Y. H.: Advances in differential evolution. *Control. Decis.*,
572 22, 721-729, 2007. (in Chinese)

573 Luo, S. Q., Lu, S. H., Zhang, Y., Hu, Z. Y., Ma, Y. M., Li, S. S. and Shang, L. Y.:
574 Simulation Analysis on Land Surface Process of BJ Site of Central Tibetan Plateau
575 Using CoLM. *Plateau Meteor.*, 27, 259-271, 2008. (in Chinese)

576 Ma, Q. Y.. It's hot and sunny in the eastern part in late May and frequently rainy with
577 sleet in the southern part. *Meteor. Mon.*, 18(8), 62-63, 1992. (in Chinese)

578 Meng, C. L. and Cui, J. Y.: Study on Soil Evaporation and Coupling Transmission of
579 Soil Moisture and Heat in Arid Areas. *Arid Zone Res.*, 24, 141-145, 2007. (in
580 Chinese)

581 Mu, M., and Duan, W. S.: A new approach to studying ENSO predictability: con-
582 ditional nonlinear optimal perturbation. Chinese Sci. Bull., 48, 1045-1047, 2003.

583 Mu, M., Duan, W. S., and Wang, B.: Conditional nonlinear optimal perturbation and
584 its applications. Nonlin. Processes Geophys., 10, 493-501, 2003.

585 Mu, M. and Wang, B.: Nonlinear instability and sensitivity of a theoretical grassland
586 ecosystem to finite-amplitude perturbations. Nonlin. Processes Geophys., 14, 409–423,
587 2007.

588 Mu, M., Duan, W. S., Wang, Q., and Zhang, R.: An extension of conditional nonlinear
589 optimal perturbation approach and its applications. Nonlin. Processes Geophys., 17,
590 211-220, 2010.

591 Song, Y. M., Guo, W. D., and Zhang, Y. C.: Performances of CoLM and
592 NCAR_CLM3.0 in simulating land-atmosphere interactions over typical forest
593 ecosystem in China. Part I : Preliminary analysis of the simulations based on
594 different models. Climatic Environ. Res., 14, 229-242, 2009a. (in Chinese)

595 Song, Y. M., Guo, W. D., and Zhang, Y. C.: Performances of CoLM and
596 NCAR_CLM3.0 in simulating land-atmosphere interactions over typical forest
597 ecosystem in China. Part II : Impact of different parameterization schemes on
598 simulations. Climatic Environ. Res., 14, 243-257, 2009b. (in Chinese)

599 Storn, R. and Price K.: Differential Evolution - A simple and Efficient Adaptive
600 Scheme for Global Optimization Over Continuous Spaces. ICSI Technical Report
601 TR-95-012, 12 pp, 1995.

602 Su, L. J., Li, X. C. and Deng, X. D.: Climate change characteristics of Eastern Inner
603 Mongolia from 1951-2005. J. Meteor. Environ., 24(5), 2008. (in Chinese)

604 Sun, S. F.. Biophysical and Biochemical Mechanisms and Their Parameterization in
605 Context of Land Surface Processes. China Meteorological Press, Beijing, 307pp, 2005.
606 (in Chinese)

607 Sun, G. D. and Mu M.: A preliminary application of the differential evolution
608 algorithm to calculate the CNOP. Atmos. Oceanic Sci. Lett., 2, 381-385, 2009.

609 Sun, G. D. and Mu M.: Response of a Grassland Ecosystem to Climate Change in a
610 Theoretical Model. Adv. Atmos. Sci., 28, 1266-1278, 2011.

611 Sun, G. D. and Mu M.: Understanding variations and seasonal characteristics of net
612 primary production under two types of climate change scenarios in China using the
613 LPJ model. *Climatic Change*, 120, 755-769, 2013.

614 Sun, G. D. and Mu M.: The analyses of the net primary production due to regional and
615 seasonal temperature differences in eastern China using the LPJ model. *Ecol. Model.*,
616 289, 66-76, 2014.

617 Wang, B., Wang, J. P., Huo, Z. H., Zhang, P. J., and Wang Q.: Application of
618 Conditional Nonlinear Optimal Perturbation Method in a Theoretical Grassland
619 Ecosystem. *Chinese Q. J. Math.*, 25, 3, 422-429, 2010.

620 Wang, B., Zhang, P. J., Huo, Z. H., and Qi, Q. Q.: The sensitivity analysis of a lake
621 ecosystem with the conditional nonlinear optimal perturbation method, *Adv.*
622 *Meteorol.*, Article ID 562081, 7pages, 2012.

623 Wang, B. and Huo, Z. H.: The extended application of the conditional nonlinear
624 optimal parameter perturbation method in Common Land Model. *Adv. Atmos. Sci.*,
625 30(4), 1213–1223, 2013.

626 Xia, Y. L., Pitman, A. J., Gupta, H. V., Lepastrier, M., Henderson-Sellers, A., and
627 Bastidas, L. A.: Calibrating a land surface model of varying complexity using
628 multi-criteria methods and the Cabauw data set. *J. Hydrometeorol.*, 3, 181-194, 2002.

629 Xia, Y. L., Sen, M. K., Jackson, C. S. and Stoffa, P. L.: Multi-dataset study of optimal
630 parameter and uncertainty estimation of a land surface model with Bayesian stochastic
631 inversion and Multicriteria method. *J. Appl. Meteor.*, 43, 1477-1497, 2004a.

632 Xia, Y. L., Yang, Z. L., Jackson, C., Stoffa, P. L., and Sen, M. K.: Impacts of data
633 length on optimal parameter and uncertainty estimation of a land surface model. *J.*
634 *Geophys. Res.*, 109, doi: 10.1029/2003JD004419, 2004b.

635 Xin, Y. F., Bian, L. G., and Zhang, X. H.: The Application of CoLM to Arid Region of
636 Northwest China and Qinghai-Xizang Plateau. *Plateau Meteorol.*, 25, 567-574, 2006.
637 (in Chinese)

638 Yu, G. Y., Li, P., He, Z., and Sun, Y. M.: Advanced evolutionary algorithm used in
639 multi-objective constrained optimization problem. *Comp. Integ. Manufact. Sys.*, 15,
640 1172-1178, 2009. (in Chinese)

641 Zhang, C., Gao, J., Zhao, Y. I.: Climate changes analysis in the Inner Mongolia desert
642 grassland based on GIS. Pratacultur. Sci., 2014, 31(12): 2212-2220.(in Chinese)
643 Zheng, J., Xie, Z. H., Dai, Y. J., Yuan, X., and Bi, X. Q.: Coupling of the common
644 land model (CoLM) with the regional climate model (RegCM3) and its preliminary
645 validation. Chin. J. Atmos. Sci., 33, 737-750, 2009. (in Chinese)

646 **Figure captions**

647 FIG.1 Sequence diagram of the shallow soil moisture (unit: $m^3 m^{-3}$) in the experiment

648 I . (a): at the stage of optimization; (b): at the stage of prediction.

649

650 FIG.2 Scatter diagram of the shallow soil moisture (unit: $m^3 m^{-3}$) in the experiment I .

651 (a): at the stage of optimization; (b): at the stage of prediction.

652

653 FIG.3 Sequence diagram of the shallow soil moisture (unit: $m^3 m^{-3}$) in the experiment

654 II . (a): at the stage of optimization; (b): at the stage of prediction.

655

656 FIG.4 Scatter diagram of the shallow soil moisture (unit: $m^3 m^{-3}$) in the experiment II .

657 (a): at the stage of optimization; (b): at the stage of prediction.

658

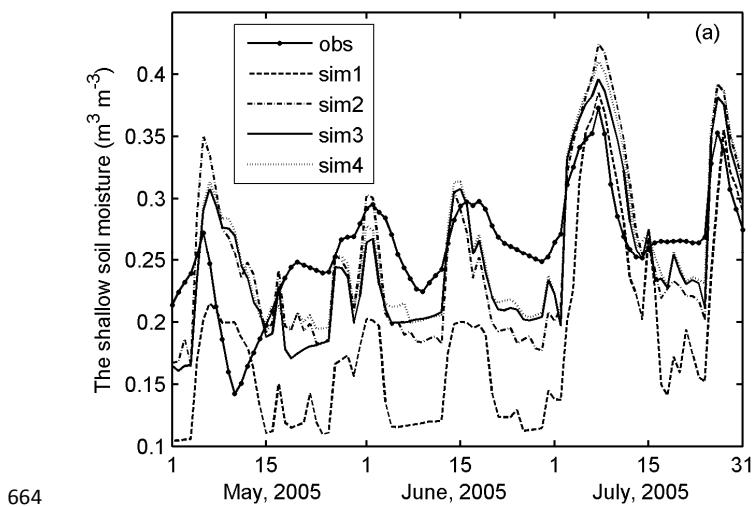
659 FIG.5 Convective precipitation and large scale precipitation in experiment I and

660 experiment II . (a): at the stage of optimization in the experiment I ; (b): at the stage

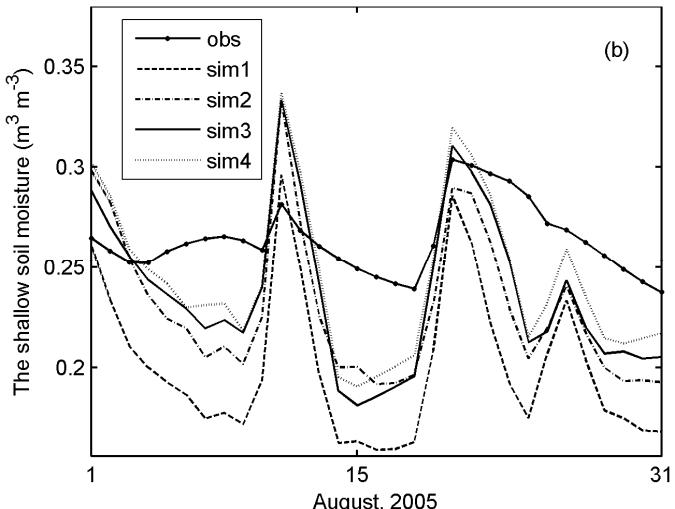
661 of prediction in the experiment I ; (c): at the stage of optimization in the experiment

662 II ; (d): at the stage of prediction in the experiment II .

663



664



665

666 Fig. 1

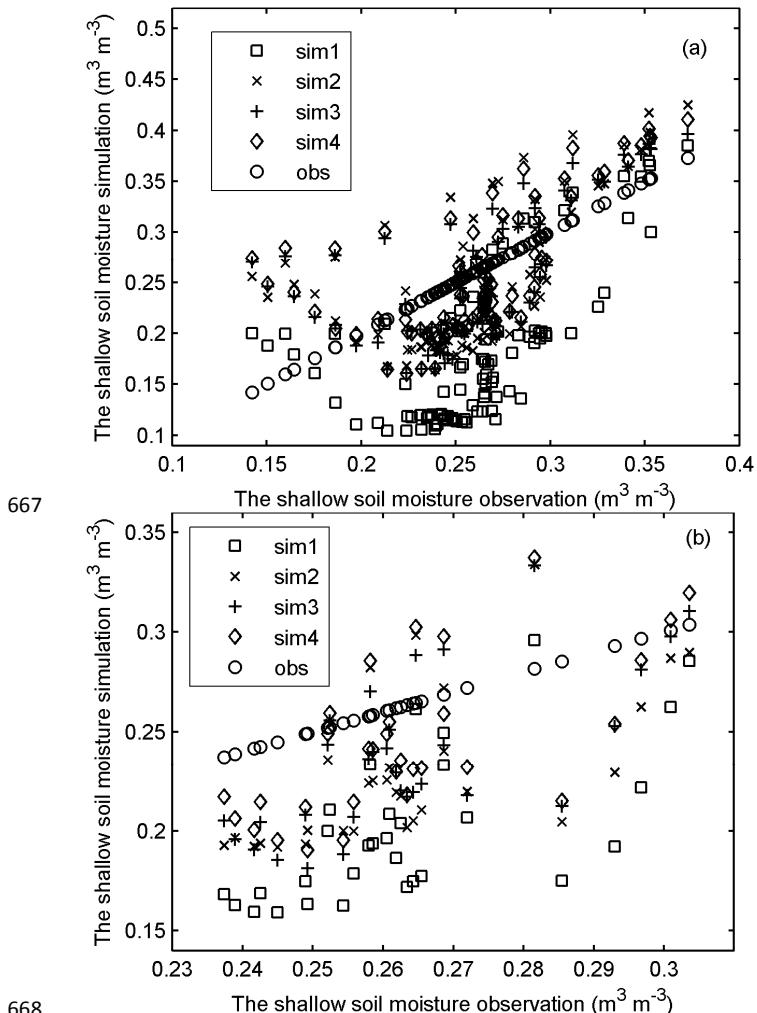
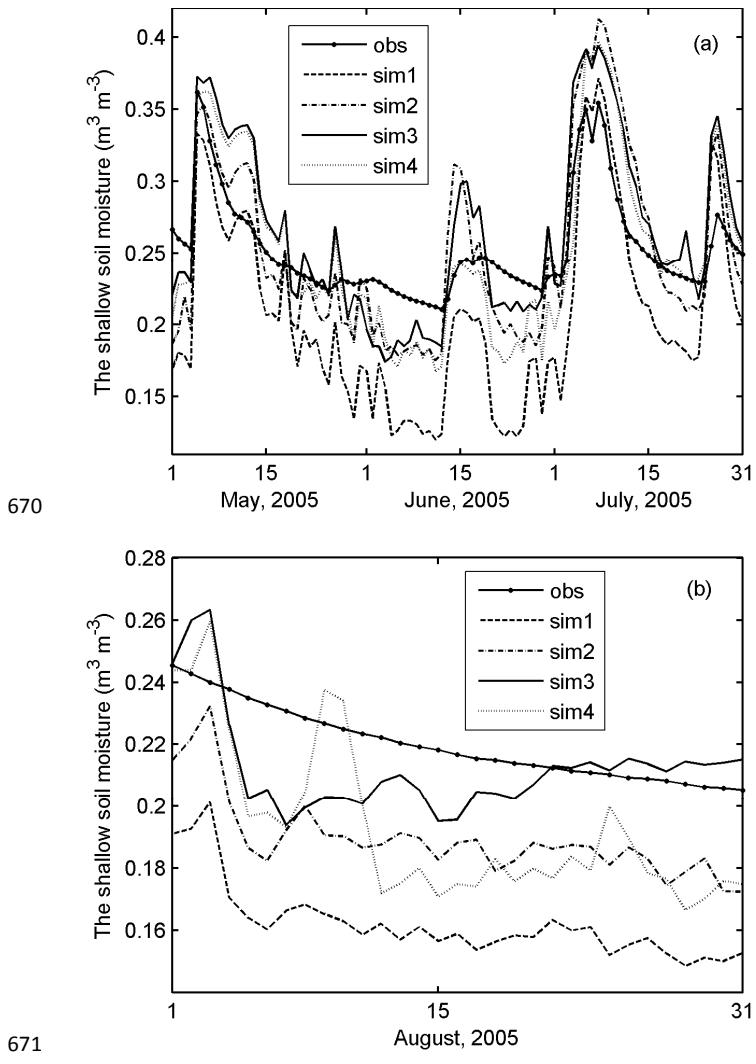


Fig. 2



670

671

672 Fig. 3

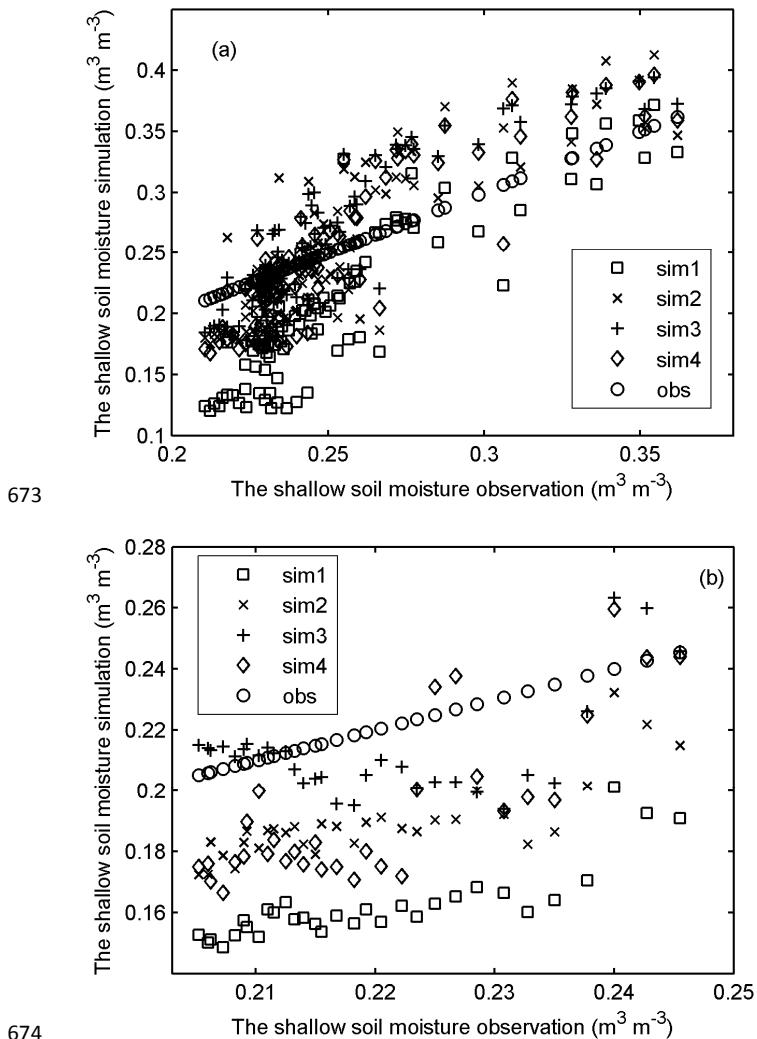
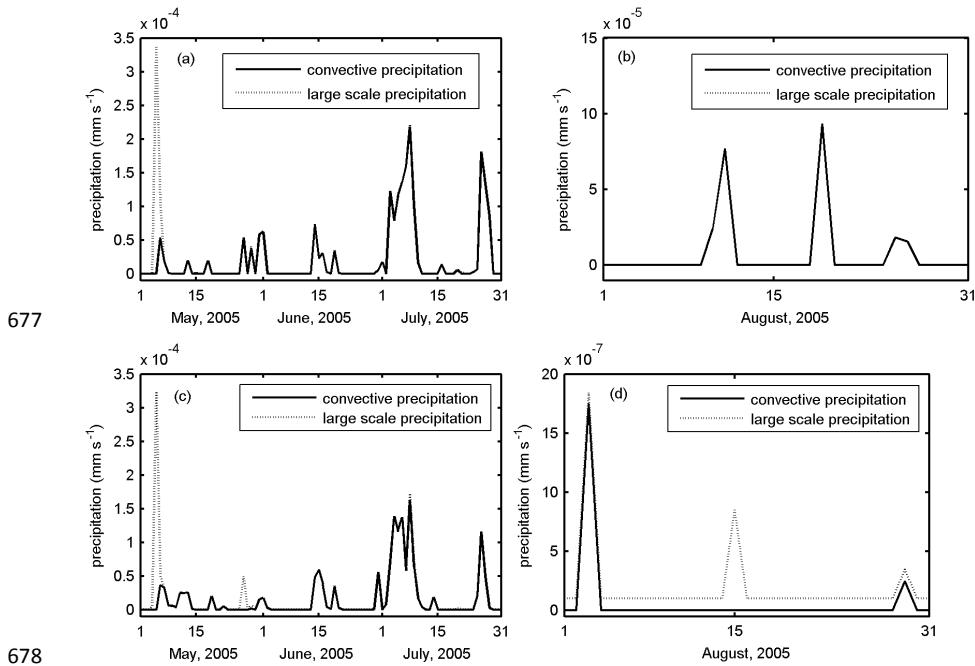


Fig. 4



677

678

679 Fig. 5

680 **Table captions**

681 Table 1. Comparison of sand and clay (unit: %) before and after optimization in the
682 experiment I .

683

684 Table 2. Comparison of the objective function values and the referential function
685 values before and after optimization in the experiment I .

686

687 Table 3. Comparison of sand and clay (unit: %) before and after optimization in the
688 experiment II .

689

690 Table 4. Comparison of the objective function values and the referential function
691 values before and after optimization in the experiment II .

692

693 Table 5. Comparison of the objective function values and the referential function
694 values before and after optimization with dataset I in the experiment III.

695

696 Table 6. Comparison of sand and clay (unit: %) before and after optimization with
697 dataset I in the experiment III.

698

699 Table 7. Comparison of the objective function values and the referential function
700 values before and after optimization with dataset II in the experiment II .

701

702 Table 8. Comparison of sand and clay (unit: %) before and after optimization with
703 dataset II in the experiment II .

704

705 Table 1.

The parameter	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
Sand	37.5	15.458379	37.5	28.841991
Clay	26	26	43.715421	40.281376

706

707 Table 2.

Function value	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
obj1	0.098224	0.056424	0.050492	0.049054
ref1	0.087392	0.050470	0.043871	0.042262
obj2	0.069606	0.045452	0.040497	0.036333
ref2	0.063743	0.041387	0.035004	0.031494

708

709 Table 3.

The parameter	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
Sand	37.5	11.215094	37.5	42.190752
Clay	26	26	52.195857	54.614659

710

711 Table 4.

Function value	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
obj1	0.061491	0.038930	0.036811	0.036528
ref1	0.053017	0.032882	0.030984	0.029458
obj2	0.058472	0.032212	0.017816	0.033081
ref2	0.057880	0.030818	0.014367	0.030414

712 Table 5.

Function value	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
obj1	0.190404	0.135727	0.131815	0.128480
ref1	0.138981	0.107459	0.105064	0.099933
obj2	0.135303	0.104008	0.086822	0.083889
ref2	0.117531	0.083503	0.065347	0.062849

713

714 Table 6.

The parameter	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
Sand	37.5	11.227582	37.5	37.489331
Clay	26	26	46.279844	46.089471

715

716 Table 7.

Function value	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
obj1	0.214117	0.156524	0.152562	0.146493
ref1	0.169689	0.119458	0.115074	0.110053
obj2	0.172814	0.150163	0.154181	0.143004
ref2	0.141641	0.117755	0.122391	0.111130

717

718 Table 8.

The parameter	Before the optimization	After sand optimization	After clay optimization	After sand-clay optimization
Sand	37.5	11.860160	37.5	25.993371
Clay	26	26	36.664604	40.290898

719