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Abstract. In this study, we construct a seven-dimensional Lorenz Model (7DLM) to discuss

the impact of an extended nonlinear feedback loop on solutions’ stability and illustrate the

hierarchical scale dependence of chaotic solutions. Compared to the 5DLM, the 7DLM

includes two additional high wavenumber modes that are selected based on an analysis

of the nonlinear temperature advection term, a Jacobian term (J(ψ,θ)), where, ψ and θ5

represent the streamfunction and temperature perturbations, respectively. Fourier modes

that represent temperature in the 7DLM can be categorized into three major scales as the

primary (the largest scale), secondary, and tertiary (the smallest scale) modes. Further

extension of the nonlinear feedback loop within the 7DLM can provide negative nonlinear

feedback to stabilize solutions, thus leading to a much larger critical value for the Rayleigh10

parameter (rc ∼ 116.9) for the onset of chaos, as compared to an rc of 42.9 for the 5DLM

as well as an rc of 24.74 for the 3DLM. The rc is determined by an analysis of ensemble

Lyapunov exponents (eLEs) with Prandtl number (σ) of 10. To examine the dependence

of rc on the value of the Prandtl number, a linear stability analysis is performed near the

nontrivial critical point using a wide range of Rayleigh parameter (40≤ r ≤ 195) and Prandtl15

number (5≤ σ ≤ 25). Then an eLE analysis is conducted using selected values of the Prandtl

number. The linear stability analysis is done by solving for the analytical solutions of the

critical points, by linearizing the 7DLM with respect to the analytical solutions, and by

calculating the eigenvalues of the linearized system. Within the range of (5≤ σ ≤ 25), the

7DLM requires a larger rc for the onset of chaos than the 5DLM.20

In addition to the negative nonlinear feedback illustrated and emulated by the quasi-

equilibrium state solutions for high wavenumber modes, the 7DLM reveals the hierarchical

scale dependence of chaotic solutions. For chaotic solutions with r=120, the Pearson corre-

lation coefficients (PCCs) between the primary and secondary modes (i.e., Z and Z1) and

between the secondary and tertiary modes (i.e., Z1 and Z2) are 0.988 and 0.998, respectively.25

Here, Z, Z1, and Z2 represent the time-varying amplitudes of the primary, secondary, and

tertiary modes, respectively. High PCCs indicate a strong linear relationship among the

modes at various scales and a hierarchy of scale dependence. Future work will be under-

taken to examine how higher dimensional LMs may produce a larger critical value for the

Rayleigh parameter for the onset of chaos and reveal stronger hierarchical scale dependence.30

1 Introduction

In 1963, Prof. Lorenz of MIT published two important papers that first introduced the con-

cept of finite predictability using an idealized model that contained three ordinary differential

equations (Lorenz, 1963a), and classified three kinds of predictability (Lorenz, 1963b). The

idealized model, derived from the nonlinear partial differential equations governing Rayleigh-35
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Benard convection, is known as the three-dimensional Lorenz model (3DLM). The 3DLM

was used to illustrate the sensitive dependence of numerical solutions on tiny changes in

initial conditions. Appearing only in nonlinear models, this unique feature is known as

chaos or the butterfly effect (e.g., Gleick, 1987; IPCC, 2007; Anthes, 2011). In our previous

studies, this feature is referred to as the butterfly effect of the first kind (e.g., Shen 2014a,40

2015b). Based on the numerical phenomenon, it has been inferred that tiny perturbation

may alter the large-scale flow (e.g., producing a tornado in Lorenz, 1972), which is referred

to as the butterfly effect of the second kind (e.g., Pielke 2008; Shen 2014a). However, it has

been suggested that the appearance of a butterfly effect of the first kind does not directly

lead to a butterfly effect of the second kind. Such a suggestion is due to the fact that al-45

though a butterfly effect of the first kind may appear within a numerical model with a finite

degree of nonlinearity (e.g., the original Lorenz model), an improved degree of nonlinearity

in high-order Lorenz models (e.g., Shen 2014a; 2015b) can mitigate or suppress the sensitive

dependence of simulations on initial conditions. In the second important paper in 1963,

Lorenz categorized predictability as either intrinsic predictability, attainable predictability50

or practical predictability. These three types of predictability show dependence on the na-

ture of flows at various scales, the accuracy of initial conditions, and the mathematical

formula of the numerical models. The first and second publications of Lorenz in 1963 indeed

suggested the dependence of predictability on models (as well as initial conditions), implying

the dependence of chaotic solutions on models.55

Lorenz’s studies have made significant influences on the activities of both real-world mod-

els and idealized models. To minimize the negative impact of inaccurate initial conditions

and to optimize parameters in a dynamical system, sophisticated data assimilation schemes

and systems have been developed in order to improve forecasts. On the other hand, high-

order Lorenz models (e.g., Curry, 1978; Curry et al., 1984; Franceschini and Tebaldi, 1985;60

Howard and Krishnamurti, 1986; Franceschini et al., 1988; Hermiz et al., 1995; Kennamer,

1995; Thiffeault and Horton, 1996; Musielak et al., 2005; Chen and Price, 2006; Roy and

Musielak, 2007a,b,c; Lucarini and Fraedrich, 2009) and high-resolution real-world models

(e.g., Shen et al., 2006a; 2012; 2013) have been developed in order to understand the impact

of increasing resolutions that may improve systems’ stability due to the improved accuracy65

of model formulas. Using high-order Lorenz models with a finite number of modes, a differ-

ent mode truncation has been shown to impact the stability of numerical solutions. Earlier

studies led to an inconclusive conclusion as to whether increasing the number of modes can

produce a model with better predictability.

Recent studies (Shen 2014a; 2015b) based on the five- and six-dimensional Lorenz models70

(5D and 6D LMs) indicated that selections of high wavenumber modes that can properly

extend the nonlinear feedback loop of the original 3D Lorenz model may produce a negative
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nonlinear feedback to stabilize solutions. Furthermore, the impact of the negative nonlinear

feedback was illustrated using revised 3DLMs with one or two parameterized terms that

can emulate the effect of the negative feedback (e.g., Shen 2014a; 2015a). The 5DLM and75

6DLM, as well as the revised 3DLMs with parameterizations, require a larger value for the

normalized Rayleigh parameter for the onset of chaos. In addition to the negative nonlinear

feedback that comes from the nonlinear terms and dissipative terms in association with newly

added modes, the destabilizing impact (i.e., positive feedback) of an additional heating term

that appears in the 6DLM has been identified and examined by comparing it with the80

5DLM. Studies based on the 5D and 6DLM collectively suggest that the various roles of

newly resolved small-scale processes can either stabilize or destabilize solutions, consistent

with the impact of butterfly effect as stated by Lorenz (1972). Therefore, in general, to

understand the impact of newly added high wavenumber modes on solution stability, it is

important to examine the competing/collective impact of small-scale processes. The major85

similarities and differences between the 5DLM and 6DLM are as follows: (1) both models

include negative nonlinear feedback that is associated with the extended nonlinear feedback

loop; (2) the 6DLM includes an additional high wavenumber streamfunction mode that

introduces an additional time dependent equation for its amplitude, an additional heating

term, and several nonlinear terms. To improve the stability of high-dimensional LMs, based90

on the studies with the 5DLM and 6DLM, we suggested that it is important to select new

modes to extend the nonlinear feedback loop that can effectively provide negative nonlinear

feedback and that it is not critical to include an additional (streamfunction) mode that

leads to an additional heating term to provide a positive feedback. Therefore, in this study,

we construct a 7DLM using an approach similar to the 5DLM that extends the nonlinear95

feedback loop without introducing a new heating term.

The long-term goal is to determine under what conditions increasing resolutions can im-

prove the predictions in weather/climate models. To achieve this goal, we first derive the

higher-dimensional Lorenz models in order to illustrate the impact of the newly resolved

small processes and the additional nonlinear terms (associated with the various mode trun-100

cations and model coupling) on system stability. Additionally, the high-dimensional LMs

and the revised 3DLM with parameterized terms can be used to test the performance of the

numerical methods in calculating the Lyapunov exponents (LEs). These types of studies

may help identify an appropriate method for the LE calculation in real world models. Then,

the impact of small-scale processes, resolved by new changes in a model, on the solution105

stability can be better examined. The paper is organized as follows. Section 2 discusses the

governing equations, the seven-dimensional Lorenz model, and the revised three-dimensional

Lorenz model with parameterizations, analytical solutions for non-trivial critical points, and

numerical approaches. Discussions of numerical solutions and analytical solutions are pro-
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vided in section 3. A conclusion is provided at the end. Detailed discussion regarding110

the selection of new modes based on the analysis of the Jacobian term is provided in the

Supplemental Materials of Shen (2015b).

2 The seven-dimensional Lorenz model and numerical approaches

2.1 The governing equations

The governing equation for 2D (x,z), incompressible, and Boussinesq flow can be written as:115

∂

∂t
∇2ψ =−J(ψ,∇2ψ)+ ν∇4ψ+ gα

∂θ

∂x
, (1)

∂θ

∂t
=−J(ψ,θ)+ ∆T

H

∂ψ

∂x
+κ∇2θ, (2)

where ψ is the streamfunction that yields the u=−ψz and w = ψx, which, respectively,

represent the horizontal and vertical velocities; θ is the temperature perturbation; and120

∆T is the temperature difference at the bottom and top boundaries. The constants, g,

α, ν, and κ denote the acceleration of gravity, the coefficient of thermal expansion, the

kinematic viscosity, and the thermal conductivity, respectively. The Jacobian of two arbi-

trary functions is defined as J(A,B) = (∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x). Additionally,

∇4ψ = ∂/∂x(∇2∂ψ/∂x)+ ∂/∂z(∇2∂ψ/∂z). The above equations were used by Saltzman125

(1962) to study finite amplitude convection. Later, Lorenz (1963a) used them to derive

the 3DLM.

2.2 The 7D Lorenz Model (7DLM)

In this section, we discuss how the 7DLM is constructed using the following seven Fourier

modes:130

M1 =
√
2sin(lx)sin(mz), M2 =

√
2cos(lx)sin(mz), M3 = sin(2mz), (3)

M5 =
√
2cos(lx)sin(3mz), M6 = sin(4mz), (4)

M8 =
√
2cos(lx)sin(5mz), M9 = sin(6mz). (5)135

Here the horizontal and vertical wavenumbers (l and m) are defined as πa/H and π/H,

respectively. The parameter a is defined as the ratio of the vertical scale of the convection

cell to its horizontal scale (i.e., a= l/m). The term H is the domain height, and 2H/a

indicates the domain width. Using these modes, ψ and θ can be represented as follows:

ψ = C1

(

XM1

)

, (6)140
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θ = C2

(

YM2 +Y1M5 +Y2M8 −ZM3 −Z1M6 −Z2M9

)

, (7)

C1 = κ
(1+ a2)

a
, C2 =

∆T

π

Rc

Ra

, Rc =
π4

a2
(1+ a2)3, R−1

a
=

νκ

gαH3∆T
,

where C1 and C2 are constants, Ra is the Rayleigh number, and Rc is its critical value for

the free-slip Rayleigh-Benard problem. Using Eqs. (6-7), solutions within the 7DLM are145

represented by the seven spatial modes M1 −M3, M5 −M6 and M8 −M9, as well as their

corresponding time-varying amplitudes (X,Y,Z,Y1,Z1,Y2,Z2), respectively. By comparison,

Eq. (3) was used to derive the 3DLM and Eqs. (3-4) were utilized to construct the 5DLM.

While the 3DLM, 5DLM, and 7DLM have one horizontal wavenumber, they contain two,

four, and six vertical wavenumbers, respectively. To facilitate discussion, in the text below,150

M1 is referred to as primary streamfunction mode, M2 and M3 are referred to as primary

temperature modes, M5 and M6 are referred to as secondary temperature modes, and M8

and M9 are referred to as tertiary temperature modes. While Shen (2014a) derived the

5DLM in order to discuss the impact of the secondary temperature modes (i.e., Y1 and Z1)

on solution stability, here, we construct the 7DLM in order to examine the impact of the155

tertiary temperature modes (i.e., Y2 and Z2) as compared to the primary and secondary

temperature modes. We additionally discuss how the nonlinear feedback associated with

the secondary and tertiary modes can be emulated using a parameterized term that can be

added into the 3DLM to improve stability.

Note that Shen (2015a) extended the 5DLM into a 6DLM by including the secondary160

streamfunction mode (i.e., M4 =
√
2sin(lx)sin(3mz)) and examined its impact on solution

stability. The author found that the additional streamfunction mode introduces an addi-

tional heating term that can destabilize the solution. However, since the negative nonlinear

feedback by the secondary temperature modes dominates, the critical value of Rayleigh pa-

rameter (rc∼ 41.1) for the 6DLM is slightly smaller than that of the 5DLM (rc∼ 42.9).165

Similarly, using a 9DLM that includes the secondary and tertiary “streamfunction” modes

(i.e., M4 and M7 =
√
2sin(lx)sin(5mz)) as well as the tertiary temperature modes (M8 and

M9), it can be shown that M7 also introduces an additional heating term that provides

positive feedback. The 9DLM is a superset of the 7DLM, but the 7DLM is not a superset

of the 6DLM because the 7DLM does not include the secondary or tertiary streamfunction170

mode. Since the analytical solutions of the critical points for the 7DLM can be obtained

to perform linear stability analysis, and since the tertiary temperature modes produce a

stronger feedback than the tertiary streamfunction modes in the 9DLM, in this study, we

will simply discuss the 7DLM.

To transform the partial differential equations (Eqs. 1-2) into a set of ordinary differential175

equations, a major step is representing the nonlinear Jacobin terms using the Fourier modes.
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As discussed in Shen (2014a; 2015b), the original Lorenz model only includes nonlinear terms

from the the Jacobian term of Eq. (2), which is written as follows:

J(ψ,θ) = C1C2

(

XY J(M1,M2)−XZJ(M1,M3)+XY1J(M1,M5)−XZ1J(M1,M6)

180

+XY2J(M1,M8)−XZ2J(M1,M9)

)

. (8)

Note that the 3DLM only contains the first two terms on the right hand side of Eq. (8),

namely, XY J(M1,M2) and −XZJ(M1,M3). These two terms form the nonlinear feedback

loop within the 3DLM. The nonlinear feedback loop is extended in the 5DLM that includes

the first four terms. The nonlinear feedback loop within the 3DLM may be viewed as the

main trunk and its extension in the 5DLM as a branch. Detailed discussion regarding the

nonlinear feedback loop of the 3DLM and its extension in the 5DLM can be found in Shen

(2014a) and the Supplemental Materials of Shen (2015b). As discussed below, in this study,

modes M8 and M9 are selected to further extend the nonlinear feedback loop. Based on the

analysis of the Jacobian, we have:

J(M1,M6) =
√
2mlcos(lx)(2sim(5mz)+ 2sim(−3mz)) = 2ml(M8 −M5). (9)

In Eq. (9), the mode of sin(5mz) (i.e., M8) is required as a result of the interaction between

M1 andM6 modes (i.e., J(M1,M6)). As shown in Figure 1, the downscale transfer associated

with the M8 mode is disabled in the 5DLM because the M8 is ignored. With the M8 mode,

we have:

J(M1,M8)≈ml(3sim(6mz)+ 2sim(−4mz)) =ml(3M9 − 2M6), (10a)

which requires a mode of sin(6mz) (i.e., M9) in order to enable a downscale transfer from

the interaction of M1 and M8 via J(M1,M8). The inclusion of M9 leads to:

J(M1,M9)≈
√
2mlcos(lx)(3sim(−5mz)) =−3mlM8, (10b)

which provides a feedback to the M8 mode via an upscale transfer. Equations (10a) and

(10b) form a new feedback loop (M8 −M9 −M8) that is an extension (or branch) of the

extended nonlinear feedback loop in the 5DLM.

After derivations, the following seven equations of the 7DLM can be obtained:185

dX

dτ
=−σX +σY, (11)

dY

dτ
=−XZ + rX −Y, (12)

dZ

dτ
=XY −XY1 − bZ, (13)190

dY1
dτ

=XZ − 2XZ1 − doY1, (14)
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dZ1

dτ
= 2XY1 − 2XY2 − 4bZ1, (15)

195

dY2
dτ

= 2XZ1 − 3XZ2 − d1Y2, (16)

dZ2

dτ
= 3XY2 − 9bZ2. (17)

Here, τ = κ(1+a2)(π/H)2t (dimensionless time), σ = ν/κ (the Prandtl number), r =Ra/Rc

(the normalized Rayleigh number or the heating parameter), b= 4/(1+a2), do = (9+ a2)/(1+ a2),200

and d1 = (25+ a2)/(1+ a2).

When the tertiary mode (Y2,Z2) are neglected, the 7DLM is reduced to become the 5DLM

and becomes the 3DLM when secondary and tertiary modes (Y1,Z1,Y2,Z2) are ignored.

Alternatively, Eqs. (11-15) can be viewed as a 5DLM with feedback processes that result

from the tertiary modes (i.e., −2XY2 in Eq. 15); Eqs. (11-13) can be viewed as a 3DLM205

with feedback processes that arise from the secondary and tertiary additional modes (i.e.,

−XY1 in Eq. 13). The role of XY1 will be discussed below in greater detail. Here, and

in Shen (2014a), unless otherwise stated, the term ”feedback” refers to a nonlinear process

that involves the secondary modes, namely (Y1, and/or Z1), or the tertiary modes, (Y2 and

Z2).210

2.3 Energy Conservation in the 7D non-dissipative LM

Using Eqs. (14-15) of Shen (2015b) for definitions of domain-averaged kinetic energy (KE),

available potential energy (APE), and potential energy (PE), (e.g., Treve and Manley,

1982; Thiffeault and Horton, 1996; Blender and Lucarini, 2013; Shen, 2014a), we obtain the

following equations:215

KE =
Co

2

(

X2

)

, (18)

APE =−Co

2

σ

r

(

Y 2 +Z2 +Y 2
1 +Z2

1 +Y 2
2 +Z2

2

)

, (19)

PE =−Coσ

(

Z +Z1/2+Z2/3

)

, (20)220

where Co = π2κ2( 1+a
2

a
)3. Equations (18) and (19) yield the following:

KE+APE =
Co

2

(

X2 − σ

r
(Y 2 +Z2 +Y 2

1 +Z2
1 +Y 2

2 +Z2
2 )

)

= C3, (21)

while Eqs. (18) and (20) lead to the following:

KE+PE = Co

(

X2

2
−σ(Z +

Z1

2
+
Z2

3
)

)

= C4. (22)
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With Eqs. (11-17) in the dissipationless limit, the time derivative of both Eqs. (21) and225

(22) are zero, so both C3 and C4 are constants. Therefore, Eqs. (21-22) indicate two energy

conservation laws. The above analysis also suggests that when Y2 (or Y1) is included, Z2 (or

Z1) should be included in order to conserve the energy in the dissipationless limit. Thus,

both Y2 and Z2 (or Y1 and Z1) are viewed as the tertiary (or secondary) modes.

With Eq. (22) and the 7DLM (Eqs. 11-17), the time derivative of the total energy230

becomes:
dKE

dτ
+
dPE

dτ
= C3σ

(

−X2 + bZ +2bZ1 +3bZ2

)

, (23)

which gives steady state solutions as follows:

Xc =±
√

b(Zc +2Z1c +3Z2c), (24)

where, a subscript ’c’ indicates a critical point solution that will be discussed in details

in Section 2.5. Equation (24) can be used to verify the solutions solved by the analytical

method or numerical method.235

2.4 A revised 3DLM with a parameterized term using the 7DLM

In this section, we discuss how the nonlinear feedback processes resolved by high wavenumber

modes in the 7DLM can be emulated into a revised 3DLM. Throughout the discussion, the

negative nonlinear feedback provided by the high wavenumber modes will be illustrated. The

basic idea is to express higher wavenumber modes in terms of lower wavenumber modes. To

achieve this, two steps are required. First, an assumption of quasi equilibrium state for the

tertiary modes is made in order to express the teritary modes in terms of the primary and

secondary modes. Simply speaking, an assumption is made that dY2/dτ ≈ 0 and dZ2/dτ ≈ 0

in Eqs. (16-17) and Y2 and Z2 are solved as follows:

Y2 =
2bXZ1

X2 + bd1
, (25)

Z2 =
2

3

X2Z1

X2 + bd1
. (26)

Equations (25-26) are referred to as quasi-equilibrium state solutions or the “steady-state”

solutions. Eq. (25) suggests that 2XY2 is proportional to 4bZ1 and may effectively act as

an additional dissipation term similar to the third term 4bZ1 on the right hand side of Eq.

(15). In the second step, by plugging Eq. (25) into Eq. (15), the quasi equilibrium state

solutions of secondary modes (Y1 and Z1 of Eqs. 14-15) can be represented in terms of the

primary modes, as follows:

Y1 =
bXZ 2X

2
+bd1

X2+bd1

X2 + bd0
2X2+bd1

X2+bd1

, (27)
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Z1 =
1

2

X2Z

X2 + bd0
2X2+bd1

X2+bd1

. (28)

Using Eq. (27), XY1 in Eq. (13) can be represented in terms of the primary modes, and is

added into a revised 3DLM as follows:

dX

dτ
=−σX +σY, (29)

240

dY

dτ
=−XZ + rX −Y, (30)

dZ

dτ
=XY − bZ +Q2, (31)

Q2 =−XY1 =
−bX2Z 2X

2
+bd1

X2+bd1

X2 + bd0
2X2+bd1

X2+bd1

. (32)

Although Q2 in Eq. (32) is a function of the primary modes (X,Y,Z), it is indeed

proportional to −2bZ, which may effectively play a role similar to −bZ in Eq. (31). The245

nonlinear feedback process (by −XY1), which is explicitly resolved by the secondary and

tertiary modes in the 7DLM, is “emulated” (or parameterized) by the primary modes. Thus,

Eqs. (29-31) with the Q2 term, as defined in Eq. (32), are referred to as the 3DLM-P7d

or 3DLMP7d, which indicates a revised 3DLM with a parameterized term using the 7DLM.

Previously, Shen (2015a) discussed the revised 3DLMs with a parameterized term using the250

5DLM (i.e., 3DLM-P5d) and 6DLM (i.e., 3DLM-P6d). Following the discussion in Shen

(2015a), it can be shown that the critical points in the 3DLM-P7d are the same as those in

the 7DLM. The critical point solutions of the 7DLM are discussed in the next section. In

comparison to the Q2 terms of the 3DLM-P7d (Eq. 32) and the 3DLM-P5d (Eq. 10 of Shen

2015a), it should be noted that the former cannot be reduced to be the latter by simply255

assuming d1 = 0. This is because via nonlinear terms, Y2 and Z2 still provide feedback to

both the secondary modes and the primary modes when d1=0. When X is relatively small

as compared to bd0 and bd1, Eq. (32) can be simplified as Q2 =−qX2 and q a non-negative

number when Z is positive. When X is very large as compared to bd0 and bd1, Eq. (32)

can be simplified to Q2 ≈−2bZ. Under the same condition, Eqs. (28) and (26) lead to260

Z1 ≈ Z/2 and Z2 ≈ 2Z1/3≈ Z/3, respectively. These constraints and Eqs. (24) lead to

X ≈
√
3bZ under the condition of X >> bd0 and X >> bd1.

2.5 Analytical solutions of critical points in the 7DLM

Here, to examine the linear stability, the analytical solutions of critical points in the 7DLM

are presented. Plugging Eq. (27) into Eq. (13), the seven, time-independent counterpart of

Eq. (11-17) can be reduced to become one, time-independent equation for the critical point

solution of X (i.e., Xc):

X6
c
+BX4

c
+CX2

c
+D = 0, (33)
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where

B = 2bd0 + bd1 − 3bZc, (34a)

C = b2d0d1 − (2b2d0 +2b2d1)Zc, (34b)

D =−b3d0d1Zc. (34c)

As discussed below, Zc is equal to r−1. By assuming P =X2
c
, Eqs. (33-34) become the well-

known cubic equation, and its analytical solutions can be expressed using the cubic formula.265

The procedures of Press et al. (1992) are followed in order to solve for P , which yields

Xc =±
√
P . From Eqs. (11-12), we can obtain Yc =Xc and Zc = r−1. As the critical point

solutions for the primary modes are obtained, the critical point solutions for the secondary

and tertiary modes in Eqs. 25-28 are also determined. Thus, we have the following critical

point solutions for the 7DLM:270

Xc =±
√
P , (35a)

Yc =Xc, (35b)

Zc = r− 1, (35c)

Y1c =
bXcZc

2X
2

c
+bd1

X2
c
+bd1

X2
c
+ bd0

2X2
c
+bd1

X2
c
+bd1

, (35d)

Z1c =
1

2

X2
c
Zc

X2
c
+ bd0

2X2
c
+bd1

X2
c
+bd1

, (35e)

Y2c =
2bXcZ1c

X2
c
+ bd1

, (35f)

Z2c =
2

3

X2
c
Z1c

X2
c
+ bd1

. (35g)

2.6 Numerical approaches

To obtain numerical solutions for Lorenz models, Fortran codes were previously developed

based on the implementation of the 4th order Runge-Kutta scheme (e.g., Shen, 2014a).

The codes are modified and used for calculation of ensemble Lyapunov exponents (e.g.,

Benettin et al., 1980) in the 7DLM, as discussed in Figure 2 below. A variety of numerical275

and statistical packages in R (e.g., Adler, 2012) are additionally applied to obtain numerical

solutions for the Lorenz models and to perform analysis of model solutions. Unless otherwise

stated, Fortran codes and smaller time interval (e.g., 0.0001) are used to obtain results for

better accuracy (e.g., Figure 2), and R codes with larger time interval (e.g., 0.01) are used

to obtain numerical results for comparisons (which are provided in most figures alongside280

numerical solutions obtained from the Lorenz models.) With the exception for the heating

parameter (r) and the Prandtl number (σ), the following parameters are kept as constant:
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including a= 1/
√
2, b= 8/3, do = 19/3, d1 = 17, and a minimum value for Rc = 27π4/4. A

value of σ = 10 is used in most cases, although additional values are examined to determine

their impact on solution stability, as shown in Figure 5 To outline the characteristics of285

solutions with no loss of generality, in Figs. 3, 6, and 8-11,, the initial conditions are as

follows:

(X,Y,Z,X1,Y1,Z1,Y2,Z2) = (0,1,−1,0,0,0,0). (36a)

In Figure 7, the initial conditions are given at one non-trivial critical point with the same

perturbation in Y and Z, yielding290

(X,Y,Z,X1,Y1,Z1,Y2,Z2) = (Xc,Yc +1,Zc − 1,Y1c,Z1c,Y2c,Z2c). (36b)

Note that the initial condition with a nonzero Z is slightly different from the one in previous

studies (Shen 2014a and 2015a,b). The change is made to illustrate an rc of 116.9, which

is consistent with the calculation of the ensemble Lyapunov exponent analysis, as discussed

below. The change does not lead to a different conclusion. In Figures 3, 6 and 8-10, the295

dimensionless time interval (△τ) is 0.01 and the total number of time steps (N) is 10,000,

yielding a total dimensionless time (τ) of 100. In Figures 7 and 11, a larger number of time

steps is used. The former uses N = 180,000 while the latter has N = 100,000. To better

compare the solutions obtained from different LMs in Figure 3, the results are rescaled using

the analytical solutions of the critical points, [i.e., Eq. 21 and Eq. 19 of Shen (2014a) for300

the 3DLM and 5DLM, respectively; and Eq. 35 for the 7DLM].

To quantitatively evaluate whether or not the system is chaotic, we calculate the Lyapunov

exponent (LE, e.g., Benettin et al., 1980; Froyland and Alfsen, 1984; Wolf et al., 1985; Nese,

1989; Zeng et al. 1991; Eckhardr and Yao, 1993; Christiansen and Rugh, 1997; Kazantsev

1999; Sprott, 1997, 2003; Ding and Li, 2007; Li and Ding, 2011) using the trajectory separa-305

tion (TS) method (Sprott, 1997, 2003) and the Gram–Schmidt reorthonormalization (GSR)

method (Wolf et al., 1985; Shen, 2014a and references therein). Using the given initial con-

ditions (ICs) and a set of parameters in the LMs, the TS scheme calculates the largest LE

and the GSR scheme produces ”n” LEs where ”n” is the dimension of the 5D or 7D LM. For

the LE analysis, we use the Fortran codes with △τ = 0.0001 and N = 10,000,000 that yields310

τ = 1,000. To minimize dependence on the ICs, 10,000 ensemble (En=10,000) runs with

the same model configurations but different ICs are performed, and an ensemble averaged

LE (eLE) is obtained from the average of the 10,000 LEs. A large N and En are used to

understand the long-term average behavior for the LM solutions. Figure A1 in Appendix A

shows the initial conditions for the ensemble runs that represent white Gaussian noises.315

As compared to earlier studies, one unique finding obtained from this study is a revelation

of the scale dependance of chaotic solutions. To determine the relationship (or the associa-

tion or dependence) of two variables, we calculate the Pearson correlation coefficient (PCC)
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and the Spearman Rank correlation coefficient (SRCC). Both coefficients measure the extent

one variable increases as the other variable increases. The PCC applies an assumption of a320

linear relationship, while the SRCC is used as an alternative for examining the dependence

of two variables without an assumption of a strong linear relationship. For PCCs, a positive

high PCC between two variables indicates a strong direct linear relationship, while a very

small PCC suggests a weak ”linear” relationship. A PCC of zero indicates no linear relation-

ship. In addition to the PCC and SRCC, scatter plots and linear regression lines are used to325

qualitatively display the linear association between two variables. To verify the time lag (or

lead) between two time series (e.g., between the primary mode and tertiary mode), the cross

correlation function (CCF) is calculated. The PCCs (or SRCCs), CCF, and linear regression

lines are calculated using the function ”cor” with an option of ”pearson” or ”spearman”,

the function ”ccf”, and the function ”lm”, respectively, as provided by R (Adler, 2012). To330

minimize the impact of initial model spin up processes, the first 199 time integrations are

not used, giving a starting time of two seconds for the PCC or SRCC calculations.

3 Numerical Results

Figure 2 provides the largest ensemble-averaged Lyapunov Exponents (eLEs) as a function

of the forcing parameter r from different LMs. A positive eLE indicates the appearance of335

a chaotic solution. The figure displays results obtained from △r=1. The pink, black, blue,

and orange lines display the eLEs calculated using the TS method for the 3DLM, 5DLM,

7DLM, and 3DLM-P7d, respectively. The results for the 3DLM and 5DLM are reproduced

from Shen (2014a). As shown in Figure 2, the critical value of r for the onset of chaos is

between r=116 and r=117 for the 7DLM, and between r=149 and r=150 for the 3DLM-P7d.340

Additional experiments with a smaller △r=0.1 are performed and rc is found to be 116.9 and

149.2 for the 7DLM and 3DLM-P7d, respectively, as listed in Table 1. These LMs produce

a much larger rc as compared to the 3DLM and 5DLM. In Figure 2, the yellow open circles

show the eLEs determined by the GSR scheme that display no significant differences from

the eLEs using the TS scheme (as shown with the blue line). Note that the performance of345

both the TS and GSR schemes in determining the eLEs of the 3DLM was first documented in

Shen (2014a). For the chaotic regions, the leading eLEs between r=130 and r=160 are close

to 2.0, yielding a Kaplan-York fractal dimension (Kaplan and Yorke, 1979) slightly greater

than 2.20 (not shown). This value is slightly larger than the well-known fractal dimension

of 2.06 for the 3DLM with r = 28 and σ = 10. The solutions from the 3DLM, 5DLM and350

7DLM are briefly compared using phase space plots for (Y,Z) in Figure 3. While the 3DLM

with r = 28 produces a chaotic solution (Fig. 3a), the 5DLM with (r = 42) still yields a

stable solution. With the 7DLM, the solution with r = 112 is stable, and the solution with
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r = 120 is chaotic.

For the 7DLM and 5DLM, we are able to obtain the analytical solutions of critical points355

in the phase space, including Eq. (35) for the 7DLM and Eq. (19) of Shen (2014a) for

the 5DLM. Note that the analytical solutions of the 3DLM were first solved in Lorenz

(1963), and were documented in Eq. (21) of Shen (2014a). Here, the analytical solutions

are employed into Eq. (7) to obtain the corresponding solution of the temperature per-

turbation (θ) in the physical space for the 3DLM, 5DLM and 7DLM. Without a loss of360

generality, as shown in Figure 4, temperature perturbations are calculated with r = 120.

Each of the solutions in different panels is normalized by its maximum, i.e., max(θ). In all

of the above models, unstable regions (with ∂θ/∂z < 0) appear near the bottom and top

boundaries (the shaded regions in Figure 4). The unstable layers are thinner in the higher-

dimensional Lorenz models. Near the middle layer, the 3DLM solution is stable, while the365

5DLM solution becomes more neutral. The ”steepening” of the isotherms is an indication

of stronger convection and can be resolved better with higher wavenumber modes in the

5DLM. In higher-dimensional Lorenz models (i.e., 7DLM), the additional tertiary modes

enable further steepening that leads to the overturning of isotherms in the middle layer

and, thus, produces unstable regions, as shown in the shaded areas in Figure 4. Since the370

LMs are forced systems, the advantages of higher-dimensional LMs can clearly be seen in

the better resolved flow patterns in some regions. The differences between these solutions

obtained using different number of modes can be revealed by the PCCs. The PCC of the

analytical solutions for temperature in two different models is calculated for each location

in the horizontal (x) direction using samples in the vertical (z) direction, and, thus, it is a375

function of ”x”. Figure 4d provides PCCs for the temperature perturbations of the 7DLM

and 3DLM (in red), and for the temperature perturbations of the 5DLM and 3DLM (in

black). The two PCC functions which are less than one indicate the differences between

the solutions of the higher-dimensional LM (the 5D or 7D LM) and the baseline LM (the

3DLM). Here, it should be noted that the verification of higher-resolution simulations using380

coarser-resolution reanalysis data should be done with caution because small-scale processes

may appear in higher-resolution runs but not in coarser-resolution runs.

The simplicity of the nonlinear analytical solutions may form a good case for testing a

more generalized Lorenz model developed using finite difference or finite volume schemes.

For example, during the initial model development, the analytical solutions for the 3DLM,385

5DLM or 7DLM can be used to verify the numerical solutions from the generalized Lorenz

model at comparable resolutions. Using this process, confidence in the performance of the

generalized model can be constructed. Then, a much higher resolution simulation with the

generalized model can be used to better address the question of whether or not a higher

resolution model is more stable or more chaotic. Answering this question will be the topic390

14



of a future study. Next, a linear stability analysis with the analytical solutions is presented.

The above discussions suggest that the 7DLM with σ = 10 has a much larger rc for the

onset of chaos as compared to the 5DLM and 3DLM. The mathematical analysis provided

in Section 2 suggests that the further extension of the nonlinear feedback loop feedback can

provide a negative nonlinear feedback to stabilize solutions, consistent with the findings of395

Shen (2014a) using the 5DLM. The role of negative nonlinear feedback can also be shown

by the 3DLM-P7d that requires a comparable critical value for Rayleigh parameter for the

onset of chaos (in Figure 2) as compared to the 7DLM. More detail regarding the 3DLM-P7d

analysis is discussed later. Here, it should be noted that the above experiments are performed

using a fixed Prandtl parameter (σ = 10). To examine the impact of negative nonlinear400

feedback over the range of Prandtl parameter, a linear stability analysis is performed with

respect to the critical point solutions in Eq. (35). Then, eLE analyses, which require

significant computational resources, are conducted using the selected values of σ.

We follow the procedures in the Appendix A of Shen (2014a) to linearize the 7DLM

with respect to the critical point solution and construct an eigenvalue problem using the405

linear system. Given a pair of r and σ, the real part of an eigenvalue represents a growth

(or decay) rate near the critical point. In N-dimensional Lorenz model, we can obtain N

eigenvalues, but only analyze the largest eigenvalue, denoted as (Re(λ)). Over the range

of r and σ, we can obtain the corresponding largest eigenvalues, and plot the zero contour

line for Re(λ) in the (σ,r) space with a blue line (Figure 5). The values for the Re(λ) in410

the region above (below) the blue line are positive (negative), suggesting unstable (stable)

regions. Therefore, the blue line represents the critical values of r as a function of σ for

the occurrence of unstable solutions. For example, the intersection of the blue line and

the vertical line with σ = 10 is at r = 160.3, suggesting that the linear 7DLM system with

r > 160.3 may produce an unstable solution. The critical value of ”r” determined using the415

linear stability analysis is denoted as rl
c
, where ”l” indicates ”linear”. For each σ between 5

and 25, the blue line in Figure 5 suggests that the rl
c
in the 7DLM is always above 50, a value

larger than the corresponding rl
c
of the 5DLM indicated by a black line. By comparison,

the critical value (rc) for the onset of chaos determined by the eLE analysis is shown with

solid circles. For the selected values of σ, the corresponding rc is also above 50, suggesting420

a larger rc for the onset of chaos in the 7DLM than in the 5DLM.

Note that for a σ close to 10, the difference between the values of rc and rl
c
is large.

While the rc is determined by the (nonlinear) eLE analysis (with sufficient number of initial

conditions close to the trivial critical point, as shown in Figure A1), the rl
c
is determined

using the linear stability analysis close to the non-trivial critical point. The difference in rc425

and rl
c
is further illustrated by performing the following two sets of experiments. The first set

of experiments are initialized at the trivial point with initial perturbations of (Y, Z) as (1,-1)
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(i.e., Eq. 36a). The rc determined by the first set of experiments is 116.9 (e.g., Figure 6) and

is compared well with the eLE analysis. The second set of experiments are initialized at the

positive non-trivial critical point (Eq. 35) using the same initial perturbations of (Y,Z) as430

(1,-1) (i.e., Eq. 36b). The rc from the second set of experiments is 160.8 (e.g., Figure 7) and

is comparable to that obtained using the linear stability analysis. Note that Figure 7 shows

the results from a long time integration with τ = 1800. Based on the above discussions, the

difference between rc and r
l
c
may indicate the dependence of rc on the initial position (initial

conditions), and may indicate a deficiency in the calculation of solution stability using finite-435

time integration. However, when the 10,000 ensemble of initial conditions are multiplied by

a factor of 100, and the eLE calculations are performed, the results yield a comparable rc

to that obtained using the original initial conditions (as shown in Figure A2). Therefore,

differences between the rc and rl
c
for σ ∼ 10 deserve further examination. Practically, when

rl
c
is much larger than rc, it takes a much longer time period for the numerical solution440

to become unstable when the corresponding simulation is initialized near the non-trivial

critical point instead of the trivial critical point. In other words, a simulation initialized

at the non-trivial critical point has a larger predictability than one initialized at the trivial

critical point.

Previously, we suggested that the negative nonlinear feedback, which can help stabilize445

solutions, can be emulated using the parameterized termQ2 in Eq. (32) of the revised 3DLM.

To obtain this term, we made the assumption of the quasi-equilibrium state solutions for the

secondary and tertiary modes, leading to Eqs. (25-26) and Eqs. (27-28), respectively. These

equations can help illustrate the relationship between the primary, secondary and tertiary

modes when higher wavenumber modes provide feedback. With further assumptions of450

X2 >> bdo and X2 >> bd1 in Eqs. 32, 26 and 28, we obtain:

Q2 ≈−2bZ, (37)

Z2 ≈
2Z1

3
, (38)

and455

Z1 ≈
Z

2
. (39)

Therefore, conceptually, when a negative nonlinear feedback is emulated by Eq. (37) in

a special revised 3DLM, the system displays a strong positive linear relationship between

Z2 and Z1 and between Z1 and Z. In Eq. (38) (or Eq. 39) the corresponding PCC is

equal to one, as the PCC measures the linear relationship of the two variables with any460

non-zero slope. Note that the scale dependence in the special revised 3DLM is implicit

because the secondary and tertiary modes are not explicitly included. In addition, the

assumptions of quasi equilibrium (i.e., ∂/∂τ ∼ 0) for the secondary and tertiary modes may

pose a challenge in representing chaotic responses (i.e., rapid changes in time) using these
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higher wavenumber modes. In spite of the deficiency, the above analysis qualitatively reveals465

interesting features of scale dependence. Next, we examine the scale dependence for chaotic

solutions in the 7DLM.

As discussed previously, the 7DLM with r = 120 produces chaotic solutions that, as shown

by the trajectories of solutions in the phase space, result in a butterfly pattern. This pattern

is also shown in scatter plots between the two variables (e.q., Y1 and Z1 or Y2 and Z2) in470

Figure 8. The corresponding PCCs provided in the bottom-right of each panel are very

small, indicating no linear relationship. The regression line with a nearly zero slope, as

shown by a red line in Figure 8, also suggests no linear association.

In general, since the 7DLM is a nonlinear model, the secondary (tertiary) temperature

mode Z1 (or Z2) is assumed to be a nonlinear function of the primary temperature mode475

(Z). Obtaining a small correlation between two variables for the transient (chaotic) solutions

is not out of the ordinary. Interestingly, in the following discussion, a scale dependence

with a strong linear relationship between two modes in the 7DLM and the 5DLM will be

presented. Figure 9 provides scatter plots for Y vs. Y1 and Z vs. Z1 from the 5DLM

and 7DLM with r = 120, producing chaotic solutions. For the 5DLM, the PCC of Y and480

Y1 (Z and Z1) is 0.803 (0.954). Results with high PCCs suggest that the primary and

secondary temperature modes have a strong direct linear relationship (Figures 9a-9b) and,

thus, indicate a scale dependance. Within the 7DLM that includes the tertiary temperature

modes, the corresponding PCCs between the primary and secondary temperature modes

(e.g., Y vs. Y1 and Z vs. Z1) become larger, suggesting a stronger linear relationship (e.g.,485

Figures 9c-d). The strong relationship among different scale modes is also shown in the

SRCCs listed in Table 2.

Since the 7DLM includes three major scales containing the primary, secondary, and ter-

tiary temperature modes, the scale dependance (or correlation) among them is further ana-

lyzed in Figure 10. The PCCs between the secondary and tertiary modes, which has a value490

of 0.967 for Y1 and Y2 and a value of 0.998 for Z1 and Z2, respectively, are higher (Figures

10a-b) than the PCCs between the primary and secondary modes (Figures 9c-d). The PCC

between the primary and secondary modes is larger than the PCC between the primary and

tertiary modes (in Figures 10c-d). These results indicate a hierarchical scale dependence.

Scale dependence is also clearly observed in the cross correlation function between Z and Z1;495

and in the time evolution of Z, Z1 and Z2 in Figure 11 where a much longer integration time

(τ = 1000) is used. Table 2 provides PCCs and SRCCs from additional experiments with

different Rayleigh numbers (e.g., r = 140 and r = 160) that produce chaotic solutions. The

results indicate similar scale dependence. As discussed in Shen (2014a) and in this study,

the secondary modes Y1 and Z1 are added into the 5DLM in order to extend the nonlinear500

feedback loop of the 3DLM. The tertiary modes Y2 and Z2 are included in the 7DLM to
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further extend the nonlinear feedback loop of the 5DLM. Therefore, the occurrence of the hi-

erarchical scale dependence is indeed related to the extension of the nonlinear feedback loop

in the 7DLM. Therefore, a higher-dimensional Lorenz model (e.g., 9DLM) with a further

extension of the nonlinear feedback loop may display a stronger scale dependence.505

4 Conclusions

With this study, the impact of an extended nonlinear feedback loop is discussed and hier-

archical scale dependence using the 7D Lorenz model is revealed. Based on the analysis of

the nonlinear Jacobian term, the 7DLM is constructed to include seven Fourier modes that

possess three major scales, including primary temperature modes (i.e., Y and Z), secondary510

temperature modes (i.e., Y1 and Z1) and tertiary temperature modes (i.e., Y2 and Z2). As

the high wavenumber modes are selected to extend the nonlinear feedback loop in the 3DLM

and 5DLM, the 7DLM could be reduced to be the lower-dimensional Lorenz models when the

higher wavenumber modes are neglected. Previously, Shen (2014a) demonstrated that the

extension of the nonlinear feedback loop in the 5DLM can provide negative nonlinear feed-515

back to stabilize solutions. In this study, we illustrate a similar role of the negative nonlinear

feedback in stabilizing the solutions in the 7DLM. The critical value of the Rayleigh param-

eter (rc = 116.9) for the onset of chaos in the 7DLM is large as compared to the rc = 24.74

of the 3DLM and the rc = 42.9 of the 5DLM. The impact of negative nonlinear feedback

is further illustrated using the revised 3DLM with a parameterized term that emulates the520

negative feedback. The parameterized term is obtained by assuming quasi equilibrium state

solutions for the secondary and tertiary modes and expressing these modes in terms of the

primary modes. The results indicate that the rc of the revised 3DLM is comparable to that

of the 7DLM and much larger than that of the 3DLM. We are able to solve for the analyt-

ical solutions of critical points in both 5DLM and 7DLM. By linearizing these two models525

with respect to the critical points and constructing eigenvalue problems, we perform linear

stability to show that the 7DLM requires a larger Rayleigh parameter for onset of chaos

when 5≤ σ ≤ 25. The eLE analysis with selected values of σ yields the same conclusion.

While the 7DLM produces a chaotic solution with a relatively large r (e.g., r=120), a

hierarchical scale dependence appears in the solutions. Such a result is indicated by ele-530

vated correlation coefficients between the primary and secondary modes (i.e., Z and Z1)

and between the secondary and tertiary modes (i.e., Z1 and Z2), with the latter larger than

the former. For example, for chaotic solutions with r=120, the Pearson correlation coeffi-

cients (PCCs) between the primary and secondary modes (i.e., Z and Z1) and between the

secondary and tertiary modes (i.e., Z1 and Z2) are 0.988 and 0.998, respectively. Note that535

the high correlations between Z, Z1 and Z2 do not suggest causality, and, therefore, do not
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suggest a control and feedback relationship. However, the results may suggest that dissipa-

tive processes associated with −bZ, −4bZ1 and −9bZ2 are coherent (in phase in time). The

scale dependence is consistent with Eqs. (25-28) that are obtained under the assumption of

quasi equilibrium for the secondary and tertiary modes, and used to emulate the negative540

nonlinear feedback (Eq. 32).

In conclusion, the nonlinear feedback loop can be extended using the new modes that

enable the successive downscale and upscale transfer described by the Jacobian term. The

7DLM, constructed by extending the nonlinear feedback loop of the 5DLM, reveals the role

of the associated negative nonlinear feedback in stabilizing solutions and the hierarchical545

scale dependence in chaotic solutions. Future work will examine how higher dimensional

LMs may produce larger critical values for the Rayleigh parameter for the onset of chaos

while displaying a stronger hierarchical scale dependence.
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Appendix A: Initial conditions for the eLE calculation

In this section, we discuss how the 10 000 initial conditions are generated for calculation

of the ensemble Lyapunov exponents and their impact on determining the critical value of560

Rayleigh number for the onset of chaos. The 10 000 different ICs are produced as Gaussian

white noise with the center at the trivial critical point (i.e., with a mean value of zero for

the ICs). The method is described by Press et al. (1992) and the Fortran code was kindly

provided by Professor Z. Wu of Florida State University. Figure A1 shows the 10 1000

ICs. For the 3D, 5D, or 7D LM with a given r and the 10 0000 ICs, it takes approximately565

10-20 wall-time hours to obtain an eLE. To efficiently calculate eLEs over a wide range of

r, a simple task-level parallelism is implemented in order to perform parallel calculations

using multiple computing processors on the National Aeronautics and Space Administration

(NASA) supercomputers (e.g., Biswas et al. 2007; Shen 2014a).

In Figure 2, we discussed how the critical value of Rayleigh number (rc) is determined570

using the analysis of the eLEs that are calculated using the 10 000 ICs shown in Figure
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A1. As discussed in section 2, a large number of ICs is used to minimize the impact of

ICs on the eLE calculation and, thus, the estimate of rc. The run with the 7DLM using

the ICs is used as the control run for a further comparison. Since the eLE is calculated

using finite time integrations, parallel experiments are performed with the 7DLM and the575

results are compared to the control run in order to further examine the impact of ICs on

the eLE calculation. For the parallel experiments, the 10 000 ICs of the control run are

multiplied by 100, which allows ICs to be distributed over a larger space. As shown with

green and orange lines in Figure A2, eLE calculations are performed, respectively, using the

TS and GSC methods. The eLE calculations performed using the two methods produce580

comparable results with minimal differences. A comparison between the parallel runs and

control run shows differences in the eLE calculations over 100≤ r ≤ 150, indicating the

impact of ICs. However, the rc determined using the parallel experiments is between 113

and 114, only slightly smaller than the rc (∼ 116.9) obtained from the control run. These

parallel experiments provide additional support for the determination of rc using the eLE585

analysis in the 7DLM.
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Table 1. The characteristics of various Lorenz models. The “Equations” column provides a list of

the equations used in each specific Lorenz model. Values for rc and r
l

c are determined based on the

eLE analyses and the linear stability analysis, respectively. The “Scaling factors” column indicates

the analytical solitions of the critical points used to normalize the solutions in Figure 3. ∗ For the

3DLM, the ensemble averaged LE is 1.2× 10−2 at r = 23.7, and becomes 0.26 at r = 24.

Model Equations Figures rc r
l

c Scaling factors

3DLM Eqs. (15)–(17) of Shen (2014a) 2–4 23.7∗ 24.74 Eq. (21) of Shen (2014a)

3DLMP5d Eqs. (1)–(3),(10) of Shen (2015a) 52.1 N/A Eq. (19) of Shen (2014a)

3DLMP7d Eqs. (29)–(32) 2 149.2 N/A Eqs. (35a)–(35g)

5DLM Eqs. (10)–(14) of Shen (2014a) 2–5, 9 42.9 45.94 Eq. (19) of Shen (2014a)

7DLM Eqs. (11)–(17) 2–11 116.9 160.3 Eqs. (35a)–(35g)

Table 2. The Pearson correlation coefficients (PCC) and the Spearman Rank correlation coefficient

(SRCC) between two different variables from the primary, secondary, and tertiary modes in the

5DLM or 7DLM. For the PCCs, results obtained from three cases with r = 120, 140 and 160 are

provided. For the SRCCs, only results from the case with r = 120 are listed.

Model Variables PCC SRCC PCC PCC

r=120 r=120 r=140 r=160

5DLM Y −Y1 0.803 0.751 0.796 0.785

Same Z −Z1 0.954 0.944 0.952 0.955

7DLM Y −Y1 0.861 0.771 0.861 0.865

Same Y −Y2 0.731 0.684 0.724 0.725

Same Y1 −Y2 0.967 0.971 0.963 0.962

Same Z −Z1 0.988 0.975 0.986 0.985

Same Z −Z2 0.984 0.965 0.981 0.987

Same Z1 −Z2 0.998 0.998 0.998 0.998
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Figure A1: 10,000 initial conditions for calculation of the ensemble Lyapunov exponent. (a) The distribution of
X as a function of the ensemble members. (b) The distributions of X and Y. (c) The distributions of X and Z.
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Figure A2: The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of the forcing parameter,
r, in different LMs. The figure provides results for △r=1. The pink, black, and blue lines display eLEs for the
3DLM, 5DLM, and 7DLM, respectively, using the TS method. Two parallel experiments using the 7DLM with
ICs that are 100 times that of the ICs in the control run are shown with green and orange lines. The first one
applies to the TS method, while the second uses the GSR method. Note that the critical value of r for the onset
of chaos in the 7DLM with different ICs are comparable.
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Figure 1: A schematic diagram of an extended feedback loop which consists of the downscaling and upscaling
processes associated with J(M1,Mj), j = 2, 3, 5, 6, 8 or, 9. For a given Mj mode, J(M1,Mj) may lead to a
downscaling process, as indicated by a downward arrow, and/or an upscaling process, as indicated by an upward
arrow. The nonlinear feedback loop in the 3DLM and its extension within the 5DLM are shown with pink and
blue arrows, respectively (e.g., Shen 2014a). Further extension of the nonlinear feedback loop within the 7DLM
is shown with orange arrows. A number in parentheses is the coefficient of the specific mode. The “M3(ml)”
in the leftmost column represents that the M3 mode with a coefficient of “ml” is generated or influenced by a
downscaling process from J(M1,M2). The terms −XZ, −XY1, and −2XY2, which appear in Eqs. (12), (13), and
(15), are associated with the upscaling process of the J(M1,M3), J(M1,M5), and J(M1,M8) that are indicated
by the pink, blue, and orange upward arrows, respectively. ⊗3D, ⊗5D and ⊗7D indicate the end of downscaling
due to mode truncation in the 3DLM, 5DLM, and 7DLM, respectively.
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Figure 2: The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of the forcing parameter, r,
in different LMs. The figure provides results for △r=1. The pink, black, blue, and orange lines display eLEs
for the 3DLM, 5DLM, 7DLM, and 3DLM-P7d, respectively, using the TS method. Open yellow circles indicates
the eLEs of the 7DLM using the GSR scheme. For the 7DLM, both methods yielded comparable results. The
appearance of chaotic solutions is indicated by positive eLEs. Note that the critical value of r for the onset of
chaos in the 7DLM is between r=116 and r=117. The pink and black lines are reproduced from Shen (2014a).
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Figure 3: Phase space plots for (Y,Z) in the different Lorenz models. (a) Lorenz strange attractors with r=28
in the 3DLM. (b) A stable solution with r=42 in the 5DLM. (c-d) Stable and chaotic solutions with r=112 and
r=120 in the 7DLM, respectively. All of the solutions are normalized by the the corresponding critical points,
namely, Eq. (21) of Shen (2014a) for the 3DLM, Eq. (19) of Shen (2014a) for the 5DLM, and Eq. (35) for the
7DLM.
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Figure 4: Temperature perturbation in the spatial space (x, z), represented by the analytical solutions of critical
points in the 3DLM, 5DLM, and 7DLM (a-c). (d) Correlation coefficients, calculated for each x location using
samples in the z direction.



Figure 5: Stability analysis for the linearized Lorenz models with △σ = 0.01 and △r = 0.1 in the 5DLM and
7DLM. The leading eigenvalue Re(λ) as a function of σ and r. The black and blue lines indicate a constant
contour of Re(λ) = 0 for the linear 5DLM and 7DLM, respectively. Solid circles with the same color scheme
indicate a rc determined by the eLE analysis with △r = 1.0 in the corresponding nonlinear LM.
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Figure 6: A transition from a stable solution with r = 116.8 to a chaotic solution with r = 116.9 in the 7DLM.
The initial conditions are given in Eq. (36a) (i.e., (X,Y, Z,X1, Y1, Z1, Y2, Z2) = (0, 1,−1, 0, 0, 0, 0, 0)).



Figure 7: A transition from a stable solution with r = 160.7 to a chaotic solution with r = 160.8 in the 7DLM.
The initial conditions are given near the critical point in Eq. (36b) (i.e., (X,Y, Z,X1, Y1, Z1, Y2, Z2) = (Xc, Yc+1,
Zc-1, Y1c, Z1c, Y2c, Z2c)). Note that a much larger integration time is used in the simulations.
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Figure 8: Scatter plots for Y1 vs. Z1 (a) and Y2 vs. Z2 (b) from the 7DLM with r = 120.
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Figure 9: Scatter plots for the 5DLM and 7DLM with r = 120. The results indicate that the correlation coefficients
become larger in the 7DLM than in the 5DLM.
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Figure 10: Scatter plots for the 7DLM with r = 120. The correlation coefficient for the secondary and tertiary
modes (i.e., Y1 and Y2 or Z1 and Z2 in the top panels) is larger than that of the primary and secondary modes
(i.e., Y and Y1 or Z and Z1 in the bottom panels of Figure 9).
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Z1, and Z2 (b) from the 7DLM with r=120. The total integration time is τ = 1000.


