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Abstract

In this article, we study linear and non-linear stability of the three state variables rate and state
friction (3sRSF) model with spring-mass sliding system. Linear stability analysis shows that
critical stiffness, at which dynamical behaviour of the sliding system changes, increases with
number of state variables. The bifurcation diagram reveals that route of chaos is period
doubling and this has also been confirmed with the Poincaré maps. The present system is
hyperchaos since all Lyapunov exponents are positive. It is also established that the 3sRSF
model is more chaotic than corresponding to the 2sRSF model. Finally, the implication of the
present study is also discussed.

1. Introduction

One of the most important applications of friction in recent decades is in understanding the
sliding dynamics of earthquake faults (Brace and Byerlee, 1966; Dieterich, 1979; Rice and
Ruina, 1983). It is believed that the stick-slip process along the earthquake faults results in
earthquakes. Researchers use rate and state friction(RSF) model oftenly to explain the
earthquake process (Brace and Byerlee, 1966; Dieterich, 1979; Rice and Ruina, 1983). The
RSF model was proposed by Dieterich (1979,1981), Ruina (1983) and Ruina and Rice (1983).
Although the RSF model is an empirical model, its genesis has been explained using the
Eyering’s rate reaction theory (Rice et. al., 2001). Classical Amontons-Coulombs’ (AC) laws
are widely used for explaining variety of friction based phenomena of hard solids
(Persson,2000). Nonetheless these friction laws do not explain many observations for
instance increase in friction with time of contact and sliding velocity, more significantly,

stiffness dependence of stick-slip behavior etc. (Rice and Ruina,1983). In fact, these



Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-11, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 1 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

limitations of the AC laws led to the proposal of the modified friction model which is known
as the rate and state friction (RSF) model. According to this friction model of hard solids such
as rock solids depends on the “slip rate” as well as the “state” of the sliding surfaces (Rice and
Ruina,1983; Ruina,1983). Although one state variable explains well the stiffness dependence
of stick-slip oscillatory motion of a sliding mass, it doesn’t explain its chaotic behavior. As a
result, one state variable RSF law has been modified by introducing an additional state
variable by believeing that chaos is a manifestation of more complex friction processes at the
slip interface. This observation led to the proposal of the two state variables rate and state
dependent friction (2sRSF) model. The 2sRSF model shows the chaotic behavior ( Ruina,
1983; Gu et. al., 1984; Gu and Wong, 1994; Zhiern and Dangmin, 1994; Niu and Chen, 1995;
Becker, 2000; Gao, 2013). It arises naturally a question what happens to the 2sRSF model if
one more state variable is added in this friction model. In this article we have studied
numerically linear and nonlinear dynamics of the three state variables rate and state
friction(3sRSF) with spring-mass sliding system. The results are also compared with the
corresponding two state variables rate and state friction (2sRSF) model.

Chaos is defined as “Aperiodic long-term behavior in a deterministic system that exhibits
sensitive dependence on initial conditions” (Strogatz,1994). The conditions for a continuous
dynamical system to be chaotic are that the governing differential equation must possess at
least three independent variables, and also show the dependence on initial conditions
(Devany,1989). There are many well known and extensively studied chaotic systems in
literature for example Duffing oscillator, Lorenz system, Rossler system etc. (Strogatz,1994).
Moreover, phase plot, Poincaré maps, bifurcation diagram, Lyapunov exponents etc. are the
numerical tools which are widely used for studying chaotic behavior of a dynamical system.
Rossler introduced the concept of hyperchaos by modifying one of the simplest chaotic

models (Rossler,1979). The general conditions for the hyper-chaos are that the system of
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differential equations should have at least four independent variables and the system must
also be dissipative (Wang and Wang,2008; Chen et. al., 2006). Moreover, the Lyapunov
exponents of the dynamical system must show at least two positive, one zero and one negative
(Niu and Chen,1995). Further, the sum of all Lyapunov exponents must be negative
(Moghtadaei and Goplaegani,2012). In additions to these conditions, the phase plot should
also show twisting structure in the chaotic behavior (Moghtadaei and Goplaegani, 2012).
Notwithstanding the aforementioned conditions for hyperchaos, there are dynamical systems
which have been claimed to be hyper chaos. For example, Oteski et al. (2015) have claimed
that an air-filled differentially heated cavity to be hyperchaotic on the basis of all positive
Lyapunov exponents(LESs). In the present 3sRSF model as well, we will establish numerically
that all LEs are positive hence the 3sRSF dynamical system to be hyperchaotic.

In literature majority of study has been done with one state variable based RSF law (Ranjith
and Rice, 1999). The reason may be attributed to the fact that one state variable based friction
law is enough to explain the stick-slip phenomenon or frictional instability of hard surfaces.
Gu et al. (1984) have studied numerically the linear and non-linear behaviour of the spring-
mass slider with the 1sRSF model as well as the 2sRSF model. They have reported stick-slip
behavior with 1sSRSF model while the 2sRSF model shows the period doubling as well as
chaotic behaviour. Gu and Wong (1992) have carried out linear and nonlinear stability
analysis with both thelsRSF and 2sRSF models using the tools phase portraits, time series,
and bifurcation diagrams. They have established that the most significant parameter is spring
stiffness which controls the stability of the sliding mass. Zhiren and Dangmin (1994,1995)
have carried out the numerical simulations of 2sRSF model with the slip law, and they
observed that the sliding system shows the quasi-periodic to chaotic behaviour upon decrease
in spring stiffness even in the absence of inertia that is, under the quasistatic conditions. They

have also estimated the Lyapunov exponents as well as Lyapunov dimensions to confirm the
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evidence of chaotic behaviour of the system (Niu and Chen, 1995). Xuejun(2013) has
investigated the stability of the 2sRSF and finds the period doubling route to chaos. Wang
(2002,2009) has pointed out that the “slip” and “slowness” laws differ in high velocity
regime but not in the low velocity sliding regime. In recent times the 2sRSF model has been
used to validate the experimental data concerning rock friction at high temperature in the
framework of the 2sRSF(Liu, 2007 King and Marone,2012). Nontheless these researchers
have not reported any evidence of chaotic behavior in the experiments at high temperature.
The present analysis is related with the three state variable RSF model i.e., the 3sRSF model.
The organization of the paper is as following. First we have derived governing differential
equations of the spring-mass sliding system with 3sRSF in non-dimensional form following
the same procedure as was done by Xuejun[2013]. It is then linear stability of Eq. (4) is
carried out by linearizing about steady state or equilibrium points. The expression for critical
stiffness is also derived using Routh- Hurwitz criterion (Persson,2000). The physical meaning
of the critical stiffness is that at this value of stiffness the sliding behavior changes from
unstable to stable sliding or vice versa. The non-linear analysis of Eq. (4) is also carried out in
detail with different tools such as phase plot, Poincaré maps, bifurcation diagram, Lyapunov
exponents and Lyapunov dimensions. Finally a comparative study is also done between
2sRSF and 3sRSF models to justify the present results.

2.Modelling of Spring-mass system with three state variables friction law

According to the rate and state friction(RSF) model, frictional stress‘z > of a sliding hard
surface depends on sliding velocity ‘v’ and state variable <@> (Ruina, 1983). Based on the
experimental observations Dieterich(1978), Ruina(1980,1983), Ruina and Rice(1983)
proposed the following empirical relation

r=r" +6,+AlnL |, and %:—l{eﬁa Inl*}. )
v dt L v
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where ¢, is number (i =1,2,3...) of state variables, B, are L, are the constants. Further ‘z"* and

‘v" are reference frictional shear stress and shear velocity respectively. The system of

differential equations in Eq.(1) with three state variables are expanded as

r:z'*+01+92+93+Aln¥,&%=—l{@+ Bllnl,}
v L Vv

dt
dé v v dé. % Vv @)
9 vy a k] adh Y oamt]
dt L, v dt L, v

Dieterich(1979), Ruina(1983) have proposed two laws governing the “state” of the sliding
surfaces which are know as the Ruina-Rice slip law or simply slip law and Dieterich-Ruina
ageing law or ageing law [3]. It is important to note that the, unlike ageing law, the slip law of
the RSF model shows chaotic behaviour (King and Marone,2012 ). The reason for this
contradictory observation is not yet reported in literature.

In order to study the 3sRSF model, we have also used the spring-mass sliding system under
the quasi-static conditions. The free end of the spring having spring constantk(Pam™) is

being pulled constantly with a constant pulling velocity ‘v, as a result the rate of change of

friction at the sliding interface is given by

dr
—=k(v,—V). 3
= K%-v) ®)
The non-dimension form of above set of EQs.(1-5) are expressed by introducing non-
dimension variables as velocity ¢, shear stress f , state variables él and éz, time T, pulling

velocity ¢, ,spring stiffness K
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1 Non-dimensional form of the system of differential equations Eq.(4) is obtained using Egs. (2-
2 3). After having eliminated the third state variableéa, we get the following system of

3 differential equations:

j_?:e¢|:(1_p1)é1+(p_p1)éz +(ﬁ1+pﬂz +p1ﬂ3—p)¢+plf - K:|+ Ke®
%z K (e —e’)
MNPV ' ®
d_Tl =—e (91+ﬂ1¢)
dé, A
F :—pe¢ (‘92 +ﬂ2¢)

5 It may be noted that Eq.(4) is having four variables i.e, four dimensional system, thus we

6 investigate the possibility of hyperchaos in Eq.(4).

7 3.0.Results and Discussion

8 3.1.Linear Stability analysis

9  Linear stability of the spring-mass model is done about steady state or equilibrium
10  point(Strogratz, 1994). The equilibrium or fixed points are obtained by equating the equations

11  to zero. The equilibrium points of Eq.(4) are obtained as

12 ¢ss = ¢0’ elss = _ﬁ1¢0' éZss = _ﬂ2¢' and fss = [ﬁ_ﬁl _ﬁz _ﬂ3j¢0 (5)

1
13 The charalctersticequation|JO -l | =0,is expanded for polynomial equation in terms of eigen
14 value 4. where J, is Jacobian matrix of Eq.(4) about the steady state and | is identity matrix.
15 Routh-Hurwitz criterion is used to obtain critical stiffnessk, at which sliding behaviour of
16  the spring-mass system changes. Other details about evaluating k_ is given in appendix-I.
17  The physical significance of k_ is that the sliding system changes its behaviour from unstable
18  to stable sliding for spring stiffness larger than k_ (Gu et. al., 1984; Ranjith and Rice,1999).
19  For instance, Fig.1 presents the results that the sliding system is dynamically unstable for

6
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stiffness k =0.2633and neutral for critical stiffness k, =0.2635 and stable for stiffness
k., =0.2638. The value of critical stiffness is evaluated numerically using the expression for

critical stiffness given in Appendix-I. Noting that the results in Fig.1 are in confirmation with

the 1s RSF model (Ranjith and Rice,1999).

0.36 —
ggg 3 K—O,Zb}lﬂ(m
< 018 3
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Fig.1. Stiffness dependent sliding behavior of spring-mass for g, =1.2, 5,=0.84, 3, =0.38,
p=0.048and p, =0.034for initial condition [0.19885,-1.00824,-0.23862,-0.167034].

3.2.Effect of friction parameters on critical stiffness

The effect of friction parameter such as g, is investigated on critical stiffness k, numerically.

The values of friction parameters are considerd the same as in literature[Rice and Ruina,1983;
Gu. et. al.,1984]. However numerical values of additional parameters 3, and p, in the 3sRSF
model are estimated on the basis of the reported values in literature (Gu. et. al., 1984) For
instance, friction parameter 5 decreases if friction law is modified from one state variable to
two state variables. The result in Fig.2 shows that k_ increases linearly with g,. This linear
behaviour is also seen with the 2sRSF law though we are not presenting the results here. The

dependence of critical stiffness in the 3sRSF model with respect to variables, for instance

B, Bs, p and p,, is also linear though we have not presented the results here.
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Fig.2. Effect of friction parameter g, on critical stiffnessk, for 5, =0.84, 3, =0.38,
p=0.048and p, =0.034.

3.3.Nonlinear stability analysis

Motivated from linear stability analysis, we have also carried out non-linear stability of the
system of governing differential equations in Eq.(4). This is solved with MATLAB® using
ode23s solver for ordinary differential equations. Fig.3 shows the single orbit in phase
portrait, which means the system behaviour is periodic at spring stiffness k =0.087 . This has

also been confirmed using Poincaré section which shows single point in the map in Fig.3.
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Fig.3 phase diagram(left) f vs.¢and Poincaré section(right) fork =0.087, g, =1.0,
B, =0.84,5,=0.38, p=0.048and p, =0.034for initial condition [0,0,0,0].

Now upon lowering the magnitude of spring stiffness to k =0.085, Fig.4 shows the evidence
of period doubling and this phenomena is also confirm by the Poincaré map. As Poincaré

section in Fig.4 shows two points.
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Fig.4 phase diagram f vs.¢and corresponding Poincaré section for k =0.085, g, =1.0,
p,=0.84,3,=0.38, p=0.048and p, =0.034for initial condition [0,0,0,0].

As magnitude of stiffness decreases further to k =0.08437, the dynamical behaviour of the
system changes further. Now the phase portrait in Fig.5 results in period quadrupling and this

is also confirmed in the corresponding Poincaré section in Fig.5.

0.0
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Fig.5 phase diagram f vs.gand corresponding Poincaré section for k =0.08437, g, =1.0,
£, =0.84,5,=0.38, p=0.048and p, =0.034for initial condition [0,0,0,0].

As the controlling parameter k decreases further, the 3sRSF leads the spring-mass system in
chaos. For instance,Fig.6 presents the phase diagram and corresponding Poincaré section for
k =0.08421. The phase portrait shows infinite period with bounded orbits and the

corresponding Poincaré section in the form of continuous line.
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Fig.6 phase diagram f vs.¢gand corresponding Poincaré section for k =0.08421, g, =1.0,
p,=0.84,5,=0.38, p=0.048and p, =0.034for initial condition [0,0,0,0].

A physical significance of the present results is in nucleation of earthquake process. For
instance, The phase portraits in Fig.3-6 show an interesting observation that frictional stress
as well as corresponding slip velocity at the sliding interface changes from periodic to chaotic
upon decreasing spring stiffness of the slider. This results in a direct surge of stress amplitude
thus the nucleation of earthquake process occurs. This observation is similar to the chaotic
nature of the sliding mass with the 2sRSF in which magnitude of the stress fluctuates
considerably thus the earthquake nucleation begins (Becker, 2000).

3.4 Bifurcation diagram

The results in Figs.(3-6) have also been confirmed by the bifurcation diagram in shown Fig.7.
In the bifurcation diagram the control parameter in the form of non-dimensional stiffnessk
decreases by a small step 10° from k =0.089tok =0.084, the evolution of the system is
initially periodic oscillation with increasing amplitude as evident in Fig.7. Upon further
decrease in stiffness uptok =0.085, the behaviour of the system changes to period doubling
as obvious in Fig.7. If stiffness decreases to further lower value i.e., k =0.08437 ,the system
behaviour bifurcates to the period four (Fig.7). Finally the system results in chaotic behaviour
at minimum stiffness k =0.08421.These results are in confirmation with phase portraits and

Poincaré section in Figs.(3-6).

10
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Fig.7 Bifurcation diagram for spring stiffness k =0.87 t00.084, g, =1.0,5,=0.84,
S, =0.38, p=0.048and p, =0.034for initial condition [0,0,0,0].

Fig.7 also summarizes the variation of velocity amplitude with decreasing spring stiffness. It
is obvious that the overall velocity amplitude increase from periodic to chaotic way as
stiffness of the connecting spring decreases. This observation is consistent with the phase
plots in Figs.3-6.

3.5 Lyapunov exponent and dimensions

Lyapunov exponent(LE) is the most significant tool for investigating the dynamical behavior
of a physical system (Kaplan and Yorke,1979). We have used the MATLAB®program for
evaluating the LE of the present dynamical system by Lyapunov Exponent Toolbox (LET),
which is developed by Steve SIU (1998). For the four-dimensional dissipative system, there
are three possible type of strange attractors such as the combination of Lyapunov spectra as
(+,+,0,-), (+,0,0,-) and (+,0,-,-) (Wolf. et. al., 1985). If LE is negative the dynamical system is
stable with dissipative in nature, while the positive LE signifies the system become unstable
orbit or chaotic. However, LE with zero magnitude signifies the system is dynamically neutral
(Wolf. et. al., 1985).

The present analysis of the 3sRSF model shows in Fig.8 that the magnitude of LEs are
LE;=1.8146, LE,=0.0461, LE3=0.0577, LE,=0.0351. This result confirms that the present

dynamical system is very similar to a hyperchao as more than one Lyapunov exponents is

11
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positive (Oteski. et. al., 2015). At the same time, the magnitude of three LEs are one order
less than the remaining one. This result is in contrast with the 2sRSF in which results are one
positive, one negative and one zero in magnitude (Niu and Chen,1995). The relationship
between the Lyapunov exponents and fractal dimensions is established by Kaplan and

Yorke(1979). They have proposed the Lyapunov or Kaplan-Yorke dimension D,, which is

D
given by the formula: D, = D+|hLZhi
D

+”iﬂ

D
where D is the largest integer for which Zhi >0. As a result,D,,is a convenient
i=1

geometrical measure of objects in phase space if Lyapunov exponents are known. The fractal

dimension of the present dynamical system is calculated to be as 5.70.

40
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Fig.8.Lypunov exponents vs. .time for k=0.08421, 4, =1.0, 3, =0.84, 5, =0.38, p=0.048
and p, =0.034for initial conditions [0,0,0,0]

The 3sRSF based quasistatic system also follows the universal period doubling route to chaos.
The Feigenbaum number is estimated using given formulas, = (k,,, —k,)/(K,., —K,..) Where
n=12,3..., this number should converge to Feigenbaum number 4.669201. we have

calculated Feigenbaum universality constant for 3sRSF law and estimated to 3.9375. However

this single value does not indicate the sign of convergence. It may be possible that

12
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convergence for the bifurcation sequence to chaos for the friction model is different from the

logistic map.

We have also investigated whether the present friction model fulfils the other conditions of

hyperchaos. The hyperchaotic behavior in the form of phase portraits in Fig.9 shows the

AN
\

twisting nature of the phase diagram. This is also a feature of hyper chaos().
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Fig.9. Twisted phase diagram for stiffness value (a)k=0.085, (b)k =0.08437, (c)
k=0.08421and p, =1.0,5,=0.84,3,=0.38, p=0.048and p, =0.034for initial condition
[0,0,0,0].

We have also compared the linear and non-linear behavior between the 2sRSF and the 3sRSF
models. For instance, critical stiffness, at which dynamics of stick-slip motion changes,
increases with number of state variables. Moreover, the route of chaos is same for both
2sRSF and 3sRSF models, that is, period doubling. But period eight and period sixteen are
not observed in the present system which is unlike to the 2sRSF model (Xuejun,2013).
Moreover,LEs of the 2sRSF are reported to be one positive, one negative and one zero. The

3sRSF model, in contrast, shows all four LEs are positive. This result has been confirmed
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using magnitude of fractal dimension (FD). For example, FD of the 2sRSF is 2.11 which is
less than the FD of 3sRSF i.e., 5.7. Moreover, Poincaré section of the 3sRSF model is
slightly intricate than the 2sRSF model. On the basis of these evidances, it is established that
the 3sRSF model is more chaotic than the 2sRSF model.

5.Conclusions

We have established numerically that the three state variables based RSF model show the
chaotic behavior. All Lyapunov exponent is positive. The route of chaos is established to be
period doubling bifurcation. Moreover, critical stiffness of the dynamical system increases
with number of state variables. It is also observed that the 3sRSF is more chaotic than
corresponding to the 2sRSF. It is shown that the 3sRSF model is hyperchaotic as it exhibits

all positive Lyapunov exponents.

References:
Brace,W.F.,Byerlee,J.D.:Stick-slip as a Mechanism of earthquake,Science,153,990-992,1966

Chen,A.,Lu,J.,Lu,J.,Yu,S..:GeneratinghyperchaoticLU attractor via state feedback control,Physica A.
364,103-110,2006

Dieterich, J.D.:Modeling of rock friction:1.experimental results and constitutive equation, J.
Geophys.Res., 84(B5), 2161-2168,1979

Devany.R.:An introduction to chaotic dynamical system, est view press,1989
Feigenbaum,M.J.:Universal behavior in Nonlinear System. Physica.7D,16,1983

Gu, Y. and Wong, T.-F.:Nonlinear dynamics of the transition from stable sliding to cyclic stick-slip in
rock, in Nonlinear dynamics and predictability of geophysicalphenomena, vol. 8:3,
GeophysicalMonograph, edited by W.l.Newman, A. Gabriclov, and D. L. Turcottc, pp. 15-35,1994,
AGU, Washington, D.C.

GuJ.C., RiceJ.R., Ruina, A.L.and Tse, S.T.: Slip motion and stability of a single degree of freedom
elastic system with rate and state dependent friction. J. Mech. Phys. Solids.32, 167-196,1984

Jeen-HwaWang.:A Dynamic Study of Two One-State-Variable, Rate-Dependent, and State-
Dependent Friction Laws, Bulletin of the Seismological Society of America. 92,687-694,2002
Jeen-HwaWang.:A Numerical study of comparision of two one-state-variable, rate-and-state-

dependent friction evolution laws, Earthquake Science.22,197-204,2009

14



Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-11, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 1 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

N o o B WN R

o]

10
11

12
13
14
15
16

17
18

19

20

21
22
23
24
25
26
27
28
29
30
31
32

33
34

King,D.S.H.,Marone,C.:Frictional properties of olivine at high temperature with applications to the
strength and dynamics of the oceanic lithosphere. J. Geophys. Res.117, B12203,2012

Wolf, A., Jack, B.S., Harry, L. S., John, A. V.:Determineing Lyapunov exponents from a time series.
Physica, 16D, 285-317,1985

Kaplan,J.L.,Yorke,J.A.:Chaotic behavior of multidimensional difference equation, in Functional
Differential Equation and Approximation of Fixed Points, Vol. 730,Lecture Notes in Mathematics,
edited by H.-O. Peitgen and H.-O. Walter, pp. 204-227,1979 Springer,Berlin

Marone, C.:Laboratory-derived friction laws and their application to seismic faulting,Annual Review
of Earth and Planetary science,26 643-696,1998

Moghtadaei,M.,Goplayegani,M.R.H.:Complex dynamics behaviours of the complex Lorenz system,
Scientialranica D.19(3),733-738,2012

Niu, Z.-B. and Chen, D.-M.:Lyapunov exponent and dimension of the strange attractor of elastic
frictional system,ActaSeimol. Sinica.8,575-584,1995

O.E. Rossler.:An equation for Hyperchaos, Physics Letters.71A,2-3,1979

Oteski, L., Daguet, Y., Pastur, L., and Quere, P.L.:Quasiperiodic routes to chaos in confined two-
dimensional differential convection., Phys.Rev. E ,92 043020,1-15,2015

Persson Bo. N. J.:Sliding friction physical principal and application,2™ ed., springer. Verlag Berlin
Heidelberg New York,2000

Rice, J.R., Ruina, A.L.:Stability of steady frictional slipping.J.Appl.Mech.50, 343-349,1983
Ruina A.L.:slip instability and state variable friction laws.B12,88,10359-10370,1983

Rice,J.R, Lapusta,N.,Ranjith,K.: Rate and state dependent friction and the stability of sliding between
elastically deformable solids. Journal of the Mechanics and Physics of Solids, 49 1865 — 1898,2001
Ranjith,K.,Rice,J.R.:Stability of quasi-static slip in a single degree of freedom elastic system
with rate and state dependent friction”Journal of the Mechanics and Physics of Solids. 47, 1207-
1218,1999

Roy, M.,Marone,C.:Earthquake nucleation on models faults with rate and state dependent friction: The
effects of inertia, J. Geophys. Res.101,13919 — 13932,1996

Steven H. Strogatz.: Nonlinear dynamics and chaos,Perseus books publishing:Cambridge, MA,1994
Thorsten W. Becker.:Deterministic Chaos in two state-variable friction slider and effect of elastic
itteraction,Geocomplexity and the Physics of Earthquakes. 120, 5,2000
Wang,X.,Wang,M.A.:Hyperchaos generated from Lorenz system,Physica A.387 (14), 3751-
3758,2008

XuejunGao.:Bifurcation Behaviors of The two-state variable frictional law of a rock mass system, Int.
J Bifur. Chaos.23,11,2013, DOI:10.1142/S0218127413501848

15



Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-11, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 1 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

N o o B WN R

ow ™

12

13
14

15

16

17

18

19

20
21

YajingLiu.:Physical Basis of Aseismic Deformation Transients in SubductionZones,PhD thesis,
Harvard University,2007

Zhiren, N. and Dangmin, C.:Period-Doubling Bifurcation and Chaotic Phenomena in a Single Degree
of Freedom Elastic System With A Two-State Variable Friction Law, in Nonlinear Dynamics and
Predictability of Geophysical Phenomena (eds W. I. Newman, A. Gabrielov and D. L. Turcotte),
American Geophysical Union, Washington, D. C.. doi: 10.1029/GM083p0075,1994

http://in.mathworks.com/matlabcentral/fileexchange/233-let

Appendix -1

It Jacobian matrix corresponding to the equilibrium point may be expressed as

(ﬁ1+p,32+p1,33—p)e¢°, pe®, (1_p1)e¢01 (/0_101)6¢ﬂ

S | ket 0, 0, 0
° _ﬁle% ) 01 _e% 1 O
-pBe”, 0, 0, -pe®

(s bhss B £55)
The polynomial equation containing the eigen values in term of Ais obtained from the

expansion of the above Jacobian matrix as following

AR (1+,0+,01+ K _ﬂ1_pﬂ2 _pﬁ3)13+
e* (K+ p+p,+ ppy+ 2K p— pf, — pB, — pB — PBy — pouB, — pouBs ) A2
+e% (2K p+ pp, + pou B, — PP, — Py + K p? ) A+ €K p? =0

sAt +8A4%+5,4 +54+5,=0

where:

s, =1

s, =e®(1+p+p,+ K =B, - pB,— ;)

s, =€ (K+p+p + pp, + 2K p = pf = pB, — P~ PBs — poS, — PP.S; )

s, =€ (2K p+ pp, + pp.B — poBs — PP By + K )

s, ="K p?

The Routh-Hurwitz criterion is used to get the condition for stability of the present friction

model. The characteristic polynomial equation is obtained ass,A* +s,4° +5,4* +s,4+5, =0.
After applying the Routh-Hurwitz criteria s;s, —S,S, =0and s;s,s, —s,s. —s,s? =0. These

non-linear algebraic equations are in turn, solved numerically for evaluating critical stiffness.
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