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Abstract. A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations

is derived for studying tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfacial

waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing

terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking

a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial5

tide. Because of strong non-linearity, solitons may attain a limiting table-shaped form, in accordance

with soliton theory. Besides, we use the quasi-linearized model equations to investigate the role of

the initial stages of the internal tide prior to its nonlinear disintegration. Numerical solutions reveal

that the internal tide, considered linear but with the inclusion of barotropic advection (the quasi-linear

case), reaches a limiting amplitude under increasing barotropic forcing. Numerical experiments in10

the fully nonlinear regime suggest that this limiting amplitude in the underlying internal tide extends

to the nonlinear case in that internal solitons formed by a disitintegration of the internal tide may not

reach their table-shaped form with increased forcing but appear limited well below that state.

1 Introduction

tidally generated internal solitons are a widespread phenomenon in the oceans and they have been15

observed and studied for decades (see, e.g., Apel et al. (2006)). They are intrinsically linked to the

internal tide, which itself is generated by barotropic tidal flow over topography. As the internal tide

steepens, it may split up into groups of internal solitons, which therefore appear at the tidal period.
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For internal solitons as such, an archetypal model has been the Korteweg-de Vries (KdV) equation,20

which is based on the assumption of weak nonlinearity and weak nonhydrostatic effects. The equa-

tion gives prediction for the relation between amplitude, width and phase speed of the solitons, as

well as the shape itself. In the KdV equation there is, mathematically speaking, no limit to the ampli-

tude that solitons may reach (although, of course, at some point the underlying assumption of weak

nonlinearity would be violated). This behaviour changes fundamentally if a higher-order (i.e., cubic)25

nonlinear term is included, leading to the so-called extended KdV (eKdV) equation, as discussed in,

e.g., Helfrich and Melville (2006). This extended version produces qualitatively different solitons:

their amplitude is limited (for a given configuration of layers) and they broaden as they reach their

maximum amplitude, the so-called ‘table-top’ solitons. This behaviour is confirmed by the fully

nonlinear soliton models, as derived by Choi and Camassa (1999) and Miyata (1985, 1988) (denoted30

as the MCC equations for brevity).

In this paper, we focus on another limiting factor, which comes into play even before solitons arise,

namely in the internal tide itself. In a purely linear system, the amplitude of the internal tide increases

linearly with the strength of the barotropic tidal flow. Here we study how this changes when, at a35

next stage, one includes quasi-linear terms, i.e. retaining products of barotropic and baroclinic fields

in the advective terms while still ignoring interactions of the baroclinic field with itself. We demon-

strate that a saturation in the amplitude of the internal tide occurs and increasing the barotropic flow

further does not produce a larger internal tide. As a consequence, when one includes the genuinely

nonlinear effects, i. e. products of baroclinic terms, resulting solitons may stay well below their40

formal limiting amplitude, no matter how strong the forcing.

To study these effects we derived a set of fully nonlinear, weakly nonhydrostatic model equations,

by extending the MCC equations with a barotropic tidal forcing over topography and with Coriolis

effects, which have previously been shown to play a key role in soliton generation from internal tides45

(Gerkema and Zimmerman, 1995). To avoid the need to solve nonlinearities from the barotropic tide

itself (which cannot be formally neglected in a fully nonlinear model), we mimick the interfacial

wave generation by barotropic tidal flow over topography with a horizontally oscillating topography.

(There is no complete equivalence with an oscillating flow, but we demonstrate that for the parame-

ters used here, the difference remains small.)50

The presence of a topography greatly complicates the subsequent handling of the equation, necessary

to bring them in a form amenable to numerical solving, but we demonstrate that the set of equations

can be obtained. An alternative approach will be also discussed later.

55

An extension of the MCC theory with Coriolis effects (MCC-f ) was already derived by Helfrich
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(2007), who investigated on the decay and return of internal solitary waves with rotation. We focus

on the novel aspect of studying the wave evolution and limiting amplitudes of fully nonlinear, weakly

nonhydrostatic internal tides and solitons when a forcing and rotational effects are added. We denote

our extension of the MCC theory as forced-MCC-f (forced-MCC in absence of rotation), for brevity.60

The paper is organized as follows. We derive a new two-fluid layer model consisting of a set of

forced rotation-modified Boussinesq equations in Sect. 2. We start with the basic equations and

assumptions. Then, we scale equations (Sect. 2.1) and vertically integrated them over the layers

(Sect. 2.2). Up to this point, the resulting equations are exact but do not form a closed set. The set65

is closed by making an expansion in a small parameter measuring the strength of non-hydrostaticity

(Sect. 2.3). The resulting model turns out equivalent to Choi-Camassa equations plus additional

terms which provide the forcing and rotation effects to the system. Prior to discussion of the numer-

ical experiments, we address in Sect. 3 some preliminaries related to the oscillating topography, the

governing nondimensional parameters and the actual environmental parameters used for the runs.70

In Sect. 4 we investigate the factors limiting the growth of tidally generated solitons by firstly ap-

proaching the generation of quasi-linear internal tides within the parameter space of study. Next, in

Sect. 5 we solve the full set of forced-MCC-f and explore the conditions by which tide-generated

fully nonlinear solitons may actually attain a limiting amplitude. A discussion of main findings and

conclusions are presented in Sect. 6.75

The numerical methods and schemes are described in Appendix A. The full set of model equations

as solved in the code is presented in Appendix B together with its (quasi)-linearization form. In

Appendix C we evaluate, within the parameter space of study, the oscillating topography against a

generation model which works with tidal flow over a topography at rest.80

2 Derivation of the forced-MCC-f model

We start from the continuity and Euler equations and consider a two-fluid layer system (Fig. 1) with

a jump in density accross the interface and in which each layer is composed of a homogeneous,

inviscid, and incompressible fluid, applying the Boussinesq approximation. We also assume unifor-85

mity in one of the horizontal directions, taking ∂/∂y = 0. Hence, the continuity and momentum

equations read

ui,x +wi,z = 0 (1)

ρ̄
(
ui,t +ui ui,x +wi ui,z − f vi

)
= −pi,x (2)

vi,t +ui vi,x +wi vi,z + f ui = 0 (3)90

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
= −pi,z − ρi g (4)
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where ρi is density, (ui,vi,wi) are the velocity components in Cartesian coordinates, pi is pressure,

g the gravitational accelaration, f the Coriolis parameter (f = 2Ωsinφ, at latitude φ) and ρ̄ the mean

density. The subscript i= 1 (i= 2) refers to the upper (lower) layer and a stable stratification,

ρ1 < ρ2, is assumed.95

0

Upper surface (Rigid-lid) z=H1

z=0

Interface: z=Z(x,t)

Bottom z=-H2+H(x,t)

Upper layer: H1, ρ1

Lower layer: H2, ρ2

x →

Fig. 1. The two-fluid layer system for which the forced-MCC-f equations are derived. The horizontal dashed

grey line indicates the level z = 0; the level at which the interface resides at rest.

Boundaries are defined at the surface, taken to be a rigid lid, which is located at z =H1, and at the

bottom, located at z =−H2 +H(x,t). The time-dependence of the bottom will later be specified as

a horizontal oscillation, mimicking a barotropic tidal flow over topography, the forcing mechanism

for internal tides. However, the two are not exactly equivalent, since the transformation from one100

frame of reference to the other involves an acceleration and is therefore not Galilean. We further

discuss this aspect in Appendix C.

The kinematic boundary conditions at the surface and bottom read

w1 = 0 at z =H1 (5)105

w2 = Ht +Hx u2 at z =−H2 +H(x,t) . (6)

At the interface, z = Z(x,t), which if at rest is located at z = 0, the boundary conditions are given

by the continuity of normal velocity and pressure:

wi = Zt +ui Zx and p1 = p2 at z = Z . (7)

For later convenience, we write pressure as the sum of hydrostatic and dynamic parts, the latter being110

denoted by primes:

pi = ρ1gH1− ρigz+ p′i(t,x,z) .

In the horizontal momentum equation, this amounts to replacing pi,x by p′i,x, whereas the vertical

momentum equation (4) gives

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
=−p′i,z .115
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Continuity of pressure at the interface, the second equation in (7), now becomes

(p′1− p′2)|z=Z = (ρ1− ρ2)gZ .

2.1 Scaling

The next step is to bring the equations into an appropriate dimensionless form for which we intro-

duce the following scales. The scale for the undisturbed water depth is taken to beD, and the typical120

wavelength L. Crucially, we will assume waves to be long, i.e. nonhydrostatic effects to be weak.

This will be expressed by the small parameter1, δ =
(
D
L

)2
� 1.

Since we allow waves to have large amplitudes (i.e. being strongly nonlinear), we may take horizon-

tal current velocities to scale with c0 = (g′D)1/2, where g′ is reduced gravity, g′ = g (ρ2− ρ1)/ρ̄;125

and c0 is close to the linear long-wave phase speed for interfacial waves, cp (which would have

H1H2/D instead ofD). Thus, u and v will be scaled with c0. For the interfacial displacement being

allowed to be large, an appropriate scale of Z is D.

The typical scale of w now follows from the continuity equation as Dc0/L. Finally, the scale of130

pressure follows from assuming a primary balance between the acceleration term ρ̄ ut and px in the

horizontal momentum equation.

In summary, then, we can introduce the following dimensionless variables, indicated by asterisks,

x= L x∗, z =D z∗, t= (L/c0) t∗,

p′i = (ρ̄ c20) p′
∗
i , ui = c0 u

∗
i , vi = c0 v

∗
i , wi = (D/L) c0 w

∗
i .

(8)135

With these scales, the dimensionless continuity and Euler equations yield (for convenience, we drop

the asterisks right away):

ui,x +wi,z = 0 (9)

ui,t +ui ui,x +wi ui,z −µ vi = −p′i,x (10)

vi,t +ui vi,x +wi vi,z +µ ui = 0 (11)140

δ
(
wi,t +ui wi,x +wi wi,z

)
= −p′i,z . (12)

Here µ is the scaled Coriolis parameter, µ= fL/c0. Furthermore we introduce the dimensionless

quantities ζ, hi, and h via (Z,H1,H2,H) =D(ζ,h1,h2,h), so that the scaled form of the boundary

1In Choi and Camassa (1999) a small parameter ε was used instead, which relates to ours as δ = ε2.

5



conditions is

w1 = 0 at z = h1 (13)145

wi = ζt +ui ζx at z = ζ(x,t) (14)

p′2− p′1 = ζ at z = ζ(x,t) (15)

w2 = ht +u2 hx at z =−h2 +h(x,t) . (16)

The goal is now to derive a reduced set of equations from (9)–(12), in which the boundary conditions

(13)–(16) are incorporated by vertical integration, exploiting the smallness of the parameter δ. The150

procedure is identical to that of (Choi and Camassa, 1999), but with the additional complications of

the Coriolis force, topography, and tidal forcing.

2.2 Vertically integrated equations

We vertically integrate the equations over the upper and lower layers and expand them to the or-

ders δ0 and δ1 to obtain a closed set for the weakly nonhydrostatic equations, following Choi and155

Camassa (1999). The layer-mean f̄1 of a function f1(x,z, t) for the upper layer is being defined as

f̄1(x,t) =
1

η1

h1∫
ζ

dz f1(x,z, t) , η1 = h1− ζ (17)

and for the lower layer as

f̄2(x,t) =
1

η2

ζ∫
−h2+h

dz f2(x,z, t) , η2 = h2−h+ ζ . (18)

where ηi represents the thickness of the layer (depending on the interfacial displacement ζ). Notice160

that the boundaries of the integral depend on time and space (x) via the interfacial movement ζ(t,x),

but also, for the lower layer, via the horizontally oscillating topography2, h(t,x). Before proceeding,

nonlinear terms in horizontal momentum equations (10) and (11) are rewritten as (u2i )x + (wiui)z

and (uivi)x + (wivi)z , respectively, to facilitate the procedure.

165

After integration of Eqs. (9)–(11) for i= 1 and applying the boundary conditions (13)–(15) we

obtain the layer-mean equations for the upper layer

η1,t + (η1ū1)x = 0, (19)

(η1ū1)t + (η1u1u1)x−µη1v̄1 = −η1p′1,x , (20)170

(η1v̄1)t + (η1u1v1)x +µη1ū1 = 0. (21)

2For this reason we need to apply the Leibniz integral rule below with respect to x and t.
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For the lower layer one proceeds similarly, except that now both boundaries are variable. Applying

the boundary conditions (14)–(16), vertical integration of (9)–(11) for i= 2 yields

η2,t + (η2ū2)x = 0, (22)175

(η2ū2)t + (η2u2u2)x−µη2v̄2 = −η2p′2,x, (23)

(η2v̄2)t + (η2u2v2)x +µη2ū2 = 0. (24)

2.3 Expansion in δ180

The six integrated equations (19)–(24) derived so far are exact but do not form a closed set. The

variables η1, η2 and ζ count as one unknown, but we have also ūi, v̄i, p′i,x, uiui and uivi, giving

11 unknowns for 6 equations. To obtain a closed set, the last two expressions will be cast in terms

of ūi and v̄i by using the vertical momentum equation, expanded in terms of the small parameter δ.

Furthermore, continuity of pressure at the interface is used to connect the pressure in the lower and185

upper layer (i.e., p′1,x and p′2,x). All in all, the six equations are thus modified to contain only six

unknowns. With this aim, we make a formal expansion of the unknowns for the lowest (δ0) and next

(δ) orders, as, for example:

f̄i = f̄i
(0) + δf̄i

(1) + · · ·

At the lowest order (δ0), p′(0) accounts for hydrostatic effects. At the next order (δ), p′(1) brings190

weakly nonhydrostatic effects into the system.

2.3.1 Lowest order

At lowest order, the vertical momentum equation (12) reduces to ∂p′i
(0)/∂z = 0 as terms of order δ

are neglected; therefore, (perturbation) pressure is vertically constant in each layer. For convenience,195

we introduce P = p′2
(0), being a function of t and x. It then follows from continuity of pressure at

the interface, that p′1
(0) = P − ζ. Thus, to this order of approximation,

p′1,x = Px− ζx +O(δ) , (25)

and for the lower layer

p′2,x = Px +O(δ) . (26)200

Given the z-independence of pressure and returning to the original horizontal momentum equations,

it is now natural to assume that the horizontal velocities, too, are independent of z within each layer:

uiui = ū2i +O(δ), uivi = ūiv̄i +O(δ).

7



At lowest order, then, the set of integrated equations is closed; together with the (exact) integrated

continuity equations (19) and (22), we have the momentum equations in terms of the six variables205

ūi, v̄i, ζ and P :

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 = −η1 (Px− ζx) +O(δ), (27)

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 = −η2Px +O(δ), (28)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ), (29)

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ). (30)210

Recall that η1,2 can be expressed in terms of ζ and thus involve just one unknown.

2.3.2 Next order

To include terms of order δ, the key problem is, again, to close the set of six vertically integrated

equations by deriving closed expressions for the horizontal pressure gradients p′i,x as well as for the215

contributions of uiui and uivi in the nonlinear terms. The latter problem is particularly simple. At

order δ, the products contain one lowest-order field, which is independent of z (e.g., ui(0) = ūi
(0)),

hence

uiui =
1

ηi

∫
dzu2i =

1

ηi

∫
dz (ui

(0)2 + 2δui
(0)ui

(1) + · · ·)

= ūi
(0)2 + 2δūi

(0)ūi
(1) + · · ·220

= ū2i +O(δ2)

so that

uiui = ū2i +O(δ2) , uivi = ūiv̄i +O(δ2).

This allows us to write the horizontal momentum equations as

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 = −η1(p′1

(0) + δp′1
(1))x +O(δ2) (31)225

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 = −η2(p′2

(0) + δp′2
(1))x +O(δ2) (32)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ2) (33)

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ2) (34)

The remaining problem is to find an expression for p′i
(1). At order δ, Eq. (12) reads in terms of the

lowest order vertical velocities,230

wi
(0)
t +ui

(0)wi
(0)
x +wi

(0)wi
(0)
z = −p′i(1)z (35)

From vertically integrating the continuity equation (9), we obtain an expression for wi(0):

wi
(0) =−zūi,x(0) + ci(t,x)
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where ci are ‘constants’ of integration which are determined by using the boundary conditions at the

surface (13) and bottom (16). Thus, wi(0) for the upper- and lower layers become, respectively,235

w1
(0) = (h1− z) ū1,x(0), (36)

w2
(0) = (h−h2− z) ū2,x(0) +D2h, (37)

where the operator Di is defined as ∂/∂t+ ūi
(0)∂/∂x. Substituting w1

(0) from Eq. (36) and w2
(0)

from Eq. (37) into Eq. (35), and vertically integrating the result, we get an expression for p′1
(1) and

p′2
(1). Taking their derivative with respect to x and their mean over each layer, we finally obtain an240

expression for p′i(1)x at the upper and lower layer at order δ. Including the lowest order terms (25)

and (26), this allow us to write the horizontal pressure gradient for the upper layer

p′1,x = p′1,x
(0) + δp′1,x

(1) +O(δ2) = Px− ζx− δ
[ 1

3η1
(η31G1)x

]
+O(δ2) , (38)

and, for the lower layer,

p′2,x = p′2,x
(0) + δp′2,x

(1) +O(δ2) = Px− δ
[ 1

3η2
(η32G2)x +

1

2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h
]

+O(δ2),245

(39)

where we introduced for simplicity the term Gi (as in Choi and Camassa (1999)),

Gi = ūi,xt
(0) + ūi

(0)ūi,xx
(0)− (ūi,x

(0))2 . (40)

With this, the horizontal momentum equations (31) and (32) become

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 =−η1

{
Px− ζx− δ

[ 1

3η1
(η31G1)x

]}
+O(δ2) (41)250

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 =−η2

{
Px− δ

[ 1

3η2
(η32G2)x +

1

2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h}
}

+O(δ2)

(42)

We have thus obtained a closed set of six dimensionless equations, namely the exact continuity equa-

tions (19) and (22), the horizontal momentum equations (41) and (42), as well as (33) and (34); the

last four equations involve the the weakly non-hydrostatic assumption. The six unknowns are ū1,255

ū2, v̄1, v̄2, P , and (via η1,2) ζ. In the absence of an interfacial wave forcing and neglecting Earth’s

rotation effects, our set of equations reduces to that of Choi and Camassa (1999).

Before proceeding to numerical solving, we further specify the model by prescribing the oscillating

topography, i.e., the forcing to the system, with260

h= h(X) with X(x,t) = x−U0 cos t (U0 being an arbitrary positive constant). (43)

We combine the continuity equations (19) and (22) into

(η1 + η2)t + (η1ū1 + η2ū2)x = 0 , (44)

9



Given that η1 + η2 = h1 +h2−h, with the two-fluid system depth h1 +h2 = 1, this leads to265

−ht + (η1ū1 + η2ū2)x = 0. (45)

If we now substitute the time derivative of the oscillating topography (43) above, it yields

(η1ū1 + η2ū2)x = U
∂h

∂x
, (46)

with

U = U0 sin t, (47)270

which mimicks a barotropic tidal flow over the oscillating topography (i. e. the velocity of the

moving topography), where U0 represents its dimensionless velocity amplitude. Then, Eq. (46) can

be integrated in x,

η1ū1 + η2ū2 = Uh+C(t) . (48)

275

Far from the sill (i.e., h→ 0 for x→±∞), we impose the flow to be purely baroclinic, so that the

left-hand side must be zero and hence it follows that C(t) = 0. Notice that the right-hand side is

prescribed via the forcing and is thus a known quantity. It allows us to express ū2 in terms of ū1.

We can thus combine the horizontal momentum equations (41) and (42), eliminating P ,280

ū1,t + ū1ū1,x +µv̄1 = ζx +
1

(1−h)

(
(Uh)t + (η1ū

2
1 + η2ū

2
2)x−µ(η1v̄1 + η2v̄2)− η1ζx

)
+

δ
(

1− η1
(1−h)

)[
η1G1η1,x +

η21
3
G1,x

]
+

δη2
(1−h)

[
− η2G2ζx−

η22
3
G2,x +

η2G2

2
hx +

η2
2

(D2
2h)x + ζxD

2
2h
]

+O(δ2) (49)

ū2 =
Uh− η1ū1

η2
, (50)285

v̄1,t + ū1v̄1,x +µū1 = 0 +O(δ2) , (51)

v̄2,t + ū2v̄2,x +µū2 = 0 +O(δ2) , (52)

ζt− (h1− ζ)ū1,x + ū1ζx = 0 . (53)

where the v̄i–horizontal momentum equations (51) and (52) have been further simplified from (33)

and (34) by using the continuity equations (19) and (22). Eq. (19) has now been expressed in terms290

of ζ for convenience. The other continuity equation (22) is no longer included explicitly since it is

already present via (50).

All in all, we have now five equations for five unknowns (ū1, ū2, v̄1, v̄2 and ζ). The numerical

methods and schemes used to solve the model are described in Appendix A. The actual form of the295
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model equations as used in the numerical code is presented in Appendix B.

Before concluding this section, it is worth while noting an alternative approach. Given the assump-

tion of a rigid lid, one could have also taken U = 0 in (48), the topographic motion set to zero, and

then prescribe an external barotropic flux via C(t). Imposing a barotropic flux in this manner does300

not allow for spatial variations of that flux as it would occur with a free surface, for which an addi-

tional dynamical equation would be required to solve the barotropic mode. Specification of C(t) is

common in fully nonlinear models of this type as, for example, in Lamb (1994) and Vlasenko et al.

(2005). However, the choice of an oscillating topography has also proven to be of use on the study

of strongly nonlinear interfacial waves. For instance, Grue (2015) recently confirmed findings on the305

onset of wave train formation observed in experimental measurements by Maxworthy (1979) with a

three-dimensional two-layer, fully dispersive and strongly nonlinear interfacial wave model with a

time-varying bottom topography.

3 Numerical experiments: Preliminaries310

Whilst not designed to represent a specific region of the world oceans, we aim to investigate in a gen-

eral manner the conditions by which tidally generated solitons may evolve and, eventually, develop

limiting amplitudes in ocean-like scenarios. It is then desirable that leading solitons can propagate

towards a mature stage before overtaking preceding internal tides; otherwise, although being form-

preserving features, the tracking of their wave properties becomes cumbersome. For this reason the315

environmental parameters that we describe in the following were selected to highlight the qualitative

features of these nonlinear processes for a broad range of (mimicked) tidal forcing strength.

Although the model is solved in nondimensinal form, we will discuss results from the numerical

experiments with a dual view, dimensional/dimensionless, to ease the visualization of the ocean-like320

magnitudes being used.

3.1 The oscillating topography and the hydraulic state: the Froude number

We define the (dimensional) topography analytically following:

H(X) =
HT

1 + (x/HL)2
(54)325

with x being the grid positions in space; and, HT and HL being the dimensional parameters which

set the height and width of a symmetric sill, respectively. This manner we ensure perfectly smooth

second and third derivatives of the dimensionless topography h(X) in the model equations. Other
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analytical functions may be also used depending on the desired topography.

330

At this point it is worth while to recall that the oscillation of the topography is introduced in dimen-

sionless form as h= h(X) with X(x,t) = x−U0 cos t, where U0 prescribes the strength (velocity

amplitude) of the oscillating topography via U = U0 sin(t), the mimicked barotropic tidal flow (see

(43)–(47)). By increasing U0 we enhance the forcing via U , which in dimensional form we intro-

duce, respectively, as U0 = c0 U0 and U = c0 U .335

The topographic obstacle (ridge, sill, ...) is always centred in the x-axis and the length of the x-

domain is chosen to be large enough to prevent waves from reaching the boundaries. In all exper-

iments, fluid starts moving to the right at t= 0 (i.e., topography moving to the left); we start with

a system at rest, i.e., U = ū1 = ū2 = 0 at t= 0. The waves are generated near the origin in x-axis340

due to the ‘tide-topography’ interaction; on the negative (positive) x-axis, waves travel to the left

(right). Because the forcing enters in the simulation asymmetrically with fluid at rest moving to the

right, it is expected that wave packets in the front appear rather different when comparing both sides

(negative vs. positive x-domain). These fronts are the transients, which are influenced by the way

the experiment is started. A steady solution at both sides of the x-axis is reached after several tidal345

periods have passed away. In this regard, and to avoid transient effects generated at the start of each

run, wave properties have been tracked systematically over the third leftward-propagating interfacial

wave counting from the front, and after 9 tidal periods of forcing.

To characterize the hydraulic state where interfacial waves propagate we use the Froude number350

calculated as follows:

Fr =
U0

cp
(55)

where the velocity amplitude of the mimicked tidal flow acting as external forcing, U0, is con-

fronted to the linear long-wave phase speed for interfacial waves, cp. The strength of U0 leads to

three different regimes of interfacial wave generation (see e.g. in Vlasenko et al. (2005); Da Silva355

et al. (2015)). The hydraulic regime is subcritical (Fr�1) when the strength of the external forcing

is much less than the phase speed of the generated interfacial waves, which propagate as harmonic

first-mode baroclinic interfacial waves (linear theory). When the phase speed of the generated waves

is of the order of the external forcing, the flow is critical (Fr≈1). Then, nonlinear effects become

evident and the linear baroclinic interfacial waves disintegrate into short nonlinear interfacial waves.360

A further increase of the external forcing leads to the most crucial regime when Fr>1. Then, the

flow becomes supercritical and, typically, a packet of strongly nonlinear short interfacial waves, or

solitons, is generated from the longer quasi-linear interfacial wave. These solitons eventually may

attain a ‘table-top’ form, the limiting scenario subject of this study. To account for the varying

strength of the tidal forcing within a tidal cycle we introduce the instantaneous Froude number, de-365
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fined as Fr′ = U/cp.

Importantly, we also use the Froude number in Appendix C to discuss the applicability of our ‘non-

inertial’ frame of reference, the oscillating topography, to the ocean case, where the topography is at

rest. To this aim we compare the generation of interfacial waves from the (quasi-) linearized version370

the forced-MCC equations and the (quasi-) linearized version of the weakly nonlinear model de-

rived in Gerkema (1996) (G1996), which works with actual tidal motion. The quasi-nonlinear case

involves in both generation models neglecting the baroclinic interactions but retaining the nonlinear

terms involving a combination of barotropic and baroclinic fields. The equations are then still linear

with regard to the baroclinic fields, but the coefficients become time-dependent due to barotropic375

factors (which are prescribed), so that higher harmonics will be generated when the forcing is in-

creased. For clarification, the (quasi-) linearization of the forced-MCC-f equations is presented in

Appendix B.

Results from the above model intercomparison supports a semi-equivalence between both interfa-380

cial wave generation mechanisms within the framework of study, which we restrict to 0< Fr < 1.6

based on the cited analysis. This semi-equivalence encourages us to discuss our numerical results,

henceforth, referring to the strength of the oscillating topography, U0, as the strength of the tidal

flow. Similarly, we will refer to interfacial waves generated from the forced-MCC-f equations as

internal tides.385

3.2 Environmental parameters of study

We adopt a two-fluid layer system where the total water depth, D, is set to 100 m with the upper

layer being always thinner than the lower layer (H1<H2). The horizontal oscillation of the moving

topography is always of semidiurnal frequency. Although the height of the topography varies be-390

tween runs, its horizontal scale is kept constant and about 20 km (HL = 10 km in (54)).

In Table 1 the varying environmental parameters are detailed. These vary between runs as indicated

in underlined bold fonts, one at a time. The theoretical amplitude of the ‘table-top’ soliton predicted

from Eq. (3.68) in Choi and Camassa (1999), and beyond which no solitary wave solution exists, is395

also indicated.

Comparison between runs A1, A2 and A3 account for the effect of varying the stratification via the

reduced gravity, g′. Comparison between runs A1, B1 and B2 account for the effect of varying the

topography ratio, ϕT = HT /D, which measures the height of the topography relative to the total400

water depth. Lastly, comparison between runs A1, C1 and C2 account for the effect of varying the
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two-fluid layer thickness ratio, γ = H1/H2.

Run g′ ϕT = HT /D γ = H1/H2 -Am/H1 H1, H2 ρ1, ρ2

(in m s−2) (in meters) (kg m−3)

A1 0.03 0.4 0.43 0.67 30, 70 1022, 1025.15

A2 0.02 0.4 0.43 0.67 30, 70 1023.05, 1025.15

A3 0.01 0.4 0.43 0.67 30, 70 1024.1, 1025.15

B1 0.03 0.35 0.43 0.67 30, 70 1022, 1025.15

B2 0.03 0.3 0.43 0.67 30, 70 1022, 1025.15

C1 0.03 0.4 0.33 1 25, 75 1022, 1025.15

C2 0.03 0.4 0.25 1.5 20, 80 1022, 1025.15

Table 1. Summary of runs. Varying parameters are the reduced gravity, g′ (m s−2); the topography ratio,

ϕT ; and, the two-fluid layer thickness ratio, γ. The theoretical maximum amplitude, Am, as predicted from

Eq. (3.68) in Choi and Camassa (1999) is also indicated.

In the literature, common values for g′ where solitary waves have been observed range from

0.007 m s−2 in the Celtic Sea (Gerkema, 1996) to 0.027 m s−2 over the Oregon continental shelf405

(Stanton and Ostrovsky, 1998). We approach this broad range of stratification in Sect. 4 to investi-

gate the generation of quasi-linear internal tides. Based on the results of this section, we will argue

by its end why in Sect. 5 we focus on a highly stratified regime (g′ =0.03 m s−2) for the study of

fully nonlinear waves.

410

For convenience in the discussion of our results, wave properties are scaled as follows. The interfa-

cial displacement, Z, the internal tide amplitude, A, and the soliton amplitude, As, are scaled to the

thickness of the upper layer, H1. The soliton phase speed, cs, is scaled to the phase speed of linear

long-wave baroclinic interfacial waves, cp. Horizontal distances along the x-direction and the soliton

width, Ls, are scaled to the wavelength of linear long-wave baroclinic interfacial waves, Lp. Lastly,415

we use the scaled Coriolis parameter µp, which relates to µ in Sect. 2.1, following µp = µ/(2π).

4 Numerical experiments: Quasi-linear internal tides

Tide-generated solitons emerge from nonlinear disintegration of the underlying internal tides and

may be, therefore, naturally subjected to their wave properties. For this reason, we find it insightful420

to investigate first the wave properties of the underlying internal tides, prior to its nonlinear disinte-

gration, within the parameter space of this study.
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As described in Sect. 3, we recall that the quasi-linear case includes advective terms from the in-

teractions between the barotropic and baroclinic flows while interactions between baroclinic fields,425

the genuinely nonlinear terms, are still absent. Therefore, higher harmonics are naturally generated

when the forcing is increased. The linear case, where advective terms are absent, is added here for

assessing potential departures from the quasi-linear case.
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Fig. 2. Amplitude of the linear, L, and quasi-linear, QL, internal tide scaled to the thickness of the upper layer

vs. the Froude number. Varying parameters between panels are: a) the strength of stratification, g′ (runs A1,

A2 and A3); b) the topography ratio, ϕT (runs A1, B1 and B2); and, c) the two-fluid layer thickness ratio, γ

(runs A1, C1 and C2). The run time is 9 tidal periods. See Table 1 for further details.

Accordingly, Fig. 2 presents an analysis of the internal tide response to the strength of the tidal forc-430

ing for runs A1 to C2 (see Table 1). The minimum forcing strength for all cases is U0 = 5 cm s−1.

In subsequent data-points, the increase of U0 is of 10 cm s−1 from U0 = 10 cm s−1 and onwards

up to reaching a Fr∼1.5.

In the purely linear experiments, the amplitude of the internal tide increases linearly with the in-435

crease of the tidal forcing strength, as derived from theory. Interestingly, the quasi-linear internal

tide exhibits a limiting amplitude in all runs as the tidal forcing increases well above Fr = 1, an

unreported feature up to date. For weak forcing, the amplitude of the quasi-linear internal tides ap-

proach the linear ones, especially for Fr� 1 as one would expect; the advective terms then become

very small. This pattern indicates that the decisive factor on the amplitude saturation of quasi-linear440

internal tides lays on the barotropic advection, which is absent in the linear case.

Regarding the comparison between runs with different environmental parameters, we find the fol-

lowing. In Fig. 2a the increase of stratification causes an earlier deviation between the amplitude

growth of the quasi-linear and linear cases, hence occurring at a lower Froude number for runs with445

a higher stratification (c. f. runs A1, A2 and A3). The same effect is observed in Fig. 2b when the

height of the topography is increased. The higher the topography, the earlier that a deviation from
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the linear case appears in the Froude number space (c. f. runs A1, B1 and B2). Lastly, no significant

differences emerge regarding the rise of the quasi-linear departure in Fig. 2c, where the thickness of

the upper layer varies within the study cases (c. f. runs A1, C1 and C2). These results indicate that450

the wave amplitude saturation, and hence the deviation from the linear case, becomes more impor-

tant as either the strength of the stratification or the height of the topography increase.

Although not shown, it is worth mentioning that the wavelength of the quasi-linear tides does not

deviate from the linear case in any of the settings of study and is independent of the strength of the455

tidal forcing (and hence of the Froude number) and of the height of the topography. On the contrary,

as predicted from linear theory for interfacial waves, a relative increase of g′ or H1 (with H1<H2

and D being constant) generates longer internal tides.

The amplitude saturation described above is further illustrated in Fig. 3 for run A1, where snapshots460

of leftward-propagating quasi-linear internal tides are shown for various forcing strengths (see leg-

end). This spatial view shows how the increase of the forcing transforms the wave from sinusoidal

to an asymmetric shape, indicative of the generation of higher harmonics, but furthermore the am-

plitude becomes saturated.

465
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Fig. 3. Snapshots of the interfacial displacement of leftward propagating quasi-linear internal tides for run A1

(H1 = 30 m; Lp = 35.49 km). The amplitude saturation is evident as the tidal forcing is increased and the flow

becomes supercritical (see legend). The run time is 9 tidal periods.

Findings in this section open an interesting question which regards to whether solitons emerging

from disintegration of the quasi-linear internal tides may or may not be subjected to saturation am-

plitudes of the originating waves before they reach a limiting ‘table-top’ shape. For simplicity on

answering the above question we focus in the next section on solving the full set of forced-MCC-f
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equations only for runs A1, B1 and C1, which account for varying the height of the topography and470

the thickness of the upper layer while preserving high the strength of the stratification. The latter

allows us to investigate the broadest range of wave amplitudes, as suggested by Fig. 2a.

5 Numerical experiments: Fully nonlinear internal tides and solitons

The main question to address is whether tidally generated solitons are indeed subjected to the wave475

properties of the underlying quasi-linear internal tides, as we hypothesized in previous section, and

whether they adequate qualitativaly and quantitativaly to predictions from classical eKdV and MCC

theories.

5.1 Tide-generated ‘table-top’ solitons: Run A1480

In Fig. 4a a spatial overview of leftward-propagating internal tides and solitons is shown after 9 tidal

periods of run time. The tidal forcing is fairly strong and leads to the generation of ‘table-top’ soli-

tons in a supercritical regime (Fr = 1.13, U0 = 90 cm s−1). In subsequent panels, a set of snapshots

zooms in on the space domain of panel (a) to highlight the different stages of the nonlinear disinte-

gration of the internal tides.485

At a first stage, panel (b), the internal tide splits up into two different groups of rank-ordered soli-

tons: a train of depressions on the leading edge; and a train of elevations, after the former packet,

with initially smaller amplitudes. At a later stage, panel (c), the largest elevations have reached the

smaller depressions in the train and three leading solitons at the front present almost equal ampli-490

tudes. Previous solitary wave packets, already propagating away from the generation area, are shown

in panels (d) and (e) and correspond to preceding disintegrated internal tides. The ‘table-top’ soliton

observed at the leading edge of every preceding internal tide emerged in all cases from the first of

the three solitons described previously in panel (c).

495

As the leading soliton evolves and reaches its maximum amplitude, it also broadens, as predicted

by soliton wave theory (Helfrich and Melville, 2006), in comparison with subsequent solitons of

smaller amplitude (Fig. 4d,e). The observed increase in the distance between the ‘table-top’ soliton

and subsequent (smaller) solitons also indicates that, as expected from theory, the leading soliton

moves (phase speed) faster than solitons in the tail.500

Because tidally generated solitons propagate through the evolving internal tides, z = 0 cannot be

used as a reference level to compute the amplitude down to the trough of the soliton (see Fig. 1

and Fig. 4). Similarly, the soliton width cannot be measured taking z = 0 as a reference level. A

systematic criterion is required to adopt a suitable reference level which allows us to compute the505

soliton amplitude, As, and width, Ls. Here we introduce the reference level Za, which for every
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Fig. 4. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run A1 for a

supercritical regime (Fr = 1.13, U0 = 90 cm s−1). (a) Overview of leftward-propagating internal tides and

solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. Points Za (black dot), Zb (grey dot), Zc (black square) and Zd (grey square) are shown to

illustrate how the soliton amplitude, As, and width, Ls, are computed in this work (see the text in Sect. 5.1

for details). The run time is 9 tidal periods. For scaling purposes we recall that for run A1: H1=30 m and

Lp = 35.49 km.

leftward-propagating soliton locates where the first spatial derivative of the interfacial displacement,

Z, approaches zero while being above a certain threshold. This grid-point indicates the location of

the front of the leading soliton connecting with the tail of the preceding interfacial tide. Accordingly,

the soliton amplitude, As, is defined as the vertical distance between Za and the trough of the lead-510

ing soliton, located at Zb (see, e. g., in Fig. 4c-e). The soliton width, Ls, is defined as the horizontal

distance between Zc and Zd, which locate half-way of the vertical distance spanning As (see also,

e. g., in Fig. 4c-e). Lastly, the soliton phase speed, cs, is computed by subtracting the velocity of the

(mimicked) tidal flow, U, to the velocity of the soliton embedded within the internal tide.

515

Using the above criteria Fig. 5 presents the wave evolution of leading solitons under different forc-

ing strengths (see legend) towards a fully developed stage. Contrary to what one might expect, the

amplitude of the leading solitons decrease during its evolution (Fig. 5a). This can be ascribed to

their tide-generated nature. At an early stage, the disintegration of the internal tide leads at its front

to a large depression, and this subsequently evolves to a mature leading soliton propagating through520

the tail of the preceding internal tide (see Fig. 4c-e).
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Fig. 5. Wave evolution of leftward-propagating leading solitons in run A1 under different forcing strengths

(see legend). In all panels the x-axis indicates the run time and soliton age (in brackets) in tidal periods. The

(dimensionless) wave properties are: (a) soliton amplitude, As/H1; (b) soliton width, Ls/D; (c) instantaneous

Froude number, Fr′ = U/cp; and, (d) soliton phase speed, cs/cp. Note that we take cp to be negative (leftward

propagation) to keep consistency with the physical meaning of the different sign in Fr′. For scaling purposes

we recall that in run A1: H1 = 30 m, D = 100 m and cp = -79 cm s−1.
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Fig. 6. Solitary wave solutions for mature leading solitons in run A1 from KdV (grey line), eKdV (black line)

and MCC (red line) theories compared to numerical solutions from the forced-MCC equations (colored dots

refer to the Froude number and strength of the tidal flow; see legend). (a) Soliton phase speed scaled to the

linear long-wave phase speed of baroclinic interfacial waves (cs/cp) vs. soliton amplitude scaled to the thickness

of the upper layer (−As/H1). (b) Soliton width scaled to the total water depth (Ls/D) vs. soliton amplitude

scaled to the thickness of the upper layer (−As/H1).

The soliton reaches its maximum amplitude slightly before the flow becomes critical (Fr = 0.88)

and attains the ‘table-top’ form in the supercritical regime when forced with a stronger tidal flow

(Fr = 1.13). Unexpectedly, when the tidal forcing is increased even further, the soliton width starts525

to decreases while keeping its maximum amplitude (c. f. Fig. 5a and b). Because of the nature of
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classical eKdV and MCC theory, this feature could not rise before and it does indicate that limiting

factors related to the forcing may be acting.

Generally speaking, we distinguish between two types of solitons regarding their time-scales of530

growth (see Fig. 5a and b). First, the smaller and narrower solitons, generated in a subcritical regime

and which present a nearly constant shape quickly after their generation (Fr60.5). Second, the

larger and broader solitons, generated in nearly critical and supercritical regimes and which evolve

over longer time-scales (Fr>0.88). We distinguish here three different states for strongly nonlinear

solitons, which are indicated with vertical dashed lines and labels in Fig. 5a and b. During State I535

emerging solitons evolve as transient waves which broaden linearly until they reach a fully developed

form. Then, solitons propagate as mature waves, State II, which preserve their shape in time and,

occasionally, may overtake the preceding internal tide, State III, causing the oscillations observed in

the width, amplitude and phase speed curves in Fig. 5a,b,d.

540

In agreement with the above description, the phase speed curves also reveal a clear distinction be-

tween the subcritical and critical/supercritical regimes (Fig. 5d). On the one hand, smaller solitons

present a nearly constant phase speed. They were generated with a small or moderate tidal forc-

ing (subcritical flow). On the other hand, larger solitons present an oscillating phase speed which

increases over time. They were generated with a relatively strong tidal forcing (critical and super-545

critical flow). The oscillation amplitude is in this latter case about 5% of its value and is the response

to a governing flow where the accelerating and decelerating phases of the soliton are imposed by the

favouring and opposing phases of the strong tidal flow. This is visible by comparison of the instan-

taneous Froude number, Fr′, in Fig. 5c with the soliton phase speed in Fig. 5d. Crucial moments

occur when Fr′ =−1 and Fr′ <−1. During the former, solitons cannot propagate against the tidal550

flow and remain stationary. During the latter, leftward-propagating solitons experience a rightward

advection driven by the greater tidal flow.

Lastly, we compare in Fig. 6 the wave properties of mature forced-MCC solitons3 with KdV-type

and MCC soliton solutions (Kakutani and Yamasaki, 1978; Ostrovsky and Stepanyants, 1989; Miy-555

ata, 1985, 1988; Choi and Camassa, 1999; Helfrich and Melville, 2006; Gerkema and Zimmerman,

2008). To this aim the soliton width for KdV-type and MCC theories is computed following the

same procedure as for the forced-MCC solitons, i. e. we use points Zc and Zd (see Fig. 4c-e).

As expected, small tide-generated solitons approach the linear long-wave phase speed for baroclinic560

interfacial waves (cs/cp ≈ 1), while larger tide-generated solitons increase their phase speed fol-

lowing a curve as eKdV and MCC solutions do. However, because tide-generated solitons ride on

3These wave properties correspond to solitons of State II (mature solitons) after time averaging over a tidal cycle.
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internal tides their wave properties are not simply the response to a settled two-layer fluid system,

as it occurs for eKdV and MCC solitons, but they are also subjected to the forcing of the system

and to a variable background flow (the internal tide). We suggest the above scenario might account565

for the slower phase speeds of the forced-MCC solitons when compared to their eKdV and MCC

counterparts. Interestingly, this difference slightly decreases as the solitons grow (c. f. the length of

the colored dashed lines in Fig. 6a).

As regards to the relationship between the soliton width and amplitude, tide-generated solitons fol-570

low a parallel behaviour to that predicted by eKdV and MCC soliton solutions, broadening as they

approach their maximum amplitude. By this broadening, strongly nonlinear solitons develop the

‘table-top’ shape, although forced-MCC equations generate some larger and narrower solitons than

their eKdV and MCC counterparts (Fig. 6b).

5.2 Growth limitation of tide-generated solitons: Runs B1 and C1575
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Fig. 7. Wave evolution of leftward-propagating leading solitons in run B1 under different forcing strengths

(see legend). In all panels the x-axis indicates the run time and soliton age (in brackets) in tidal periods. The

(dimensionless) wave properties are: (a) soliton amplitude, As/H1; (b) soliton width, Ls/D; (c) instantaneous

Froude number, Fr′ = U/cp; and, (d) soliton phase speed, cs/cp. Note that we take cp to be negative (leftward

propagation) to keep consistency with the physical meaning of the different sign in Fr′. For scaling purposes

we recall that in run B1: H1=30 m, D = 100 m and cp = -79 cm s−1.

We use for runs B1 and C1 a similar range of Froude number as for run A1, however they present
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a more weakly nonlinear regime where a striking feature emerges. Leading solitons exhibit a maxi-

mum amplitude which is not related to a ‘table-top’ form and which cannot be exceeded by further

increasing the tidal forcing (see Figs. 7a and 8a). They reach this limiting amplitude in both cases

when the flow is supercritical (run B1: Fr = 1.26; and, run C1: Fr = 1.33). More importantly,580

above this limit, the strengthening of the tidal forcing leads to a narrowing and amplitude decrease

of the leading solitons (Figs. 7a,b and 8a,b). We recall here that the decrease of the soliton width

after reaching its maximum is also observed when the tidal forcing leading to limiting solitons in

run A1 is increased (see Figs. 5a,b).
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Fig. 8. Same as Figure 7 but for run C1. For scaling purposes we recall that in run C1: H1=25 m, D = 100 m

and cp = -75 cm s−1.

The above results support that tidally generated solitons may be conditioned in the real ocean to

a limited growth which is beyond the classical view of KdV and MCC-type of models and which

lays on the saturation of the underlying quasi-linear internal tide as the tidal forcing increases (see

Sect. 4).

590

According to their phase speed, and in agreement with findings from run A1, two types of leading

solitons also emerge in runs B1 and C1. The larger nonlinear solitons (critical and supercritical

regime), which exhibit an oscillating speed in phase with the tidal flow and which increases over

time. And, the smaller nonlinear solitons (subcritical regime), which exhibit a nearly constant phase
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Fig. 9. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run B1 for a

supercritical regime (Fr = 1.26, U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides

and solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. The run time is 9 tidal periods. For scaling purposes we recall that for run B1: H1=30 m and

Lp = 35.49 km.

speed (Figs. 7a,c,d and 8a,c,d).595

From Figs. 9 and 10, we gain further insights on the different stages by which internal tides gen-

erate saturated leading solitons in runs B1 (Fr =1.26, U0 = 100 cm s−1) and C1 (Fr =1.33,

U0 = 100 cm s−1). By contrast to run A1 (Fig. 4), here the internal tides do not split up into

two different groups of solitons but disintegrate into solitary wave packets of rank-ordered depres-600

sions. Also, the ‘table-top’ solitary waves that lead the long-life internal tides in run A1 (Fig. 4d,e)

are not present in runs B1 and C1, as previously discussed from the wave property analyses. We

attribute this absence to the lower height of the topography in run B1 and the decrease of the upper

layer thickness in run C1.

605

On the one hand, the smaller topography generates quasi-linear internal tides which are smaller than

those in run A1 (see Fig. 2). With all other environmental parameters being the same, the smaller

internal tide in run B1 prescribes then a more weakly nonlinear disintegration. On the other hand,

the thinnerH1 in run C1 requires a maximum amplitude to attain the ‘table-top’ form which is larger

than for runs A1 and B1 (see Am/H1 in Table 1). In this context, the smaller quasi-linear internal610
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Fig. 10. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run C1 for a

supercritical regime (Fr = 1.33, U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides

and solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. The run time is 9 tidal periods. For scaling purposes we recall that for run C1: H1=25 m and

Lp = 33.54 km.

tides generated in run C1, by comparison with run A1 (see Fig. 2c), do not lead to strongly nonlinear

disintegration when the full forced-MCC equations are solved; not even in the supercritical regime

of Fr>1. Indeed, although both run A1 and run C1 generate leading solitons of early stage with

a relatively similar amplitude, the latter run exhibits mature leading solitons which are significantly

smaller and narrower (c. f., Figs. 4d,e and 10d,e), suggesting that dispersive effects might overcome615

nonlinearities more noticeably when the upper layer is thinner.

When compared with solitary wave solutions from eKdV and MCC theories, the growth-limiting ef-

fect of the tidal forcing becomes a remarkable feature of forced-MCC solitons generated in runs B1

and C1 since they reach a limiting amplitude but do not attain a ‘table-top’ form (Fig. 11b,d). In this620

context it is also worth while noting that in run B1 saturated solitons present amplitudes larger than

those predicted by eKdV and MCC theories whereas in run C1 saturated solitons present amplitudes

well below those predicted by eKdV and MCC theories. Counterintuitively, it is also evident from

both runs B1 and C1 that largest solitons decrease their amplitude and width as the tidal forcing

increases above that which generates the saturated solitons, as previously noted from Figs. 7 and 8.625

Regarding the relationship between the soliton phase speed and amplitude, both runs B1 and C1
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Fig. 11. Solitary wave solutions for mature leading solitons in run B1 (top row) and run C1 (bottom row) from

KdV (grey line), eKdV (black line) and MCC (red line) theories compared to numerical solutions from the

forced-MCC equations (colored dots refer to the Froude number and strength of the tidal flow; see legend). (a,

c) Soliton phase speed scaled to the linear long-wave phase speed of baroclinic interfacial waves (cs/cp) vs.

soliton amplitude scaled to the thickness of the upper layer (−As/H1). (b, d) Soliton width scaled to the total

water depth (Ls/D) vs. soliton amplitude scaled to the thickness of the upper layer (−As/H1).

follow a similar curve to that predicted by eKdV and MCC theories (Fig. 11a,c), although the phase

speed of forced-MCC solutions is slower in all cases, as it occurred for run A1 (see Fig. 6a). Also

similar to run A1, the deviation in phase speed between MCC and forced-MCC solutions is observed630

to decrease as the solitons grow (c. f. the length of the colored dashed lines in Fig. 11a,c), suggesting

that small solitons might be more subjected to effects related to the forcing system.

5.3 Effects of the Earth’s rotation: Runs A1, B1 and C1

In Fig. 12 the effects of the Earth’s rotation on the wave evolution of fully nonlinear tide-generated635

solitons are shown for runs A1, B1 and C1. The different colored lines refer to: rotationless case

(black line); θ = 15◦, µp = 0.27 (green line); θ = 30◦, µp = 0.52 (blue line); and, θ = 45◦, µp = 0.73

(red line).
In agreement with previous studies we observe in all panels that an increase of the latitude leads to640

larger dispersive effects due to Coriolis dispersion, which prevents the nonlinear internal tide from

disintegrating into strongly nonlinear solitons (Gerkema and Zimmerman, 1995; Gerkema, 1996).

This causes the long internal waves to envelope less solitary waves. Also, the internal tides are
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shown to travel faster as rotation becomes stronger due to rotation increases the phase speed of the

linear internal tide, cf (c2f = c20 + f2/k2, with k being the wavelength of the internal tide). Although645

the soliton speeds themselves are only very weakly affected by rotation, they appear traveling faster

since they are embedded in the internal tide from which they emerge. As a consequence, leading

solitons overtake more quickly preceding internal tides.
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6 Discussion and conclusions650

We investigate limiting amplitudes of internal tides and solitons using a generalization of the fully

nonlinear MCC equations (Miyata, 1985, 1988; Choi and Camassa, 1999), extended here with forc-

ing terms and Coriolis effects (forced-MCC-f ). The focus is on the effects of adding a forcing,

which represents a novelty in the existing literature and provides a closer view to an ocean-like sce-

nario. The mechanism for internal tide generation is represented by a horizontally oscillating sill,655

mimicking a barotropic tidal flow over topography. Solitons are generated by a disintegration of the

internal tide.

The application of an oscillating topography is not completely equivalent to the oceanic case of a

tidal flow over a topography at rest. For this reason we have restricted our analyses to a parameter660

space where a semi-equivalence between both forcing systems was demonstrated (Appendix C).

This agreement encourages us to conclude that our findings are not an artifact caused by the use of

a mimicked barotropic tidal flow. Of course the findings presented here cannot describe the whole

variety of the specific oceanic conditions. However, we believe that this study improves our under-

standing on the generation and evolution of tide-generated solitons.665

Numerical solutions show that strongly nonlinear tide-generated solitons attain in some cases a lim-

iting table-shaped form, in agreement with classical soliton theory. However, results also reveal

that tide-generated solitons may alternatively be limited by saturation of the underlying quasi-linear

internal tide. In the purely linear system the amplitude of the internal tide increases linearly with670

the strength of the barotropic tidal flow but as the forcing becomes stronger advective terms be-

come stronger too and cannot be neglected. This is accounted for in the quasi-linear system, where

products of barotropic and baroclinic fields in the advective terms are retained while still ignoring

interactions of the baroclinic field with itself. As a result, a saturation in the amplitude of the internal

tide occurs, generally, when the tidal forcing becomes supercritical; then, a further increase of the675

tidal flow does not produce a larger internal tide. This effect seems to have passed unnoticed in pre-

vious studies, but turns out to be a key factor in the subsequent disintegration of the internal tide into

solitons. It implies that when one includes the genuinely nonlinear effects, i. e. products of baro-

clinic terms, resulting solitons may stay well below their formal limiting amplitude, no matter how

strong the forcing. Interestingly, an increase of the tidal forcing above that which generates table-680

shaped solitons, or above that which simply generates solitons attaining a limited-growth, causes first

its progressive narrowing and, subsequently, an amplitude decrease. The upshot is that increasing

the tidal forcing above a certain strength does not lead to larger solitons but, counterintuitively, to

smaller ones.

685

Motivated by the above finding we performed analogous runs using the full set of weakly nonlin-
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ear equations derived in Gerkema (1996). Because these equations are built around the framework

of the classical KdV theory and Klein-Gordon equations, one should not expect that the amplitude

saturation of solitons could occur. Nevertheless, results (not shown) demonstrate that both the quasi-

linear internal tides and weakly nonlinear tide-generated solitons also exhibit a limiting amplitude.690

Noting that this model works with an actual tidal flow over a topography at rest, it seems reasonable

to argue that the limiting factor is then related to the addition of a tidal forcing. This gives support

to conclude that findings from the forced-MCC-f equations represent an insightful extension to the

fully nonlinear frame of work where tide-generated solitons may attain limiting amplitudes with or

without reaching a ‘table-top’ form, then subjected to a saturation amplitude of the underlying inter-695

nal tide prior to its disintegration into solitary waves.

Another departure from classical theories is that strongly nonlinear tide-generated solitons may ex-

hibit larger maximum amplitudes than predicted from eKdV and MCC solutions, while soliton phase

speeds are always smaller. We attribute these differences to the fact that tide-generated solitons ride700

on internal tides and, hence, their wave properties are not simply the response to a settled two-layer

fluid system, as it occurs for eKdV and MCC solitons, but are also subjected to the forcing of the sys-

tem and to a variable background flow and internal displacement imposed by the internal tide itself.

In this context, numerical results also show that solitons propagate freely from the source only when

the tidal flow is small (subcritical flow), while an increase of the tidal forcing generates accelerating705

and decelerating phases of the soliton phase speed imposed by the favouring and opposing phases of

the strong tidal flow (critical and supercritical flow). Lastly, it is also worth while mentioning that in

all cases of study the time-scale of growth for large solitons (critical and supercritical flow) appears

to be longer than for small solitons (subcritical flow), which abandon its transient form sooner.

710

In relation to the rotational cases, and in agreement with previous studies (Gerkema and Zimmer-

man, 1995; Gerkema, 1996), numerical results from the forced-MCC-f equations show that when

rotation becomes stronger, the dispersive effect of the Coriolis force becomes stronger too and over-

comes nonlinearities, thus preventing the internal tide from disintegration into strongly nonlinear

solitons.715

Before concluding we must note, as Ostrovsky and Grue (2003) previously did, that fully nonlinear,

weakly nonhydrostatic models entail a paradox to the effect that strongly nonlinear solitons appear

from a set of equations that have strong nonlinearity but weak dispersion, while the very existence

of solitons presume a balance between the two. In our case, the MCC-type model is used, involv-720

ing only the lowest-order nonhydrostatic dispersive terms. Despite the small parameter featuring in

the nonhydrostatic terms, they may actually become large in practice (i.e., in the numerical runs)

if internal wave profiles are steepening, hence contradicting the original assumption. Indeed, there
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is no guarantee that the higher-order dispersive terms, which were dropped from these equations,

would always remain small. A suggestion for future work is, therefore, to check our results against725

a numerical computation with a fully nonlinear nonhydrostatic set of equations.
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Appendix A

Numerical strategy

We define a grid in time and space for discretization of the various derivatives of the system. Then,735

tn = n∆t and xj = j∆x

are introduced for integer values of n (time-step) and j (spatial-step), where ∆t and ∆x are the mag-

nitude of the steps. Time and spatial dependent variables are described as, e.g. y(tn,xj), at any time

and position. Thus, ynj means the value of the variable y at the current time and spatial-step, n and

j, respectively. And, consequently, n+ 1 represents the ‘next time-step’, and so n− 1 the ‘previous740

time-step’, what applies analogously for j in the space grid.

The various derivatives in the model are discretized with centered difference approximations (Dur-

ran, 1999) as follows

745

yt(tn,xj) =̂
yn+1
j − ynj

∆t
, (A1)

yx(tn,xj) =̂
ynj+1− ynj

∆t
, (A2)

yxx(tn,xj) =̂
ynj+1− 2ynj + ynj−1

(∆x)2
, (A3)750

yxt(tn,xj) =̂
yn+1
j+1 − ynj+1− (yn+1

j−1 − ynj−1)

2∆x∆t
, (A4)

yxxt(tn,xj) =̂
yn+1
j+1 − ynj+1− 2(yn+1

j − ynj ) + (yn+1
j−1 − ynj−1)

(∆x)2∆t
. (A5)

(A6)755
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Initiatilly the system is at rest with mean horizontal velocities, ūi and v̄i, and displacement of the

interface, ζ, being all zero at the first two time levels (n− 1, n), what represent the initialization

fields. The thickness of the upper, h1, and lower layer, h2, together with the topography, h(X), draw

the scenario where the two-layer system runs. At the next time-step (n+ 1), we start to move the

topography to the right creating the effect of a tidal motion flowing to the left. For given U , i. e.760

scaled velocity of moving topography (Eq. (47)), and time-step, the excursion of the topography is

a known quantity which is used to shift (first, second and third) spatial derivatives of h(X) at every

new time-step.

The time derivatives of the v̄i–momentum and continuity equations (51), (52) and (53) are solved765

numerically using the third-order Adams-Bashforth approximation (Durran, 1999), for which v̄1, v̄2

and ζ at the next time-step (n+ 1), and at all j positions, are determined in terms of the known

quantities at the previous two time-steps (n− 1, n).

However, solving numerically ū1 from Eq. (49) is not straightforward as we deal with three different770

time derivatives of ū1 accompanied with space-time-dependent coefficients. Thus, after collecting

the various time derivatives involving ū1 on one side and remaining terms on the other side, the

horizontal momentum equation of ū1 evolves to a generic expression in the form of

a ū1,t + b ū1,xt + c ū1,xxt = Y (tn,xj) (A7)

where a, b and c collect spatial derivatives of space-time dependent variables (ζ(x,t) and h(x,t));775

and, Y (tn,xj) represents a collection of known quantities whose values may be dependent on

time and/or space. In the remainder, we describe the numerical strategy we follow to solve this

problem.space-time-dependent partial differential equations. If now we operate the time derivative

as a common factor in the left-hand side, the result leads to

(a ū1 + b ū1,x + c ū1,xx)t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A8)780

what helps us to introduce a new variable, Ū1, which groups coefficients a, b, c and time derivatives

of ū1 and turns our problem into a numerically solvable expression in the form of

U1,t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A9)

It is important to recall here that Y (tn,xj) and the spatial derivatives of ū1 are both evaluated at the

current time-step (n); and, the time derivatives of a, b and c, which involve values of ζ at the current785

(n) and new time-step (n+ 1), have been previously achivied with Eq. (53) via Adams-Bashforth

approximation. This allows to rewrite the above expression as

U1,t =R(tn,xj) (A10)
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by grouping all known quantities on the right-hand side under the variable R(tn,xj). Next we need

to discretize the time derivative of U1 but before doing that, we work out and discretize its spatial790

derivatives using Eqs. (A2) and (A3), what results in

U1 =
(
aj −

2 cj
2∆x

)
ū1j +

( −bj
2∆x

+
cj

(∆x)2

)
ū1j−1 +

( bj
2∆x

−
cj

(∆x)2

)
ū1j+1

which we rewrite by introducing factors d, e and f as follows

U1j = dj u1j + ej u1j−1 + fj u1j+1 . (A11)

If we now discretize the time derivative of U1 and apply Adams-Bashftorth, we obtain a numerically795

solvable expression for U1 at the next time step, which reads

U1
n+1

j = U1
n

j +
∆t

12

(
23Rnj − 16Rn−1j + 5Rn−2j

)
, (A12)

where U1
n+1

j actually includes

U1
n+1

j = dn+1
j ū1

n+1
j + en+1

j ū1
n+1
j−1 + fn+1

j ū1
n+1
j+1 . (A13)

To close our system we still need to obtain ū1n+1
j for all j terms. To that end, the equation above800

is more complicated to solve and gives rise to implicit equations, as we have not only the unknown

ū1
n+1
j , but also ū1n+1

j−1 and ū1n+1
j+1 , which come from the mixed second and third derivatives of u1

in Eq. (A7). However, this is a well-known problem that can be solved using the tridiagonal matrix

algorithm (TDMA), also known as the Thomas algorithm (Logan, 1987).

805

Following the numerical strategy described above, the model resolution is closed for every new time

level n+ 1 and the model equations can be solved successfully.

The choice of the space-time steps ∆t and ∆x is based on two main requirements. Firstly, the reso-

lution in x (∆x) must be sufficiently fine to resolve third-derivative terms and ensure that any short,810

solitary-like waves are properly resolved. Nevertheless, dealing with equivalent equations to Miyata

(1988) and Choi and Camassa (1999), as we do in our model, Kelvin-Helmholtz instabilities are

not filtered out. In this regard, Jo and Choi (2002) found that solitary waves of sufficient amplitude

could be unstable at high wave numbers to Kelvin-Helmholtz instability. Thus, if the grid resolu-

tion is too fine, unstable short waves will emerge near the wave crest and ultimately overwhelm the815

calculations and explode numerically (Jo and Choi, 2002; Helfrich and Melville, 2006; Helfrich and

Grimshaw, 2008). In some cases, the instability can be controlled by filtering out wavenumbers

above a threshold (W. Choi 2007, personal communication cited in Helfrich and Grimshaw (2008)).

For our numerical experiments we consider a ∆x course enough to prevent the problem. A second

condition follows from the requirement of stability. Then, for a given spatial step one may take the820

Courant-Friedrichs-Lewy condition for the linearized equations as an indication of the required time

step. The criterion implies that ∆x/∆t should be larger than the phase speed of the wave; taking
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special care where the advection by the barotropic tidal flow (here mimicked with the moving to-

pography) should be added to the phase speed to apply the criterion properly (Gerkema, 1994).

825

For the simulations we present, it was not needed to filter out wavenumbers above a threshold to

control Kelvin-Helmholtz instabilities as we designed the space-time grid to avoid this problem

following previous conditions. However, in some cases, specially in the simulations where the forc-

ing was fairly strong, an additional trick was needed to retain stability around the generation area

(Gerkema, 1994). In those cases averages were taken in the vicinity of the top of the ridge (around830

the steepest part of the topography), where the instabilities arised. At one particular point (xj , tn)

in space-time, new values of ūi, v̄i and ζ were calculated by taking the average of the old values at

xj−1, xj and xj+1, and subsequently in time between tn and tn−1. The disturbance provoked by

this procedure was tested and found to be a minor effect only, as it was only applied over the closest

region to the top of the topography.835

Appendix B

B1 forced-MCC-f model equations

In Appendix A, the numerical scheme used to solve the model is explained using a generic expression

(A7) for the ui horizontal momentum equation (49). Here we present the full set of nondimensional840

forced-equations actually used for the numerical solving of the model. The procedure to that end is

as follows.

Firstly, all terms of the ui horizontal momentum equation (49) are worked out and grouped according

to their physical effects (i. e. linear, nonlinear and dispersive effects from the upper and lower layer,845

and from topography), leaving unkown quantities involving time derivatives of u1 on the left-hand

side. The resulting expression (31) resembles (A7), where coefficients a, b and c involve derivatives

of space-time dependent variables and Y (tn,xj) is represented here by the sum of all terms on the

right-hand side,

a ū1,t + b ū1,xt + c ū1,xxt = linear+nonlinear+ dispersive1 + dispersive2 + dispersivetopo850

+δ2

[
(η2hx− η2ζx)φx−

η22
3
φxx +φ(

η2
2
hxx + ζxhx)

]
,

(B1)

ū2 =
Uh− η1ū1

η2
, (50)

855
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v̄1,t =−µū1− ū1v̄1,x +O(δ2) , (51)

v̄2,t =−µū2− ū2v̄2,x +O(δ2) , (52)860

ζt = (h1− ζ)ū1,x− ū1ζx . (53)

with865

φ=
1

η2

[
hUt +U2hx + (ū1− ū2)(η1ū1,x− ū1ζx) + ū2Uhx

]
(B2)

a(ζ,h) = 1 +
δη2

1−h

[
(η2hx − η2ζx)(η1/η2)x −

η22
3

(η1/η2)xx +
η1
η2

(η2
2
hxx + ζxhx

)]
, (B3)

870

b(ζ,h) = δ
(

1− η1
1−h

)
η1ζx +

δη2
1−h

[η1
η2

(η2hx − η2ζx)− 2η22
3

(η1/η2)x
]
, (B4)

c(ζ,h) = −δ
(

1− η1
1−h

)η21
3

− δη2
(1−h)

η1η2
3

, (B5)
875

linear = µv̄1 + ζx +
1

1−h

[
hUt +U2hx + ū2ht

]
, (B6)

nonlinear = −ū1ū1,x +
1

1−h

[
(ū1 − ū2)ζt + ū1η1ū1,x + ū2η2ū2,x −µ(η1v̄1 + η2v̄2)− η1ζx

]
, (B7)880

dispersive1 = δ
(

1− η1
1−h

)[
− η1ζx(ū1ū1,xx − (ū1,x)2) +

η21
3

(ū1ū1,xxx − ū1,xū1,xx)
]
, (B8)

885

dispersive2 =
δη2

1−h

[
− η2ζx(ū2ū2,xx − (ū2,x)2)− η22

3
(ū2ū2,xxx − ū2,xū2,xx)

]
, (B9)

dispersivetopo =
δη2

(1−h)

[
ū2hx(η2ū2,xx + ζxū2,x)

+
η2
2

(Uthxx +U2hxxx + 2Uū2,xhxx + 2ū2Uhxxx + 3ū2ū2,xhxx + ū2
2hxxx)890

+ζx(Uthx +U2hxx + 2ū2Uhxx + ū2
2hxx)

]
. (B10)
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B2 Linear and quasi-linear forced-MCC-f model equations

The quasi-linear forced-MCC-f model follows from neglecting the purely nonlinear terms and weakly nonhy-

drostatic dispersive terms in (B1) and (50)–(53). The equations are linear with regard to the baroclinic fields, but895

the coefficients become time-dependent due to barotropic factors (which are prescribed) and, therefore, higher

harmonics will be generated when the forcing is increased. Then, the quasi-linear forced-MCC-f equations

read,

ū1,t = µv̄1 + ζx +
1

1−h

[
hUt +U2hx + ū2ht −µ(h1v̄1 + ((h2 −h)v̄2)−h1ζx

]
(B11)

900

ū2 =
Uh−h1ū1

h2 −h
, (B12)

v̄1,t = −µū1 , (B13)905

v̄2,t = −µū2 , (B14)
910

ζt = h1ū1,x . (B15)

We notice that the linear runs were actually done somewhat indirectly by taking the quasi-linear forced-MCC-f

equations above, (B11)–(B15), and reducing the forcing by a factor of 100 since the quasi-linear terms cannot915

be removed explicitly in this model setting without also removing the forcing. Afterwards we enhance the

amplitude in the plots accordingly. By reducing the forcing, we effectively enter the linear regime.

Appendix C

Oscillating topography vs. tidal flow920

A Galilean transformation involves two frames of reference which move with constant and rectilinear speed

with respect to each another. Hence, observations made in one frame can be converted to another, as physical

laws are identical. However, our oscillating topography is not an inertial frame since it is accelerated with re-

spect to a situation where the topography is at rest (as in the ocean). It is, therefore, not evident that the results

from the two frames are equivalent.925

We use the generation model of weakly nonlinear, weakly nonhydrostatic interfacial waves derived in Gerkema

(1996) (G1996), which works with tidal motion over a fixed topography, as a benchmark for testing the impact

of our ‘non-inertial’ frame of reference. If we compare interfacial waves generated from the nonlinear version

of both models, differences are expected to arise from the fact that forced-MCC equations are fully nonlinear.930

For this reason we restrict the comparison to the linear and quasi-nonlinear model versions. If the results be-

tween the models turn out to be similar, it thus seems reasonable to accept that within the parameter space of
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study we can compare our present setting to that in the ocean setting.

In Fig. C.1, interfacial waves generated from both models are presented for various numerical experiments935

under a fairly strong forcing, i. e. when both models may be expected to deviate more noticeably from each

other. Our interest focus then on the upper limit of the supercritical regime (Fr>1) that we can reach while

preserving a good agreement between both generation mechanisms. The different settings in Fig. C.1 differ

in the strength of stratification from top to bottom panels, while the thickness of the upper and lower layer

(H1 = 30 m, H2 = 70 m) and the height and width of the sill are kept fixed (HT = 40 m and HL = 10 km in940

Eq. 54).

Results from Fig. C.1 indicate that in all cases a close correspondence exists between numerical solutions

from G1996 (gray line) and the forced-MCC equations (black line), suggesting only a minor impact of the

non-inertial nature of our frame of reference when reaching up to a Fr∼1.5. These results encourage us to945

approach in our study the strength (velocity amplitude) of the oscillating topography as the ‘strength of the tidal

flow’ within the parameter space of study.
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Fig. C.1. Linear (left panels) and quasi-linear (right panels) interfacial waves generated via a tidal flow over

a sill from the model equations derived in (Gerkema, 1996) (grey line) and via a horizontally oscillating sill

from the model equations derived in this study (black line). The Froude number and corresponding strength

of the (mimicked) tidal flow are indicated in the upper-right corner of each panel. For scaling purposes one

must note that the wavelength of the linear long-wave interfacial wave, Lp, varies from top to bottom panels

as: Lp = 35.5 km (g′ = 0.03 m s−1) in (a, b); Lp = 29 km (g′ = 0.02 m s−1) in (c, d); and, Lp = 20.5 km

(g′ = 0.01 m s−1) in (e, f). The run time is 9 tidal periods.
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