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Abstract. A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations

is derived for studying tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfa-

cial waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing

terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking

a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial5

tide. Because of strong non-linearity, solitons may attain a limiting table-shaped form, in accordance

with soliton theory. Besides, we use a quasi-linear version of the model (i.e., including barotropic

advection but linear in the baroclinic fields) to investigate the role of the initial stages of the inter-

nal tide prior to its nonlinear disintegration. Numerical solutions reveal that the internal tide then

reaches a limiting amplitude under increasing barotropic forcing. In the fully nonlinear regime, nu-10

merical experiments suggest that this limiting amplitude in the underlying internal tide extends to

the nonlinear case in that internal solitons formed by a disintegration of the internal tide may not

reach their table-shaped form with increased forcing but appear limited well below that state.
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1 Introduction

Tidally generated internal solitons are a widespread phenomenon in the oceans and have been ob-15

served and studied for decades (see, e.g., Apel et al. (2006)). They are intrinsically linked to the

internal tide, which itself is generated by barotropic tidal flow over topography. As the internal tide

steepens, it may split up into groups of internal solitons, which therefore appear at the tidal period.

For internal solitons as such, an archetypal model has been the Korteweg-de Vries (KdV) equation,20

which is based on the assumption of weak nonlinearity and weak nonhydrostaticity. The equation

gives prediction for the relation between amplitude, width and phase speed of the solitons, as well

as the shape itself. In the KdV equation there is, mathematically speaking, no limit to the amplitude

that solitons may reach (although, of course, at some point the underlying assumption of weak non-

linearity would be violated). This behaviour changes fundamentally if a higher-order (i.e., cubic)25

nonlinear term is included, leading to the so-called extended KdV (eKdV) equation, as discussed in,

e.g., Helfrich and Melville (2006). This extended version produces qualitatively different solitons:

their amplitude is limited (for a given configuration of layers) and they broaden as they reach their

maximum amplitude, the so-called ‘table-top’ solitons. This behaviour is confirmed by fully non-

linear soliton models, as derived by Choi and Camassa (1999) and Miyata (1985, 1988) (denoted as30

the MCC equations for brevity).

In this paper, we focus on another limiting factor, which comes into play even before solitons arise,

namely in the internal tide itself. In a purely linear system, the amplitude of the internal tide in-

creases linearly with the strength of the barotropic tidal flow. Here we study how this changes if one35

includes quasi-linear terms, i.e. retaining products of barotropic and baroclinic fields in the advec-

tive terms while still ignoring interactions of the baroclinic field with itself. We demonstrate that a

saturation in the amplitude of the internal tide occurs and increasing the barotropic flow further does

not produce a larger internal tide. As a consequence, when one includes the genuinely nonlinear

effects, i.e. products of baroclinic terms, resulting solitons may stay well below their formal limiting40

amplitude, no matter how strong the forcing.

To study these effects we derived a set of fully nonlinear, weakly nonhydrostatic model equations,

by extending the MCC equations with a barotropic tidal forcing over topography and with Coriolis

effects, which have previously been shown to play a key role in soliton generation from internal tides45

(Gerkema and Zimmerman, 1995). To avoid having to deal with nonlinearities in the barotropic tide

itself (which cannot be formally neglected in a fully nonlinear model), we mimic the interfacial wave

generation replacing a barotropic tidal flow over topography with a horizontally oscillating topog-

raphy. (There is no exact equivalence between the two but we demonstrate that, for the parameters

used here, the difference remains small.) An alternative approach will be also discussed later.50
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The presence of a topography greatly complicates the subsequent handling of the equations, but we

demonstrate that the set of equations can be obtained and can be cast in a form amenable to numeri-

cal solving.

55

An extension of the MCC theory with Coriolis effects (MCC-f ) was already derived by Helfrich

(2007), who investigated the decay and return of internal solitary waves with rotation. We focus on

the novel aspect of studying the wave evolution and limiting amplitudes of fully nonlinear, weakly

nonhydrostatic internal tides and solitons when a forcing and rotational effects are added. We de-

note our extension of the MCC theory as forced-MCC-f (or forced-MCC in absence of rotation), for60

brevity.

The paper is organized as follows. We derive a new two-fluid layer model consisting of a set of

forced rotation-modified Boussinesq equations in Sect. 2. We start with the basic equations and

assumptions. Then, we scale equations (Sect. 2.1) and vertically integrated them over the layers65

(Sect. 2.2). Up to this point, the resulting equations are exact but do not form a closed set. The set

is closed by making an expansion in a small parameter measuring the strength of non-hydrostaticity

(Sect. 2.3). The resulting model turns out to be equivalent to the Choi-Camassa equations plus ad-

ditional terms which represent the forcing and rotation effects. Prior to discussing the numerical

experiments, we address in Sect. 3 some aspects related to the oscillating topography, the governing70

nondimensional parameters and the parameter values used for the runs. In Sect. 4 we investigate the

factors limiting the growth of tidally generated solitons by first examining the generation of quasi-

linear internal tides within the parameter space of this study. Next, in Sect. 5 we solve the full set

of forced-MCC-f and explore the conditions by which tide-generated fully nonlinear solitons may

actually attain a limiting amplitude. The main findings and conclusions are presented in Sect. 6.75

The numerical methods and schemes are described in Appendix A. The full set of model equa-

tions as solved in the code is presented in Appendix B together with its (quasi)-linearized form.

In Appendix C we compare, within the parameter space of this study, the case of an oscillating

topography with the case of a tidal flow over a topography at rest.80

2 Derivation of the forced-MCC-f model

We start from the continuity and Euler equations and consider a two-fluid layer system (Fig. 1) with a

jump in density across the interface and in which each layer is composed of a homogeneous, inviscid,

and incompressible fluid; we apply the Boussinesq approximation. We also assume uniformity in85
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one of the horizontal directions, taking ∂/∂y = 0. Hence, the continuity and momentum equations

read

ui,x +wi,z = 0 (1)

ρ̄
(
ui,t +ui ui,x +wi ui,z − f vi

)
= −pi,x (2)

vi,t +ui vi,x +wi vi,z + f ui = 0 (3)90

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
= −pi,z − ρi g (4)

where ρi is density, (ui,vi,wi) are the velocity components in Cartesian coordinates, pi is pressure,

g the gravitational acceleration, f the Coriolis parameter (f = 2Ωsinφ, at latitude φ) and ρ̄ the mean

density. The subscript i= 1 (i= 2) refers to the upper (lower) layer and a stable stratification,

ρ1 < ρ2, is assumed.95

0

Upper surface (Rigid-lid) z=H1

z=0

Interface: z=Z(x,t)

Bottom z=-H2+H(x,t)

Upper layer: H1, ρ1

Lower layer: H2, ρ2

x →

Fig. 1. The two-fluid layer system for which the forced-MCC-f equations are derived. The horizontal dashed

grey line indicates the level z = 0, the level at which the interface resides at rest.

Boundaries are defined at the surface, taken to be a rigid lid, which is located at z =H1, and at the

bottom, located at z =−H2 +H(x,t). The time-dependence of the bottom will later be specified as

a horizontal oscillation, mimicking a barotropic tidal flow over topography.

100

The kinematic boundary conditions at the surface and bottom read

w1 = 0 at z =H1 (5)

w2 = Ht +Hx u2 at z =−H2 +H(x,t) . (6)

At the interface, z = Z(x,t), the boundary conditions are given by the continuity of normal velocity

and pressure:105

wi = Zt +ui Zx and p1 = p2 at z = Z . (7)

For later convenience, we write pressure as the sum of hydrostatic and dynamic parts, the latter being

denoted by primes:

pi = ρ1gH1− ρigz+ p′i(t,x,z) .
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In the horizontal momentum equation, this amounts to replacing pi,x by p′i,x, whereas the vertical110

momentum equation (4) gives

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
=−p′i,z .

The second equation in (7), expressing continuity of pressure at the interface, now becomes

(p′1− p′2)|z=Z = (ρ1− ρ2)gZ .

2.1 Scaling115

The next step is to bring the equations into an appropriate dimensionless form for which we intro-

duce the following scales. The scale for the undisturbed water depth is taken to beD, and the typical

wavelength L. Crucially, we will assume waves to be long, i.e. nonhydrostatic effects to be weak.

This will be expressed by the small parameter1, δ =
(
D
L

)2
� 1.

120

Since we allow waves to have large amplitudes (i.e. being strongly nonlinear), we may take horizon-

tal current velocities to scale with c0 = (g′D)1/2, where g′ is reduced gravity, g′ = g (ρ2− ρ1)/ρ̄.

(Notice that the exact linear long-wave phase speed for interfacial waves, cp, is similar to c0 but has

H1H2/D instead of D in the squareroot.) Thus, u and v will be scaled with c0. As the interfacial

displacement is allowed to be large, an appropriate scale of Z is D.125

The typical scale of w now follows from the continuity equation as Dc0/L. Finally, the scale of

pressure follows from assuming a primary balance between the acceleration term ρ̄ ut and px in the

horizontal momentum equation.

130

In summary, then, we can introduce the following dimensionless variables, indicated by asterisks,

x= L x∗, z =D z∗, t= (L/c0) t∗,

p′i = (ρ̄ c20) p′
∗
i , ui = c0 u

∗
i , vi = c0 v

∗
i , wi = (D/L) c0 w

∗
i .

(8)

With these scales, the dimensionless continuity and Euler equations yield (for convenience, we drop

the asterisks right away):

ui,x +wi,z = 0 (9)135

ui,t +ui ui,x +wi ui,z −µ vi = −p′i,x (10)

vi,t +ui vi,x +wi vi,z +µ ui = 0 (11)

δ
(
wi,t +ui wi,x +wi wi,z

)
= −p′i,z . (12)

Here µ is the scaled Coriolis parameter, µ= fL/c0. Furthermore we introduce the dimensionless

quantities ζ, hi, and h via (Z,H1,H2,H) =D(ζ,h1,h2,h), so that the scaled form of the boundary140

1In Choi and Camassa (1999) a small parameter ε was used instead, which relates to ours as δ = ε2.
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conditions is

w1 = 0 at z = h1 (13)

wi = ζt +ui ζx at z = ζ(x,t) (14)

p′2− p′1 = ζ at z = ζ(x,t) (15)

w2 = ht +u2 hx at z =−h2 +h(x,t) . (16)145

The goal is now to derive a reduced set of equations from (9)–(12), in which the boundary conditions

(13)–(16) are incorporated by vertical integration, exploiting the smallness of the parameter δ. The

procedure is identical to that of Choi and Camassa (1999), but with the additional complications of

the Coriolis force, topography, and tidal forcing.

2.2 Vertically integrated equations150

We vertically integrate the equations over the upper and lower layers and expand them to the or-

ders δ0 and δ1 to obtain a closed set for the weakly nonhydrostatic equations, following Choi and

Camassa (1999). The layer-mean f̄1 of a function f1(x,z, t) for the upper layer is being defined as

f̄1(x,t) =
1

η1

h1∫
ζ

dz f1(x,z, t) , η1 = h1− ζ (17)

and for the lower layer as155

f̄2(x,t) =
1

η2

ζ∫
−h2+h

dz f2(x,z, t) , η2 = h2−h+ ζ . (18)

where ηi represents the thickness of the layer (depending on the interfacial displacement ζ). Notice

that the boundaries of the integral depend on time and space (x) via the interfacial movement ζ(t,x),

but also, for the lower layer, via the horizontally oscillating topography2, h(t,x). Before proceeding,

nonlinear terms in the horizontal momentum equations (10) and (11) are rewritten as (u2i )x+(wiui)z160

and (uivi)x + (wivi)z , respectively, to facilitate the procedure.

After integration of Eqs. (9)–(11) for i= 1 and applying the boundary conditions (13)–(15), we

obtain the layer-mean equations for the upper layer

η1,t + (η1ū1)x = 0, (19)165

(η1ū1)t + (η1u1u1)x−µη1v̄1 = −η1p′1,x , (20)

(η1v̄1)t + (η1u1v1)x +µη1ū1 = 0. (21)

2For this reason we need to apply the Leibniz integral rule below with respect to x and t.
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For the lower layer one proceeds similarly, except that now both boundaries are variable. Applying170

the boundary conditions (14)–(16), vertical integration of (9)–(11) for i= 2 yields

η2,t + (η2ū2)x = 0, (22)

(η2ū2)t + (η2u2u2)x−µη2v̄2 = −η2p′2,x, (23)
175

(η2v̄2)t + (η2u2v2)x +µη2ū2 = 0. (24)

2.3 Expansion in δ

The six integrated equations (19)–(24) derived so far are exact but do not form a closed set. The

variables η1, η2 and ζ count as one unknown, but we have also ūi, v̄i, p′i,x, uiui and uivi, giving

11 unknowns for 6 equations. To obtain a closed set, the last two expressions will be cast in terms180

of ūi and v̄i by using the vertical momentum equation, expanded in terms of the small parameter δ.

Furthermore, continuity of pressure at the interface is used to connect the pressure in the lower and

upper layer (i.e., p′1,x and p′2,x). All in all, the six equations are thus modified to contain only six

unknowns. With this aim, we make a formal expansion of the unknowns for the lowest (δ0) and next

(δ) orders, as, for example:185

f̄i = f̄i
(0) + δf̄i

(1) + · · ·

At the lowest order (δ0), p′(0), the dynamics is hydrostatic. At the next order (δ), p′(1) brings weakly

nonhydrostatic effects into the system.

2.3.1 Lowest order190

At lowest order, the vertical momentum equation (12) reduces to ∂p′i
(0)/∂z = 0 as terms of order δ

are neglected; therefore, (perturbation) pressure is vertically constant in each layer. For convenience,

we introduce P = p′2
(0), being a function of t and x. It then follows from continuity of pressure at

the interface, that p′1
(0) = P − ζ. Thus, to this order of approximation,

p′1,x = Px− ζx +O(δ) , (25)195

and for the lower layer

p′2,x = Px +O(δ) . (26)

Given the z-independence of pressure and returning to the original horizontal momentum equations,

it is now natural to assume that the horizontal velocities, too, are independent of z within each layer:

uiui = ū2i +O(δ), uivi = ūiv̄i +O(δ).200
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At lowest order, then, the set of integrated equations is closed; together with the (exact) integrated

continuity equations (19) and (22), we have the momentum equations in terms of the six variables

ūi, v̄i, ζ and P :

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 = −η1 (Px− ζx) +O(δ), (27)

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 = −η2Px +O(δ), (28)205

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ), (29)

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ). (30)

Recall that η1,2 can be expressed in terms of ζ and thus involve just one unknown.

2.3.2 Next order210

At order δ, the procedure is to close the set of six vertically integrated equations by deriving expres-

sions for the horizontal pressure gradients p′i,x as well as for the contributions of uiui and uivi in

the nonlinear terms. The latter problem is particularly simple. At order δ, the products contain one

lowest-order field, which is independent of z (e.g., ui(0) = ūi
(0)), hence

uiui =
1

ηi

∫
dzu2i =

1

ηi

∫
dz (ui

(0)2 + 2δui
(0)ui

(1) + · · ·)215

= ūi
(0)2 + 2δūi

(0)ūi
(1) + · · ·

= ū2i +O(δ2)

so that

uiui = ū2i +O(δ2) , uivi = ūiv̄i +O(δ2).

This allows us to write the horizontal momentum equations as220

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 = −η1(p′1

(0) + δp′1
(1))x +O(δ2) (31)

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 = −η2(p′2

(0) + δp′2
(1))x +O(δ2) (32)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ2) (33)

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ2) (34)

The remaining problem is to find an expression for p′i
(1). At order δ, Eq. (12) reads in terms of the225

lowest order vertical velocities,

wi
(0)
t +ui

(0)wi
(0)
x +wi

(0)wi
(0)
z = −p′i(1)z (35)

From vertically integrating the continuity equation (9), we obtain an expression for wi(0):

wi
(0) =−zūi,x(0) + ci(t,x)
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where ci are ‘constants’ of integration which are determined by using the boundary conditions at the230

surface (13) and bottom (16). Thus, wi(0) for the upper- and lower layers become, respectively,

w1
(0) = (h1− z) ū1,x(0), (36)

w2
(0) = (h−h2− z) ū2,x(0) +D2h, (37)

where the operator Di is defined as ∂/∂t+ ūi
(0)∂/∂x. Substituting w1

(0) from Eq. (36) and w2
(0)

from Eq. (37) into Eq. (35), and vertically integrating the result, we get an expression for p′1
(1) and235

p′2
(1). Taking their derivative with respect to x and their mean over each layer, we finally obtain an

expression for p′i(1)x at order δ. Including the lowest-order terms (25) and (26), this allows us to

write the horizontal pressure gradient for the upper layer

p′1,x = p′1,x
(0) + δp′1,x

(1) +O(δ2) = Px− ζx− δ
[ 1

3η1
(η31G1)x

]
+O(δ2) , (38)

and, for the lower layer,240

p′2,x = p′2,x
(0) + δp′2,x

(1) +O(δ2) = Px− δ
[ 1

3η2
(η32G2)x +

1

2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h
]

+O(δ2),

(39)

where we introduced for simplicity the term Gi (as in Choi and Camassa (1999)),

Gi = ūi,xt
(0) + ūi

(0)ūi,xx
(0)− (ūi,x

(0))2 . (40)

With this, the horizontal momentum equations (31) and (32) become245

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 =−η1

{
Px− ζx− δ

[ 1

3η1
(η31G1)x

]}
+O(δ2) (41)

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 =−η2

{
Px− δ

[ 1

3η2
(η32G2)x +

1

2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h}
}

+O(δ2)

(42)

We have thus obtained a closed set of six dimensionless equations, namely the exact continuity equa-

tions (19) and (22), the horizontal momentum equations (41) and (42), as well as (33) and (34); the250

last four equations involve the weakly non-hydrostatic assumption. The six unknowns are ū1, ū2,

v̄1, v̄2, P , and (via η1,2) ζ. Without interfacial forcing and Earth’s rotation, our set of equations

correctly reduces to that of Choi and Camassa (1999).

We further specify the model by prescribing the oscillating topography, i.e., the forcing to the system,255

with

h= h(X) with X(x,t) = x−U0 cos t (U0 being an arbitrary positive constant). (43)

We combine the continuity equations (19) and (22) into

(η1 + η2)t + (η1ū1 + η2ū2)x = 0 , (44)260
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Given that η1 + η2 = h1 +h2−h, with the two-fluid system depth h1 +h2 = 1, this leads to

−ht + (η1ū1 + η2ū2)x = 0. (45)

If we now substitute the time derivative of the oscillating topography (43), we have

(η1ū1 + η2ū2)x = U
∂h

∂x
, (46)

with265

U = U0 sin t, (47)

which is the velocity of the oscillating topography with amplitude U0, mimicking a barotropic tidal

flow. However, the two are not exactly equivalent, since the transformation from one frame of

reference to the other involves an acceleration and is therefore not Galilean. We further discuss this

aspect in Appendix C.270

Eq. (46) can be integrated in x,

η1ū1 + η2ū2 = Uh+C(t) . (48)

Far from the sill (i.e., h→ 0 for x→±∞), we impose the flow to be purely baroclinic, so that the

left-hand side must be zero and hence it follows that C(t) = 0. Notice that the right-hand side is

prescribed via the forcing and thus is a known quantity. It allows us to express ū2 in terms of ū1.275

We can thus combine the horizontal momentum equations (41) and (42), eliminating P ,

ū1,t + ū1ū1,x +µv̄1 = ζx +
1

(1−h)

(
(Uh)t + (η1ū

2
1 + η2ū

2
2)x−µ(η1v̄1 + η2v̄2)− η1ζx

)
+

δ
(

1− η1
(1−h)

)[
η1G1η1,x +

η21
3
G1,x

]
+

δη2
(1−h)

[
− η2G2ζx−

η22
3
G2,x +

η2G2

2
hx +

η2
2

(D2
2h)x + ζxD

2
2h
]

+O(δ2) (49)

280

ū2 =
Uh− η1ū1

η2
, (50)

v̄1,t + ū1v̄1,x +µū1 = 0 +O(δ2) , (51)

v̄2,t + ū2v̄2,x +µū2 = 0 +O(δ2) , (52)

ζt− (h1− ζ)ū1,x + ū1ζx = 0 . (53)

where the v̄i–horizontal momentum equations (51) and (52) have been further simplified from (33)285

and (34) by using the continuity equations (19) and (22). Eq. (19) has now been expressed in terms

of ζ for convenience. The other continuity equation (22) is no longer included since it is already

implicitly present via (50).

All in all, we have now five equations for five unknowns (ū1, ū2, v̄1, v̄2 and ζ). The numerical meth-290

ods and schemes used to solve the model are described in Appendix A. The actual form of the model
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equations as used in the numerical code is presented in Appendix B. In Appendix C we compare,

within the parameter space of this study, the case of an oscillating topography with the case of a tidal

flow over a topography at rest.

295

Before concluding this section, it is worth while noting an alternative approach. Given the assump-

tion of a rigid lid, one could have also taken U = 0 in (48), the topographic motion set to zero, and

then prescribe an external barotropic flux via C(t). Imposing a barotropic flux in this manner does

not allow for spatial variations of that flux as it would occur with a free surface, for which an addi-

tional dynamical equation would be required to solve the barotropic mode. Specification of C(t) is300

common in fully nonlinear models of this type as, for example, in Lamb (1994) and Vlasenko et al.

(2005). However, the choice of an oscillating topography has also proven to be of use in the study of

strongly nonlinear interfacial waves. For instance, Grue (2015) recently confirmed findings on the

onset of wave train formation observed in experimental measurements by Maxworthy (1979) with a

three-dimensional two-layer, fully dispersive and strongly nonlinear interfacial wave model with a305

time-varying bottom topography.

3 Numerical experiments: Preliminary remarks

Whilst not designed to represent a specific region of the world oceans, we aim to investigate in a gen-

eral manner the conditions by which tidally generated solitons may evolve and, eventually, develop310

limiting amplitudes in ocean-like scenarios. It is then desirable that leading solitons can propagate

towards a mature stage before overtaking preceding internal tides; otherwise, although being form-

preserving features, the tracking of their wave properties becomes cumbersome. For this reason, the

parameters that we describe in the following were selected to highlight the qualitative features of

these nonlinear processes for a broad range of (mimicked) tidal forcing strength.315

Although the model is solved and discussed in nondimensional form, we also present the parameter

values in dimensional form to put them in an oceanographic context.

3.1 The oscillating topography and the hydraulic state: the Froude number320

We define the (dimensional) topography analytically following:

H(X) =
HT

1 + (x/HL)2
(54)

with x being the grid positions in space; and, HT and HL being the dimensional parameters which

set the height and width of a symmetric sill, respectively. This manner we ensure perfectly smooth
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second and third derivatives of the dimensionless topography h(X) in the model equations.325

At this point it is worth while to recall that the oscillation of the topography is introduced in dimen-

sionless form as h= h(X) with X(x,t) = x−U0 cos t, where U0 prescribes the strength (velocity

amplitude) of the oscillating topography via U = U0 sin(t), the mimicked barotropic tidal flow (see

(43)–(47)). By increasing U0 we enhance the forcing via U , which in dimensional form we intro-330

duce, respectively, as U0 = c0 U0 and U = c0 U .

The topographic obstacle (ridge, sill, ...) is always centered on the x-axis and the length of the

x-domain is chosen to be large enough to prevent waves from reaching the boundaries. In all ex-

periments, the topography starts moving to the left at t= 0; we start with a system at rest, i.e.,335

U = ū1 = ū2 = 0 at t= 0. The waves are generated near the origin; on the negative (positive) x-

axis, waves travel to the left (right). Because the forcing starts asymmetrically, it is expected that

wave packets in the front appear rather different when comparing both sides (negative vs. positive x-

domain). These fronts are the transients, which are influenced by the way the experiment is started.

A steady solution at both sides of the x-axis is reached after several tidal periods have passed. In this340

regard, and to avoid transient effects generated at the start of each run, wave properties have been

tracked systematically for the third leftward-propagating interfacial wave counting from the front

and after 9 tidal periods of forcing.

To characterize the hydraulic state, we use the Froude number calculated as345

Fr =
U0

cp
(55)

where the amplitude of the mimicked tidal flow, U0, is compared to the linear long-wave phase speed

for interfacial waves, cp. The strength of U0 leads to three different regimes of interfacial wave gen-

eration (see, e.g., Vlasenko et al. (2005); Da Silva et al. (2015)). Accordingly, the hydraulic regime is

denoted, hereafter, as subcritical when Fr�1, critical when Fr≈1, and supercritical when Fr>1.350

To account for the varying strength of the tidal forcing within a tidal cycle, we introduce the instan-

taneous Froude number, defined as Fr′ = U/cp.

Importantly, we also use the Froude number in Appendix C to discuss the applicability of our ‘non-

inertial’ frame of reference, the oscillating topography, to the ocean case, where the topography is355

at rest. To this aim we compare the generation of interfacial waves from the (quasi-)linear forced-

MCC equations with that from the (quasi-)linear version of the weakly nonlinear model derived in

Gerkema (1996) (G1996), which works with actual tidal motion. Recall that in the quasi-linear

case, barotropic advection is retained but baroclinic interactions are neglected. The equations are

then still linear with regard to the baroclinic fields, but the coefficients become time-dependent due360

to barotropic factors (which are prescribed), so that higher harmonics will be generated when the
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forcing is increased. For clarification, the (quasi-)linearization of the forced-MCC-f equations is

presented in Appendix B.

Results from this model comparison confirm a near equivalence between both models within the365

parameter framework of study, which we restrict to 0< Fr < 1.6. This encourages us to discuss

our numerical results, henceforth, referring to the strength of the topographic oscillation, U0, as the

strength of the tidal flow.

3.2 Parameter values370

We adopt a two-layer system where the total water depth, D, is set to 100 m with the upper layer

being always thinner than the lower layer (H1<H2). The horizontal oscillation of the moving to-

pography is always of semidiurnal frequency. Although the height of the topography varies between

runs, its horizontal scale is kept constant and about 20 km (HL = 10 km in (54)). Regarding reduced

gravity, g′ typically ranges from 0.007 m s−2 in the Celtic Sea (Gerkema, 1996) to 0.027 m s−2 over375

the Oregon continental shelf (Stanton and Ostrovsky, 1998); we use this range accordingly.

Run g′ ϕT = HT /D γ = H1/H2 -Am/H1 H1, H2 ρ1, ρ2

(in m s−2) (in meters) (kg m−3)

A1 0.03 0.4 0.43 0.67 30, 70 1022, 1025.15

A2 0.02 0.4 0.43 0.67 30, 70 1023.05, 1025.15

A3 0.01 0.4 0.43 0.67 30, 70 1024.1, 1025.15

B1 0.03 0.35 0.43 0.67 30, 70 1022, 1025.15

B2 0.03 0.3 0.43 0.67 30, 70 1022, 1025.15

C1 0.03 0.4 0.33 1 25, 75 1022, 1025.15

C2 0.03 0.4 0.25 1.5 20, 80 1022, 1025.15

Table 1. Summary of runs. Varying parameters are the reduced gravity, g′ (m s−2); the topography ratio,

ϕT ; and, the two-fluid layer thickness ratio, γ. The theoretical maximum amplitude, Am, as predicted from

Eq. (3.68) in Choi and Camassa (1999) is also indicated.

In Table 1 the varying parameters are listed. They vary between runs as indicated in underlined bold

fonts, one at a time. The theoretical amplitude of the ‘table-top’ soliton predicted from Eq. (3.68) in

Choi and Camassa (1999), and beyond which no solitary wave solution exists, is also indicated.380

In Sect. 4, the runs A1, A2 and A3 illustrate the effect of varying stratification via the reduced grav-

ity, g′. The runs A1, B1 and B2 illustrate the effect of varying the topography ratio, ϕT = HT /D,
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the height of the topography relative to the total water depth. Finally, the runs A1, C1 and C2 il-

lustrate the effect of varying the two-fluid layer thickness ratio, γ = H1/H2. Based on the results385

from the above analyses, we will argue later why in Sect. 5 we focus on a highly stratified regime

(g′ =0.03 m s−2) for the study of fully nonlinear waves.

For convenience, wave properties are scaled as follows. The interfacial displacement, Z, the internal

tide amplitude, A, and the soliton amplitude, As, are scaled to the thickness of the upper layer, H1.390

The soliton phase speed, cs, is scaled to the phase speed of linear long-wave interfacial waves, cp.

Horizontal distances along the x-direction and the soliton width, Ls, are scaled to the wavelength

of linear long-wave interfacial waves, Lp. Finally, we use the scaled Coriolis parameter µp, which

relates to µ in Sect. 2.1, following µp = µ/(2π).

395

4 Numerical experiments: Quasi-linear internal tides

Tide-generated solitons emerge from nonlinear disintegration of the underlying internal tides and

may be, therefore, naturally subjected to the properties of the latter. For this reason, we find it in-

sightful to investigate first the properties of the underlying internal tides, prior to their nonlinear

disintegration, within the parameter space of this study.400

As described in Sect. 3, the quasi-linear case includes advective terms from the interactions between

the barotropic and baroclinic flows while interactions between baroclinic fields, the genuinely non-

linear terms, are still absent. Therefore, higher harmonics are naturally generated when the forcing

is increased. The linear case, where all advective terms are absent, is included here for assessing405

potential departures from the quasi-linear case.
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Fig. 2. Amplitude of the linear, L, and quasi-linear, QL, internal tide scaled to the thickness of the upper layer

vs. the Froude number. Varying parameters between panels are: a) the strength of stratification, g′ (runs A1,

A2 and A3); b) the topography ratio, ϕT (runs A1, B1 and B2); and, c) the two-fluid layer thickness ratio, γ

(runs A1, C1 and C2). The run time is 9 tidal periods. See Table 1 for further details.

14



Accordingly, Fig. 2 presents the internal tide response to the strength of the tidal forcing for runs A1

to C2 (see Table 1). The minimum forcing strength for all cases is U0 = 5 cm s−1. In subsequent

data-points, the increase of U0 is of 10 cm s−1 from U0 = 10 cm s−1 and onwards up to reaching a410

Fr∼1.5.

In the purely linear experiments, the amplitude of the internal tide increases linearly with the barotropic

tidal flow strength. However, the quasi-linear internal tide exhibits a limiting amplitude in all runs,

when the tidal forcing increases well above Fr = 1, a feature that seems to have passed unnoticed415

in earlier studies. For weak forcing (Fr� 1), the amplitude of the quasi-linear internal tides ap-

proaches the linear case; the advective terms then become very small. This pattern indicates that

the decisive factor on the amplitude saturation of quasi-linear internal tides lies in the barotropic

advection, which is absent in the linear case.

420

Regarding the comparison between runs with different parameters, we find the following. In Fig. 2a,

the increase of stratification causes an earlier deviation between the amplitude growth of the quasi-

linear and linear cases, hence occurring at a lower Froude number for runs with a higher stratification

(c.f. runs A1, A2 and A3). The same effect is observed in Fig. 2b when the height of the topography

is increased. The higher the topography, the earlier a deviation from the linear case appears in the425

Froude number space (c.f. runs A1, B1 and B2). Finally, no significant differences emerge regarding

the rise of the quasi-linear departure in Fig. 2c, where the thickness of the upper layer varies (c.f.

runs A1, C1 and C2). These results indicate that the deviation from the linear case arises for lower

Froude number if either the strength of the stratification or the height of the topography increases.

430

Although not shown, it is worth mentioning that the wavelength of the quasi-linear tides does not

deviate from the linear case in any of the settings of study and is independent of the strength of

the tidal forcing (and hence of the Froude number) and of the height of the topography. However,

as predicted from linear theory for interfacial waves, an increase of g′ or H1 (with H1<H2 and D

being constant) generates longer internal tides.435

The amplitude saturation described above is further illustrated in Fig. 3 for run A1, where snapshots

of leftward-propagating quasi-linear internal tides are shown for various forcing strengths (see leg-

end). This spatial view shows how the increase of the forcing transforms the wave from sinusoidal to

an asymmetric shape, indicative of the presence of higher harmonics, while the amplitude becomes440

saturated.

These findings raise the question as to whether solitons emerging from a disintegration of the ini-

tially quasi-linear internal tides may be subjected to saturation before they reach a limiting ‘table-
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Fig. 3. Snapshots of the interfacial displacement of leftward propagating quasi-linear internal tides for run A1

(H1 = 30 m; Lp = 35.49 km). The amplitude saturation is evident as the tidal forcing is increased and the flow

becomes supercritical (see legend). The run time is 9 tidal periods.

top’ shape. We examine this question in the next section by focussing on the runs A1, B1 and C1,445

varying the height of the topography and the thickness of the upper layer while preserving a high

stratification. The latter allows us to investigate the broadest range of interfacial wave amplitudes,

as suggested by Fig. 2a.

5 Numerical experiments: Fully nonlinear internal tides and solitons450

In this section we investigate the conditions by which tidally generated fully nonlinear solitons may

attain a limiting amplitude. Special attention is devoted to factors conditioning the growth of fully

nonlinear waves as ‘table-top’ solitons. The main question to address is whether the amplitudes

of tidally generated solitons may be subjected to limiting amplitudes of the underlying quasi-linear

internal tides, as we hypothesized in the previous section, thus qualifying predictions from classical455

eKdV and MCC theories.

5.1 Tide-generated ‘table-top’ solitons: Run A1

In Fig. 4a a spatial overview of leftward-propagating internal tides and solitons is shown after 9 tidal

periods of run time. The tidal forcing is fairly strong and this leads to the generation of ‘table-top’460

solitons in a supercritical regime (Fr = 1.13, U0 = 90 cm s−1). In subsequent panels, a set of snap-

shots zooms in on the spatial domain of panel (a) to highlight the different stages of the nonlinear

disintegration of the internal tides.

At a first stage, panel (b), the internal tide splits up into two different groups of rank-ordered soli-465

tons: a train of depressions on the leading edge; and a train of elevations, after the former packet,
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Fig. 4. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run A1 for a

supercritical regime (Fr = 1.13, U0 = 90 cm s−1). (a) Overview of leftward-propagating internal tides and

solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. Points Za (black dot), Zb (grey dot), Zc (black square) and Zd (grey square) are shown to

illustrate how the soliton amplitude, As, and width, Ls, are computed (see the text in Sect. 5.1 for details). The

run time is 9 tidal periods. For scaling purposes we recall that for run A1: H1=30 m and Lp = 35.49 km.

with initially smaller amplitudes. At a later stage, panel (c), the largest elevations have reached the

smaller depressions in the train and three leading solitons at the front present almost equal ampli-

tudes. Previous solitary wave packets, already propagating away from the generation area, are shown

in panels (d) and (e) and correspond to preceding disintegrated internal tides. The ‘table-top’ soliton470

observed at the leading edge of every preceding internal tide emerged in all cases from the first of

the three solitons described previously in panel (c).

As the leading soliton evolves and reaches its maximum amplitude, it also broadens, as predicted

by soliton wave theory (Helfrich and Melville, 2006), in comparison with subsequent solitons of475

smaller amplitude (Fig. 4d,e). The observed increase in the distance between the ‘table-top’ soliton

and subsequent (smaller) solitons also indicates that, as expected from theory, the leading soliton

moves (phase speed) faster than solitons in the tail.

Because tidally generated solitons are part of the evolving internal tides, z = 0 cannot be used as a480

reference level to compute the amplitude down to the trough of the soliton (see Fig. 1 and Fig. 4).

Similarly, the soliton width cannot be measured taking z = 0 as a reference level. A criterion is

required to adopt a suitable reference level for calculating the soliton amplitude, As, and width, Ls.
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Fig. 5. Wave evolution of leftward-propagating leading solitons in run A1 under different forcing strengths (see

legend). In all panels the horizontal axis indicates the run time and soliton age (in brackets) in tidal periods. The

(dimensionless) wave properties are: (a) soliton amplitude, As/H1; (b) soliton width, Ls/D; (c) instantaneous

Froude number, Fr′ = U/cp; and, (d) soliton phase speed, cs/cp. Note that we take cp to be negative (leftward

propagation) for consistency with the physical meaning of the sign in Fr′. For scaling purposes, we recall that

in run A1: H1 = 30 m, D = 100 m and cp = -79 cm s−1.

Here we introduce the reference level Za, which for every leftward-propagating soliton indicates

where the first spatial derivative of the interfacial displacement, Z, becomes zero. Accordingly, the485

soliton amplitude, As, is defined as the vertical distance between Za and the trough of the leading

soliton, located at Zb (see, e. g., in Fig. 4c-e). The soliton width, Ls, is defined as the horizontal

distance between Zc and Zd, located half-way of the vertical distance spanning As (see also, e. g.,

in Fig. 4c-e). Finally, the soliton phase speed, cs, is computed by subtracting the velocity of the

(mimicked) tidal flow, U, from the velocity of the soliton embedded within the internal tide.490

Using the above criteria, Fig. 5 presents the wave evolution of leading solitons under different forc-

ing strengths (see legend) towards a fully developed stage. Contrary to what one might expect, the

amplitude of the leading solitons decrease during their evolution (Fig. 5a). This can be ascribed

to their tide-generated nature. At an early stage, the disintegration of the internal tide leads at its495

front to a large depression, and this subsequently evolves into a mature leading soliton propagating

through the tail of the preceding internal tide (see Fig. 4c-e).

The soliton reaches its maximum amplitude slightly before the flow becomes critical (Fr = 0.88)

and attains the ‘table-top’ form in the supercritical regime when forced with a stronger tidal flow500

(Fr = 1.13). Unexpectedly, when the tidal forcing is increased even further, the soliton width starts
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Fig. 6. Solitary wave solutions for mature leading solitons in run A1 from KdV (grey line), eKdV (black line)

and MCC (red line) theories compared to numerical solutions from the forced-MCC equations (colored dots

refer to the Froude number and strength of the tidal flow; see legend). (a) Soliton phase speed scaled to the

linear long-wave phase speed for interfacial waves (cs/cp) vs. soliton amplitude scaled to the thickness of the

upper layer (−As/H1). (b) Soliton width scaled to the total water depth (Ls/D) vs. soliton amplitude scaled to

the thickness of the upper layer (−As/H1).

to decrease while keeping its maximum amplitude (c.f. Fig. 5a and b). This feature is unlike classical

eKdV and MCC theories, suggesting that limiting factors related to the forcing may be acting.

Generally speaking, we distinguish between two types of solitons regarding their time-scales of505

growth (see Fig. 5a and b). First, the smaller and narrower solitons, generated in a subcritical regime

and which attain a nearly constant shape quickly after their generation (Fr60.5). Second, the larger

and broader solitons, generated in nearly critical and supercritical regimes and which evolve over

longer time-scales (Fr>0.88). We distinguish here three different states for strongly nonlinear soli-

tons, which are indicated with vertical dashed lines and labels in Fig. 5a and b. During State I510

emerging solitons evolve as transient waves which broaden linearly until they reach a fully devel-

oped form. Then, in State II, they preserve their shape in time and, occasionally, may overtake the

preceding internal tide, which is State III, causing the oscillations observed in the width, amplitude

and phase speed in Fig. 5a,b,d.

515

In agreement with the above description, the phase speed graphs also reveal a clear distinction be-

tween the subcritical and critical/supercritical regimes (Fig. 5d). On the one hand, smaller solitons

show a nearly constant phase speed. They were generated with a small or moderate tidal forcing

(subcritical flow). On the other hand, larger solitons present an oscillating phase speed which in-

creases over time. They were generated with a relatively strong tidal forcing (critical and supercriti-520

cal flow). The oscillation is the response to a governing flow where the accelerating and decelerating

phases of the soliton are imposed by the direction of the tidal flow. This is visible by comparing the

instantaneous Froude number, Fr′, in Fig. 5c with the soliton phase speed in Fig. 5d. Crucial mo-

ments occur when Fr′ =−1 and Fr′ <−1. During the former, solitons cannot propagate against
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the tidal flow and remain stationary. During the latter, leftward-propagating solitons experience a525

rightward advection driven by the larger tidal flow.

Finally, we compare in Fig. 6 the wave properties of mature forced-MCC solitons3 with KdV-type

and MCC soliton solutions (Kakutani and Yamasaki, 1978; Ostrovsky and Stepanyants, 1989; Miy-

ata, 1985, 1988; Choi and Camassa, 1999; Helfrich and Melville, 2006; Gerkema and Zimmerman,530

2008). To this aim the soliton width for KdV-type and MCC theories is computed following the

same procedure as for the forced-MCC solitons, i.e. we use points Zc and Zd (see Fig. 4c-e).

As expected, small tide-generated solitons approach the linear long-wave phase speed for interfa-

cial waves (cs/cp ≈ 1), while larger tide-generated solitons have a higher phase speed following a535

curve as in eKdV and MCC theory. However, because tide-generated solitons ride on internal tides,

their wave properties are not simply the response to a two-layer fluid system as such, as happens for

eKdV and MCC solitons, but they are also subjected to the forcing of the system and to a variable

background flow (the internal tide). We suggest that the above scenario may account for the slower

phase speeds of the forced-MCC solitons when compared to their eKdV and MCC counterparts.540

Interestingly, this difference slightly decreases as the solitons grow (c.f. the length of the colored

dashed lines in Fig. 6a).

As regards the relationship between the soliton width and amplitude, tide-generated solitons follow

a similar behaviour to that predicted by eKdV and MCC theory, broadening as they approach their545

maximum amplitude. By this broadening, strongly nonlinear solitons develop the ‘table-top’ shape,

although forced-MCC equations generate some larger and narrower solitons than their eKdV and

MCC counterparts (Fig. 6b).

5.2 Growth limitation of tide-generated solitons: Runs B1 and C1

We use for runs B1 and C1 a similar range of Froude number as for run A1; however, they present550

a more weakly nonlinear regime where a striking feature emerges. Leading solitons exhibit a maxi-

mum amplitude which is not related to a ‘table-top’ form and which cannot be exceeded by further

increasing the tidal forcing (see Figs. 7a and 8a). They reach this limiting amplitude in both cases

when the flow is supercritical (run B1: Fr = 1.26; and, run C1: Fr = 1.33). More importantly,

above this limit, the strengthening of the tidal forcing leads to a narrowing and amplitude decrease555

of the leading solitons (Figs. 7a,b and 8a,b). We recall here that the decrease of the soliton width

after reaching its maximum is also observed when the tidal forcing leading to limiting solitons in

run A1 is increased (see Figs. 5a,b).

3These wave properties correspond to solitons of State II (mature solitons) after time averaging over a tidal cycle.
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Fig. 7. Wave evolution of leftward-propagating leading solitons in run B1 under different forcing strengths

(see legend). In all panels the x-axis indicates the run time and soliton age (in brackets) in tidal periods. The

(dimensionless) wave properties are: (a) soliton amplitude, As/H1; (b) soliton width, Ls/D; (c) instantaneous

Froude number, Fr′ = U/cp; and, (d) soliton phase speed, cs/cp. Note that we take cp to be negative (leftward

propagation) for consistency with the physical meaning of the different sign in Fr′. For scaling purposes, we

recall that in run B1: H1=30 m, D = 100 m and cp = -79 cm s−1.

The above results support the idea that tidally generated solitons might be subject to a limited growth560

which is beyond the classical KdV and MCC-type models, being due to the saturation of the under-

lying quasi-linear internal tide as the tidal forcing increases (see Sect. 4).

According to their phase speed, and in agreement with findings from run A1, two types of leading

solitons also emerge in runs B1 and C1. The larger nonlinear solitons (critical and supercritical565

regime) exhibit an oscillating speed, in phase with the tidal flow, which increases over time. The

smaller nonlinear solitons (subcritical regime) exhibit a nearly constant phase speed (Figs. 7a,c,d

and 8a,c,d).

From Figs. 9 and 10, we gain further insight into the different stages by which internal tides gen-570

erate saturated leading solitons in runs B1 (Fr =1.26, U0 = 100 cm s−1) and C1 (Fr =1.33,

U0 = 100 cm s−1). In contrast to run A1 (Fig. 4), here the internal tides do not split up into

two different groups of solitons but disintegrate into solitary wave packets of rank-ordered depres-

sions. Also, the ‘table-top’ solitary waves that lead the internal tides in run A1 (Fig. 4d,e) are not
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Fig. 8. Same as Figure 7 but for run C1. For scaling purposes, we recall that in run C1: H1=25 m, D = 100 m

and cp = -75 cm s−1.

present in runs B1 and C1, as previously discussed from the wave property analyses. We attribute575

this absence to the lower height of the topography in run B1 and the decrease of the upper layer

thickness in run C1.

On the one hand, the smaller topography generates quasi-linear internal tides which are smaller than

those in run A1 (see Fig. 2). With all other parameters being the same, the smaller internal tide in580

run B1 then exhibits a weaker nonlinear disintegration. On the other hand, the thinner H1 in run C1

requires a maximum amplitude to attain the ‘table-top’ form, which is larger than for runs A1 and B1

(see Am/H1 in Table 1). In this context, the smaller quasi-linear internal tides generated in run C1,

by comparison with run A1 (see Fig. 2c), do not lead to strongly nonlinear disintegration in the full

forced-MCC model, not even in the supercritical regime of Fr>1. Indeed, although both run A1 and585

run C1 generate leading solitons with a relatively similar amplitude, the latter run exhibits mature

leading solitons which are significantly smaller and narrower (c.f. Figs. 4d,e and 10d,e), suggesting

that dispersive effects might overcome nonlinearities more noticeably when the upper layer is thin-

ner.

590

When compared with solitary wave solutions from eKdV and MCC theories, the growth-limiting ef-

fect of the tidal forcing becomes a remarkable feature of forced-MCC solitons generated in runs B1
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Fig. 9. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run B1 for a

supercritical regime (Fr = 1.26, U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides

and solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. The run time is 9 tidal periods. For scaling purposes, we recall that for run B1: H1=30 m and

Lp = 35.49 km.

and C1, since they reach a limiting amplitude but do not attain a ‘table-top’ form (Fig. 11b,d). In

this context it is also worth while noting that in run B1 saturated solitons have amplitudes larger than

those predicted by eKdV and MCC theories, whereas in run C1 saturated solitons have amplitudes595

well below those predicted by eKdV and MCC theories. Counterintuitively, it is also evident from

both runs B1 and C1 that the leading solitons have smaller amplitude and width as the tidal forcing

increases above the saturation point, as previously noted from Figs. 7 and 8.

Regarding the relationship between the soliton phase speed and amplitude, both runs B1 and C1600

follow a similar curve to that predicted by eKdV and MCC theories (Fig. 11a,c), although the phase

speed of forced-MCC solutions is slower in all cases, as it occurred for run A1 (see Fig. 6a). Also

similar to run A1, the deviation in phase speed between MCC and forced-MCC solutions is observed

to decrease as the solitons grow (c.f. the length of the colored dashed lines in Fig. 11a,c), suggesting

that small solitons might be more subjected to forcing effects.605
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Fig. 10. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run C1 for a

supercritical regime (Fr = 1.33, U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides

and solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. The run time is 9 tidal periods. For scaling purposes, we recall that for run C1: H1=25 m and

Lp = 33.54 km.

5.3 Effects of the Earth’s rotation: Runs A1, B1 and C1

In Fig. 12 the effects of the Earth’s rotation on the wave evolution of fully nonlinear tide-generated

solitons are shown for runs A1, B1 and C1. The different colored lines refer to: rotationless case

(black line); θ = 15◦, µp = 0.27 (green line); θ = 30◦, µp = 0.52 (blue line); and, θ = 45◦, µp = 0.73610

(red line).
In agreement with previous studies we observe in all panels that an increase of the latitude leads to

larger dispersive effects due to Coriolis dispersion, which prevents the nonlinear internal tide from

disintegrating into strongly nonlinear solitons (Gerkema and Zimmerman, 1995; Gerkema, 1996).615

This causes the long internal waves to envelop less solitary waves. Also, the internal tides are shown

to travel faster as rotation becomes stronger, as rotation increases the phase speed of the linear inter-

nal tide, cf (c2f = c20 + f2/k2, with k being the wavelength of the internal tide). Although the soliton

speeds themselves are only very weakly affected by rotation, they appear traveling faster since they

are embedded in the internal tide from which they emerge. As a consequence, leading solitons over-620

take more quickly preceding internal tides.
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Fig. 11. Solitary wave solutions for mature leading solitons in run B1 (top row) and run C1 (bottom row) from

KdV (grey line), eKdV (black line) and MCC (red line) theories compared to numerical solutions from the

forced-MCC equations (colored dots refer to the Froude number and strength of the tidal flow; see legend).

(a, c) Soliton phase speed scaled to the linear long-wave phase speed for interfacial waves (cs/cp) vs. soliton

amplitude scaled to the thickness of the upper layer (−As/H1). (b, d) Soliton width scaled to the total water

depth (Ls/D) vs. soliton amplitude scaled to the thickness of the upper layer (−As/H1).
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6 Discussion and conclusions

We investigate limiting amplitudes of internal tides and solitons using a generalization of the fully

nonlinear MCC equations (Miyata, 1985, 1988; Choi and Camassa, 1999), extended here with forc-625

ing terms and Coriolis effects (forced-MCC-f ). The focus is on the effects of the forcing, which

represents a novelty in the existing literature and provides a closer view to an ocean-like scenario.

The mechanism for internal tide generation is represented by a horizontally oscillating sill, mimick-

ing a barotropic tidal flow over topography. Solitons are generated by a disintegration of the internal

tide.630

The application of an oscillating topography is not completely equivalent to the oceanic case of a

tidal flow over a topography at rest. For this reason we have restricted our analyses to a parameter

space where a semi-equivalence between both forcing systems was demonstrated (Appendix C).

This agreement encourages us to conclude that our findings are not an artifact caused by the use of635

a mimicked barotropic tidal flow. Of course the findings presented here cannot describe the whole

variety of the specific oceanic conditions. However, we believe that this study improves our under-

standing on the generation and evolution of tide-generated solitons.

Numerical solutions show that strongly nonlinear tide-generated solitons attain in some cases a lim-640

iting table-shaped form, in agreement with classical soliton theory. However, results also suggest

that tide-generated solitons may alternatively be limited by saturation of the underlying quasi-linear

internal tide. In the purely linear system the amplitude of the internal tide increases linearly with the

strength of the barotropic tidal flow. But in the quasi-linear case, as the forcing becomes stronger,

advective terms become stronger too and cannot be neglected. (Again, in the quasi-linear case,645

barotropic advection is retained but interactions of the baroclinic field with itself are neglected.)

As a result, a saturation in the amplitude of the internal tide occurs; a further increase of the tidal

flow does not produce a larger internal tide. This effect seems to have passed unnoticed in pre-

vious studies, but might be a key factor in the subsequent disintegration of the internal tide into

solitons. It implies that when one includes the genuinely nonlinear effects, i.e. products of baro-650

clinic terms, resulting solitons may stay well below their formal limiting amplitude, no matter how

strong the forcing. Interestingly, an increase of the tidal forcing above the value that generates table-

shaped solitons, or above the value that simply generates solitons attaining an earlier limitation in

growth, causes a narrowing and, subsequently, a decrease in amplitude. The upshot is that increasing

the tidal forcing above a certain strength does not lead to larger solitons but, counterintuitively, to655

smaller ones.

Motivated by the above finding we performed analogous runs using the full set of weakly nonlin-

ear equations derived in Gerkema (1996). Because these equations are built around the framework
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of the classical KdV theory and Klein-Gordon equations, one would not expect that an amplitude660

saturation of solitons could occur. Nevertheless, results (not shown here) demonstrate that both the

quasi-linear internal tides and weakly nonlinear tide-generated solitons also exhibit a limiting am-

plitude. Noting that this model works with an actual tidal flow over a topography at rest, it seems

reasonable to argue that the limiting factor is inherent to the tidal forcing. This supports the idea that

the forced-MCC-f equations represent an insightful tool for the fully nonlinear framework, where665

tidally generated solitons may attain limiting amplitudes with or without reaching a table-shaped

form.

Another departure from classical theories is that strongly nonlinear tide-generated solitons may ex-

hibit larger maximum amplitudes than predicted from eKdV and MCC solutions, while soliton phase670

speeds are always smaller. We attribute these differences to the fact that tide-generated solitons ride

on internal tides and, hence, their wave properties are not simply the response to a two-layer fluid

system as such, as in eKdV and MCC solitons, but are also subjected to the forcing of the system,

to a variable background flow, and to interfacial displacements of the internal tide itself. In this con-

text, numerical results also show that solitons propagate freely from the source only when the tidal675

flow is small (subcritical flow), while an increase of the tidal forcing (critical and supercritical flow)

generates accelerating and decelerating phases of the soliton speed.

In relation to the rotational cases, and in agreement with previous studies (Gerkema and Zimmer-

man, 1995; Gerkema, 1996), numerical results from the forced-MCC-f equations show that when680

rotation becomes stronger, the dispersive effect of the Coriolis force becomes stronger too and over-

comes nonlinearities, thus preventing the internal tide from disintegration into solitons.

Before concluding we must note, reiterating arguments by Ostrovsky and Grue (2003), that fully

nonlinear, weakly nonhydrostatic models entail a paradox to the effect that strongly nonlinear soli-685

tons appear from a set of equations that have strong nonlinearity but weak dispersion, while the very

existence of solitons presumes a balance between the two. In our case, the MCC-type model is used,

involving only the lowest-order nonhydrostatic dispersive terms. Despite the small parameter fea-

turing in the nonhydrostatic terms, they may actually become large in practice (i.e., in the numerical

runs) if internal wave profiles are steepening, hence contradicting the original assumption. Indeed,690

there is no guarantee that the higher-order dispersive terms, which were dropped from these equa-

tions, would always remain small. A suggestion for future work is, therefore, to check our results

against a numerical computation with a fully nonlinear nonhydrostatic set of equations.
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Appendix A700

Numerical strategy

We define a grid in time and space for discretization of the various derivatives of the system. Then,

tn = n∆t and xj = j∆x

are introduced for integer values of n (time-step) and j (spatial-step), where ∆t and ∆x are the

magnitude of the steps. Time and spatial dependent variables are described as, e.g. y(tn,xj), at any705

time and position. Thus, ynj is the value of the variable y at the current time and spatial-step, n and

j, respectively. Consequently, n+ 1 represents the ‘next time-step’, and so n− 1 is the ‘previous

time-step’, and analogously for j in the spatial grid.

The various derivatives in the model are discretized with centered difference approximations (Dur-710

ran, 1999) as follows

yt(tn,xj) =̂
yn+1
j − ynj

∆t
, (A1)

yx(tn,xj) =̂
ynj+1− ynj

∆t
, (A2)715

yxx(tn,xj) =̂
ynj+1− 2ynj + ynj−1

(∆x)2
, (A3)

yxt(tn,xj) =̂
yn+1
j+1 − ynj+1− (yn+1

j−1 − ynj−1)

2∆x∆t
, (A4)

720

yxxt(tn,xj) =̂
yn+1
j+1 − ynj+1− 2(yn+1

j − ynj ) + (yn+1
j−1 − ynj−1)

(∆x)2∆t
. (A5)

(A6)

Initially the system is at rest with horizontal velocities, ūi and v̄i, and displacement of the interface,

ζ, being all zero at the first two time levels (n− 1, n). The thickness of the upper, h1, and lower

layer, h2, together with the topography, h(X), describes the two-layer system. At the next time-step725

(n+ 1), we start to move the topography to the right creating the effect of a tidal motion flowing to

the left. For given U , i.e. scaled velocity of moving topography (Eq. (47)), and time-step, the ex-

cursion of the topography is a known quantity which is used to shift (first, second and third) spatial
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derivatives of h(X) at every new time-step.

730

The time derivatives of the v̄i–momentum and continuity equations (51), (52) and (53) are solved

numerically using the third-order Adams-Bashforth approximation (Durran, 1999), for which v̄1, v̄2

and ζ at the next time-step (n+ 1), and at all j positions, are determined in terms of the known

quantities at the previous two time-steps (n− 1, n).

735

However, solving numerically ū1 from Eq. (49) is not straightforward as we deal with three different

time derivatives of ū1 accompanied by space-time-dependent coefficients. Thus, after collecting the

various time derivatives involving ū1 on one side, and all remaining terms on the other side, the

horizontal momentum equation of ū1 takes an expression of the form

a ū1,t + b ū1,xt + c ū1,xxt = Y (tn,xj) (A7)740

where a, b and c represent spatial derivatives of space-time dependent variables (ζ(x,t) and h(x,t));

and Y (tn,xj) represents a collection of known quantities whose values may be dependent on time

and/or space. In the remainder, we describe the numerical method to solve this set of partial differ-

ential equations. If we treat the time derivative as a collective term on the left-hand side, we can

write745

(a ū1 + b ū1,x + c ū1,xx)t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A8)

what leads us to the introduction of a new variable, Ū1, which groups coefficients a, b, c and time

derivatives of ū1 and turns our problem into a numerically solvable expression of the form

U1,t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A9)

It is important to recall here that Y (tn,xj) and the spatial derivatives of ū1 are both evaluated at750

the current time-step (n); the time derivatives of a, b and c, which involve values of ζ at the current

(n) and new time-step (n+ 1), have been previously evaluated with Eq. (53) via Adams-Bashforth

approximation. This allows to rewrite the above expression as

U1,t =R(tn,xj) (A10)

by grouping all known quantities on the right-hand side under the variable R(tn,xj). Next we need755

to discretize the time derivative of U1 but before doing that, we discretize its spatial derivatives using

Eqs. (A2) and (A3), resulting in

U1 =
(
aj −

2 cj
2∆x

)
ū1j +

( −bj
2∆x

+
cj

(∆x)2

)
ū1j−1 +

( bj
2∆x

−
cj

(∆x)2

)
ū1j+1

which we rewrite by introducing factors d, e and f as follows

U1j = dj u1j + ej u1j−1 + fj u1j+1 . (A11)760
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If we now discretize the time derivative of U1 and apply Adams-Bashforth, we obtain a numerically

solvable expression for U1 at the next time step, which reads

U1
n+1

j = U1
n

j +
∆t

12

(
23Rnj − 16Rn−1j + 5Rn−2j

)
, (A12)

where U1
n+1

j actually includes

U1
n+1

j = dn+1
j ū1

n+1
j + en+1

j ū1
n+1
j−1 + fn+1

j ū1
n+1
j+1 . (A13)765

To close our system we still need to obtain ū1n+1
j for all j terms. To that end, the equation above

is more complicated to solve and gives rise to implicit equations, as we have not only the unknown

ū1
n+1
j , but also ū1n+1

j−1 and ū1n+1
j+1 , which come from the mixed second and third derivatives of u1

in Eq. (A7). However, this is a well-known problem that can be solved using the tridiagonal matrix

algorithm (TDMA), also known as the Thomas algorithm (Logan, 1987).770

The choice of the space-time steps ∆t and ∆x is based on two main requirements. Firstly, the

resolution in x (∆x) must be sufficiently fine to resolve third-derivative terms and ensure that any

short, solitary-like waves are properly resolved. Nevertheless, Kelvin-Helmholtz instabilities may

not be filtered out. In this type of model, Jo and Choi (2002) found that solitary waves of sufficient775

amplitude could be unstable at high wave numbers due to Kelvin-Helmholtz instability. Thus, if the

grid resolution is too fine, unstable short waves will emerge near the wave crest and ultimately ex-

plode numerically (Jo and Choi, 2002; Helfrich and Melville, 2006; Helfrich and Grimshaw, 2008).

In some cases, the instability can be controlled by filtering out wavenumbers above a threshold

(W. Choi 2007, personal communication cited in Helfrich and Grimshaw (2008)). For our numerical780

experiments we consider a ∆x course enough to prevent the problem. A second condition follows

from the requirement of stability. Thus, for a given spatial step one may take the Courant-Friedrichs-

Lewy condition for the linearized equations as an indication of the required time step. The criterion

implies that ∆x/∆t should be larger than the phase speed of the wave; taking special care where

the advection by the barotropic tidal flow (here mimicked with the moving topography) should be785

added to the phase speed to apply the criterion properly (Gerkema, 1994).

For the simulations we present, it was not needed to filter out wavenumbers above a threshold to

control Kelvin-Helmholtz instabilities as we designed the space-time grid to avoid this problem.

However, in some cases, specially in the simulations where the forcing was fairly strong, an addi-790

tional trick was needed to retain stability around the generation area (Gerkema, 1994). In those cases

averages were taken in the vicinity of the top of the sill (around the steepest part of the topography),

where the instabilities arose. At one particular point (xj , tn) in space-time, new values of ūi, v̄i and

ζ were calculated by taking the average of the old values at xj−1, xj and xj+1, and subsequently in

time between tn and tn−1. The disturbance provoked by this procedure was tested and found to be795
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a minor effect only, as it was only applied over the closest region to the top of the topography.

Appendix B

B1 forced-MCC-f model equations

In Appendix A, the numerical scheme used to solve the model is explained using a generic expression800

(A7) for the ui horizontal momentum equation (49). Here we present the full set of nondimensional

forced-equations actually used for the numerical solving of the model. The procedure is as follows.

Firstly, all terms of the ui horizontal momentum equation (49) are worked out and grouped according

to their physical effects (i.e. linear, nonlinear and dispersive effects from the upper and lower layer,805

and from topography), leaving unknown quantities involving time derivatives of u1 on the left-hand

side. The resulting expression (31) resembles (A7), where coefficients a, b and c involve derivatives

of space-time dependent variables and Y (tn,xj) is represented here by the sum of all terms on the

right-hand side,

a ū1,t + b ū1,xt + c ū1,xxt = linear+nonlinear+ dispersive1 + dispersive2 + dispersivetopo810

+δ2

[
(η2hx− η2ζx)φx−

η22
3
φxx +φ(

η2
2
hxx + ζxhx)

]
,

(B1)

ū2 =
Uh− η1ū1

η2
, (50)

815

v̄1,t =−µū1− ū1v̄1,x +O(δ2) , (51)

v̄2,t =−µū2− ū2v̄2,x +O(δ2) , (52)820

ζt = (h1− ζ)ū1,x− ū1ζx . (53)

with825

φ=
1

η2

[
hUt +U2hx + (ū1− ū2)(η1ū1,x− ū1ζx) + ū2Uhx

]
(B2)

a(ζ,h) = 1 +
δη2

1−h

[
(η2hx − η2ζx)(η1/η2)x −

η22
3

(η1/η2)xx +
η1
η2

(η2
2
hxx + ζxhx

)]
, (B3)

830

b(ζ,h) = δ
(

1− η1
1−h

)
η1ζx +

δη2
1−h

[η1
η2

(η2hx − η2ζx)− 2η22
3

(η1/η2)x
]
, (B4)
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c(ζ,h) = −δ
(

1− η1
1−h

)η21
3

− δη2
(1−h)

η1η2
3

, (B5)
835

linear = µv̄1 + ζx +
1

1−h

[
hUt +U2hx + ū2ht

]
, (B6)

nonlinear = −ū1ū1,x +
1

1−h

[
(ū1 − ū2)ζt + ū1η1ū1,x + ū2η2ū2,x −µ(η1v̄1 + η2v̄2)− η1ζx

]
, (B7)840

dispersive1 = δ
(

1− η1
1−h

)[
− η1ζx(ū1ū1,xx − (ū1,x)2) +

η21
3

(ū1ū1,xxx − ū1,xū1,xx)
]
, (B8)

845

dispersive2 =
δη2

1−h

[
− η2ζx(ū2ū2,xx − (ū2,x)2)− η22

3
(ū2ū2,xxx − ū2,xū2,xx)

]
, (B9)

dispersivetopo =
δη2

(1−h)

[
ū2hx(η2ū2,xx + ζxū2,x)

+
η2
2

(Uthxx +U2hxxx + 2Uū2,xhxx + 2ū2Uhxxx + 3ū2ū2,xhxx + ū2
2hxxx)850

+ζx(Uthx +U2hxx + 2ū2Uhxx + ū2
2hxx)

]
. (B10)

B2 Linear and quasi-linear forced-MCC-f model equations

The quasi-linear forced-MCC-f model follows from neglecting the purely nonlinear terms and weakly nonhy-

drostatic dispersive terms in (B1) and (50)–(53). The equations are linear with regard to the baroclinic fields,855

but the coefficients become time-dependent due to barotropic advection (which is prescribed) and, therefore,

higher harmonics will be generated when the forcing is increased. The quasi-linear version of the forced-MCC-

f equations reads

ū1,t = µv̄1 + ζx +
1

1−h

[
hUt +U2hx + ū2ht −µ(h1v̄1 + ((h2 −h)v̄2)−h1ζx

]
(B11)

860

ū2 =
Uh−h1ū1

h2 −h
, (B12)

v̄1,t = −µū1 , (B13)865

v̄2,t = −µū2 , (B14)
870

ζt = h1ū1,x . (B15)

We notice that the linear runs were actually done somewhat indirectly by taking the quasi-linear version of

forced-MCC-f equations above, (B11)–(B15), and reducing the forcing by a factor of 100 since the quasi-875

linear terms cannot be removed explicitly in this model setting without also removing the forcing. Afterwards

we enhance the amplitude in the plots accordingly. By reducing the forcing, we effectively enter the linear

regime.
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Appendix C880

Oscillating topography vs. tidal flow

A Galilean transformation involves two frames of reference which move with constant and rectilinear speed

with respect to each another. Hence, observations made in one frame can be converted to another, as physical

laws are identical. However, our oscillating topography is not an inertial frame since it is accelerated with re-

spect to a situation where the topography is at rest (as in the ocean). It is, therefore, not evident that the results885

from the two frames are equivalent.

We use the generation model of weakly nonlinear, weakly nonhydrostatic interfacial waves derived in Gerkema

(1996) (G1996), which works with tidal motion over a fixed topography, as a benchmark for testing the impact

of our ‘non-inertial’ frame of reference. If we compare interfacial waves generated from the nonlinear version890

of both models, differences are expected to arise from the fact that forced-MCC equations are fully nonlinear.

For this reason we restrict the comparison to the linear and quasi-nonlinear model versions. If the results be-

tween the forcing systems turn out to be similar, it seems reasonable to assume an equivalence in the nonlinear

case as well.

895

In Fig. C.1, interfacial waves generated from both models are presented for various numerical experiments

under a fairly strong forcing, i.e. when both models may be expected to deviate more noticeably from each

other. Our interest focus then on the upper limit of the supercritical regime (Fr>1) that we can reach while

still preserving a good agreement between both generation mechanisms. The different settings in Fig. C.1 differ

in the strength of stratification from top to bottom panels, while the thickness of the upper and lower layer900

(H1 = 30 m, H2 = 70 m) and the height and width of the sill are kept fixed (HT = 40 m and HL = 10 km in

Eq. 54).

Results from Fig. C.1 indicate that in all cases a close correspondence exists between numerical solutions from

G1996 (gray line) and the forced-MCC equations (black line), suggesting only a minor impact of the non-905

inertial nature of our frame of reference when reaching up to a Fr∼1.5. These results encourage us to interpret

the speed of the oscillating topography as the ‘strength of the tidal flow’ within the parameter space of this study.
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Fig. C.1. Linear (left panels) and quasi-linear (right panels) interfacial waves generated via a tidal flow over

a sill from the model equations derived in Gerkema (1996) (grey line) and via a horizontally oscillating sill

from the model equations derived in this study (black line). The Froude number and corresponding strength

of the (mimicked) tidal flow are indicated in the upper-right corner of each panel. For scaling purposes one

must note that the wavelength of the linear long-wave interfacial wave, Lp, varies from top to bottom panels

as: Lp = 35.5 km (g′ = 0.03 m s−1) in (a, b); Lp = 29 km (g′ = 0.02 m s−1) in (c, d); and, Lp = 20.5 km

(g′ = 0.01 m s−1) in (e, f). The run time is 9 tidal periods.
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