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(aguiar@nioz.nl)

Abstract. A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations

is derived for studying tidally-generated fully nonlinear, weakly nonhydrostatic dispersive interfacial

waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing

terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking

a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial5

tide. Because of strong non-linearity, solitons in some cases attain a limiting table-shaped form, in

accordance with soliton theory. More generally, we use the model equations to investigate the role

of the initial stages of the internal tide on the limiting amplitudes of solitons under fully nonlinear

conditions. Numerical solutions reveal that the tide-generated solitons are primarily limited by the

underlying quasi-nonlinear internal tide. We show the decisive factor is the generation of higher10

harmonics, which already limit the growth of the initial internal tide. As a consequence, and contrary

to predictions by classical KdV theory alone, we find that tidally generated solitons are subjected

to limiting amplitudes even under weakly nonlinear conditions. This implies that under strongly

nonlinear conditions, amplitudes of solitons may be limited before attaining a table-shaped form.

1 Introduction15

Tidally-generated internal solitons are a widespread phenomenon in the oceans and they have been

observed and studied for decades (see, e.g., Apel et al. (2006)). They are intrinsically linked to the

internal tide, which itself is generated by barotropic tidal flow over topography. As the internal tide

steepens, it may split up into groups of internal solitons, which therefore appear at the tidal period.
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For internal solitons as such, an archetypal model has been the Korteweg-de Vries (KdV) equation,

which is based on the assumption of weak nonlinearity and weak nonhydrostatic effects. The equa-

tion gives prediction for the relation between amplitude, width and phase speed of the solitons, as

well as the shape itself. In the KdV equation there is, mathematically speaking, no limit to the ampli-

tude that solitons may reach (although, of course, at some point the underlying assumption of weak25

nonlinearity would be violated). This behaviour changes fundamentally if a higher-order (i.e., cubic)

nonlinear term is included, leading to the so-called extended KdV (eKdV) equation, as discussed in,

e.g., Helfrich and Melville (2006). This extended version produces qualitatively different solitons:

their amplitude is limited (for a given configuration of layers) and they broaden as they reach their

maximum amplitude, the so-called table-top solitons. This behaviour is confirmed by the fully non-30

linear soliton models, as derived by Choi and Camassa (1999) and Miyata (1985, 1988) (denoted as

the MCC equations for brevity).

In this paper, we focus on another limiting factor, which comes into play even before solitons arise,

namely in the internal tide itself. In a purely linear system, the amplitude of the internal tide in-35

creases linearly with the strength of the barotropic tidal flow. Here we study how this changes if one

includes quasi-nonlinear effects (i.e., products of barotropic and baroclinic terms) and genuinely

nonlinear effects (products of baroclinic terms). We demonstrate that a saturation in the amplitude

of the internal tide occurs in both cases; increasing the barotropic flow further does not produce a

larger internal tide. As a consequence, resulting solitons may stay well below their formal limiting40

amplitude, no matter how strong the forcing.

To study these effects, we derive a set of fully nonlinear, weakly nonhydrostatic model equations,

by extending the MCC equations with a barotropic tidal forcing over topography and with Coriolis

effects, which have previously been shown to play a key role in soliton generation from internal45

tides (Gerkema and Zimmerman, 1995). To avoid nonlinearities in the barotropic flow itself (which

cannot be formally neglected in a fully nonlinear model), we mimick the generation by barotropic

tidal flow over topography with a horizontally oscillating topography. (There is no complete equiv-

alence, but we demonstrate that for the parameters used here, the difference remains small.) The

presence of a topography greatly complicates the subsequent handling of the equation, necessary to50

bring them in a form amenable to numerical solving, but we demonstrate that the set of equations

can be obtained.

An extension of the MCC theory with Coriolis effects (MCC-f) was already derived by Helfrich

(2007), who investigated on the decay and return of internal solitary waves with rotation. We fo-55

cus on the novel aspect of studying the wave evolution and limiting amplitudes of fully nonlinear,

2

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-1, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 19 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



weakly nonhydrostatic internal tides and solitons when a forcing, and rotational effects, are acting.

We denote our extension of the MCC theory as forced-MCC-f (forced-MCC in absence of rotation),

for brevity.

60

The paper is organized as follows. We derive a new two-fluid layer model consisting of a set of

forced rotation-modified Boussinesq equations in Sect. 2. We start with the basic equations and

assumptions. Then, we scale equations (Sect. 2.1) and vertically integrated them over the layers

(Sect. 2.2). Up to this point, the resulting equations are exact but do not form a closed set. The set

is closed by making an expansion in a small parameter measuring the strength of non-hydrostaticity65

(Sect. 2.3). The resulting model turns out equivalent to Choi-Camassa equations plus additional

terms which provide the forcing and rotation effects to the system. In Sect. 3, we discuss the prob-

lem of having an oscillating topography instead of a barotropic flow over topography.

Numerical solutions of the model to study the limiting amplitudes of the internal tides and solitons70

are presented in Sect. 4. First, the non-rotating quasi-nonlinear and fully-nonlinear cases are ex-

plored (Sects. 4.1 and 4.2, respectively). Second, rotational effects related to limiting amplitudes of

tidally-generated fully nonlinear solitons are investigated (Sect. 4.3). A summary and main conclu-

sions are presented in Sect. 5. The numerical methods and schemes are described in Appendix A.

The actual form of the model equations as used in the code is presented in Appendix B.75

2 Derivation of the model

We start from the continuity and Euler equations and consider a two-fluid layer system (Fig. 1) with

a jump in density accross the interface and in which each layer is composed of a homogeneous,

inviscid, and incompressible fluid, applying the Boussinesq approximation. We also assume unifor-80

mity in one of the horizontal directions, taking ∂/∂ y = 0. Hence, the continuity and momentum

equations read

ui,x +wi,z = 0 (1)

ρ̄
(
ui,t +ui ui,x +wi ui,z − f vi

)
= −pi,x (2)

vi,t +ui vi,x +wi vi,z + f ui = 0 (3)85

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
= −pi,z − ρi g (4)

where ρi is density, (ui,vi,wi) are the velocity components in Cartesian coordinates, pi is pressure,

g the gravitational accelaration, f the Coriolis parameter (f = 2Ωsinφ, at latitude φ) and ρ̄ the mean

density. The subscript i= 1 (i= 2) refers to the upper (lower) layer and a stable stratification,

ρ1 < ρ2, is assumed.90
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0

Upper surface (Rigid-lid) z=H1

z=0

Interface: z=Z(x,t)

Bottom z=-H2+H(x,t)

Upper layer: H1, ρ1

Lower layer: H2, ρ2

x →

Fig. 1. The two-fluid layer system for which the forced-MCC-f equations are derived. The horizontal dashed

grey line indicates the level z = 0, the level at which the interface resides at rest.

Boundaries are defined at the surface, taken to be a rigid lid, which is located at z =H1, and at the

bottom, located at z =−H2 +H(x,t). The time-dependence of the bottom will later be specified as

a horizontal oscillation, mimicking a barotropic tidal flow over topography, the forcing mechanism

for internal tides. However, the two are not exactly equivalent, since the transformation from one95

frame of reference to the other involves an acceleration and is therefore not Galilean. We further

discuss this aspect in Sect. 3.

The kinematic boundary conditions at the surface and bottom read

w1 = 0 at z =H1 (5)100

w2 = Ht +Hx u2 at z =−H2 +H(x,t) . (6)

At the interface, z = Z(x,t), which if at rest is located at z = 0, the boundary conditions are given

by the continuity of normal velocity and pressure:

wi = Zt +ui Zx and p1 = p2 at z = Z . (7)

For later convenience, we write pressure as the sum of hydrostatic and dynamic parts, the latter being105

denoted by primes:

pi = ρ1gH1− ρigz+ p′i(t,x,z) .

In the horizontal momentum equation, this amounts to replacing pi,x by p′i,x, whereas the vertical

momentum equation (4) gives

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
=−p′i,z .110

Continuity of pressure at the interface, the second equation in (7), now becomes

(p′1− p′2)|z=Z = (ρ1− ρ2)gZ .

4
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2.1 Scaling

The next step is to bring the equations into an appropriate dimensionless form for which we intro-

duce the following scales. The scale for the undisturbed water depth is taken to beD, and the typical115

wavelength L. Crucially, we will assume waves to be long, i.e. nonhydrostatic effects to be weak.

This will be expressed by the small parameter1, δ =
(
D
L

)2

� 1.

Since we allow waves to have large amplitudes (i.e. being strongly nonlinear), we may take horizon-

tal current velocities to scale with c0 = (g′D)1/2, where g′ is reduced gravity, g′ = g (ρ2− ρ1)/ρ̄;120

and, c0 is an approximate measure of the linear long-wave phase speed for interfacial waves. Thus,

u and v will be scaled with c0. For the interfacial displacement being allowed to be large, an appro-

priate scale of Z is D.

The typical scale of w now follows from the continuity equation as Dc0/L. Finally, the scale of125

pressure follows from assuming a primary balance between the acceleration term ρ̄ ut and px in the

horizontal momentum equation.

In summary, then, we can introduce the following dimensionless variables, indicated by asterisks,

x= L x∗, z =D z∗, t= (L/c0) t∗,

p′i = (ρ̄ c20) p′∗i , ui = c0 u
∗
i , vi = c0 v

∗
i , wi = (D/L) c0 w∗i .

(8)130

With these scales, the dimensionless continuity and Euler equations yield (for convenience, we drop

the asterisks right away):

ui,x +wi,z = 0 (9)

ui,t +ui ui,x +wi ui,z −µ vi = −p′i,x (10)

vi,t +ui vi,x +wi vi,z +µ ui = 0 (11)135

δ
(
wi,t +ui wi,x +wi wi,z

)
= −p′i,z . (12)

Here µ is the scaled Coriolis parameter, µ= fL/c0. Furthermore we introduce the dimensionless

quantities ζ, hi, and h via (Z,H1,H2,H) =D(ζ,h1,h2,h), so that the scaled form of the boundary

conditions is

w1 = 0 at z = h1 (13)140

wi = ζt +ui ζx at z = ζ(x,t) (14)

p′2− p′1 = ζ at z = ζ(x,t) (15)

w2 = ht +u2 hx at z =−h2 +h(x,t) . (16)

1In Choi and Camassa (1999) a small parameter ε was used instead, which relates to ours as δ = ε2.
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The goal is now to derive a reduced set of equations from (9)–(12), in which the boundary conditions

(13)–(16) are incorporated by vertical integration, exploiting the smallness of the parameter δ. The145

procedure is identical to that of (Choi and Camassa, 1999), but with the additional complications of

the Coriolis force, topography, and tidal forcing.

2.2 Vertically integrated equations

We vertically integrate the equations over the upper and lower layers and expand them to the or-

ders δ0 and δ1 to obtain a closed set for the weakly nonhydrostatic equations, following Choi and150

Camassa (1999). The layer-mean f̄1 of a function f1(x,z, t) for the upper layer is being defined as

f̄1(x,t) =
1
η1

h1∫

ζ

dz f1(x,z, t) , η1 = h1− ζ (17)

and for the lower layer as

f̄2(x,t) =
1
η2

ζ∫

−h2+h

dz f2(x,z, t) , η2 = h2−h+ ζ . (18)

where ηi represents the thickness of the layer (depending on the interfacial displacement ζ). Notice155

that the boundaries of the integral depend on time and space (x) via the interfacial movement ζ(t,x),

but also, for the lower layer, via the horizontally oscillating topography h(t,x).2. Before proceeding,

nonlinear terms in horizontal momentum equations (10) and (11) are rewritten as (u2
i )x + (wiui)z

and (uivi)x + (wivi)z , respectively, to facilitate the procedure.

160

After integration of Eqs. (9)–(11) for i= 1 and applying the boundary conditions (13)–(15) we

obtain the layer-mean equations for the upper layer

η1,t + (η1ū1)x = 0, (19)

(η1ū1)t + (η1u1u1)x−µη1v̄1 = −η1p′1,x , (20)165

(η1v̄1)t + (η1u1v1)x +µη1ū1 = 0. (21)

For the lower layer one proceeds similarly, except that now both boundaries are variable. Applying

the boundary conditions (14)–(16), vertical integration of (9)–(11) for i= 2 yields

η2,t + (η2ū2)x = 0, (22)170

(η2ū2)t + (η2u2u2)x−µη2v̄2 = −η2p′2,x, (23)

(η2v̄2)t + (η2u2v2)x +µη2ū2 = 0. (24)
2For this reason we need to apply the Leibniz integral rule below with respect to x and t.
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2.3 Expansion in δ175

The six integrated equations (19)–(24) derived so far are exact but do not form a closed set. The

variables η1, η2 and ζ count as one unknown, but we have also ūi, v̄i, p′i,x, uiui and uivi, giving

11 unknowns for 6 equations. To obtain a closed set, the last two expressions will be cast in terms

of ūi and v̄i by using the vertical momentum equation, expanded in terms of the small parameter δ.

Furthermore, continuity of pressure at the interface is used to connect the pressure in the lower and180

upper layer (i.e., p′1,x and p′2,x). All in all, the six equations are thus modified to contain only six

unknowns. With this aim, we make a formal expansion of the unknowns for the lowest (δ0) and next

(δ) orders, as, for example:

f̄i = f̄i
(0) + δf̄i

(1) + · · ·

At the lowest order (δ0), p′(0) accounts for hydrostatic effects. At the next order (δ), p′(1) brings185

weakly nonhydrostatic effects into the system.

2.3.1 Lowest order

At lowest order, the vertical momentum equation (12) reduces to ∂p′i
(0)/∂z = 0 as terms of order δ

are neglected; therefore, (perturbation) pressure is vertically constant in each layer. For convenience,190

we introduce P = p′2
(0), being a function of t and x. It then follows from continuity of pressure at

the interface, that p′1
(0) = P − ζ. Thus, to this order of approximation,

p′1,x = Px− ζx +O(δ) , (25)

and for the lower layer

p′2,x = Px +O(δ) . (26)195

Returning to the original horizontal momentum equations, it is now natural to assume that the hor-

izontal velocities, too, are independent of z within each layer; then, given the z-independence of

pressure

uiui = ū2
i +O(δ), uivi = ūiv̄i +O(δ).

At lowest order, then, the set of integrated equations is closed; together with the (exact) integrated200

continuity equations (19) and (22), we have the momentum equations in terms of the six variables

ūi, v̄i, ζ and P :

(η1ū1)t + (η1ū2
1)x−µη1v̄1 = −η1 (Px− ζx) +O(δ), (27)

(η2ū2)t + (η2ū2
2)x−µη2v̄2 = −η2Px +O(δ), (28)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ), (29)205

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ). (30)
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Recall that η1,2 can be expressed in terms of ζ and thus involve just one unknown.

2.3.2 Next order

To include terms of order δ, the key problem is, again, to close the set of six vertically integrated210

equations by deriving closed expressions for the horizontal pressure gradients p′i,x as well as for the

contributions of uiui and uivi in the nonlinear terms. The latter problem is particularly simple. At

order δ, the products contain one lowest-order field, which is independent of z (e.g., ui(0) = ūi
(0)),

hence

uiui =
1
ηi

∫
dzu2

i =
1
ηi

∫
dz (ui(0)

2 + 2δui(0)ui(1) + · · ·)215

= ūi
(0)2 + 2δūi(0)ūi(1) + · · ·

= ū2
i +O(δ2)

so that

uiui = ū2
i +O(δ2) , uivi = ūiv̄i +O(δ2).

This allows us to write the horizontal momentum equations as220

(η1ū1)t + (η1ū2
1)x−µη1v̄1 = −η1(p′1(0) + δp′1

(1))x +O(δ2) (31)

(η2ū2)t + (η2ū2
2)x−µη2v̄2 = −η2(p′2(0) + δp′2

(1))x +O(δ2) (32)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ2) (33)

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ2) (34)

The remaining problem is to find an expression for p′i
(1). At order δ, Eq. (12) reads in terms of the225

lowest order vertical velocities,

wi
(0)
t +ui

(0)wi
(0)
x +wi

(0)wi
(0)
z = −p′i(1)z (35)

From vertically integrating the continuity equation (9), we obtain an expression for wi(0):

wi
(0) =−zūi,x(0) + ci(t,x)

where ci are ‘constants’ of integration which are determined by using the boundary conditions at the230

surface (13) and bottom (16). Thus, wi(0) for the upper- and lower layers become, respectively,

w1
(0) = (h1− z) ū1,x

(0), (36)

w2
(0) = (h−h2− z) ū2,x

(0) +D2h, (37)

where the operator Di is defined as ∂/∂t+ ūi
(0)∂/∂x. Substituting w1

(0) from Eq. (36) and w2
(0)

from Eq. (37) into Eq. (35), and vertically integrating the result, we get an expression for p′1
(1) and235
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p′2
(1). Taking their derivative with respect to x and their mean over each layer, we finally obtain an

expression for p′i(1)x at the upper and lower layer at order δ. Including the lowest order terms (25)

and (26), this allow us to write the horizontal pressure gradient for the upper layer

p′1,x = p′1,x
(0) + δp′1,x

(1) +O(δ2) = Px− ζx− δ
[ 1

3η1
(η3

1G1)x
]

+O(δ2) , (38)

and, for the lower layer,240

p′2,x = p′2,x
(0) + δp′2,x

(1) +O(δ2) = Px− δ
[ 1

3η2
(η3

2G2)x +
1
2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h
]

+O(δ2),

(39)

where we introduced for simplicity the term Gi (as in Choi and Camassa (1999)),

Gi = ūi,xt
(0) + ūi

(0)ūi,xx
(0)− (ūi,x(0))2 . (40)

With this, the horizontal momentum equations (31) and (32) become245

(η1ū1)t + (η1ū2
1)x−µη1v̄1 =−η1

{
Px− ζx− δ

[ 1
3η1

(η3
1G1)x

]}
+O(δ2) (41)

(η2ū2)t + (η2ū2
2)x−µη2v̄2 =−η2

{
Px− δ

[ 1
3η2

(η3
2G2)x +

1
2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h}
}

+O(δ2)

(42)

We have thus obtained a closed set of six dimensionless equations, namely the exact continuity equa-

tions (19) and (22), the horizontal momentum equations (41) and (42), as well as (33) and (34); the250

last four equations involve the the weakly non-hydrostatic assumption. The six unknowns are ū1,

ū2, v̄1, v̄2, P , and (via η1,2) ζ. In the absence of an interfacial wave forcing and neglecting Earth’s

rotation effects, our set of equations reduces to those of Choi and Camassa (1999).

Before proceeding to numerical solving the set, we further specify the model by prescribing the255

oscillating topography, i.e., the forcing to the system, with

h= h(X) with X(x,t) = x− acos t (a being an arbitrary positive constant) . (43)

We combine the continuity equations (19) and (22) into

(η1 + η2)t + (η1ū1 + η2ū2)x = 0 , (44)260

Given that η1 + η2 = h1 +h2−h, with the two-fluid system depth h1 +h2 = 1, this leads to

−ht + (η1ū1 + η2ū2)x = 0. (45)

If we now substitute the time derivative of the oscillating topography (43) above, it yields

(η1ū1 + η2ū2)x = U
∂h

∂x
, (46)

9
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with265

U = a sin t, (47)

which mimicks a barotropic tidal flow over the oscillating topography (i. e. the velocity of the

moving topography). Then, Eq. (46) can be integrated in x,

η1ū1 + η2ū2 = Uh+A(t) , (48)

where we assume that initially ū1 = ū2 = U = 0, so that A(t) = 0. Notice that the right-hand side is270

prescribed via the forcing and is thus a known quantity. It allows us to express ū2 in terms of ū1.

We can thus combine the horizontal momentum equations (41) and (42), eliminating P ,

ū1,t + ū1ū1,x +µv̄1 = ζx +
1

(1−h)

(
(Uh)t + (η1ū2

1 + η2ū
2
2)x−µ(η1v̄1 + η2v̄2)− η1ζx

)
+

δ
(

1− η1
(1−h)

)[
η1G1η1,x +

η2
1

3
G1,x

]

+
δη2

(1−h)

[
− η2G2ζx−

η2
2

3
G2,x +

η2G2

2
hx +

η2
2

(D2
2h)x + ζxD

2
2h
]

+O(δ2) (49)275

ū2 =
Uh− η1ū1

η2
, (50)

v̄1,t + ū1v̄1,x +µū1 = 0 +O(δ2) , (51)

v̄2,t + ū2v̄2,x +µū2 = 0 +O(δ2) , (52)

ζt− (h1− ζ)ū1,x + ū1ζx = 0 . (53)280

where the v̄i–horizontal momentum equations (51) and (52) have been further simplified from (33)

and (34) by using the continuity equations (19) and (22). Eq. (19) has now been expressed in terms

of ζ for convenience. The other continuity equation (22) is no longer included explicitly since it is

already present via (50). All in all, we have now five equations for five unknowns (ū1, ū2, v̄1, v̄2 and

ζ).285

The model equations are here in nondimensinal form, but for clarity in the next sections we present

results from numerical experiments after re-dimensionalisation. The numerical methods and schemes

are described in Appendix A. The actual form of the model equations as used in the code is presented

in Appendix B.290

3 Preliminary numerical experiments

We discuss here the ‘non-inertial’ nature of our frame of reference to test the applicability to ocean

cases, where the topography is at rest.
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A Galilean transformation involves two frames of reference which move with constant and rectilin-295

ear speed with respect to each another. Hence, observations made in one frame can be converted to

another, as physical laws are identical.

However, our oscillating topography is not an inertial frame since it is accelerated with respect to a

situation where the topography is at rest (as in the ocean). It is, therefore, not evident that the results300

from the two frames are equivalent.

The topography is prescribed analytically, in order to ensure perfectly smooth second and third

derivatives of h(x,t):

H(x,t) =
HT

1 + (x/HL)2
(54)305

with x being the grid positions in space; and, HT and HL being the parameters which set the height

and width of a symmetric sill, respectively. Other analytical functions may be also used depending

on the desired topography. The topographic obstacle (ridge, sill, ...) is always centred in the x-axis

and the length of the x-domain is chosen to be large enough to prevent that waves from reaching the

boundaries. At this point it is worth while to recall that the oscillation of the topography is included310

within the model, in dimensionless form, as h= h(X), with X(x,t) = x− acos t with a being an

arbitrary constant.

In all experiments, fluid starts moving to the right at t= 0 (i.e., topography moving to the left). The

waves are generated near the origin in x-axis due to the ‘tide-topography’ interaction; on the neg-315

ative (positive) x-axis, waves travel to the left (right). Because the forcing enters in the simulation

asymmetrically with fluid at rest moving to the right, it is expected that wave packets in the front

appear rather different when comparing both sides (negative vs. positive x-domain). These fronts

are the transients, which are influenced by the way the experiment is started. A steady solution at

both sides of the x-axis is reached after several tidal periods have passed away. For this reason, we320

start the observation of all our results when the signal has become periodic to avoid transient effects.

We use the generation model of weakly nonlinear, weakly nonhydrostatic solitons derived in Gerkema

(1996), which works with tidal motion over fixed topography, as a benchmark for testing our model.

Of course, departures may arise from the fact the model derived here is fully nonlinear. However, the325

effects of nonlinearity come into play more as the waves propagate away, whereas the differences

between the frames of reference are expected to be largest exactly over the topography. If the results

between the models turn out to be similar over the topography, it thus seems reasonable to conclude

that we can compare our present setting to that in the ocean. For this reason, we restrict ourselves to

the linear and quasi-nonlinear regimes.330
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Fig. 2. Comparison of a linear (left panels) and quasi-nonlinear (right panels) internal tide generated via tidal

flow over a sill (Gerkema, 1996) [grey line] with one generated by a horizontally oscillating sill (forced-MCC)

[black line]. The upper and lower layer thickness areH1 = 30 m andH2 = 70 m, respectively. The (mimicked)

tidal flow is fairly strong and equals 120 cm s−1 in all panels. The duration of the run is 9 tidal periods. Reduced

gravity, g′, varies from top to bottom panels as: g′ = 0.03 in (a, b), g′ = 0.02 in (c, d) and g′ = 0.01 in (e, f).

We notice that the linear runs with our forced-MCC model were actually done somewhat indirectly

by taking the quasi-nonlinear version and reducing the forcing by a factor of 10, and afterwards en-

hancing the amplitude in the plots accordingly, since the quasi-nonlinear terms cannot be removed

explicitly in this model setting without also removing the forcing. By reducing the forcing, we ef-335

fectively enter the linear regime.

Results over the top of the sill for various parameters, in Fig. 2, indicate a close correspondence

between the two frames of reference. In line with this correspondence, we henceforth refer to the

speed of the oscillating topography as the “strength of the tidal flow”.340

It is only at relatively low values of g′ combined with a fairly strong tidal flow that we start to see

significant deviations between the model settings (Fig. 2f). These deviations observed at low values

of g′ vanish when forced with a tidal flow 6 80 cm s−1 (not shown).

345
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4 Numerical experiments

In this section, we use the forced-MCC-f set of equations derived in Sect. 2 to gain insight in the gen-

eration and evolution of the linear, quasi-nonlinear and fully nonlinear interfacial tides in ocean-like

study cases. Special attention is given to conditions where interfacial waves reach limiting ampli-

tudes.350

For convenience in comparing the different experiments, we configure the two-fluid layer system

such that in all cases a total water depth of 100 m is considered (H = 100 in Eq. 54), with the up-

per layer being always thinner than the lower layer. Regarding the topography, we take different

heights but always with the same horizontal scale of approximately 20 km (HL = 10 km in Eq. 54).355

Furthermore, the horizontal oscillation of the moving topography is always of semidiurnal frequency.

In Table 1 a list of the numerical experiments is provided, where the varying environmental condi-

tions are defined following: the strength of the stratification, i. e. the reduced gravity, g′; the height

of the topography (HT ) relative to the lower layer thickness, referred to as the topography ratio, ϕT ;360

the two-layer thickness ratio, γ=H1/H2; and, the latitude, φ.

Exp. Regime (Fig.) g′ ϕT γ φ

(m s−2) (HT ; in m) (H1, H2; in m) (◦)

A1(∗) L (3a-f), QNL (3a-f), FNL (6, 7, 8) 0.03 0.57 (40) 0.43 (30, 70) 0

A2 L (3a,d), QNL (3a,d) 0.02 0.57 (40) 0.43 (30, 70) 0

A3 L (3a,d), QNL (3a,d; 4) 0.01 0.57 (40) 0.43 (30, 70) 0

B1 L (3b,e), QNL (3b,e), FNL (9, 11, 13a,b) 0.03 0.50 (35) 0.43 (30, 70) 0

B2 L (3b,e), QNL (3b,e) 0.03 0.43 (30) 0.43 (30, 70) 0

C1 L (3c,f), QNL (3c,f), FNL (10, 12, 13c,d) 0.03 0.57 (40) 0.33 (25, 75) 0

C2(∗) L (3c,f), QNL (3c,f) 0.03 0.57 (40) 0.25 (20, 80) 0

A1-f FNL (14a,b) 0.03 0.57 (40) 0.43 (30, 70) 15, 30, 45

B1-f FNL (14c,d) 0.03 0.50 (35) 0.43 (30, 70) 15, 30, 45

C1-f FNL (14e,f) 0.03 0.57 (40) 0.33 (25, 75) 15, 30, 45

Table 1. Summary of experiments. Capital letters L, QNL and FNL stand for Linear, Quasi-Nonlinear and

Fully Nonlinear model configurations, respectively. Varying parameters are: the reduced gravity, g′ (m s−2);

the topography ratio, ϕT (HT is indicated in meters); the two-fluid layer thickness ratio, γ (H1 and H2 are

indicated in meters); and, the latitude, φ. The duration of the run in all experiments is 9 tidal periods. Exper-

iments with an (∗) were also performed under a linear configuration for varying conditions of g′ ranging from

0.005 to 0.05 m s−2 (see Fig. 5).
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4.1 Linear and quasi-nonlinear, hydrostatic interfacial tides

Regarding the rise of limiting amplitudes, we compare here the linear case (solid lines), where the

advective terms are absent, with the quasi-nonlinear case (dashed lines), where advective terms in-365

volving interactions between the barotropic and baroclinic flows are included (however, interactions

between baroclinic fields, the genuinely nonlinear terms, are still absent).

We track systematically wave properties corresponding to the third leftward-propagating tide-generated

interfacial wave, counting from the front, after 9 tidal periods of forcing. By staying away from the370

front, we avoid the transient effects affecting the waves that were generated at the start of the exper-

iment.

In panel (a), experiments A1, A2 and A3 account for the effect of varying the stratification via g′. In

panel (b), experiments A1, B1 and B2 account for the effect of varying the topography ratio, ϕT . In375

panel (c), experiments A1, C1 and C2 account for the effect of varying the two-fluid layer thickness

ratio, γ. In each case, we consider a range of values of the amplitude of the barotropic tidal flow; by

increasing a (dimensionless) in Eq. (47), we enhance the forcing via U .
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Fig. 3. Amplitude of the linear [solid] and quasi-nonlinear [dashed] interfacial tide, Aw (m), vs. the strength of

the tidal flow (cm s−1) for varying parameters: a) the strength of stratification, g′; b) the ratio of the height of

the topography to the lower layer thickness, ϕT ; c) the two-layer thickness ratio, γ. See Table 1 for details on

the experiments. Capital letters L, and QNL stand for Linear and Quasi-Nonlinear model settings, respectively.

In the purely linear experiments (solid lines), the amplitude increases linearly with the amplitude of380

the barotropic tidal flow, as one would expect. Naturally, for weak forcing the quasi-nonlinear cases

in Fig. 3 approach the linear ones; the advective terms then become very small. However, in the

quasi-nonlinear case (dashed lines), the interfacial waves exhibit a limiting amplitude in all exper-

iments (Fig. 3). Once the critical amplitude is attained, a further increase of the tidal forcing even

leads to a decrease of the wave amplitude. This behavior is further illustrated in Fig. 4 for experi-385
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ment A2, where a snapshot of the interfacial wave in the quasi-nonlinear regime is shown for various

forcing strengths. An increase of the forcing transforms the wave from sinusoidal to an asymmetric

shape, indicative of the generation of higher harmonics, but the amplitude becomes saturated.
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Fig. 4. Experiment A2 in Table 1. Snapshots of the quasi-nonlinear interfacial tide for various forcing strengths

(see legend) after 9 tidal periods of forcing.

For the quasi-nonlinear case in Fig. 3a, we observe that increasing the density jump through g′ gen-390

erates larger interfacial waves which approach the linear regime, pointing to a weaker generation of

higher harmonics. The saturation and subsequent reduction of the quasi-nonlinear interfacial waves

becomes consequently more evident for a weaker stratified two-layer system (experiments A2 and

A3).

395

In relation to the increase of the topography ratio and the increase of the two-fluid layer thickness

ratio, both cases lead to larger linear and quasi-nonlinear interfacial waves, as shown in Fig. 3b,c.

The wavelength of the interfacial tide is in all cases independent of the amplitude of the barotropic

flow (not shown). Moreover, it follows from experiments A1, B1 and B2 that it is also independent400

of the height of the topography. However, we find an increase in Lw with increasing g′ or γ.

Interestingly, the linear cases in Fig. 3a also suggest that an increase of stratification generates larger

interfacial waves up to a certain threshold and, above it, the resulting wave is smaller; especially

noticeable for relatively strong tidal flows. Nevertheless, this feature is not observed in the quasi-405
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nonlinear case, where an increase of the density jump generates larger amplitudes along the three

cases of study. We explore this finding further in Fig. 5.
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Fig. 5. Experiments A1∗-L. (a) Amplitude, Aw (m), of the linear interfacial wave vs. reduced gravity. (b)

Wavelength, Lw (m), of the linear interfacial wave vs. reduced gravity. Labels indicate the strength of the tidal

flow for each experiment. See Table 1 for details on the experiments.

In Fig. 5a, the amplitude of the linear interfacial tide is shown for experiments A1(∗) and C2(∗),

where reduced gravity ranges from 0.005 to 0.05 m s−2 and the forcing ranges from 5 to 120 cm s−1.410

In the literature, common values for g′ where solitary waves have been observed range from

0.007 m s−2 in the Celtic Sea (Gerkema, 1996) to 0.027 m s−2 over the Oregon continental shelf

(Stanton and Ostrovsky, 1998).

Results indicate that a range of optimal values of g′ exists and out of it the linear interfacial waves415

decrease. This finding resembles to that of Gerkema (2001), where optimal values of g′ provide a

large interfacial amplitude (from generation by an impinging beam), while for very small or very

large values of g′ the resulting amplitude remains small. Furthermore, we find the optimal g′ be-

comes more apparent as the tidal flow increases, being almost absent for a weak tidal forcing. The

finding is consistent for experiments A1(∗) and C2(∗), which present different two-fluid layer thick-420

ness ratio, γ (see Table 1); although, broadly, this wave response is less apparent for a smaller γ

(experiment C2(∗)). In contrast, the wavelength of the linear interfacial waves presents no limiting
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value within the range of study, although its growth is shown to decelerate as g′ increases for both

A1(∗) and C2(∗) (Fig. 5b). As previously noted, varying the tidal forcing does not affect Lw.

425

Following the description above, the narrowest range of optimal g′ is found in experiment A1(∗)

between 0.015 and 0.03 m s−2, when a fairly strong tidal flow of 120 cm s−1 generates maximum

amplitudes with less than 1 m of difference. For identical forcing strength, the range of optimal g′

broadens towards values up to 0.04 m s−2 in experiment C2(∗). If the wavelength of the interfacial

waves reaching their optimal amplitude in experiment A1(∗) and C2(∗) is compared with the width of430

the topographic sill, i. e. two times HL = 10 km in Eq. (54), we find that interfacial waves approach

their maximum amplitude for a ratio Lw/(2×HL) about 1.25–1.75 and 1.1–1.75, respectively (c. f.

Figs. 5a and 5b), i. e. when their length scales are similar.

4.2 Weakly to fully nonlinear, weakly nonhydrostatic interfacial waves435

In line with the results shown in Fig. 3, we select three different set-ups to investigate the fully nonlin-

ear version of the forced-MCC equations, with all advective terms included. Accordingly, interfacial

tides may disintegrate into strongly nonlinear solitons. Taking experiment A1 as the experiment of

reference, B1 differs from A1 in that it has a lower ϕT , i. e. smaller height of the topography. C1 has

a lower γ than A1, i.e., the maximum theoretical amplitude for strongly nonlinear waves is larger.440

Here, for identical strength of forcing, we test how nonlinear properties may differ depending on the

environmental conditions.

4.2.1 Fully nonlinear interfacial waves: Experiment A1

Fig. 6a presents a spatial overview of tide-generated interfacial tides and solitons propagating left-445

ward after 9 tidal periods of forcing with a tidal flow of 90 cm s−1. In subsequent panels, a set of

snapshots zooms in on different parts of the x-domain in panel (a) in order to capture different stages

of the nonlinear disintegration of tide-generated interfacial waves.

Panel (b) shows the generation of a long internal tide of about 30 km wavelength. At a first stage,450

the internal tide splits up into two different groups of rank-ordered solitons: a train of depressions on

the leading edge; and a train of elevations, after the former packet, with initially smaller amplitudes.

At a later stage, panel (c), the largest elevations have reached the smaller depressions in the train

and three leading solitons at the front present almost equal amplitudes about 29 m. Note that the

interfacial displacement of the soliton raises the interface between the two layers up to the domain455

of the upper layer H1 (here the positive y-axis).
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Previous solitary wave packets already propagating away from the generation area are shown in

panels (d) and (e) and correspond to preceding disintegrated internal tides. The ‘table-top’ soliton

observed at the leading edge of every preceding internal tide emerged in all cases from the first of460

the three solitons described previously in panel (c).

As the leading soliton evolves and reaches its maximum amplitude, it also broadens, as predicted

by soliton wave theory (Helfrich and Melville, 2006), in comparison with subsequent solitons of

smaller amplitude (Fig. 6d,e). The observed increase in the distance between the ‘table-top’ soliton465

and subsequent (smaller) solitons also indicates that, as expected from theory, the leading soliton

moves (phase speed) faster than solitons in the tail.
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Fig. 6. Snapshots of experiment A1, forced with a tidal flow of 90 cm s−1, after 9 tidal periods of the run. (a)

Overview of leftward-propagating tide-generated interfacial waves. (b-e) Set of spatial zooms from (a) showing

different stages of the nonlinear disintegration of tide-generated interfacial waves. As examples to show how

the amplitude, A∗w, and width, L∗w, of tide-generated solitons are computed in this work, the points Za (black

dot), Zb (grey dot), Zc (black square) and Zd (grey square) are also indicated in (c-e) [see the text in Sect. 4.2.1

for details].

Because tide-generated solitons propagate through the evolving long interfacial tides, z = 0 cannot

be used as a reference level to compute the amplitude down to the trough of the solitary wave (see470

Fig. 1 and Fig. 6). Similarly, the soliton width cannot be measured along z = 0. A systematic cri-

terion is required to adopt a suitable reference level which allows us to study the evolution of the

soliton amplitude, A∗w, and width, L∗w.
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Here we introduce the reference levelZa, which for every leftward-propagating soliton locates where475

the first spatial derivative of the interfacial displacement, Z, approaches zero while being above a

certain threshold. This grid-point indicates the location of the front of the leading soliton connecting

with the tail of the preceding interfacial tide. Accordingly, the soliton amplitude, A∗w, is defined as

the vertical distance between Za and the trough of the leading soliton, located at Zb (see, e. g., in

Fig. 6c-e). The soliton width, L∗w, is defined as the horizontal distance between Zc and Zd, which480

locate half-way of the vertical distance spanning A∗w (see also, e. g., in Fig. 6c-e).
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Fig. 7. Wave evolution of a tide-generated leading soliton tracked for experiment A1 under different forcing

strengths (see legend). (a) Soliton amplitude (m) vs. soliton age (tidal periods). (b) Soliton width (km) vs.

soliton age (tidal periods). (c) Phase speed (cm s−1) of the tidal flow (thin lines) and phase speed of the

leading soliton embedded in the internal tide (thick lines) vs. soliton age (tidal periods). (d) Soliton phase

speed (cm s−1) vs. soliton age (tidal periods). In all panels the lapse of time in the run, also in tidal periods, is

provided in brackets along the x-axis.

The above criteria allow us to investigate the generation and evolution of the leading soliton towards

a fully developed stage by tracking in space and time its wave properties. To this aim, we select the

third group of solitons and present the corresponding wave evolution in Fig. 7. Note that along the485

x-axis the soliton age is provided in tidal periods together with the corresponding run-time, indicated

in brackets.
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Contrary to what one might expect, the amplitude of the leading soliton decreases during its evolu-

tion (Fig. 7a). This can be ascribed to its tide-generated nature. At an early stage, the disintegration490

of the interfacial tide leads at its front to a large depression, and this subsequently evolves to a mature

leading soliton propagating through the tail of the preceding internal tide (see Fig. 6c-e).

More elucidating is the soliton width evolution. We distinguish here three different states through

which the soliton evolves. These states are especially clear when the system is forced with a fairly495

strong tidal flow (>50 cm s−1). Then, the leading soliton emerges with a noticeable linear increase

of its width after 2 tidal periods of age (Fig. 7b; State I). During the subsequent two tidal periods,

the soliton width becomes nearly stationary, suggesting it has reached a fully developed state (State

II). Finally, after 5 tidal periods of age, the leading soliton overtakes the preceding internal tide,

interacting with small amplitude solitons along its tail and causing the observed oscillations in the500

soliton width (State III).
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Fig. 8. Solitary wave solutions of the KdV (black line) and eKdV (grey line) theories compared to tide-generated

solitary waves derived from the forced-MCC equations (colored dots) for experiments A1. The tide-generated

solutions correspond to the mean mature leading soliton propagating in Fig. 7 (experiment A1) along its 4th

tidal period of age. The different colors indicate the strength of the tidal flow (see legend). (a) Nonlinear phase

speed scaled to linear long-wave phase speed for interfacial waves vs. soliton amplitude scaled to thickness of

the upper layer. (b) Soliton width scaled to total water depth vs. soliton amplitude scaled to thickness of the

upper layer. For comparison, the soliton width shown here for KdV and eKdV theories was computed following

the same procedure as for tide-generated solitons, i. e. we use points Zc and Zd, as in Fig. 6c-e, applied to the

soliton theoretical solutions.

The soliton reaching its maximum amplitude broadens up to a certain maximum width, attaining the

‘table-top’ shape as the tidal flow is increased. However, above a certain threshold of forcing, the

soliton width decreases while keeping its maximum amplitude. We observe this when an increase of505

the tidal flow beyond 90 cm s−1 (maximum A∗w and L∗w along the brown line in Fig. 7a,b) does not

generate larger solitons but narrower, which are consequently not ‘table-top’ shaped. Because of the

nature of classical eKdV and MCC theory in absence of forcing, this feature could not rise before
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and it does indicate that limiting factors related to the forcing may be acting.

510

The nearly constant soliton width shown for tidal flows weaker than 50 cm s−1 is suggestive of the

weakly nonlinear nature of the emerging solitons (Fig. 7b). In agreement with this, a sharp difference

is also noted regarding the evolution of the soliton phase speed when the two-fluid system is forced

with either a relatively weak/moderate tidal flow (<50 cm s−1) or a strong tidal flow (>50 cm s−1)

(Fig. 7d). Results show that tide-generated strongly nonlinear solitons present nearly the same phase515

speed in all cases (tidal forcing >50 cm s−1), increasing from 80 cm s−1 to 90 cm s−a as the soliton

evolves towards its 7th tidal period of age. It is also worth noting that the increase of the soliton

phase speed exhibits an oscillation amplitude of about 5% of its value, and that this oscillation ap-

pears in phase with the tidal flow (Fig. 7c). Alternatively, tide-generated weakly nonlinear solitons

(tidal forcing <50 cm s−1) present a nearly constant phase speed with a smaller amplitude of oscil-520

lation. Furthermore, within this regime, the soliton phase speed depends on the strength of the tidal

flow.

Lastly, Fig. 8 compares the solitary wave solutions of the KdV and eKdV theories

(Kakutani and Yamasaki, 1978; Ostrovsky and Stepanyants, 1989; Helfrich and Melville, 2006;525

Gerkema and Zimmerman, 2008) with the wave properties of leading tide-generated solitons de-

rived from the forced-MCC equations for experiment A1.

Generally, the relationship between the soliton phase speed and the soliton amplitude follows a sim-

ilar curve to that predicted from the eKdV theory, although experimental phase speed values are530

weaker in all cases (Fig. 8a). As regards to the relationship between the soliton width and ampli-

tude, tide-generated solitons follow a parallel curve to that predicted by eKdV, with similar width

but larger maximum amplitude, reaching the ‘table-top’ shape at its maximum, as expected (Fig. 8b).

4.2.2 Strongly and weakly nonlinear interfacial waves: Experiments B1 and C1535

In this section we perform and discuss analogous analyses to those presented for experiment A1.

Thus, Figs. 9a and 10a show an overview of tide-generated interfacial waves propagating leftward

after 9 tidal periods of forcing with a tidal flow of 100 cm s−1 for experiments B1 and C1, respec-

tively. In subsequent panels, a set of snapshots zooms in on different parts of the x-domain in (a) in

order to capture different stages of the nonlinear disintegration of tide-generated interfacial waves.540

Note that here the selected strength of the tidal flow is 100 cm s−1, by contrast with Fig. 6 (experi-

ment A1) where this is 90 cm s−1. We have selected in each case the forcing strength leading to the

maximum experimental soliton amplitude and width.
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Different from experiment A1, here the internal tides do not split up into two different groups of545

solitons (Figs. 9b and 10b), but disintegrate into solitary wave packets of rank-ordered depressions,

with the leading soliton reaching a maximum experimental amplitude about 27 m in panel (c) of

both experiments, B1 and C1 (Figs. 9 and 10).
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Fig. 9. Snapshots of experiment B1, forced with a tidal flow of 100 cm s−1, after 9 tidal periods of the run. (a)

Overview of leftward-propagating tide-generated interfacial waves. (b-e) Set of spatial zooms from (a) showing

different stages of the nonlinear disintegration of tide-generated interfacial waves.

Preceding disintegrated internal tides, i. e. more at the front of the wave train, are shown for experi-550

ments B1 and C1 in Figs. 9 d,e and 10 d,e. Remarkably, the ‘table-top’ solitons at the leading edge

of the long-life internal tides in experiment A1 (Fig. 6d,e) are absent for experiments B1 and C1.

The lower height of the topography for experiment B1, and the decrease of the upper layer thickness

for experiment C1 (a larger amplitude is required to obtain ‘table-top’ solitons) seems to be the main

cause.555

Although starting with leading solitons of relatively similar amplitude, experiment C1 exhibits sig-

nificantly smaller and narrower leading solitons than A1 (c. f., Figs. 6d,e and 10d,e). This suggests

that dispersive effects might overcome nonlinearities more noticeably along the solitons when the

upper layer is thinner.560

In Figs. 11 and 12, the generation and evolution of an emerging leading soliton is tracked for exper-
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Fig. 10. Snapshots of experiment C1, forced with a tidal flow of 100 cm s−1, after 9 tidal periods of the

run. (a) Overview of leftward-propagating tide-generated interfacial waves. (b-e) Set of spatial zooms from (a)

showing different stages of the nonlinear disintegration of tide-generated interfacial waves.

iments B1 and C1, respectively, as it was done for experiment A1 in Fig. 7. The tracked soliton is

also here the third tide-generated leftward-propagating leading soliton, counting from the front.

565

A striking feature emerges for leading solitons in experiments B1 and C1, which do not exhibit

a ‘table-top’ form, but nevertheless attain a limiting amplitude that cannot be exceeded by further

increasing the barotropic tidal flow (Figs. 11a and 12a). They reach this experimental limiting am-

plitude when the tidal forcing is 100 cm s−1, while in experiment A1 it is reached for a weaker

tidal flow about 90 cm s−1. Importantly, the soliton width decreases for experiments B1 and C1570

when leading solitons attain their empirical limiting amplitude and the tidal forcing is increased fur-

ther. This decrease of the soliton width resembles to that previously noted for experiment A1 when

the tidal flow is increased beyond the forcing strength leading to ‘table-top’ solitons. Additionally,

leading solitons in experiments B1 and C1 also decrease their amplitude under the discussed circum-

stance. This is observed for tidal flows higher than 100 cm s−1, which generate solitons of smaller575

amplitudes, more noticeably in experiment C1 than in B1 (c. f., Fig. 11a and 12a).

Following the above descriptions, we find that tidally generated solitons are subjected to limiting

amplitudes, even under weakly nonlinear conditions, due to the generation of higher harmonics as

the tidal forcing increases, which already limit the growth of the initial internal tide (see Sect. 4.1).580
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As in experiment A1, two groups of leading solitons emerge for experiment B1. The strongly non-

linear solitons, which exhibit an initial linear growth of their width and a nearly similar, and oscil-

lating, increase of their phase speed. And, the weakly nonlinear solitons, which exhibit a nearly

constant width and phase speed (Figs. 11b,d). Alternatively, for experiment C1, all the leading soli-585

tons present a nearly constant width, suggesting the prevalence of weakly nonlinearities (Figs. 12b).

Regarding the soliton amplitude and phase speed, however, we also observe for experiment C1 two

distinguishable groups: on the one hand, larger solitons which present nearly the same oscillating

phase speed with no trend; and, on the other hand, smaller solitons which present a nearly constant

phase speed that depends on the strength of the tidal flow (Figs. 12a,d). As it occurred for experi-590

ment A1, the oscillating phase speed of the leading solitons in experiments B1 and C1 also appears

in phase with the tidal flow (Figs. 11c and 12c).
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Fig. 11. Wave evolution of a tide-generated leading soliton tracked for experiment B1 under different forcing

strengths (see legend). (a) Soliton amplitude (m) vs. soliton age (tidal periods). (b) Soliton width (km) vs.

soliton age (tidal periods). (c) Phase speed (cm s−1) of the tidal flow (thin lines) and phase speed of the

leading soliton embedded in the internal tide (thick lines) vs. soliton age (tidal periods). (d) Soliton phase

speed (cm s−1) vs. soliton age (tidal periods). In all panels the lapse of time in the run, also in tidal periods, is

provided in brackets along the x-axis.

When compared to the solitary wave solutions of the KdV and eKdV theories, numerical results

from using the forced-MCC equations show that generation of strongly and weakly nonlinear soli-595
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Fig. 12. Same as Figure 11 but for experiment C1.

tons occur for experiments B1 and C1 (Fig. 13).

In experiment B1, the relationship between the soliton phase speed and the soliton amplitude fol-

lows a similar curve to that predicted from the eKdV theory (Fig. 13a), although experimental phase

speed values are weaker in all cases, as it also occurred for experiment A1 (see Fig. 8a).600

Conversely, tide-generated solitons from experiment C1 follow more closely a linear trend which

resembles that predicted by KdV theory, also showing in all cases weaker experimental phase speed

values (Fig. 13c).

605

Interestingly, while not attaining a ‘table-top’ form, nonlinear solitons in experiments B1 and C1

also present a limiting amplitude; even though in experiment B1, the largest solitons start to slightly

broaden and present amplitudes larger than that predicted by eKdV theory. Furthermore, it is also

evident in Fig. 13b,d that the largest solitons decrease their amplitude if the tidal flow increases

above a certain value, as previously noted from Figs. 11 and 12. These results further suggest that610

it is the saturation of the underlying quasi-nonlinear internal tide affected by higher harmonics (see

Fig. 3), which eventually limits the growth of tide-generated solitons.
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Fig. 13. Solitary wave solutions of the KdV (black line) and eKdV (grey line) theories compared to tide-

generated solitary waves derived from the forced-MCC equations (colored dots) for experiments B1 (top row)

and C1 (bottom row). The tide-generated solutions correspond to the mean mature leading soliton propagating

in Figs. 11 (experiment B1) and 12 (experiment C1) along its 4th tidal period of age. The different colors

indicate the strength of the tidal flow (see legend). (a,c) Nonlinear phase speed scaled to linear long-wave

phase speed for interfacial waves vs. soliton amplitude scaled to thickness of the upper layer. (b,d) Soliton

width scaled to total water depth vs. soliton amplitude scaled to thickness of the upper layer. For comparison,

the soliton width shown here for KdV and eKdV theories was computed following the same procedure as for

tide-generated solitons, i. e. we use pointsZc andZd, as in Fig. 6c-e, applied to the soliton theoretical solutions.

4.3 Effects of the Earth’s rotation

Finally, we investigate rotational effects acting as a dispersive mechanism on the wave evolution of615

tidally-generated solitons derived from the forced-MCC-f equations presented in this work.

In Fig. 14, numerical solutions are shown for experiments A1-f, B1-f and C1-f (see Table 1 for de-

tails). The different colored lines show how comparatively rotation affects the nonlinear interfacial

tides and solitons. Rotation becomes gradually stronger as follows: rotationless (black line), θ=15◦620

(grey line), θ=30◦ (blue line) and θ=45◦ (red line).

In agreement with previous studies, we observe in all panels that an increase of the latitude leads

to larger dispersive effects due to Coriolis dispersion (Gerkema and Zimmerman, 1995; Gerkema,

1996). Also, the leading solitons are shown to travel faster as rotation becomes stronger due to rota-625
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tion increases the phase speed of a wave.

Importantly, an unexpected feature must be noted. At relatively low latitudes (c. f., numerical so-

lutions for the rotationless case and θ=15◦), rotational effects seem to enhance the growth of the

leading solitons up to reaching a ‘table-top’ form. This is especially noticeable for experiments B1630

and C1, panels (d) and (f), respectively, for which the rotationless cases do not lead to ‘table-top’

solitons.

These results indicate that a moderate increase of rotation contributes to decrease the effect of lim-

iting factors preventing the growth of leading solitons as ‘table-top’ solitary waves. In previous635

sections we have shown that higher harmonics generated by strong tidal flows cause a saturation

in the quasi-nonlinear tide by which solitons emerge, and that this factor limits the growth of the

leading soliton. Accordingly, we suggest that at relatively low latitudes, the saturation of the quasi-

nonlinear interfacial tide may vanish as the higher harmonics disperse due to Coriolis dispersion. As

a consequence, leading solitons appear attaining a ‘table-top’ form under forcing conditions which640

do not generate such solitary waves in the rotationless cases.

At higher latitudes (θ=45◦), the dispersive effect of the Coriolis force becomes stronger than non-

linearities, thus preventing the nonlinear interfacial tide from disintegrating into strongly nonlinear

solitons, as expected.645

5 Summary and conclusions

We investigate limiting amplitudes of tides and solitons using a generalization of the fully nonlinear

MCC equations (Miyata, 1985, 1988; Choi and Camassa, 1999), extended here with forcing terms

and Coriolis effects (forced-MCC-f). The focus is on the effects of adding a forcing, which repre-650

sents a novelty in the existing literature and provides a closer view to an ocean-like scenario. The

mechanism for interfacial tide generation is represented by a horizontally oscillating sill, mimicking

a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial

tide.

655

Numerical solutions show that strongly nonlinear tide-generated solitons attain in some cases a lim-

iting table-shaped form, in agreement with classical soliton theory. Nevertheless, results also reveal

that tide-generated solitons may be also limited by saturation of the underlying quasi-nonlinear in-

ternal tide. The decisive factor is then the generation of higher harmonics, which are enhanced with

increasing forcing and are here demonstrated to limit the growth of the initial internal tide before660
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disintegration into solitons. This effect seems to have passed unnoticed in previous studies, but turns

out to be be a key factor in the subsequent generation of solitons. It implies that under strongly

nonlinear conditions, amplitudes of solitons may be limited before attaining a table-shaped form.

Interestingly, the increase of the tidal generation of ‘table-top’ solitons causes a progressive reduc-

tion of the soliton, narrowing and, in some cases, even decreasing its amplitude. Importantly, we665

find that tidally generated solitons are subjected to limiting amplitudes even under weakly nonlinear

conditions, contrary to predictions by classical KdV theory alone. In the weakly nonlinear regime

too, the increase of the tidal forcing above a certain threshold causes a progressive reduction of the

tide-generated soliton. The upshot is that increasing the tidal forcing above a certain strength does

not lead to larger solitons but, counterintuitively, to smaller ones.670

Numerical solutions also show that the time-scale for a tide-generated leading soliton to reach a ma-

ture stage is shorter for weakly than for strongly nonlinear solitons. The former adopt a final form

relatively fast after its emergence, smoothly evolving to a mature soliton since its second tidal period

of existence. Alternatively, strongly nonlinear solitons adopt a final form after a noticeable transition675

which occurs after its second tidal period of existence.

Another departure from classical eKdV theory is that strongly nonlinear tide-generated solitons ex-

hibit larger maximum amplitudes than predicted, while soliton phase speeds are smaller for both

weakly and strongly nonlinear solitons. We suggest that the larger amplitude might be caused, to680

some extent, by the nature of the tide-generated soliton, which rides on an interfacial tide that is

lifted above the interface level at rest, hence allowing for larger maximum amplitudes. The question

remains unresolved about the factors causing the slower than predicted soliton phase speed.

In relation to the limiting amplitudes in rotational cases, numerical results from the forced-MCC-f685

equations suggest that a moderate increase of rotation contributes to decrease the effect of limiting

factors preventing the growth of leading solitons as ‘table-top’ solitary waves. We suggest that at rel-

atively low latitudes, the saturation of the quasi-nonlinear interfacial tide may vanish as the higher

harmonics disperse due to Coriolis dispersion. Consequently, leading solitons can attain a ‘table-

top’ form under forcing conditions that would not generate such solitary waves in the rotationless690

case. As expected, if rotation becomes stronger, the dispersive effect of the Coriolis force becomes

stronger than nonlinearities and the nonlinear interfacial tide is prevented from disintegrating into

strongly nonlinear solitons.
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Appendix A

Numerical strategy

We define a grid in time and space for discretization of the various derivatives of the system. Then,

tn = n∆t and xj = j∆x700

are introduced for integer values of n (time-step) and j (spatial-step), where ∆t and ∆x are the mag-

nitude of the steps. Time and spatial dependent variables are described as, e.g. y(tn,xj), at any time

and position. Thus, ynj means the value of the variable y at the current time and spatial-step, n and

j, respectively. And, consequently, n+ 1 represents the ‘next time-step’, and so n− 1 the ‘previous

time-step’, what applies analogously for j in the space grid.705

The various derivatives in the model are discretized with centered difference approximations (Dur-

ran, 1999) as follows

yt(tn,xj) =̂
yn+1
j − ynj

∆t
, (A1)710

yx(tn,xj) =̂
ynj+1− ynj

∆t
, (A2)

yxx(tn,xj) =̂
ynj+1− 2ynj + ynj−1

(∆x)2
, (A3)

715

yxt(tn,xj) =̂
yn+1
j+1 − ynj+1− (yn+1

j−1 − ynj−1)
2∆x∆t

, (A4)

yxxt(tn,xj) =̂
yn+1
j+1 − ynj+1− 2(yn+1

j − ynj ) + (yn+1
j−1 − ynj−1)

(∆x)2∆t
. (A5)

(A6)

Initiatilly the system is at rest with mean horizontal velocities, ūi and v̄i, and displacement of the720

interface, ζ, being all zero at the first two time levels (n− 1, n), what represent the initialization

fields. The thickness of the upper, h1, and lower layer, h2, together with the topography, h(X), draw

the scenario where the two-layer system runs. At the next time-step (n+ 1), we start to move the

topography to the right creating the effect of a tidal motion flowing to the left. For given U , i. e.

scaled velocity of moving topography (Eq. (47)), and time-step, the excursion of the topography is725
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a known quantity which is used to shift (first, second and third) spatial derivatives of h(X) at every

new time-step.

The time derivatives of the v̄i–momentum and continuity equations (51), (52) and (53) are solved

numerically using the third-order Adams-Bashforth approximation (Durran, 1999), for which v̄1, v̄2730

and ζ at the next time-step (n+ 1), and at all j positions, are determined in terms of the known

quantities at the previous two time-steps (n− 1, n).

However, solving numerically ū1 from Eq. (49) is not straightforward as we deal with three different

time derivatives of ū1 accompanied with space-time-dependent coefficients. Thus, after collecting735

the various time derivatives involving ū1 on one side and remaining terms on the other side, the

horizontal momentum equation of ū1 evolves to a generic expression in the form of

a ū1,t + b ū1,xt + c ū1,xxt = Y (tn,xj) (A7)

where a, b and c collect spatial derivatives of space-time dependent variables (ζ(x,t) and h(x,t));

and, Y (tn,xj) represents a collection of known quantities whose values may be dependent on740

time and/or space. In the remainder, we describe the numerical strategy we follow to solve this

problem.space-time-dependent partial differential equations. If now we operate the time derivative

as a common factor in the left-hand side, the result leads to

(a ū1 + b ū1,x + c ū1,xx)t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A8)

what helps us to introduce a new variable, Ū1, which groups coefficients a, b, c and time derivatives745

of ū1 and turns our problem into a numerically solvable expression in the form of

U1,t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A9)

It is important to recall here that Y (tn,xj) and the spatial derivatives of ū1 are both evaluated at the

current time-step (n); and, the time derivatives of a, b and c, which involve values of ζ at the current

(n) and new time-step (n+ 1), have been previously achivied with Eq. (53) via Adams-Bashforth750

approximation. This allows to rewrite the above expression as

U1,t =R(tn,xj) (A10)

by grouping all known quantities on the right-hand side under the variable R(tn,xj). Next we need

to discretize the time derivative of U1 but before doing that, we work out and discretize its spatial

derivatives using Eqs. (A2) and (A3), what results in755

U1 =
(
aj −

2 cj
2∆x

)
ū1j +

( −bj
2∆x

+
cj

(∆x)2

)
ū1j−1 +

( bj
2∆x

− cj
(∆x)2

)
ū1j+1

which we rewrite by introducing factors d, e and f as follows

U1j = dj u1j + ej u1j−1 + fj u1j+1 . (A11)
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If we now discretize the time derivative of U1 and apply Adams-Bashftorth, we obtain a numerically

solvable expression for U1 at the next time step, which reads760

U1
n+1

j = U1
n

j +
∆t
12

(
23Rnj − 16Rn−1

j + 5Rn−2
j

)
, (A12)

where U1
n+1

j actually includes

U1
n+1

j = dn+1
j ū1

n+1
j + en+1

j ū1
n+1
j−1 + fn+1

j ū1
n+1
j+1 . (A13)

To close our system we still need to obtain ū1
n+1
j for all j terms. To that end, the equation above

is more complicated to solve and gives rise to implicit equations, as we have not only the unknown765

ū1
n+1
j , but also ū1

n+1
j−1 and ū1

n+1
j+1 , which come from the mixed second and third derivatives of u1

in Eq. (A7). However, this is a well-known problem that can be solved using the tridiagonal matrix

algorithm (TDMA), also known as the Thomas algorithm (Logan, 1987).

Following the numerical strategy described above, the model resolution is closed for every new time770

level n+ 1 and the model equations can be solved successfully.

The choice of the space-time steps ∆t and ∆x is based on two main requirements. Firstly, the reso-

lution in x (∆x) must be sufficiently fine to resolve third-derivative terms and ensure that any short,

solitary-like waves are properly resolved. Nevertheless, dealing with equivalent equations to Miyata775

(1988) and Choi and Camassa (1999), as we do in our model, Kelvin-Helmholtz instabilities are

not filtered out. In this regard, Jo and Choi (2002) found that solitary waves of sufficient amplitude

could be unstable at high wave numbers to Kelvin-Helmholtz instability. Thus, if the grid resolu-

tion is too fine, unstable short waves will emerge near the wave crest and ultimately overwhelm the

calculations and explode numerically (Jo and Choi, 2002; Helfrich and Melville, 2006; Helfrich and780

Grimshaw, 2008). In some cases, the instability can be controlled by filtering out wavenumbers

above a threshold (W. Choi 2007, personal communication cited in Helfrich and Grimshaw (2008)).

For our numerical experiments we consider a ∆x course enough to prevent the problem. A second

condition follows from the requirement of stability. Then, for a given spatial step one may take the

Courant-Friedrichs-Lewy condition for the linearized equations as an indication of the required time785

step. The criterion implies that ∆x/∆t should be larger than the phase speed of the wave; taking

special care where the advection by the barotropic tidal flow (here mimicked with the moving to-

pography) should be added to the phase speed to apply the criterion properly (Gerkema, 1994).

For the simulations we present, it was not needed to filter out wavenumbers above a threshold to790

control Kelvin-Helmholtz instabilities as we designed the space-time grid to avoid this problem

following previous conditions. However, in some cases, specially in the simulations where the forc-

ing was fairly strong, an additional trick was needed to retain stability around the generation area

(Gerkema, 1994). In those cases averages were taken in the vicinity of the top of the ridge (around
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the steepest part of the topography), where the instabilities arised. At one particular point (xj , tn)795

in space-time, new values of ūi, v̄i and ζ were calculated by taking the average of the old values at

xj−1, xj and xj+1, and subsequently in time between tn and tn−1. The disturbance provoked by

this procedure was tested and found to be a minor effect only, as it was only applied over the closest

region to the top of the topography.

800

Appendix B

Numerically solvable model equations

In Appendix A, the numerical scheme used to solve the model is explained using a generic expression

(A7) for the ui horizontal momentum equation (49). Here we present the full set of nondimensional

forced-equations actually used for the numerical solving of the model. The procedure to that end is805

as follows.

Firstly, all terms of the ui horizontal momentum equation (49) are worked out and grouped according

to their physical effects (i. e. linear, nonlinear and dispersive effects from the upper and lower layer,

and from topography), leaving unkown quantities involving time derivatives of u1 on the left-hand810

side. The resulting expression (31) resembles (A7), where coefficients a, b and c involve derivatives

of space-time dependent variables and Y (tn,xj) is represented here by the sum of all terms on the

right-hand side,

a ū1,t + b ū1,xt + c ū1,xxt = linear+nonlinear+ dispersive1 + dispersive2 + dispersivetopo

(31)

+δ2
[
(η2hx− η2ζx)φx−

η2
2

3
φxx +φ(

η2
2
hxx + ζxhx)

]
,

(B1)

815

ū2 =
Uh− η1ū1

η2
, (50)

820

v̄1,t =−µū1− ū1v̄1,x +O(δ2) , (51)

v̄2,t =−µū2− ū2v̄2,x +O(δ2) , (52)825

ζt = (h1− ζ)ū1,x− ū1ζx . (53)

with

φ=
1
η2

[
hUt +U2hx + (ū1− ū2)(η1ū1,x− ū1ζx) + ū2Uhx

]
(B2)830
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a(ζ,h) = 1 +
δη2

1−h
[
(η2hx− η2ζx)(η1/η2)x− η2

2

3
(η1/η2)xx +

η1
η2

(η2
2
hxx + ζxhx

)]
, (B3)

b(ζ,h) = δ
(

1− η1
1−h

)
η1ζx +

δη2
1−h

[η1
η2

(η2hx− η2ζx)− 2η2
2

3
(η1/η2)x

]
, (B4)835

c(ζ,h) =−δ
(

1− η1
1−h

)η2
1

3
− δη2

(1−h)

η1η2
3

, (B5)

840

linear = µv̄1 + ζx +
1

1−h
[
hUt +U2hx + ū2ht−µ(η1v̄1 + η2v̄2)− η1ζx

]
, (B6)

nonlinear =−ū1ū1,x +
1

1−h
[
(ū1− ū2)ζt + ū1η1ū1,x + ū2η2ū2,x

]
, (B7)

845

dispersive1 = δ
(

1− η1
1−h

)[
− η1ζx(ū1ū1,xx− (ū1,x)2) +

η2
1

3
(ū1ū1,xxx− ū1,xū1,xx)

]
, (B8)

dispersive2 =
δη2

1−h
[
− η2ζx(ū2ū2,xx− (ū2,x)2)− η2

2

3
(ū2ū2,xxx− ū2,xū2,xx)

]
, (B9)850

dispersivetopo =
δη2

(1−h)

[
ū2hx(η2ū2,xx + ζxū2,x)

+
η2
2

(Uthxx +U2hxxx + 2Uū2,xhxx + 2ū2Uhxxx + 3ū2ū2,xhxx + ū2
2hxxx)

+ζx(Uthx +U2hxx + 2ū2Uhxx + ū2
2hxx)

]
. (B10)855
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