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 6 

Abstract 7 

In this article, we study linear and non-linear stability of the three state variables rate and state 8 

friction (3sRSF) model with spring-mass sliding system. Linear stability analysis shows that 9 

critical stiffness, at which dynamical behaviour of the sliding system changes, increases with 10 

number of state variables. The bifurcation diagram reveals that route of chaos is period 11 

doubling and this has also been confirmed with the Poincaré maps. The present system is 12 

hyperchaos since all Lyapunov exponents are positive. It is also established that the 3sRSF 13 

model is more chaotic than corresponding to the 2sRSF model. Finally, the implication of the 14 

present study is also discussed. 15 

1. Introduction 16 

One of the most important applications of friction in recent decades is in understanding the 17 

sliding dynamics of earthquake faults (Brace and Byerlee, 1966; Dieterich, 1979; Rice and 18 

Ruina, 1983). It is believed that the stick-slip process along the earthquake faults results in 19 

earthquakes. Researchers use rate and state friction(RSF) model oftenly to explain the 20 

earthquake process (Brace and Byerlee, 1966; Dieterich, 1979; Rice and Ruina, 1983). The 21 

RSF model was proposed by Dieterich (1979,1981), Ruina (1983) and Ruina and Rice (1983). 22 

Although the RSF model is an empirical model, its genesis has been explained using the 23 

Eyering‟s rate reaction theory (Rice et. al., 2001). Classical Amontons-Coulombs‟ (AC) laws 24 

are widely used for explaining variety of friction based phenomena of hard solids 25 

(Persson,2000). Nonetheless these friction laws do not explain  many observations for 26 

instance increase in friction with time of contact and sliding velocity, more significantly, 27 

stiffness dependence of stick-slip behavior etc. (Rice and Ruina,1983). In fact, these 28 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-11, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 
 

limitations of the AC laws led to the proposal of the modified friction model which is known 1 

as the rate and state friction (RSF) model. According to this friction model of hard solids such 2 

as rock solids depends on the “slip rate” as well as the “state” of the sliding surfaces (Rice and 3 

Ruina,1983; Ruina,1983). Although one state variable explains well the stiffness dependence 4 

of stick-slip oscillatory motion of a sliding mass, it  doesn‟t explain its chaotic behavior. As a 5 

result, one state variable RSF law has been modified by introducing an additional state 6 

variable by believeing that chaos is a manifestation of more complex friction processes at the 7 

slip interface. This observation led to the proposal of the two state variables  rate and state 8 

dependent friction (2sRSF) model. The 2sRSF model shows the chaotic behavior ( Ruina, 9 

1983; Gu et. al., 1984; Gu and Wong, 1994; Zhiern and Dangmin, 1994; Niu and Chen, 1995;  10 

Becker, 2000; Gao, 2013). It arises naturally a question what happens to the 2sRSF model if 11 

one more state variable is added in this friction model. In this article we have studied  12 

numerically linear and nonlinear dynamics of the three state variables rate and state 13 

friction(3sRSF) with spring-mass sliding system. The results are also compared with the 14 

corresponding two state variables rate and state friction (2sRSF) model. 15 

Chaos is defined as “Aperiodic long-term behavior in a deterministic system that exhibits 16 

sensitive dependence on initial conditions” (Strogatz,1994). The conditions for a continuous 17 

dynamical system to be chaotic are that the governing differential equation must possess at 18 

least three independent variables, and also show the dependence on initial conditions 19 

(Devany,1989). There are many well known and extensively studied chaotic systems in 20 

literature for example Duffing oscillator, Lorenz system, RÖssler system etc. (Strogatz,1994). 21 

Moreover, phase plot, Poincaré maps, bifurcation diagram, Lyapunov exponents etc. are the 22 

numerical tools which are widely used for studying chaotic behavior of a dynamical system. 23 

RÖssler introduced the concept of hyperchaos by modifying one of the simplest chaotic 24 

models (RÖssler,1979). The general conditions for the hyper-chaos are that the system of 25 
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differential equations should have at least four independent variables and  the system must 1 

also be dissipative (Wang and Wang,2008; Chen et. al., 2006). Moreover, the Lyapunov 2 

exponents of the dynamical system must show at least two positive, one zero and one negative 3 

(Niu and Chen,1995). Further, the sum of all Lyapunov exponents must be negative 4 

(Moghtadaei and Goplaegani,2012). In additions to these conditions, the phase plot should 5 

also show twisting structure in the chaotic behavior (Moghtadaei and Goplaegani, 2012). 6 

Notwithstanding the aforementioned conditions for hyperchaos, there are dynamical systems 7 

which have been claimed to be hyper chaos. For example, Oteski et al. (2015) have claimed 8 

that  an air-filled differentially heated cavity to be hyperchaotic on the basis of  all positive 9 

Lyapunov exponents(LEs). In the present 3sRSF model as well, we will establish numerically 10 

that all LEs are  positive hence the 3sRSF dynamical system to be hyperchaotic. 11 

In literature majority of study has been done with one state variable based RSF law (Ranjith 12 

and Rice, 1999). The reason may be attributed to the fact that one state variable based friction 13 

law is enough to explain the stick-slip phenomenon or frictional instability of hard surfaces. 14 

Gu et al. (1984) have studied numerically the linear and non-linear behaviour of the spring-15 

mass slider with the 1sRSF model  as well as the 2sRSF model. They have reported stick-slip 16 

behavior with 1sRSF model while the 2sRSF model shows  the period doubling as well as 17 

chaotic behaviour. Gu and Wong (1992) have carried out  linear and nonlinear stability 18 

analysis with both the1sRSF and 2sRSF models using the tools phase portraits, time series, 19 

and bifurcation diagrams. They have established that the most significant parameter is  spring 20 

stiffness  which controls the stability of the sliding mass. Zhiren and Dangmin (1994,1995) 21 

have carried out the numerical simulations of 2sRSF model with the slip law, and they 22 

observed that the sliding system shows the quasi-periodic to chaotic behaviour upon decrease 23 

in spring stiffness even in the absence of inertia that is, under the quasistatic conditions. They 24 

have also estimated the Lyapunov exponents as well as Lyapunov dimensions to confirm the 25 
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evidence of chaotic behaviour of the system (Niu and Chen, 1995). Xuejun(2013) has 1 

investigated the stability of the 2sRSF and finds the period doubling route to chaos. Wang 2 

(2002,2009) has pointed out  that the “slip” and “slowness” laws  differ in high velocity 3 

regime but not in the low velocity  sliding regime. In recent times the 2sRSF model has been 4 

used to validate the experimental data concerning rock friction at high temperature  in the 5 

framework of the 2sRSF(Liu, 2007 King and Marone,2012). Nontheless these researchers 6 

have not reported any evidence of chaotic behavior in the experiments at high temperature. 7 

The present analysis is related with the  three state variable RSF model i.e., the 3sRSF model. 8 

The organization of the paper is as following. First we have derived governing differential 9 

equations of the spring-mass sliding system with 3sRSF in non-dimensional form following 10 

the same procedure as was done by Xuejun[2013]. It is then linear stability of Eq. (4) is 11 

carried out by linearizing  about steady state or equilibrium points. The expression for critical 12 

stiffness is also derived using Routh- Hurwitz criterion (Persson,2000). The physical meaning 13 

of the critical stiffness is that at this value of stiffness the sliding behavior changes from 14 

unstable to stable sliding or vice versa. The non-linear analysis of Eq. (4) is also carried out in 15 

detail with  different tools such as phase plot, Poincaré maps, bifurcation diagram, Lyapunov 16 

exponents and Lyapunov dimensions. Finally a comparative study is also done between 17 

2sRSF and 3sRSF models to justify the present results.  18 

2.Modelling of Spring-mass system with three state variables friction law 19 

 According to the rate and state friction(RSF) model, frictional stress„ ‟ of a sliding hard 20 

surface depends on sliding velocity „ v ‟ and state variable „ ‟ (Ruina, 1983). Based on the 21 

experimental observations Dieterich(1978), Ruina(1980,1983), Ruina and Rice(1983) 22 

proposed the following empirical relation 23 

*

* *
= ln  , and  ln .i

i i i

i

dv v v
A B

v dt L v


   

 
     
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where
i  is number ( 1,2,3...)i  of state variables,

iB  are
iL are the constants.  Further „ * ‟ and 1 

„ *v ‟ are  reference frictional shear stress and shear velocity respectively. The system of 2 

differential equations in Eq.(1) with three state variables are expanded as  3 

* 1
1 2 3 1 1* *

1

32
2 2 3 3* *

2 3

= ln ,& ln .

ln ,& ln .

dv v v
A B

v dt L v

dd v v v v
B B

dt L v dt L v


     


 

 
       

 

   
        

   

                    (2) 4 

Dieterich(1979), Ruina(1983) have proposed two laws governing the “state” of the sliding 5 

surfaces which are know as the Ruina-Rice slip law or simply slip law and  Dieterich-Ruina 6 

ageing law or ageing law [3]. It is important to note that the, unlike ageing law, the slip law of 7 

the RSF model shows  chaotic behaviour (King and Marone,2012 ). The reason for this 8 

contradictory observation is not yet reported in literature. 9 

In order to study the 3sRSF model, we have also used the spring-mass sliding system under 10 

the quasi-static conditions. The free end of the spring having spring constant
1( )k Pam

 is 11 

being pulled constantly with a constant pulling velocity „ 0v ‟ as a result the rate of change of 12 

friction at the sliding interface is given by 13 

 0 .
d

k v v
dt


                                                                          (3) 14 

The non-dimension form of above set of Eqs.(1-5) are expressed by introducing non-15 

dimension variables as  velocity ϕ, shear stress f , state variables 
1 2
ˆ ˆ,  and   , time T, pulling 16 

velocity 0  ,spring stiffness K  17 

* *

31 2 1 2 1
1 2 1 2 3*

1 2

0

1 1
1 0 *

3

Lvˆ ˆ,   ln ,    ,   ,   T= ,  ,  ,  , = ,  
L L

L
 = ,   ln ,  K= .

L
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f t
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      

 


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Non-dimensional form of the system of differential equations Eq.(4) is obtained using Eqs. (2-1 

3). After having eliminated the third state variable
3̂ , we get the following system of 2 

differential equations: 3 

     
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                      (4) 4 

It may be noted that Eq.(4) is having four variables i.e, four dimensional system, thus we   5 

investigate the possibility of hyperchaos in Eq.(4). 6 

3.0.Results and Discussion 7 

3.1.Linear Stability analysis 8 

 Linear stability of the spring-mass model is done about steady state or equilibrium 9 

point(Strogratz, 1994). The equilibrium or fixed points are obtained by equating the equations 10 

to zero. The equilibrium points of Eq.(4) are obtained as  11 

0 1 1 0 2 2 1 2 3 0

1

ˆ,  ,  ,  and ss ss ss ssf


           


 
         

 
                                         (5) 12 

The charactersticequation
0 0J I  ,is  expanded for polynomial equation in terms of eigen 13 

value . where 0J  is Jacobian matrix of Eq.(4) about the steady state and I  is identity matrix. 14 

Routh-Hurwitz criterion is used to obtain critical stiffness crk  at which sliding behaviour of 15 

the spring-mass system changes.  Other details about evaluating crk  is given in appendix-I. 16 

The physical significance of crk  is that the sliding system changes its behaviour from unstable 17 

to stable sliding for spring stiffness larger than crk (Gu et. al., 1984; Ranjith and Rice,1999). 18 

For instance, Fig.1 presents the results that the sliding system is dynamically unstable for 19 
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stiffness 0.2633k  and neutral for critical stiffness 0.2635crk   and stable for stiffness1 

0.2638crk  . The value of critical stiffness is evaluated numerically using the expression for 2 

critical stiffness given in Appendix-I. Noting that the results in Fig.1 are in confirmation with 3 

the 1s RSF model (Ranjith and Rice,1999). 4 

 5 

Fig.1. Stiffness dependent sliding behavior of spring-mass for 1 1.2  , 2 0.84  , 3 0.38  ,6 

0.048  and 1 0.034  for initial condition [0.19885,-1.00824,-0.23862,-0.167034]. 7 

 8 

3.2.Effect of friction parameters on critical stiffness 9 

The effect of friction parameter such as 1  is investigated on critical stiffness crk  numerically. 10 

The values of friction parameters are considerd the same as in literature[Rice and Ruina,1983; 11 

Gu. et. al.,1984]. However numerical values of additional parameters 3  and 1  in the 3sRSF 12 

model are estimated on the basis of  the reported values in literature (Gu. et. al., 1984) For 13 

instance, friction parameter   decreases if friction law is modified  from one state variable to 14 

two state variables. The result in Fig.2 shows that crk  increases linearly with 1 . This linear 15 

behaviour is also seen with the 2sRSF law though we are not presenting the results here. The 16 

dependence of critical stiffness in the 3sRSF model  with respect to variables, for instance17 

2 3,   , 1 and   , is also linear though we have not presented the results here. 18 
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 1 

Fig.2. Effect of friction parameter 1   on critical stiffness crk for 2 0.84  , 3 0.38  ,2 

0.048  and 1 0.034  . 3 

 4 

 5 

3.3.Nonlinear stability analysis
 

6 

Motivated from linear stability analysis, we have also carried out non-linear stability of the 7 

system of governing differential equations in Eq.(4). This is solved with MATLAB
®

 using 8 

ode23s solver for ordinary differential equations. Fig.3 shows the  single orbit in phase 9 

portrait, which means the system behaviour is periodic at spring stiffness 0.087k  . This has 10 

also been confirmed using Poincaré section which shows single point in the map in Fig.3. 11 

 12 
Fig.3 phase diagram(left) f vs. and  Poincaré section(right) for 0.087k  , 1 1.0  ,13 

2 0.84  , 3 0.38  , 0.048  and 1 0.034  for initial condition [0,0,0,0]. 14 

 
15 

Now upon lowering the magnitude of spring stiffness to 0.085k  , Fig.4 shows the evidence 16 

of period doubling and this phenomena is also confirm by the Poincaré map. As Poincaré 17 

section in Fig.4 shows two points.
 

18 
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1 

Fig.4 phase diagram f vs. and corresponding Poincaré section for 0.085k  , 1 1.0  ,2 

2 0.84  , 3 0.38  , 0.048  and 1 0.034  for initial condition [0,0,0,0]. 3 

 4 

As magnitude of stiffness decreases further to 0.08437k  , the dynamical behaviour of the 5 

system changes further. Now the phase portrait in Fig.5 results in period quadrupling and this 6 

is also confirmed in the corresponding Poincaré section in Fig.5.  
 

7 

 8 

Fig.5 phase diagram f vs. and corresponding Poincaré section for 0.08437k  , 1 1.0  ,9 

2 0.84  , 3 0.38  , 0.048  and 1 0.034  for initial condition [0,0,0,0]. 10 

 11 

 
12 

As the controlling parameter k decreases further, the 3sRSF leads  the spring-mass system in 13 

chaos. For instance,Fig.6 presents the phase diagram and corresponding Poincaré section for14 

0.08421k  . The phase portrait shows infinite period with bounded orbits and the 15 

corresponding Poincaré section in the form of continuous line.  16 
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1 

Fig.6  phase diagram f vs. and corresponding Poincaré section for 0.08421k  , 1 1.0  ,2 

2 0.84  , 3 0.38  , 0.048  and 1 0.034  for initial condition [0,0,0,0]. 3 

 4 

A physical significance of the present results is in nucleation of earthquake process. For 
5 

instance, The phase portraits in Fig.3-6 show an interesting observation  that  frictional stress 
6 

as well as corresponding slip velocity at the sliding interface changes from periodic  to chaotic 
7 

upon decreasing spring stiffness of the slider. This results in a direct surge of stress amplitude 
8 

thus the nucleation of earthquake process occurs.  This observation is similar to the chaotic 
9 

nature of the sliding mass with the 2sRSF in which magnitude of the stress fluctuates 
10 

considerably thus the earthquake nucleation begins (Becker, 2000). 
11 

3.4 Bifurcation diagram 
12 

The results in Figs.(3-6) have also been confirmed by the bifurcation diagram in shown Fig.7. 13 

In the bifurcation diagram the control parameter in the form of non-dimensional stiffness k14 

decreases by a small step 10
-6

 from 0.089k  to 0.084k  , the  evolution of the system is 15 

initially periodic oscillation with increasing amplitude as evident in Fig.7. Upon further 16 

decrease in stiffness upto 0.085k  , the behaviour of the system changes to period doubling 17 

as obvious in Fig.7. If stiffness decreases to further lower value i.e., 0.08437k  ,the system 18 

behaviour bifurcates to the period four (Fig.7). Finally the system results in chaotic behaviour 19 

at minimum stiffness 0.08421k  .These results are in confirmation with phase portraits and 20 

Poincaré section in Figs.(3-6).
 

21 
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 1 

Fig.7 Bifurcation diagram for spring stiffness 0.87 to 0.084k  , 1 1.0  , 2 0.84  ,2 

3 0.38  , 0.048  and 1 0.034  for initial condition [0,0,0,0]. 3 

 4 

Fig.7 also summarizes the variation of velocity amplitude with decreasing spring stiffness. It 5 

is obvious that the overall velocity amplitude increase from periodic to chaotic way as 6 

stiffness of the connecting spring decreases. This observation is consistent with the phase 7 

plots in Figs.3-6. 8 

3.5 Lyapunov exponent and dimensions 9 

Lyapunov exponent(LE) is the most significant tool for investigating the dynamical behavior 10 

of a physical system (Kaplan and Yorke,1979). We have used the MATLAB
®

program for 11 

evaluating the LE of the present dynamical system by Lyapunov Exponent Toolbox (LET), 12 

which is developed by Steve SIU (1998). For the four-dimensional dissipative system, there 13 

are three possible type of strange attractors such as the combination of Lyapunov spectra as 14 

(+,+,0,-), (+,0,0,-) and (+,0,-,-) (Wolf. et. al., 1985). If LE is negative the dynamical system is 15 

stable with dissipative in nature, while the positive LE signifies the system become unstable 16 

orbit or chaotic. However, LE with zero magnitude signifies the system is dynamically neutral 17 

(Wolf. et. al., 1985).  18 

The present analysis of the 3sRSF model shows in Fig.8 that the magnitude of LEs are  19 

LE1=1.8146, LE2=0.0461, LE3=0.0577, LE4=0.0351. This result confirms that the present 20 

dynamical system is very similar to a hyperchao as more than one Lyapunov exponents is 21 
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positive (Oteski. et. al., 2015). At the same time, the magnitude of three LEs are one order 1 

less than the remaining one. This result is in contrast with the 2sRSF in which results are one 2 

positive, one negative and one zero in magnitude (Niu and Chen,1995). The relationship 3 

between the Lyapunov exponents and fractal dimensions is established by Kaplan and 4 

Yorke(1979). They have proposed the Lyapunov or Kaplan-Yorke dimension KYD  which is 5 

given by the formula:
1

1

1

D

KY i

iD

D D h
h 

 

  6 

where D  is the largest integer for which 
1

0
D

i

i

h


 . As a result, KYD is  a convenient 7 

geometrical measure of objects in phase space if Lyapunov exponents are known. The fractal 8 

dimension of the present dynamical system is calculated to be as 5.70. 9 

 10 

Fig.8.Lypunov exponents vs. .time for  k=0.08421 , 1 1.0  , 2 0.84  , 3 0.38  , 0.048 11 

and 1 0.034  for initial conditions [0,0,0,0] 12 

The 3sRSF based quasistatic system also follows the universal period doubling route to chaos. 13 

The Feigenbaum number is estimated using given formula 1 2 1( ) ( )n n n n nk k k k      where 14 

1,2,3...n  , this number should converge to Feigenbaum number 4.669201. we have 15 

calculated Feigenbaum universality constant for 3sRSF law and estimated to 3.9375. However 16 

this single value does not indicate the sign of convergence. It may be possible that 17 
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convergence for the bifurcation sequence to chaos for the friction model is different from the 1 

logistic map. 2 

 
3 

We have also investigated whether the present friction model fulfils the other conditions of 4 

hyperchaos. The hyperchaotic behavior in the form of phase portraits in Fig.9 shows the  5 

twisting nature of the phase diagram. This is also a feature of hyper chaos().  6 

 7 

 8 

Fig.9. Twisted phase diagram for stiffness value (a) 0.085k  , (b) 0.08437k  , (c)9 

0.08421k  and 1 1.0  , 2 0.84  , 3 0.38  , 0.048  and 1 0.034  for initial condition 10 

[0,0,0,0]. 11 
 12 

We have also compared the linear and non-linear behavior between the 2sRSF and the 3sRSF 13 

models. For instance, critical stiffness, at which dynamics of stick-slip motion changes, 14 

increases with number of state variables. Moreover,  the route of chaos is same for both 15 

2sRSF and 3sRSF models, that is, period doubling. But  period eight and period sixteen are 16 

not observed in the present system which is unlike to the 2sRSF model (Xuejun,2013). 17 

Moreover,LEs of the 2sRSF are reported to be one positive, one negative and one  zero.  The 18 

3sRSF model, in contrast, shows all four LEs are positive. This result has been confirmed 19 
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using magnitude of fractal dimension (FD). For example, FD of the 2sRSF is 2.11 which is 1 

less than the FD of 3sRSF  i.e., 5.7.  Moreover, Poincaré section of the 3sRSF model is 2 

slightly intricate than the 2sRSF model. On the basis of these evidances, it is  established that 3 

the 3sRSF model is more chaotic than the 2sRSF model.
 

4 

5.Conclusions 
5 

We have established numerically that the three state variables based RSF model show the 
6 

chaotic behavior. All Lyapunov exponent is positive. The route of chaos is established to be 
7 

period doubling bifurcation. Moreover, critical stiffness of the dynamical system increases 
8 

with number of state variables. It is also observed that the 3sRSF is more chaotic than  
9 

corresponding to the 2sRSF. It is shown that the 3sRSF model is hyperchaotic as it exhibits 
10 

all positive Lyapunov exponents. 
11 
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Appendix -I 8 
 9 

It   Jacobian matrix corresponding to the equilibrium point may be expressed as 
10 
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 12 

The polynomial equation containing the eigen values in term of  is obtained from the 13 

expansion of the above Jacobian matrix  as following 14 
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 16 

The Routh-Hurwitz criterion is used to get  the condition for stability of the present friction 17 

model. The characteristic polynomial equation is obtained as 4 3 2

0 1 2 3 4 0s s s s s        .  18 

After applying the Routh-Hurwitz criteria 1 2 0 3 0s s s s  and 2 2

1 2 3 0 3 4 1 0s s s s s s s   . These 19 

non-linear algebraic equations are in turn, solved numerically for evaluating critical stiffness.   20 
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