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General comment:

We thank the three referees for their constructive review and thoughtful comments which
we have used to improve our manuscript in a revised version. The final author’s response
to all referee comments (this document) is now provided with reference to all the changes
made in the revised manuscript. For clarity, blue font is used for the reviewer’s text,
black font is used for our response and font in italics is used for the new text in the
revised manuscript.

As specified in the Journal’s instructions, together with the point-by-point response to
the reviews we also provide a list of all relevant changes made in the manuscript and
a marked-up version of the revised manuscript (all combined in this single *.pdf file).
In the marked-up revised manuscript the changes made are in red font where they take
only a few lines; when the full section has been rewritten, then the title of the section
is in red font. All the changes made refer to comments or clarifications requested by
the referees and, therefore, we will refer to those in the point-by-point response to the
reviews.

∗aguiar@nioz.nl
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List of all relevant changes made in the revised manuscript:

1. We have re-named the ‘quasi-nonlinear case’ as ‘quasi-linear case’ because we un-
derstand that the former name led to confusion when we discussed the physical
interpretations and findings of our study. Also, we have added for clarity the ex-
plicit equations that represent the (quasi-) linearized version of the forced-MCC-f
equations in Appendix B2.

2. The summary of all runs in Table 1 is now presented in a more compact manner.

3. Figure 5 and related text in the previous manuscript version have been removed
in the revised manuscript. Although we think findings from that figure were of
interest, we also note they might be out of context for the present study.

4. The validation of the oscillating topography within the parameter space of study
is now in Appendix C. This helps us to keep fluent the discussion of the main
results.

5. Discussion of our results is now based on the governing nondimensional parameters,
as suggested by Referee #3. Consequently Sects. 3–6 have been fully rewritten (this
is indicated with the title of the section in red font). Our findings keep the same
but the discussion of the results is more compact and focused on the most relevant
features.
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Response to the reviews

Anonymous Referee #1

I expected a paper like that a few years earlier, but it happens only now. Sooner or later
a semi-analytical baroclinic tidal model for unlimited wave amplitudes should appear.
Important is the range of its applicability is wider than just evolutionary stage on free
propagating interfacial waves. Unlike the CC theory the presented here model incorpo-
rates also the generation stage of internal tides. Ideologically, this approach is similar
to Miyata’s first theories, but what I can see now is that the model starts with the very
beginning of large amplitude internal waves production, when most of the model just
fail to work, and I appreciate this fact.

Being a fan of such kind of analytical stuff I just would like to pay some attention to
a few specific points that deserve a closer look. Hydrodynamically wise horizontal mo-
tions of bottom topography forth and back produce not necessary the same waves as
oscillating tidal currents interacting with a motionless sill. Peter Baines did similar ex-
periments and received some critical feedback on this point, but he had no choice trying
to reproduce internal tides in laboratory conditions. The authors acknowledge the fact
that moving bottom is not the same as a steering tide, line 45-50. They started Section
3 with this statement (lines 291-294) and admit in lines 299-301 that the result could
be different in both cases, e.g. tide moving over motionless topography, or generation
of internal waves by moving bottom. The difference does really exist. However, making
progress we should accept different approaches, so I do not think there is a great differ-
ence between two cases, specifically beyond the bottom topography where the ”Galilean
transformation” (line 299) can be taken into account. However, I really do not under-
stand the reasoning expressed in lines 338-340 about similarity of two coordinate systems
with referencing Fig 2. Maybe it is my problem, but I expect some readers can have the
same issue. Can the authors justify their point better?

We agree that our reasoning in (former) lines 338-340 might be too brief and, therefore,
unclear. In the revised manuscript the discussion on the oscillation topography has been
reallocated to Appendix C, where lines 926–938 make clear our reasoning:

‘In Fig. C.1, interfacial waves generated from both models are presented for various nu-
merical experiments under a fairly strong forcing, i. e. when both models may be expected
to deviate more noticeably from each other. Our interest focus then on the upper limit
of the supercritical regime (Fr>1) that we can reach while preserving a good agreement
between both generation mechanisms. The different settings in Fig. C.1 differ in the
strength of stratification from top to bottom panels, while the thickness of the upper and
lower layer (H1 = 30 m, H2 = 70 m) and the height and width of the sill are kept fixed
(HT = 40 m and HL = 10 km in Eq. 54).
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Results from Fig. C.1 indicate that in all cases a close correspondence exists between nu-
merical solutions from the model derived in Gerkema (1996) (gray line) and the forced-
MCC equations (black line), suggesting only a minor impact of the non-inertial nature
of our frame of reference when reaching up to a Fr∼1.5. These results encourage us to
approach in our study the strength (velocity amplitude) of the oscillating topography as
the ‘strength of the tidal flow’ within the parameter space of study.’

I would also appreciate some sort of revision that would make the paper more oceano-
graphically oriented. Specifically, the parameters of the topography, tidal flow, rotation,
etc., - what specific area of the World Ocean the authors have in their mind? Where
the effects like that can happen? In terms of the generation mechanism even the Luzon
Strait which generates probably the largest internal solitary waves ever recorded shows
nearly linear mechanism of internal tide generation over two sills with the Froude num-
ber 1. In light of that, I would appreciate any hint on what area of the World Ocean
area is targeted? The parameters are described in Figure 2 (see also lines 355-356, Table
1) with h1=30m, h2=70m, and tidal flow 1.2m/sec. Is there any particular object in the
World Ocean which is a prototype of that (has I missed something)?

We appreciate the interest of the reviewer in knowing whether the present results are
applicable to observations in a specific region of the ocean. We have tried to find obser-
vational material to compare our findings with, but the difficulty lies in what is actually
the strength of the model, namely that it covers all stages, from the creation of the
internal waves over topography to the development of the solitons. The problem then is
to find observational data on all these stages. We found some on table-top solitons but
without the specifics of the source. We would like to continue working on this line and
would appreciate it if the reviewer could suggest helpful references. For this paper, we
focus on two main goals: first, to present the derivation of a new two-fluid layer model
which extends MCC equations with forcing terms and Coriolis effects; and second, to use
this novel fully nonlinear model to provide an overview, as generally as possible, on the
conditions by which tide-generated interfacial waves may exhibit limiting amplitudes.
In line with this, we have added the following text in lines 296–303:

‘Whilst not designed to represent a specific region of the world oceans, we aim to inves-
tigate in a general manner the conditions by which tidally-generated solitons may evolve
and, eventually, develop limiting amplitudes in ocean-like scenarios. It is then desirable
that leading solitons can propagate towards a mature stage before overtaking preceding
internal tides; otherwise, although being form-preserving features, the tracking of their
wave properties become cumbersome. For this reason the environmental parameters that
we describe in the following were selected to highlight the qualitative features of these
nonlinear processes for a broad range of (mimicked) tidal forcing strength.’

And later, in lines 655–657, we have added:
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‘Of course the findings presented here cannot describe the whole variety of the specific
oceanic conditions. However we believe that this study improves our understanding on
the generation and evolution of tide-generated solitons.’

Mathematical procedures are more or less clear, and I trust the authors applied their
expansion procedure correctly; I can not raise a red flag at any point. However, there
are still a few minor points. The integration through the layers 1 and 2, eqns (19)- (24)
looks fine, but I can not say I fully understand Subsection 2.3. In my opinion it is a bit
short in explanation of ‘6 equations and 11 unknowns’ although I accept the expansion
with respect to delta (depth/wavelength) does can make sense. Some more details would
be necessary to add for better explanation of integral averaging in line 199, as well.

We have rephrased (former) lines 196–198 to clarify the text where we thought it could
be of more help. Now lines 199–200 read:

‘Given the z-independence of pressure and returning to the original horizontal momentum
equations, it is now natural to assume that the horizontal velocities, too, are independent
of z within each layer’ .

About the question of integral averaging in (former) line 199, one must note that at the
lowest order (δ0) we are in the hydrostatic regime and horizontal velocities are indepen-
dent of z within each layer so that ui

(0) = ūi
(0); then,

uiui =
1
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Anonymous Referee #2

The work is devoted to a numerical analysis of the MCC-type equations describing
strongly nonlinear waves in a two-layer fluid. Its novelties are in adding earth rota-
tion (Coriolis force) and an oscillating forcing imitating a tidal current over a bottom
feature. Tidal forcing is represented by an oscillating bottom hill which in most cases
gives a reasonable approximation for the case of a fixed hill and periodic current. Ten
variants are computed which differ in forcing velocity, layer thicknesses ratio, relative
height of the hill, and the Coriolis force (latitude). Some interesting results regarding
the parameters of limiting solitons, rate of their formation (in tidal periods). Some re-
sults, such as decreasing of soliton amplitude with the increase of forcing, and chande
of amplitude and width of a strong limiting soliton, remain unexplained; I agree with
authors that it may be due to interaction with current induced by the oscillating source.

In general, the paper deserves publication. However, some questions and notes should
be taken into account. Among them are:

1. The MCC system which is the base of the model, allows strong nonlinearity but only
weak (quasi-hydrostatic) dispersion. On the other hand, stationary waves, including a
soliton, realize a balance between nonlinearity and dispersion. Thus, (unlike the weakly
nonlinear case), applicability of such systems for solitons cannot be taken for granted
and need to be verified. It is even possible that some numerical ’paradoxes’ are due
to this limitation (see, e.g., Ostrovsky & Grue, Phys. Fluids, 15, 2934, 2993). This
circumstance should at least be mentioned.

We agree on this important remark, which is now discussed in lines 709–719 as follows:

‘Before concluding we must note, as Ostrovsky and Grue (2003) previously did, that
fully nonlinear, weakly nonhydrostatic models entail a paradox to the effect that strongly
nonlinear solitons appear from a set of equations that have strong nonlinearity but weak
dispersion, while the very existence of solitons presume a balance between the two. In
our case, the MCC-type model is used, involving only the lowest-order nonhydrostatic
dispersive terms. Despite the small parameter featuring in the nonhydrostatic terms,
they may actually become large in practice (i.e., in the numerical runs) if internal wave
profiles are steepening, hence contradicting the original assumption. Indeed, there is no
guarantee that the higher-order dispersive terms, which were dropped from these equa-
tions, would always remain small. A suggestion for future work is, therefore, to check
our results against a numerical computation with a fully nonlinear nonhydrostatic set of
equations.’

2. The weakly nonlinear and ‘quasi-nonlinear’ case is not quite clear for me. It should
be close to the eKdV case (where the limiting solitons also exist) but the results seem
somewhat different. The physic of this case should be better explained.
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We have re-named the ‘quasi-nonlinear case’ as ‘quasi-linear case’ because we understand
that the former name has led to confusion when we discussed the physical interpreta-
tions and findings. Also, we have added an explicit explanation with clear distinction on
the different set of equations being used. Following the reasoning below, one should not
expect the quasi-linear case to be close to the eKdV on showing limiting interfacial waves.

In the revised manuscript lines 357–363 read:

‘The quasi-nonlinear case involves in both generation models neglecting the baroclinic
interactions but retaining the nonlinear terms involving a combination of barotropic and
baroclinic fields. The equations are then still linear with regard to the baroclinic fields, but
the coefficients become time-dependent due to barotropic factors (which are prescribed),
so that higher harmonics will be generated when the forcing is increased. For clarification,
the (quasi-) linearization of the forced-MCC-f equations is presented in Appendix B2.’

And later, lines 416–420 read:

‘As described in Sect. 3, we recall that the quasi-linear case includes advective terms
from the interactions between the barotropic and baroclinic flows while interactions be-
tween baroclinic fields, the genuinely nonlinear terms, are still absent. Therefore, higher
harmonics are naturally generated when the forcing is increased. The linear case, where
advective terms are absent, is added here for assessing potential departures from the
quasi-linear case.’

3. Paragraph 120. ‘c0 is an approximate measure of the linear long wave phase speed.’
- Why approximate, what is the approximation?

It was not our intention to mean further approximations. The only point is that this
quantity is indicative of the phase speed of linear long interfacial waves but not exactly
equal to it, for the precise theoretical value has a factor H1H2/H, whereas the present
factor is D. For clarity, we have rephrased this paragraph in lines 121-125, as follows:

‘Since we allow waves to have large amplitudes (i.e. being strongly nonlinear), we may
take horizontal current velocities to scale with c0 = (g′D)1/2, where g′ is reduced gravity,
g′ = g (ρ2 − ρ1)/ρ̄; and, c0 is close to the linear long-wave phase speed for interfacial
waves, cp (which would have H1H2/D instead of D).’

4. The reasoning in paragraph 325 should be made simpler and more clear.

We agree. In the revised version lines 918–924 read:

‘We use the generation model of weakly nonlinear, weakly nonhydrostatic interfacial
waves derived in Gerkema (1996) (G1996), which works with tidal motion over a fixed
topography, as a benchmark for testing the impact of our ‘non-inertial’ frame of refer-
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ence. If we compare interfacial waves generated from the nonlinear version of both mod-
els, differences are expected to arise from the fact that forced-MCC equations are fully
nonlinear. For this reason we restrict the comparison to the linear and quasi-nonlinear
model versions. If the results between the models turn out to be similar, it thus seems
reasonable to accept that within the parameter space of study we can compare our present
setting to that in the ocean setting.

5. Figures 8 and 13. How comes that the numerical (color) circles for soliton velocity
do not go to 1 at zero amplitude limit? Is this due to some negative period-averaged
current?

Before addressing this comment, please note that former Figures 8 and 13 are Figure 6
and 11 in the revised manuscript.

In all cases the scaled nonlinear phase speed of tide-generated solitons does go to 1
(left y-axis) when solitons approach their minimum amplitude, meaning that they are
approaching the linear long-wave phase speed for (baroclinic) interfacial waves. Never-
theless, we note that the soliton amplitude of our numerical solutions does never really
reach the zero amplitude limit, but it is always above zero. This is because, to get our
‘tracking algorithm’ working, we need the leading soliton to be large enough so its char-
acteristic points Za, Zb, Zc and Zd, as described in Fig. 6, can be identified and used
for computation of its amplitude and width. When the solitons are in their very early
stage of generation, i. e. amplitudes near zero, the former characteristic points are not
well defined yet. As a result, we can’t track solitons at the nearly zero amplitude limit.

6. Arguments about the role of higher harmonics are unclear. First, there are no spectra
shown in the paper. Second, it remains unclear how the Coriolis dispersion can enhance
the table-top soliton form (paragraph 635).

We agree with the reviewer that spectra can be a useful tool to explore higher harmon-
ics, as was done, e.g., in Mercier et al (2012), their Fig. 9. However, we think that our
analyses in Figures 2 and 3 already show convincingly that quasi-linear interfacial tides
present limiting amplitudes when the tidal forcing increases, in contrast to the linear
regime where higher harmonics are absent. All in all, in the revised manuscript we have
decided to take a more conservative position in this regard (see e. g. in lines 9–13). Now
we simply report that the amplitude limitation of the internal tide occurs with increased
tidal forcing when barotropic advection is included to the linear case; and that this ap-
pears to be a key factor in the subsequent disintegration of the internal tide into solitons.

In the revised version, and regarding the mechanism by which the Coriolis dispersion
can enhance the ‘table-top’ soliton form, we agree our explanation was unclear. More
runs and further analyses are still needed to fully understand the change of shape of
the leading solitons and wether they are truly form-preserving as they propagate under
these conditions. For this reason we focus now our discussion on the rotational cases on
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highlighting the agreement with previous studies, i. e. less solitons at higher latitudes.
Thus, lines 631–640 read:

‘In agreement with previous studies we observe in all panels that an increase of the
latitude leads to larger dispersive effects due to Coriolis dispersion, which prevents the
nonlinear internal tide from disintegrating into strongly nonlinear solitons (Gerkema and
Zimmerman 1995, Gerkema 1996). This causes the long internal waves in Fig. 12 to en-
velope less solitary waves. Also, the internal tides are shown to travel faster as rotation
becomes stronger due to rotation increases the phase speed of the linear internal tide, cf
(c2

f = c2
0 + f2/k2, with k being the wavelength of the internal tide). Although the soliton

speeds themselves are only very weakly affected by rotation, they appear traveling faster
since they are embedded in the internal tide from which they emerge. As a consequence,
leading solitons overtake more quickly preceding internal tides.’

In general: the work is interesting but it is overloaded with details at the expense of
clear physical interpretations. If the authors agree to take the above into account, I do
not insist on sending the revised paper back to me.

We agree with Referee #2 on that the discussion of the numerical results could be short-
ened on details in order to highlight more the physical interpretations we present. In the
revised version we have followed this suggestion. Accordingly, Sects. 3–5 have been fully
rewritten. Our findings keep the same but the discussion of the results is more compact
and focused on the most relevant features.

References

∗Mercier, M. J., M.Mathur, L.Gostiaux, T.Gerkema, J. M.Magalhaes, J. C. B.DaSilva,
and T.Dauxois (2012), Soliton generation by internal tidal beams impinging on a pycn-
ocline: Laboratory experiments, J. Fluid Mech., 704, 37-60.
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Anonymous Referee #3

This paper discusses the derivation and then numerical solutions of a fully-nonlinear,
weakly-dispersive model for internal tides and solitary-like waves in two-layer stratifica-
tions. The model is an extension of the Miyata-Choi-Camassa theory to include rotation
and variable topography. While the effects of rotation have previously been studied, the
inclusion of variable topography, and forcing of the internal tide by moving topography
is new. The authors find that increasing forcing (measured by the maximum speed of the
oscillating topography) leads to a maximum amplitude of the radiated internal tide and
that further increasing the forcing results in a reduction in radiated amplitude. This is
interesting and counter-intuitive result is attributed to the generation of higher harmon-
ics with increasing forcing. Overall the paper contains useful (e.g. the derivation of the
model) and interesting results and will be of some interest to the community. However,
there are issues with work as presented that need to be addressed. These are addressed
in the comments below.

1. I am not convinced that the model requires the introduction of a moving topography.
The authors claim they need to do this to avoid ‘nonlinearities in the barotropic flow’
(line 46). However, they impose a rigid lid and in doing so they can replace A(t) in their
equation (48) with Q(t) and set ht = 0. (integrate (46) with ht = 0.) Here Q(t) is a
specified, externally imposed barotropic flux. Perhaps this will complicate the equations,
but it is possible.

As the reviewer already indicates, introducing a barotropic flow in this setting compli-
cates the equations; indeed, the barotropic flow itself would become part of the problem.
The point is that one cannot impose a simple barotropic flow in a way that is consistent
with the fully nonlinear equations; a barotropic flow would here involve higher harmon-
ics, generated by advective terms like UUx (U the barotropic flow). In other words,
one would actually have to solve the barotropic flow from the fully nonlinear equations.
Since we are not primarily interested in any intricacies of the barotropic flow, the easier
road is here to avoid the problem altogether and prescribe an oscillating topography.

2. In doing what is suggested above, the radiated tides will then be subject to advection
by the imposed barotropic flow. This may change the results significantly, especially
since they are imposing barotropic flows of order 1m/s in total depths of 100m and the
tides and internal waves have speeds of this order. It would certainly call into question
the near equivalence of the moving topography and correct barotropic forcing reference
frames.

We understand the referee’s initial concern in this regard; nevertheless, we consider we
have been conservative enough to restrict our study to a parameter space where a semi-
equivalence between two different generation models has been tested on the generation
of the linear and quasi-linear internal tides (Fig. C.1 in the revised manuscript). If a
significant departure between the mimicked tidal flow and the use of an actual tidal flow
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would exist, it should be then noticeable in the above model-comparison, especially over
the top of the oscillating topography; but this was not the case. Far from the sill, the
bottom is flat and at rest so it is not expected that the ‘non-inertial’ frame causes any
artifact once the internal tide has been generated and propagates.

Some of the main findings of our study are that quasi-linear tides become saturated as
the tidal forcing is increased and that, consequently, leading solitons of the disintegrated
internal tides may be also subjected to a limiting amplitude besides that predicted by
eKdV and MCC theories. For completeness, and as a double-check, we have tested these
findings with the weakly nonlinear model derived in Gerkema (1996), which works with
an actual tidal flow over topography. We don’t show in this document the full analyses
but just a hint of each of them.

Fig. I shows the amplitude saturation of quasi-linear internal tides as the tidal forcing,
U0, is increased. As the flow becomes supercritical1(Fr>1), a further increase of U0

does not generate larger internal tides. This agrees well with our findings from the
quasi-linearized version of the forced-MCC equations.

In Fig. II we solve the full set of weakly nonlinear equations derived in Gerkema (1996).
Results show how the saturation amplitude of the quasi-linear internal tide, as shown
in Fig. I, affects the growth of the leading solitons by also limiting its maximum am-
plitude. The Gerkema (1996) model is built around the weakly nonlinear framework of
the classical KdV theory and Klein-Gordon equations, where the amplitude saturation
of solitons does not occur. However, Fig. II shows that tide-generated solitons exhibit a
limiting amplitude even in the weakly nonlinear regime. Noting this it seems reasonable
to argue that the limiting factor is then related to the addition of a tidal forcing.

The above results give support to conclude that findings from the forced-MCC-f equa-
tions do not lie on an artifact of the oscillating topography and represent an insightful
extension to the fully nonlinear frame of work where tide-generated solitons may attain
limiting amplitudes even without reaching a ‘table-top’ shape, then also subjected to
a saturation amplitude of the underlying internal tide prior to its disintegration into
solitary waves. We include this notion in lines 677–688 of the revised manuscript:

‘Motivated by the above finding we performed analogous runs using the full set of weakly
nonlinear equations derived in Gerkema (1996). Because these equations are built around
the framework of the classical KdV theory and Klein-Gordon equations, one should not
expect that the amplitude saturation of solitons could occur. Nevertheless, results (not
shown) demonstrate that both the quasi-linear internal tides and weakly nonlinear tide-
generated solitons also exhibit a limiting amplitude. Noting that this model works with an

1To characterize the hydraulic state where internal waves propagate we use the Froude number calcu-
lated as Fr = U0

cp
, where the strength of the mimicked tidal flow acting as external forcing, U0, is

confronted to the linear long-wave phase speed for interfacial waves, cp. Note that Fr is introduced
in the revised manuscript in lines 335–339.
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actual tidal flow over a topography at rest, it seems reasonable to argue that the limiting
factor is then related to the addition of a tidal forcing. This gives support to conclude that
findings from the forced-MCC-f equations represent an insightful extension to the fully
nonlinear frame of work where tide-generated solitons may attain limiting amplitudes
with or without reaching a ‘table-top’ form, then subjected to a saturation amplitude of
the underlying internal tide prior to its disintegration into solitary waves.’

3. The authors discuss a ‘quasi-nonlinear’ version of the model (see line37). However,
they never explicitly show the resulting equations, or the precise terms in (41) and (42)
that are ignored in this approximation. Further, they never make much of a case as
to why one should even explore this aspect. What precisely is learned from this part
of the work? How does one connect it to other, mathematically (e.g. asymptotically)
consistent models such as the weakly-nonlinear version of (49)-(53) (e.g., the Gerkema
and Zimmerman (1995) model). I don’t see the value of this part of the analysis.

In the revised version we have re-named the ‘quasi-nonlinear case’ as ‘quasi-linear case’
because we understand that the former name has led to confusion when we discussed the
physical interpretations and findings. In Appendix B2 we now show how the (quasi)-
linearization of the forced-MCC-f equations was performed.

Additionally, for further clarification, lines 357–363 read:

‘The quasi-nonlinear case involves in both generation models neglecting the baroclinic
interactions but retaining the nonlinear terms involving a combination of barotropic and
baroclinic fields. The equations are then still linear with regard to the baroclinic fields, but
the coefficients become time-dependent due to barotropic factors (which are prescribed),
so that higher harmonics will be generated when the forcing is increased. For clarification,
the (quasi-) linearization of the forced-MCC-f equations is presented in Appendix B2.’

And later, lines 416–420 read:

‘As described in Sect. 3, we recall that the quasi-linear case includes advective terms
from the interactions between the barotropic and baroclinic flows while interactions be-
tween baroclinic fields, the genuinely nonlinear terms, are still absent. Therefore, higher
harmonics are naturally generated when the forcing is increased. The linear case, where
advective terms are absent, is added here for assessing potential departures from the
quasi-linear case.’

Following the above descriptions one should not expect the quasi-linear case to be close
to the eKdV case on showing saturated interfacial waves. We argue in our study this
feature is a key factor on limiting the growth of leading solitons besides the saturation
predicted by eKdV and MCC theories. This finding is the reason why we find insight-
ful and valuable to start our study on fully nonlinear tide-generated solitons from the
generation of the internal tide by which the formers will raise. This motivation is now
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made more clear from the very beginning, in the abstract (see lines 9–13), and later in
lines 404–420.

4. I found the discussion of the numerical experiments very difficult to follow. I was
forced to repeatedly go back and forth between Table on and the figures. This was also
compounded by the use of dimensional variables. I think that they could simplify the
discussion if things are discussed in terms of the governing nondimensional parameters.
For example, variations of the reduced gravity g′ can be subsumed into a variable relat-
ing the timescale of the forcing to the propagation timescale H/c0, where c0 is the linear
long wave phase speed. There are of course, other choices, but use of non-dimensional
variables should lead to a more compact discussion and comparison of the cases.

In the revised version the discussion of the results is now held using the governing nondi-
mensional parameters. Sects. 3–6 have been rewritten accordingly. Although the main
findings keep the same, we believe the text is now more clear. Also Table 1, listing the
runs, is presented in a more simplified manner.

5. The authors claim that the appearance of the saturation in the amplitude of the
radiated tide with forcing strength is due to emergence of higher harmonics. While this
could be true they never demonstrate it. Furthermore, the emergence of higher harmonic
is an indication that the radiated internal tide is itself nonlinear. They might consider
that the increased nonlinearity of the radiated tide itself is important. For example,
Gerkema and Zimmerman (1995) and Li and Farmer (2011, JPO) discuss the role of
weakly-nonlinear internal tide solutions as have Helfrich and Grimshaw (2008) for the
fully-nonlinear case considered here. To simply say that higher harmonics is the cause
of the maximal response seems to miss the deeper issue. Also, they never show that the
same maximal amplitude appears in the full set (49)-(53).

We actually think we conclusively demonstrated that the saturation of the amplitude is
related to the generation of higher harmonics; this is the very reason why we considered
the quasi-linear case in detail. After all, the presence of higher harmonics is the only
difference between the linear and quasi-linear cases. In the purely linear case, obviously,
the solution grows linearly with the forcing. But as the results in Fig. 3 (of the submitted
manuscript) show, the quasi-linear case follows the linear growth as long as the barotropic
currents are weak, while deviations occur for stronger currents, and then the amplitude
becomes saturated. We cannot see any other connection than with the higher harmonics.

However, in the revised manuscript we have decided to take a more conservative position
in this regard (see e. g. in lines 9–13). Now we simply report that the amplitude limi-
tation of the internal tide occurs with increased tidal forcing when barotropic advection
is included to the linear case; and that this appears to be a key factor in the subsequent
disintegration of the internal tide into solitons.

6. Figures 8 and 13 should include the dispersion curves from the Miyata-ChoiCamassa
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model. After all, this paper is supposed to be about the fully nonlinear waves. Also,
some (most?) of the disagreement that is found is likely due to the fact that the solitary
waves are propagating on a variable background field (the internal tide). This could
be accounted for in the comparison. Note that if the barotropic forcing were included
as prescribed time-dependent flux Q(t), then the advection of the solitary waves by the
changing barotropic flow would be significant since wave speeds are in the range of 1m/s.

We agree. In the revised version the MCC analytical solutions are included for discus-
sion and comparison with the forced-MCC numerical solutions (see red curves in Figs. 6
and 11). Also, we have accounted for the suggestion made by the referee about the effect
of the solitary waves being embedded on a variable background flow, an argument we
agree with (see in lines 557-560).

Additionally, in the revised version we use the Froude number (see Eq. (55)) to account
for the importance of advection by the changing barotropic flow.

7. The sentence starting on line 625 regarding soliton speeds with rotation is misleading.
The soliton speeds are only very weak affected by rotation. However rotation has a large
effect on the speed of the internal tide from which the solitons emerge and on which they
subsequently propagate (c2 = c2

0 + f2/k2 in the linear limit.

We agree on this important remark. It is now corrected in lines 631–640:

‘In agreement with previous studies we observe in all panels that an increase of the
latitude leads to larger dispersive effects due to Coriolis dispersion, which prevents the
nonlinear internal tide from disintegrating into strongly nonlinear solitons (Gerkema
Zimmerman 1995, Gerkema 1996). This causes the long internal waves to envelope less
solitary waves. Also, the internal tides are shown to travel faster as rotation becomes
stronger due to rotation increases the phase speed of the linear internal tide, cf (c2

f =

c2
0 + f2/k2, with k being the wavelength of the internal tide). Although the soliton speeds

themselves are only very weakly affected by rotation, they appear traveling faster since
they are embedded in the internal tide from which they emerge. As a consequence, lead-
ing solitons overtake more quickly preceding internal tides.’

8. Line 637. The authors never showed that the saturation occurs in the full set of
equations, nor did they demonstrate how it affects the resulting soliton amplitudes.

Regarding the demonstration of the limiting amplitudes, we already provided an answer
in item (5). About how this amplitude saturation affects the resulting soliton ampli-
tudes, we believe that we have shown numerical solutions doing so. A summary of the
discussion regarding those findings (and numerical solutions) can be found in lines 659–
689 of the revised manuscript.
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9. I suggest that the authors remove the linear and quasi-nonlinear results and devote
more effort into exploring the behavior of the fully-nonlinear model. After all, ‘fully
nonlinear’ is part of the title and the new aspect of the paper. The linear problem has
been well covered in the literature and the connection of the ‘quasi-nonlinear’ reduction
with existing weakly nonlinear and now the fully-nonlinear model is not obvious.

Following the referee’s request we have devoted more effort in the revised version to ex-
plore the physical interpretations of the fully nonlinear model by discussing the results
(see Sects. 3–5) using the governing nondimensional parameters; as it was suggested in
item (4).

We understand that in the submitted version to the ‘Discussion Forum’ it was not clearly
explained how the quasi-linearization of the model equations was performed and how
that version differs from a weakly nonlinear set of equations. This obviously led to miss
an important point of our discussion and the reason why the analyses on the quasi-linear
case are relevant. This is a topic which we further discussed and answered above in item
(3).
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Figure I: Snapshots of the interfacial displacement of leftward propagating quasi-linear
internal tides for run A1 (H1 = 30 m; Lp = 35.49 km). The amplitude sat-
uration is evident as the tidal forcing is increased and the flow becomes su-
percritical, Fr>1 (see legend). The run time is 9 tidal periods. The model
equations used here are a quasi-linearized version of the weakly nonlinear model
in Gerkema (1996).
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Figure II: Snapshots of the interfacial displacement of leftward propagating weakly non-
linear internal tides and solitons for run A1 (H1 = 30 m; Lp = 35.49 km).
The limiting amplitude (which is here non ‘table-top’ shaped) is evident as
the tidal forcing is increased but the soliton amplitude becomes saturated.
The run time is 9 tidal periods. These waves are generated from the weakly
nonlinear generation model derived in Gerkema (1996).
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Abstract. A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations

is derived for studying tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfa-

cial waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing

terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking

a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial5

tide. Because of strong non-linearity, solitons may attain a limiting table-shaped form, in accordance

with soliton theory. More generally, we use the model equations to investigate the role of the initial

stages of the internal tide on limiting the amplitudes of solitons under fully nonlinear conditions. Nu-

merical solutions reveal that the internal tide, considered linear but with the inclusion of barotropic

advection (the quasi-linear case), reaches a limiting amplitude under increasing barotropic forcing.10

This extends to the nonlinear case. In particular, internal solitons formed by a disitintegration of the

internal tide may not reach their table-shaped form with increased forcing because of the limitation

in the underlying internal tide itself.

1 Introduction

tidally generated internal solitons are a widespread phenomenon in the oceans and they have been15

observed and studied for decades (see, e.g., Apel et al. (2006)). They are intrinsically linked to the

internal tide, which itself is generated by barotropic tidal flow over topography. As the internal tide

steepens, it may split up into groups of internal solitons, which therefore appear at the tidal period.
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For internal solitons as such, an archetypal model has been the Korteweg-de Vries (KdV) equation,20

which is based on the assumption of weak nonlinearity and weak nonhydrostatic effects. The equa-

tion gives prediction for the relation between amplitude, width and phase speed of the solitons, as

well as the shape itself. In the KdV equation there is, mathematically speaking, no limit to the ampli-

tude that solitons may reach (although, of course, at some point the underlying assumption of weak

nonlinearity would be violated). This behaviour changes fundamentally if a higher-order (i.e., cubic)25

nonlinear term is included, leading to the so-called extended KdV (eKdV) equation, as discussed in,

e.g., Helfrich and Melville (2006). This extended version produces qualitatively different solitons:

their amplitude is limited (for a given configuration of layers) and they broaden as they reach their

maximum amplitude, the so-called ‘table-top’ solitons. This behaviour is confirmed by the fully

nonlinear soliton models, as derived by Choi and Camassa (1999) and Miyata (1985, 1988) (denoted30

as the MCC equations for brevity).

In this paper, we focus on another limiting factor, which comes into play even before solitons arise,

namely in the internal tide itself. In a purely linear system, the amplitude of the internal tide increases

linearly with the strength of the barotropic tidal flow. Here we study how this changes when, at a35

next stage, one includes quasi-linear terms, i.e. retaining products of barotropic and baroclinic fields

in the advective terms while still ignoring interactions of the baroclinic field with itself. We demon-

strate that a saturation in the amplitude of the internal tide occurs and increasing the barotropic flow

further does not produce a larger internal tide. As a consequence, when one includes the genuinely

nonlinear effects, i. e. products of baroclinic terms, resulting solitons may stay well below their40

formal limiting amplitude, no matter how strong the forcing.

To study these effects we derived a set of fully nonlinear, weakly nonhydrostatic model equations,

by extending the MCC equations with a barotropic tidal forcing over topography and with Coriolis

effects, which have previously been shown to play a key role in soliton generation from internal45

tides (Gerkema and Zimmerman, 1995). To avoid nonlinearities in the barotropic flow itself (which

cannot be formally neglected in a fully nonlinear model), we mimick the generation by barotropic

tidal flow over topography with a horizontally oscillating topography. (There is no complete equiv-

alence, but we demonstrate that for the parameters used here, the difference remains small.) The

presence of a topography greatly complicates the subsequent handling of the equation, necessary to50

bring them in a form amenable to numerical solving, but we demonstrate that the set of equations

can be obtained.

An extension of the MCC theory with Coriolis effects (MCC-f ) was already derived by Helfrich

(2007), who investigated on the decay and return of internal solitary waves with rotation. We focus55

on the novel aspect of studying the wave evolution and limiting amplitudes of fully nonlinear, weakly
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nonhydrostatic internal tides and solitons when a forcing and rotational effects are added. We denote

our extension of the MCC theory as forced-MCC-f (forced-MCC in absence of rotation), for brevity.

The paper is organized as follows. We derive a new two-fluid layer model consisting of a set of60

forced rotation-modified Boussinesq equations in Sect. 2. We start with the basic equations and

assumptions. Then, we scale equations (Sect. 2.1) and vertically integrated them over the layers

(Sect. 2.2). Up to this point, the resulting equations are exact but do not form a closed set. The set

is closed by making an expansion in a small parameter measuring the strength of non-hydrostaticity

(Sect. 2.3). The resulting model turns out equivalent to Choi-Camassa equations plus additional65

terms which provide the forcing and rotation effects to the system. Prior to discussion of the numer-

ical experiments, we address in Sect. 3 some preliminaries related to the oscillating topography, the

governing nondimensional parameters and the actual environmental parameters used for the runs.

In Sect. 4 we investigate the factors limiting the growth of tidally generated solitons by firstly ap-

proaching the generation of quasi-linear internal tides within the parameter space of study. Next, in70

Sect. 5 we solve the full set of forced-MCC-f and explore the conditions by which tide-generated

fully nonlinear solitons may actually attain a limiting amplitude. A discussion of main findings and

conclusions are presented in Sect. 6.

The numerical methods and schemes are described in Appendix A. The full set of model equations75

as solved in the code is presented in Appendix B together with its (quasi)-linearization form. In

Appendix C we evaluate, within the parameter space of study, the oscillating topography against a

generation model which works with tidal flow over a topography at rest.

2 Derivation of the forced-MCC-f model80

We start from the continuity and Euler equations and consider a two-fluid layer system (Fig. 1) with

a jump in density accross the interface and in which each layer is composed of a homogeneous,

inviscid, and incompressible fluid, applying the Boussinesq approximation. We also assume unifor-

mity in one of the horizontal directions, taking ∂/∂y = 0. Hence, the continuity and momentum

equations read85

ui,x +wi,z = 0 (1)

ρ̄
(
ui,t +ui ui,x +wi ui,z − f vi

)
= −pi,x (2)

vi,t +ui vi,x +wi vi,z + f ui = 0 (3)

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
= −pi,z − ρi g (4)
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where ρi is density, (ui,vi,wi) are the velocity components in Cartesian coordinates, pi is pressure,90

g the gravitational accelaration, f the Coriolis parameter (f = 2Ωsinφ, at latitude φ) and ρ̄ the mean

density. The subscript i= 1 (i= 2) refers to the upper (lower) layer and a stable stratification,

ρ1 < ρ2, is assumed.

0

Upper surface (Rigid-lid) z=H1

z=0

Interface: z=Z(x,t)

Bottom z=-H2+H(x,t)

Upper layer: H1, ρ1

Lower layer: H2, ρ2

x →

Fig. 1. The two-fluid layer system for which the forced-MCC-f equations are derived. The horizontal dashed

grey line indicates the level z = 0; the level at which the interface resides at rest.

Boundaries are defined at the surface, taken to be a rigid lid, which is located at z =H1, and at the95

bottom, located at z =−H2 +H(x,t). The time-dependence of the bottom will later be specified as

a horizontal oscillation, mimicking a barotropic tidal flow over topography, the forcing mechanism

for internal tides. However, the two are not exactly equivalent, since the transformation from one

frame of reference to the other involves an acceleration and is therefore not Galilean. We further

discuss this aspect in Appendix C.100

The kinematic boundary conditions at the surface and bottom read

w1 = 0 at z =H1 (5)

w2 = Ht +Hx u2 at z =−H2 +H(x,t) . (6)

At the interface, z = Z(x,t), which if at rest is located at z = 0, the boundary conditions are given105

by the continuity of normal velocity and pressure:

wi = Zt +ui Zx and p1 = p2 at z = Z . (7)

For later convenience, we write pressure as the sum of hydrostatic and dynamic parts, the latter being

denoted by primes:

pi = ρ1gH1− ρigz+ p′i(t,x,z) .110

In the horizontal momentum equation, this amounts to replacing pi,x by p′i,x, whereas the vertical

momentum equation (4) gives

ρ̄
(
wi,t +ui wi,x +wi wi,z

)
=−p′i,z .
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Continuity of pressure at the interface, the second equation in (7), now becomes

(p′1− p′2)|z=Z = (ρ1− ρ2)gZ .115

2.1 Scaling

The next step is to bring the equations into an appropriate dimensionless form for which we intro-

duce the following scales. The scale for the undisturbed water depth is taken to beD, and the typical

wavelength L. Crucially, we will assume waves to be long, i.e. nonhydrostatic effects to be weak.

This will be expressed by the small parameter1, δ =
(
D
L

)2
� 1.120

Since we allow waves to have large amplitudes (i.e. being strongly nonlinear), we may take horizon-

tal current velocities to scale with c0 = (g′D)1/2, where g′ is reduced gravity, g′ = g (ρ2− ρ1)/ρ̄;

and c0 is close to the linear long-wave phase speed for interfacial waves, cp (which would have

H1H2/D instead ofD). Thus, u and v will be scaled with c0. For the interfacial displacement being125

allowed to be large, an appropriate scale of Z is D.

The typical scale of w now follows from the continuity equation as Dc0/L. Finally, the scale of

pressure follows from assuming a primary balance between the acceleration term ρ̄ ut and px in the

horizontal momentum equation.130

In summary, then, we can introduce the following dimensionless variables, indicated by asterisks,

x= L x∗, z =D z∗, t= (L/c0) t∗,

p′i = (ρ̄ c20) p′
∗
i , ui = c0 u

∗
i , vi = c0 v

∗
i , wi = (D/L) c0 w

∗
i .

(8)

With these scales, the dimensionless continuity and Euler equations yield (for convenience, we drop

the asterisks right away):135

ui,x +wi,z = 0 (9)

ui,t +ui ui,x +wi ui,z −µ vi = −p′i,x (10)

vi,t +ui vi,x +wi vi,z +µ ui = 0 (11)

δ
(
wi,t +ui wi,x +wi wi,z

)
= −p′i,z . (12)

Here µ is the scaled Coriolis parameter, µ= fL/c0. Furthermore we introduce the dimensionless140

quantities ζ, hi, and h via (Z,H1,H2,H) =D(ζ,h1,h2,h), so that the scaled form of the boundary

1In Choi and Camassa (1999) a small parameter ε was used instead, which relates to ours as δ = ε2.
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conditions is

w1 = 0 at z = h1 (13)

wi = ζt +ui ζx at z = ζ(x,t) (14)

p′2− p′1 = ζ at z = ζ(x,t) (15)145

w2 = ht +u2 hx at z =−h2 +h(x,t) . (16)

The goal is now to derive a reduced set of equations from (9)–(12), in which the boundary conditions

(13)–(16) are incorporated by vertical integration, exploiting the smallness of the parameter δ. The

procedure is identical to that of (Choi and Camassa, 1999), but with the additional complications of

the Coriolis force, topography, and tidal forcing.150

2.2 Vertically integrated equations

We vertically integrate the equations over the upper and lower layers and expand them to the or-

ders δ0 and δ1 to obtain a closed set for the weakly nonhydrostatic equations, following Choi and

Camassa (1999). The layer-mean f̄1 of a function f1(x,z, t) for the upper layer is being defined as

f̄1(x,t) =
1

η1

h1∫
ζ

dz f1(x,z, t) , η1 = h1− ζ (17)155

and for the lower layer as

f̄2(x,t) =
1

η2

ζ∫
−h2+h

dz f2(x,z, t) , η2 = h2−h+ ζ . (18)

where ηi represents the thickness of the layer (depending on the interfacial displacement ζ). Notice

that the boundaries of the integral depend on time and space (x) via the interfacial movement ζ(t,x),

but also, for the lower layer, via the horizontally oscillating topography2, h(t,x). Before proceeding,160

nonlinear terms in horizontal momentum equations (10) and (11) are rewritten as (u2i )x + (wiui)z

and (uivi)x + (wivi)z , respectively, to facilitate the procedure.

After integration of Eqs. (9)–(11) for i= 1 and applying the boundary conditions (13)–(15) we

obtain the layer-mean equations for the upper layer165

η1,t + (η1ū1)x = 0, (19)

(η1ū1)t + (η1u1u1)x−µη1v̄1 = −η1p′1,x , (20)

(η1v̄1)t + (η1u1v1)x +µη1ū1 = 0. (21)170

2For this reason we need to apply the Leibniz integral rule below with respect to x and t.
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For the lower layer one proceeds similarly, except that now both boundaries are variable. Applying

the boundary conditions (14)–(16), vertical integration of (9)–(11) for i= 2 yields

η2,t + (η2ū2)x = 0, (22)

(η2ū2)t + (η2u2u2)x−µη2v̄2 = −η2p′2,x, (23)175

(η2v̄2)t + (η2u2v2)x +µη2ū2 = 0. (24)

2.3 Expansion in δ

The six integrated equations (19)–(24) derived so far are exact but do not form a closed set. The

variables η1, η2 and ζ count as one unknown, but we have also ūi, v̄i, p′i,x, uiui and uivi, giving180

11 unknowns for 6 equations. To obtain a closed set, the last two expressions will be cast in terms

of ūi and v̄i by using the vertical momentum equation, expanded in terms of the small parameter δ.

Furthermore, continuity of pressure at the interface is used to connect the pressure in the lower and

upper layer (i.e., p′1,x and p′2,x). All in all, the six equations are thus modified to contain only six

unknowns. With this aim, we make a formal expansion of the unknowns for the lowest (δ0) and next185

(δ) orders, as, for example:

f̄i = f̄i
(0) + δf̄i

(1) + · · ·

At the lowest order (δ0), p′(0) accounts for hydrostatic effects. At the next order (δ), p′(1) brings

weakly nonhydrostatic effects into the system.

190
2.3.1 Lowest order

At lowest order, the vertical momentum equation (12) reduces to ∂p′i
(0)/∂z = 0 as terms of order δ

are neglected; therefore, (perturbation) pressure is vertically constant in each layer. For convenience,

we introduce P = p′2
(0), being a function of t and x. It then follows from continuity of pressure at

the interface, that p′1
(0) = P − ζ. Thus, to this order of approximation,195

p′1,x = Px− ζx +O(δ) , (25)

and for the lower layer

p′2,x = Px +O(δ) . (26)

Given the z-independence of pressure and returning to the original horizontal momentum equations,

it is now natural to assume that the horizontal velocities, too, are independent of z within each layer:200

uiui = ū2i +O(δ), uivi = ūiv̄i +O(δ).
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At lowest order, then, the set of integrated equations is closed; together with the (exact) integrated

continuity equations (19) and (22), we have the momentum equations in terms of the six variables

ūi, v̄i, ζ and P :

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 = −η1 (Px− ζx) +O(δ), (27)205

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 = −η2Px +O(δ), (28)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ), (29)

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ). (30)

Recall that η1,2 can be expressed in terms of ζ and thus involve just one unknown.

210

2.3.2 Next order

To include terms of order δ, the key problem is, again, to close the set of six vertically integrated

equations by deriving closed expressions for the horizontal pressure gradients p′i,x as well as for the

contributions of uiui and uivi in the nonlinear terms. The latter problem is particularly simple. At

order δ, the products contain one lowest-order field, which is independent of z (e.g., ui(0) = ūi
(0)),215

hence

uiui =
1

ηi

∫
dzu2i =

1

ηi

∫
dz (ui

(0)2 + 2δui
(0)ui

(1) + · · ·)

= ūi
(0)2 + 2δūi

(0)ūi
(1) + · · ·

= ū2i +O(δ2)

so that220

uiui = ū2i +O(δ2) , uivi = ūiv̄i +O(δ2).

This allows us to write the horizontal momentum equations as

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 = −η1(p′1

(0) + δp′1
(1))x +O(δ2) (31)

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 = −η2(p′2

(0) + δp′2
(1))x +O(δ2) (32)

(η1v̄1)t + (η1ū1v̄1)x +µη1ū1 = O(δ2) (33)225

(η2v̄2)t + (η2ū2v̄2)x +µη2ū2 = O(δ2) (34)

The remaining problem is to find an expression for p′i
(1). At order δ, Eq. (12) reads in terms of the

lowest order vertical velocities,

wi
(0)
t +ui

(0)wi
(0)
x +wi

(0)wi
(0)
z = −p′i(1)z (35)

From vertically integrating the continuity equation (9), we obtain an expression for wi(0):230

wi
(0) =−zūi,x(0) + ci(t,x)
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where ci are ‘constants’ of integration which are determined by using the boundary conditions at the

surface (13) and bottom (16). Thus, wi(0) for the upper- and lower layers become, respectively,

w1
(0) = (h1− z) ū1,x(0), (36)

w2
(0) = (h−h2− z) ū2,x(0) +D2h, (37)235

where the operator Di is defined as ∂/∂t+ ūi
(0)∂/∂x. Substituting w1

(0) from Eq. (36) and w2
(0)

from Eq. (37) into Eq. (35), and vertically integrating the result, we get an expression for p′1
(1) and

p′2
(1). Taking their derivative with respect to x and their mean over each layer, we finally obtain an

expression for p′i(1)x at the upper and lower layer at order δ. Including the lowest order terms (25)

and (26), this allow us to write the horizontal pressure gradient for the upper layer240

p′1,x = p′1,x
(0) + δp′1,x

(1) +O(δ2) = Px− ζx− δ
[ 1

3η1
(η31G1)x

]
+O(δ2) , (38)

and, for the lower layer,

p′2,x = p′2,x
(0) + δp′2,x

(1) +O(δ2) = Px− δ
[ 1

3η2
(η32G2)x +

1

2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h
]

+O(δ2),

(39)

where we introduced for simplicity the term Gi (as in Choi and Camassa (1999)),245

Gi = ūi,xt
(0) + ūi

(0)ūi,xx
(0)− (ūi,x

(0))2 . (40)

With this, the horizontal momentum equations (31) and (32) become

(η1ū1)t + (η1ū
2
1)x−µη1v̄1 =−η1

{
Px− ζx− δ

[ 1

3η1
(η31G1)x

]}
+O(δ2) (41)

(η2ū2)t + (η2ū
2
2)x−µη2v̄2 =−η2

{
Px− δ

[ 1

3η2
(η32G2)x +

1

2
η2G2hx−

η2
2

(D2
2h)x− ζxD2

2h}
}

+O(δ2)

(42)250

We have thus obtained a closed set of six dimensionless equations, namely the exact continuity equa-

tions (19) and (22), the horizontal momentum equations (41) and (42), as well as (33) and (34); the

last four equations involve the the weakly non-hydrostatic assumption. The six unknowns are ū1,

ū2, v̄1, v̄2, P , and (via η1,2) ζ. In the absence of an interfacial wave forcing and neglecting Earth’s

rotation effects, our set of equations reduces to that of Choi and Camassa (1999).255

Before proceeding to numerical solving, we further specify the model by prescribing the oscillating

topography, i.e., the forcing to the system, with

h= h(X) with X(x,t) = x−U0 cos t (U0 being an arbitrary positive constant). (43)260

We combine the continuity equations (19) and (22) into

(η1 + η2)t + (η1ū1 + η2ū2)x = 0 , (44)
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Given that η1 + η2 = h1 +h2−h, with the two-fluid system depth h1 +h2 = 1, this leads to

−ht + (η1ū1 + η2ū2)x = 0. (45)

If we now substitute the time derivative of the oscillating topography (43) above, it yields265

(η1ū1 + η2ū2)x = U
∂h

∂x
, (46)

with

U = U0 sin t, (47)

which mimicks a barotropic tidal flow over the oscillating topography (i. e. the velocity of the

moving topography), where U0 represents its dimensionless velocity amplitude. Then, Eq. (46) can270

be integrated in x,

η1ū1 + η2ū2 = Uh+C(t) , (48)

where we assume that initially ū1 = ū2 = U = 0, so that the constant of integration C(t) = 0. No-

tice that the right-hand side is prescribed via the forcing and is thus a known quantity. It allows us

to express ū2 in terms of ū1.275

We can thus combine the horizontal momentum equations (41) and (42), eliminating P ,

ū1,t + ū1ū1,x +µv̄1 = ζx +
1

(1−h)

(
(Uh)t + (η1ū

2
1 + η2ū

2
2)x−µ(η1v̄1 + η2v̄2)− η1ζx

)
+

δ
(

1− η1
(1−h)

)[
η1G1η1,x +

η21
3
G1,x

]
+

δη2
(1−h)

[
− η2G2ζx−

η22
3
G2,x +

η2G2

2
hx +

η2
2

(D2
2h)x + ζxD

2
2h
]

+O(δ2) (49)280

ū2 =
Uh− η1ū1

η2
, (50)

v̄1,t + ū1v̄1,x +µū1 = 0 +O(δ2) , (51)

v̄2,t + ū2v̄2,x +µū2 = 0 +O(δ2) , (52)

ζt− (h1− ζ)ū1,x + ū1ζx = 0 . (53)285

where the v̄i–horizontal momentum equations (51) and (52) have been further simplified from (33)

and (34) by using the continuity equations (19) and (22). Eq. (19) has now been expressed in terms

of ζ for convenience. The other continuity equation (22) is no longer included explicitly since it is

already present via (50).

290

All in all, we have now five equations for five unknowns (ū1, ū2, v̄1, v̄2 and ζ). The numerical

methods and schemes used to solve the model are described in Appendix A. The actual form of the

model equations as used in the numerical code is presented in Appendix B.
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3 Numerical experiments: Preliminaries295

Whilst not designed to represent a specific region of the world oceans, we aim to investigate in a gen-

eral manner the conditions by which tidally generated solitons may evolve and, eventually, develop

limiting amplitudes in ocean-like scenarios. It is then desirable that leading solitons can propagate

towards a mature stage before overtaking preceding internal tides; otherwise, although being form-

preserving features, the tracking of their wave properties becomes cumbersome. For this reason the300

environmental parameters that we describe in the following were selected to highlight the qualitative

features of these nonlinear processes for a broad range of (mimicked) tidal forcing strength.

Although the model is solved in nondimensinal form, we will discuss results from the numerical

experiments with a dual view, dimensional/dimensionless, to ease the visualization of the ocean-like305

magnitudes being used.

3.1 The oscillating topography and the hydraulic state: the Froude number

We define the (dimensional) topography analytically following:

H(X) =
HT

1 + (x/HL)2
(54)310

with x being the grid positions in space; and, HT and HL being the dimensional parameters which

set the height and width of a symmetric sill, respectively. This manner we ensure perfectly smooth

second and third derivatives of the dimensionless topography h(X) in the model equations. Other

analytical functions may be also used depending on the desired topography.

315

At this point it is worth while to recall that the oscillation of the topography is introduced in dimen-

sionless form as h= h(X) with X(x,t) = x−U0 cos t, where U0 prescribes the strength (velocity

amplitude) of the oscillating topography via U = U0 sin(t), the mimicked barotropic tidal flow (see

(43)–(47)). By increasing U0 we enhance the forcing via U , which in dimensional form we intro-

duce, respectively, as U0 = c0 U0 and U = c0 U .320

The topographic obstacle (ridge, sill, ...) is always centred in the x-axis and the length of the x-

domain is chosen to be large enough to prevent waves from reaching the boundaries. In all experi-

ments, fluid starts moving to the right at t= 0 (i.e., topography moving to the left). The waves are

generated near the origin in x-axis due to the ‘tide-topography’ interaction; on the negative (positive)325

x-axis, waves travel to the left (right). Because the forcing enters in the simulation asymmetrically

with fluid at rest moving to the right, it is expected that wave packets in the front appear rather dif-

ferent when comparing both sides (negative vs. positive x-domain). These fronts are the transients,

which are influenced by the way the experiment is started. A steady solution at both sides of the
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x-axis is reached after several tidal periods have passed away. In this regard, and to avoid transient330

effects generated at the start of each run, wave properties have been tracked systematically over the

third leftward-propagating interfacial wave counting from the front, and after 9 tidal periods of forc-

ing.

To characterize the hydraulic state where interfacial waves propagate we use the Froude number335

calculated as follows:

Fr =
U0

cp
(55)

where the velocity amplitude of the mimicked tidal flow acting as external forcing, U0, is con-

fronted to the linear long-wave phase speed for interfacial waves, cp. The strength of U0 leads to

three different regimes of interfacial wave generation (see e.g. in Vlasenko et al. (2005); Da Silva340

et al. (2015)). The hydraulic regime is subcritical (Fr�1) when the strength of the external forcing

is much less than the phase speed of the generated interfacial waves, which propagate as harmonic

first-mode baroclinic interfacial waves (linear theory). When the phase speed of the generated waves

is of the order of the external forcing, the flow is critical (Fr≈1). Then, nonlinear effects become

evident and the linear baroclinic interfacial waves disintegrate into short nonlinear interfacial waves.345

A further increase of the external forcing leads to the most crucial regime when Fr>1. Then, the

flow becomes supercritical and, typically, a packet of strongly nonlinear short interfacial waves, or

solitons, is generated from the longer quasi-linear interfacial wave. These solitons eventually may

attain a ‘table-top’ form, the limiting scenario subject of this study. To account for the varying

strength of the tidal forcing within a tidal cycle we introduce the instantaneous Froude number, de-350

fined as Fr′ = U/cp.

Importantly, we also use the Froude number in Appendix C to discuss the applicability of our ‘non-

inertial’ frame of reference, the oscillating topography, to the ocean case, where the topography is at

rest. To this aim we compare the generation of interfacial waves from the (quasi-) linearized version355

the forced-MCC equations and the (quasi-) linearized version of the weakly nonlinear model de-

rived in Gerkema (1996) (G1996), which works with actual tidal motion. The quasi-nonlinear case

involves in both generation models neglecting the baroclinic interactions but retaining the nonlinear

terms involving a combination of barotropic and baroclinic fields. The equations are then still linear

with regard to the baroclinic fields, but the coefficients become time-dependent due to barotropic360

factors (which are prescribed), so that higher harmonics will be generated when the forcing is in-

creased. For clarification, the (quasi-) linearization of the forced-MCC-f equations is presented in

Appendix B.

Results from the above model intercomparison supports a semi-equivalence between both interfa-365

cial wave generation mechanisms within the framework of study, which we restrict to 0< Fr < 1.6
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based on the cited analysis. This semi-equivalence encourages us to discuss our numerical results,

henceforth, referring to the strength of the oscillating topography, U0, as the strength of the tidal

flow. Similarly, we will refer to interfacial waves generated from the forced-MCC-f equations as

internal tides.370

3.2 Environmental parameters of study

We adopt a two-fluid layer system where the total water depth, D, is set to 100 m with the upper

layer being always thinner than the lower layer (H1<H2). The horizontal oscillation of the moving

topography is always of semidiurnal frequency. Although the height of the topography varies be-375

tween runs, its horizontal scale is kept constant and about 20 km (HL = 10 km in (54)).

In Table 1 the varying environmental parameters are detailed. These vary between runs as indicated

in underlined bold fonts, one at a time. The theoretical amplitude of the ‘table-top’ soliton predicted

from Eq. (3.68) in Choi and Camassa (1999), and beyond which no solitary wave solution exists, is380

also indicated.

Comparison between runs A1, A2 and A3 account for the effect of varying the stratification via the

reduced gravity, g′. Comparison between runs A1, B1 and B2 account for the effect of varying the

topography ratio, ϕT = HT /D, which measures the height of the topography relative to the total385

water depth. Lastly, comparison between runs A1, C1 and C2 account for the effect of varying the

two-fluid layer thickness ratio, γ = H1/H2.

Run g′ ϕT = HT /D γ = H1/H2 -Am/H1 H1, H2 ρ1, ρ2

(in m s−2) (in meters) (kg m−3)

A1 0.03 0.4 0.43 0.67 30, 70 1022, 1025.15

A2 0.02 0.4 0.43 0.67 30, 70 1023.05, 1025.15

A3 0.01 0.4 0.43 0.67 30, 70 1024.1, 1025.15

B1 0.03 0.35 0.43 0.67 30, 70 1022, 1025.15

B2 0.03 0.3 0.43 0.67 30, 70 1022, 1025.15

C1 0.03 0.4 0.33 1 25, 75 1022, 1025.15

C2 0.03 0.4 0.25 1.5 20, 80 1022, 1025.15

Table 1. Summary of runs. Varying parameters are the reduced gravity, g′ (m s−2); the topography ratio,

ϕT ; and, the two-fluid layer thickness ratio, γ. The theoretical maximum amplitude, Am, as predicted from

Eq. (3.68) in Choi and Camassa (1999) is also indicated.
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In the literature, common values for g′ where solitary waves have been observed range from

0.007 m s−2 in the Celtic Sea (Gerkema, 1996) to 0.027 m s−2 over the Oregon continental shelf390

(Stanton and Ostrovsky, 1998). We approach this broad range of stratification in Sect. 4 to investi-

gate the generation of quasi-linear internal tides. Based on the results of this section, we will argue

by its end why in Sect. 5 we focus on a highly stratified regime (g′ =0.03 m s−2) for the study of

fully nonlinear waves.

395

For convenience in the discussion of our results, wave properties are scaled as follows. The interfa-

cial displacement, Z, the internal tide amplitude, A, and the soliton amplitude, As, are scaled to the

thickness of the upper layer, H1. The soliton phase speed, cs, is scaled to the phase speed of linear

long-wave baroclinic interfacial waves, cp. Horizontal distances along the x-direction and the soliton

width, Ls, are scaled to the wavelength of linear long-wave baroclinic interfacial waves, Lp. Lastly,400

we use the scaled Coriolis parameter µp, which relates to µ in Sect. 2.1, following µp = µ/(2π).

4 Numerical experiments: Quasi-linear internal tides

Tide-generated solitons emerge from nonlinear disintegration of the underlying internal tides and

may be, therefore, naturally subjected to their wave properties. For this reason, we find insightful to405

investigate first the wave properties of the underlying internal tides, prior to its nonlinear disintegra-

tion, within the parameter space of this study.

Sandstrom and Quon (1993, 1994) already treated the generation and further disintegration of the

internal tide as separate problems. First, the generation was regarded as a hydrostatic process; sec-410

ond, the resulting profile was used as a starting point of another, nonhydrostatic model in which

disintegration into solitary waves occurred. Although in nature these processes occur at once and,

hence, the connection between them must be treated carefully, we also believe this is a reasonable

approach to the phenomenon.

415

As described in Sect. 3, we recall that the quasi-linear case includes advective terms from the in-

teractions between the barotropic and baroclinic flows while interactions between baroclinic fields,

the genuinely nonlinear terms, are still absent. Therefore, higher harmonics are naturally generated

when the forcing is increased. The linear case, where advective terms are absent, is added here for

assessing potential departures from the quasi-linear case.420

Accordingly, Fig. 2 presents an analysis of the internal tide response to the strength of the tidal forc-

ing for runs A1 to C2 (see Table 1). The minimum forcing strength for all cases is U0 = 5 cm s−1.
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Fig. 2. Amplitude of the linear, L, and quasi-linear, QL, internal tide scaled to the thickness of the upper layer

vs. the Froude number. Varying parameters between panels are: a) the strength of stratification, g′ (runs A1,

A2 and A3); b) the topography ratio, ϕT (runs A1, B1 and B2); and, c) the two-fluid layer thickness ratio, γ

(runs A1, C1 and C2). The run time is 9 tidal periods. See Table 1 for further details.

In subsequent data-points, the increase of U0 is of 10 cm s−1 from U0 = 10 cm s−1 and onwards

up to reaching a Fr∼1.5.425

In the purely linear experiments, the amplitude of the internal tide increases linearly with the in-

crease of the tidal forcing strength, as derived from theory. Interestingly, the quasi-linear internal

tide exhibits a limiting amplitude in all runs as the tidal forcing increases well above Fr = 1, an

unreported feature up to date. For weak forcing, the amplitude of the quasi-linear internal tides ap-430

proach the linear ones, especially for Fr� 1 as one would expect; the advective terms then become

very small. This pattern indicates that the decisive factor on the amplitude saturation of quasi-linear

internal tides lays on the advective terms, which are absent in the linear case.

Regarding the comparison between runs with different environmental parameters, we find the fol-435

lowing. In Fig. 2a the increase of stratification causes an earlier deviation between the amplitude

growth of the quasi-linear and linear cases, hence occurring at a lower Froude number for runs with

a higher stratification (c. f. runs A1, A2 and A3). The same effect is observed in Fig. 2b when the

height of the topography is increased. The higher the topography, the earlier that a deviation from

the linear case appears in the Froude number space (c. f. runs A1, B1 and B2). Lastly, no significant440

differences emerge regarding the rise of the quasi-linear departure in Fig. 2c, where the thickness of

the upper layer varies within the study cases (c. f. runs A1, C1 and C2). These results indicate that

the wave amplitude saturation, and hence the deviation from the linear case, becomes more impor-

tant as either the strength of the stratification or the height of the topography increase.

445

Although not shown, it is worth mentioning that the wavelength of the quasi-linear tides does not

deviate from the linear case in any of the settings of study and is independent of the strength of the

tidal forcing (and hence of the Froude number) and of the height of the topography. On the contrary,
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as predicted from linear theory for interfacial waves, a relative increase of g′ or H1 (with H1<H2

and D being constant) generates longer internal tides.450

The amplitude saturation described above is further illustrated in Fig. 3 for run A1, where snapshots

of leftward-propagating quasi-linear internal tides are shown for various forcing strengths (see leg-

end). This spatial view shows how the increase of the forcing transforms the wave from sinusoidal

to an asymmetric shape, indicative of the generation of higher harmonics, but furthermore the am-455

plitude becomes saturated.
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Fig. 3. Snapshots of the interfacial displacement of leftward propagating quasi-linear internal tides for run A1

(H1 = 30 m; Lp = 35.49 km). The amplitude saturation is evident as the tidal forcing is increased and the flow

becomes supercritical (see legend). The run time is 9 tidal periods.

Findings in this section open an interesting question which regards to whether solitons emerging

from disintegration of the quasi-linear internal tides may or may not be subjected to saturation am-

plitudes of the originating waves before they reach a limiting ‘table-top’ shape. For simplicity on460

answering the above question we focus in the next section on solving the full set of forced-MCC-f

equations only for runs A1, B1 and C1, which account for varying the height of the topography and

the thickness of the upper layer while preserving high the strength of the stratification. The latter

allows us to investigate the broadest range of wave amplitudes, as suggested by Fig. 2a.

465
5 Numerical experiments: Fully nonlinear internal tides and solitons

The main question to address is whether tidally generated solitons are indeed subjected to the wave

properties of the underlying quasi-linear internal tides, as we hypothesized in previous section, and

whether they adequate qualitativaly and quantitativaly to predictions from classical eKdV and MCC

theories.470
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5.1 Tide-generated ‘table-top’ solitons: Run A1

In Fig. 4a a spatial overview of leftward-propagating internal tides and solitons is shown after 9 tidal

periods of run time. The tidal forcing is fairly strong and leads to the generation of ‘table-top’ soli-

tons in a supercritical regime (Fr = 1.13, U0 = 90 cm s−1). In subsequent panels, a set of snapshots475

zooms in on the space domain of panel (a) to highlight the different stages of the nonlinear disinte-

gration of the internal tides.
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Fig. 4. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run A1 for a

supercritical regime (Fr = 1.13, U0 = 90 cm s−1). (a) Overview of leftward-propagating internal tides and

solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. Points Za (black dot), Zb (grey dot), Zc (black square) and Zd (grey square) are shown to

illustrate how the soliton amplitude, As, and width, Ls, are computed in this work (see the text in Sect. 5.1

for details). The run time is 9 tidal periods. For scaling purposes we recall that for run A1: H1=30 m and

Lp = 35.49 km.

At a first stage, panel (b), the internal tide splits up into two different groups of rank-ordered soli-

tons: a train of depressions on the leading edge; and a train of elevations, after the former packet,480

with initially smaller amplitudes. At a later stage, panel (c), the largest elevations have reached the

smaller depressions in the train and three leading solitons at the front present almost equal ampli-

tudes. Previous solitary wave packets, already propagating away from the generation area, are shown

in panels (d) and (e) and correspond to preceding disintegrated internal tides. The ‘table-top’ soliton

observed at the leading edge of every preceding internal tide emerged in all cases from the first of485
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the three solitons described previously in panel (c).

As the leading soliton evolves and reaches its maximum amplitude, it also broadens, as predicted

by soliton wave theory (Helfrich and Melville, 2006), in comparison with subsequent solitons of

smaller amplitude (Fig. 4d,e). The observed increase in the distance between the ‘table-top’ soliton490

and subsequent (smaller) solitons also indicates that, as expected from theory, the leading soliton

moves (phase speed) faster than solitons in the tail.
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Fig. 5. Wave evolution of leftward-propagating leading solitons in run A1 under different forcing strengths

(see legend). In all panels the x-axis indicates the run time and soliton age (in brackets) in tidal periods. The

(dimensionless) wave properties are: (a) soliton amplitude, As/H1; (b) soliton width, Ls/D; (c) instantaneous

Froude number, Fr′ = U/cp; and, (d) soliton phase speed, cs/cp. Note that we take cp to be negative (leftward

propagation) to keep consistency with the physical meaning of the different sign in Fr′. For scaling purposes

we recall that in run A1: H1 = 30 m, D = 100 m and cp = -79 cm s−1.

Because tidally generated solitons propagate through the evolving internal tides, z = 0 cannot be

used as a reference level to compute the amplitude down to the trough of the soliton (see Fig. 1495

and Fig. 4). Similarly, the soliton width cannot be measured taking z = 0 as a reference level. A

systematic criterion is required to adopt a suitable reference level which allows us to compute the

soliton amplitude, As, and width, Ls. Here we introduce the reference level Za, which for every

leftward-propagating soliton locates where the first spatial derivative of the interfacial displacement,

Z, approaches zero while being above a certain threshold. This grid-point indicates the location of500

the front of the leading soliton connecting with the tail of the preceding interfacial tide. Accordingly,

the soliton amplitude, As, is defined as the vertical distance between Za and the trough of the lead-

ing soliton, located at Zb (see, e. g., in Fig. 4c-e). The soliton width, Ls, is defined as the horizontal
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distance between Zc and Zd, which locate half-way of the vertical distance spanning As (see also,

e. g., in Fig. 4c-e). Lastly, the soliton phase speed, cs, is computed by subtracting the velocity of the505

(mimicked) tidal flow, U, to the velocity of the soliton embedded within the internal tide.

Using the above criteria Fig. 5 presents the wave evolution of leading solitons under different forc-

ing strengths (see legend) towards a fully developed stage. Contrary to what one might expect, the

amplitude of the leading solitons decrease during its evolution (Fig. 5a). This can be ascribed to510

their tide-generated nature. At an early stage, the disintegration of the internal tide leads at its front

to a large depression, and this subsequently evolves to a mature leading soliton propagating through

the tail of the preceding internal tide (see Fig. 4c-e).
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Fig. 6. Solitary wave solutions for mature leading solitons in run A1 from KdV (grey line), eKdV (black line)

and MCC (red line) theories compared to numerical solutions from the forced-MCC equations (colored dots

refer to the Froude number and strength of the tidal flow; see legend). (a) Soliton phase speed scaled to the

linear long-wave phase speed of baroclinic interfacial waves (cs/cp) vs. soliton amplitude scaled to the thickness

of the upper layer (−As/H1). (b) Soliton width scaled to the total water depth (Ls/D) vs. soliton amplitude

scaled to the thickness of the upper layer (−As/H1).

The soliton reaches its maximum amplitude slightly before the flow becomes critical (Fr = 0.88)515

and attains the ‘table-top’ form in the supercritical regime when forced with a stronger tidal flow

(Fr = 1.13). Unexpectedly, when the tidal forcing is increased even further, the soliton width starts

to decreases while keeping its maximum amplitude (c. f. Fig. 5a and b). Because of the nature of

classical eKdV and MCC theory, this feature could not rise before and it does indicate that limiting

factors related to the forcing may be acting.520

Generally speaking, we distinguish between two types of solitons regarding their time-scales of

growth (see Fig. 5a and b). First, the smaller and narrower solitons, generated in a subcritical regime

and which present a nearly constant shape quickly after their generation (Fr60.5). Second, the

larger and broader solitons, generated in nearly critical and supercritical regimes and which evolve525

over longer time-scales (Fr>0.88). We distinguish here three different states, which are indicated

19



with vertical dashed lines and labels in Fig. 5a and b. During State I emerging solitons evolve as

transient waves which broaden linearly until they reach a fully developed form. Then, solitons prop-

agate as mature waves, State II, which preserve their shape in time and, occasionally, may overtake

the preceding internal tide, State III, causing the oscillations observed in the width, amplitude and530

phase speed curves in Fig. 5a,b,d.

In agreement with the above description, the phase speed curves also reveal a clear distinction be-

tween the subcritical and critical/supercritical regimes (Fig. 5d). On the one hand, smaller solitons

present a nearly constant phase speed. They were generated with a small or moderate tidal forc-535

ing (subcritical flow). On the other hand, larger solitons present an oscillating phase speed which

increases over time. They were generated with a relatively strong tidal forcing (critical and super-

critical flow). The oscillation amplitude is in this latter case about 5% of its value and is the response

to a governing flow where the accelerating and decelerating phases of the soliton are imposed by the

favouring and opposing phases of the strong tidal flow. This is visible by comparison of the instan-540

taneous Froude number, Fr′, in Fig. 5c with the soliton phase speed in Fig. 5d. Crucial moments

occur when Fr′ =−1 and Fr′ <−1. During the former, solitons cannot propagate against the tidal

flow and remain stationary. During the latter, leftward-propagating solitons experience a rightward

advection driven by the greater tidal flow.

545

Lastly, we compare in Fig. 6 the wave properties of mature forced-MCC solitons3 with KdV-type

and MCC soliton solutions (Kakutani and Yamasaki, 1978; Ostrovsky and Stepanyants, 1989; Miy-

ata, 1985, 1988; Choi and Camassa, 1999; Helfrich and Melville, 2006; Gerkema and Zimmerman,

2008). To this aim the soliton width for KdV-type and MCC theories is computed following the

same procedure as for the forced-MCC solitons, i. e. we use points Zc and Zd (see Fig. 4c-e).550

As expected, small tide-generated solitons approach the linear long-wave phase speed for baroclinic

interfacial waves (cs/cp ≈ 1), while larger tide-generated solitons increase their phase speed fol-

lowing a curve as eKdV and MCC solutions do. However, because tide-generated solitons ride on

internal tides their wave properties are not simply the response to a settled two-layer fluid system,555

as it occurs for eKdV and MCC solitons, but they are also subjected to the forcing of the system

and to a variable background flow (the internal tide). We suggest the above scenario might account

for the slower phase speeds of the forced-MCC solitons when compared to their eKdV and MCC

counterparts. Interestingly, this difference slightly decreases as the solitons grow (c. f. the length of

the colored dashed lines in Fig. 6a).560

As regards to the relationship between the soliton width and amplitude, tide-generated solitons fol-

3These wave properties correspond to solitons of State II (mature solitons) after time averaging over a tidal cycle.
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low a parallel behaviour to that predicted by eKdV and MCC soliton solutions, broadening as they

approach their maximum amplitude. By this broadening, strongly nonlinear solitons develop the

‘table-top’ shape, although forced-MCC equations generate some larger and narrower solitons than565

their eKdV and MCC counterparts (Fig. 6b).

5.2 Tide-generated growth-limited solitons: Runs B1 and C1
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Fig. 7. Wave evolution of leftward-propagating leading solitons in run B1 under different forcing strengths

(see legend). In all panels the x-axis indicates the run time and soliton age (in brackets) in tidal periods. The

(dimensionless) wave properties are: (a) soliton amplitude, As/H1; (b) soliton width, Ls/D; (c) instantaneous

Froude number, Fr′ = U/cp; and, (d) soliton phase speed, cs/cp. Note that we take cp to be negative (leftward

propagation) to keep consistency with the physical meaning of the different sign in Fr′. For scaling purposes

we recall that in run B1: H1=30 m, D = 100 m and cp = -79 cm s−1.

We use for runs B1 and C1 a similar range of Froude number as for run A1, however they present

a more weakly nonlinear regime where a striking feature emerges. Leading solitons exhibit a maxi-

mum amplitude which is not related to a ‘table-top’ form and which cannot be exceeded by further570

increasing the tidal forcing (see Figs. 7a and 8a). They reach this limiting amplitude in both cases

when the flow is supercritical (run B1: Fr = 1.26; and, run C1: Fr = 1.33). More importantly,

above this limit, the strengthening of the tidal forcing leads to a narrowing and amplitude decrease

of the leading solitons (Figs. 7a,b and 8a,b). We recall here that the decrease of the soliton width

after reaching its maximum is also observed when the tidal forcing leading to limiting solitons in575

run A1 is increased (see Figs. 5a,b).
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Fig. 8. Same as Figure 7 but for run C1. For scaling purposes we recall that in run C1: H1=25 m, D = 100 m

and cp = -75 cm s−1.

The above results support that tidally generated solitons may be conditioned in the real ocean to

a limited growth which is beyond the classical view of KdV and MCC-type of models and which

lays on the saturation of the underlying quasi-linear internal tide as the tidal forcing increases (see580

Sect. 4).

According to their phase speed, and in agreement with findings from run A1, two types of leading

solitons also emerge in runs B1 and C1. The larger nonlinear solitons (critical and supercritical

regime), which exhibit an oscillating speed in phase with the tidal flow and which increases over585

time. And, the smaller nonlinear solitons (subcritical regime), which exhibit a nearly constant phase

speed (Figs. 7a,c,d and 8a,c,d).

From Figs. 9 and 10, we gain further insights on the different stages by which internal tides gen-

erate saturated leading solitons in runs B1 (Fr =1.26, U0 = 100 cm s−1) and C1 (Fr =1.33,590

U0 = 100 cm s−1). By contrast to run A1 (Fig. 4), here the internal tides do not split up into

two different groups of solitons but disintegrate into solitary wave packets of rank-ordered depres-

sions. Also, the ‘table-top’ solitary waves that lead the long-life internal tides in run A1 (Fig. 4d,e)

are not present in runs B1 and C1, as previously discussed from the wave property analyses. We
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Fig. 9. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run B1 for a

supercritical regime (Fr = 1.26, U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides

and solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. The run time is 9 tidal periods. For scaling purposes we recall that for run B1: H1=30 m and

Lp = 35.49 km.

attribute this absence to the lower height of the topography in run B1 and the decrease of the upper595

layer thickness in run C1.

On the one hand, the smaller topography generates quasi-linear internal tides which are smaller than

those in run A1 (see Fig. 2). With all other environmental parameters being the same, the smaller

internal tide in run B1 prescribes then a more weakly nonlinear disintegration. On the other hand,600

the thinnerH1 in run C1 requires a maximum amplitude to attain the ‘table-top’ form which is larger

than for runs A1 and B1 (see Am/H1 in Table 1). In this context, the smaller quasi-linear internal

tides generated in run C1, by comparison with run A1 (see Fig. 2c), do not lead to strongly nonlinear

disintegration when the full forced-MCC equations are solved; not even in the supercritical regime

of Fr>1. Indeed, although both run A1 and run C1 generate leading solitons of early stage with605

a relatively similar amplitude, the latter run exhibits mature leading solitons which are significantly

smaller and narrower (c. f., Figs. 4d,e and 10d,e), suggesting that dispersive effects might overcome

nonlinearities more noticeably when the upper layer is thinner.

When compared with solitary wave solutions from eKdV and MCC theories, the growth-limiting ef-610
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Fig. 10. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run C1 for a

supercritical regime (Fr = 1.33, U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides

and solitons. (b-e) Set of spatial zooms from (a) showing different stages of the nonlinear disintegration of the

internal tides. The run time is 9 tidal periods. For scaling purposes we recall that for run C1: H1=25 m and

Lp = 33.54 km.

fect of the tidal forcing becomes a remarkable feature of forced-MCC solitons generated in runs B1

and C1 since they reach a limiting amplitude but do not attain a ‘table-top’ form (Fig. 11b,d). In this

context it is also worth while noting that in run B1 saturated solitons present amplitudes larger than

those predicted by eKdV and MCC theories whereas in run C1 saturated solitons present amplitudes

well below those predicted by eKdV and MCC theories. Counterintuitively, it is also evident from615

both runs B1 and C1 that largest solitons decrease their amplitude and width as the tidal forcing

increases above that which generates the saturated solitons, as previously noted from Figs. 7 and 8.

Regarding the relationship between the soliton phase speed and amplitude, both runs B1 and C1

follow a similar curve to that predicted by eKdV and MCC theories (Fig. 11a,c), although the phase620

speed of forced-MCC solutions is slower in all cases, as it occurred for run A1 (see Fig. 6a). Also

similar to run A1, the deviation in phase speed between MCC and forced-MCC solutions is observed

to decrease as the solitons grow (c. f. the length of the colored dashed lines in Fig. 11a,c), suggesting

that small solitons might be more subjected to effects related to the forcing system.

625
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Fig. 11. Solitary wave solutions for mature leading solitons in run B1 (top row) and run C1 (bottom row) from

KdV (grey line), eKdV (black line) and MCC (red line) theories compared to numerical solutions from the

forced-MCC equations (colored dots refer to the Froude number and strength of the tidal flow; see legend). (a,

c) Soliton phase speed scaled to the linear long-wave phase speed of baroclinic interfacial waves (cs/cp) vs.

soliton amplitude scaled to the thickness of the upper layer (−As/H1). (b, d) Soliton width scaled to the total

water depth (Ls/D) vs. soliton amplitude scaled to the thickness of the upper layer (−As/H1).

5.3 Effects of the Earth’s rotation: Runs A1, B1 and C1

In Fig. 12 the effects of the Earth’s rotation on the wave evolution of fully nonlinear tide-generated

solitons are shown for runs A1, B1 and C1. The different colored lines refer to: rotationless case

(black line); θ = 15◦, µp = 0.27 (green line); θ = 30◦, µp = 0.52 (blue line); and, θ = 45◦, µp = 0.73

(red line).630
In agreement with previous studies we observe in all panels that an increase of the latitude leads to

larger dispersive effects due to Coriolis dispersion, which prevents the nonlinear internal tide from

disintegrating into strongly nonlinear solitons (Gerkema and Zimmerman, 1995; Gerkema, 1996).

This causes the long internal waves to envelope less solitary waves. Also, the internal tides are635

shown to travel faster as rotation becomes stronger due to rotation increases the phase speed of the

linear internal tide, cf (c2f = c20 + f2/k2, with k being the wavelength of the internal tide). Although

the soliton speeds themselves are only very weakly affected by rotation, they appear traveling faster

since they are embedded in the internal tide from which they emerge. As a consequence, leading

solitons overtake more quickly preceding internal tides.640
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6 Discussion and conclusions

We investigate limiting amplitudes of internal tides and solitons using a generalization of the fully

nonlinear MCC equations (Miyata, 1985, 1988; Choi and Camassa, 1999), extended here with forc-

ing terms and Coriolis effects (forced-MCC-f ). The focus is on the effects of adding a forcing,645

which represents a novelty in the existing literature and provides a closer view to an ocean-like sce-

nario. The mechanism for internal tide generation is represented by a horizontally oscillating sill,

mimicking a barotropic tidal flow over topography. Solitons are generated by a disintegration of the

internal tide.

650

The application of an oscillating topography is not completely equivalent to the oceanic case of a

tidal flow over a topography at rest. For this reason we have restricted our analyses to a parameter

space where a semi-equivalence between both forcing systems was demonstrated (Appendix C).

This agreement encourages us to conclude that our findings are not an artifact caused by the use of

a mimicked barotropic tidal flow. Of course the findings presented here cannot describe the whole655

variety of the specific oceanic conditions. However, we believe that this study improves our under-

standing on the generation and evolution of tide-generated solitons.

Numerical solutions show that strongly nonlinear tide-generated solitons attain in some cases a lim-

iting table-shaped form, in agreement with classical soliton theory. However, results also reveal660

that tide-generated solitons may alternatively be limited by saturation of the underlying quasi-linear

internal tide. In the purely linear system the amplitude of the internal tide increases linearly with

the strength of the barotropic tidal flow but as the forcing becomes stronger advective terms be-

come stronger too and cannot be neglected. This is accounted for in the quasi-linear system, where

products of barotropic and baroclinic fields in the advective terms are retained while still ignoring665

interactions of the baroclinic field with itself. As a result, a saturation in the amplitude of the internal

tide occurs, generally, when the tidal forcing becomes supercritical; then, a further increase of the

tidal flow does not produce a larger internal tide. This effect seems to have passed unnoticed in pre-

vious studies, but turns out to be a key factor in the subsequent disintegration of the internal tide into

solitons. It implies that when one includes the genuinely nonlinear effects, i. e. products of baro-670

clinic terms, resulting solitons may stay well below their formal limiting amplitude, no matter how

strong the forcing. Interestingly, an increase of the tidal forcing above that which generates table-

shaped solitons, or above that which simply generates solitons attaining a limited-growth, causes first

its progressive narrowing and, subsequently, an amplitude decrease. The upshot is that increasing

the tidal forcing above a certain strength does not lead to larger solitons but, counterintuitively, to675

smaller ones.

Motivated by the above finding we performed analogous runs using the full set of weakly nonlin-
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ear equations derived in Gerkema (1996). Because these equations are built around the framework

of the classical KdV theory and Klein-Gordon equations, one should not expect that the amplitude680

saturation of solitons could occur. Nevertheless, results (not shown) demonstrate that both the quasi-

linear internal tides and weakly nonlinear tide-generated solitons also exhibit a limiting amplitude.

Noting that this model works with an actual tidal flow over a topography at rest, it seems reasonable

to argue that the limiting factor is then related to the addition of a tidal forcing. This gives support

to conclude that findings from the forced-MCC-f equations represent an insightful extension to the685

fully nonlinear frame of work where tide-generated solitons may attain limiting amplitudes with or

without reaching a ‘table-top’ form, then subjected to a saturation amplitude of the underlying inter-

nal tide prior to its disintegration into solitary waves.

Another departure from classical theories is that strongly nonlinear tide-generated solitons may ex-690

hibit larger maximum amplitudes than predicted from eKdV and MCC solutions, while soliton phase

speeds are always smaller. We attribute these differences to the fact that tide-generated solitons ride

on internal tides and, hence, their wave properties are not simply the response to a settled two-layer

fluid system, as it occurs for eKdV and MCC solitons, but are also subjected to the forcing of the sys-

tem and to a variable background flow and internal displacement imposed by the internal tide itself.695

In this context, numerical results also show that solitons propagate freely from the source only when

the tidal flow is small (subcritical flow), while an increase of the tidal forcing generates accelerating

and decelerating phases of the soliton phase speed imposed by the favouring and opposing phases of

the strong tidal flow (critical and supercritical flow). Lastly, it is also worth while mentioning that in

all cases of study the time-scale of growth for large solitons (critical and supercritical flow) appears700

to be longer than for small solitons (subcritical flow), which abandon its transient form sooner.

In relation to the rotational cases, and in agreement with previous studies (Gerkema and Zimmer-

man, 1995; Gerkema, 1996), numerical results from the forced-MCC-f equations show that when

rotation becomes stronger, the dispersive effect of the Coriolis force becomes stronger too and over-705

comes nonlinearities, thus preventing the internal tide from disintegration into strongly nonlinear

solitons.

Before concluding we must note, as Ostrovsky and Grue (2003) previously did, that fully nonlinear,

weakly nonhydrostatic models entail a paradox to the effect that strongly nonlinear solitons appear710

from a set of equations that have strong nonlinearity but weak dispersion, while the very existence

of solitons presume a balance between the two. In our case, the MCC-type model is used, involv-

ing only the lowest-order nonhydrostatic dispersive terms. Despite the small parameter featuring in

the nonhydrostatic terms, they may actually become large in practice (i.e., in the numerical runs)

if internal wave profiles are steepening, hence contradicting the original assumption. Indeed, there715

28



is no guarantee that the higher-order dispersive terms, which were dropped from these equations,

would always remain small. A suggestion for future work is, therefore, to check our results against

a numerical computation with a fully nonlinear nonhydrostatic set of equations.
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Appendix A

Numerical strategy725

We define a grid in time and space for discretization of the various derivatives of the system. Then,

tn = n∆t and xj = j∆x

are introduced for integer values of n (time-step) and j (spatial-step), where ∆t and ∆x are the mag-

nitude of the steps. Time and spatial dependent variables are described as, e.g. y(tn,xj), at any time

and position. Thus, ynj means the value of the variable y at the current time and spatial-step, n and730

j, respectively. And, consequently, n+ 1 represents the ‘next time-step’, and so n− 1 the ‘previous

time-step’, what applies analogously for j in the space grid.

The various derivatives in the model are discretized with centered difference approximations (Dur-

ran, 1999) as follows735

yt(tn,xj) =̂
yn+1
j − ynj

∆t
, (A1)

yx(tn,xj) =̂
ynj+1− ynj

∆t
, (A2)

740

yxx(tn,xj) =̂
ynj+1− 2ynj + ynj−1

(∆x)2
, (A3)

yxt(tn,xj) =̂
yn+1
j+1 − ynj+1− (yn+1

j−1 − ynj−1)

2∆x∆t
, (A4)

yxxt(tn,xj) =̂
yn+1
j+1 − ynj+1− 2(yn+1

j − ynj ) + (yn+1
j−1 − ynj−1)

(∆x)2∆t
. (A5)745

(A6)

Initiatilly the system is at rest with mean horizontal velocities, ūi and v̄i, and displacement of the

interface, ζ, being all zero at the first two time levels (n− 1, n), what represent the initialization
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fields. The thickness of the upper, h1, and lower layer, h2, together with the topography, h(X), draw

the scenario where the two-layer system runs. At the next time-step (n+ 1), we start to move the750

topography to the right creating the effect of a tidal motion flowing to the left. For given U , i. e.

scaled velocity of moving topography (Eq. (47)), and time-step, the excursion of the topography is

a known quantity which is used to shift (first, second and third) spatial derivatives of h(X) at every

new time-step.

755

The time derivatives of the v̄i–momentum and continuity equations (51), (52) and (53) are solved

numerically using the third-order Adams-Bashforth approximation (Durran, 1999), for which v̄1, v̄2

and ζ at the next time-step (n+ 1), and at all j positions, are determined in terms of the known

quantities at the previous two time-steps (n− 1, n).

760

However, solving numerically ū1 from Eq. (49) is not straightforward as we deal with three different

time derivatives of ū1 accompanied with space-time-dependent coefficients. Thus, after collecting

the various time derivatives involving ū1 on one side and remaining terms on the other side, the

horizontal momentum equation of ū1 evolves to a generic expression in the form of

a ū1,t + b ū1,xt + c ū1,xxt = Y (tn,xj) (A7)765

where a, b and c collect spatial derivatives of space-time dependent variables (ζ(x,t) and h(x,t));

and, Y (tn,xj) represents a collection of known quantities whose values may be dependent on

time and/or space. In the remainder, we describe the numerical strategy we follow to solve this

problem.space-time-dependent partial differential equations. If now we operate the time derivative

as a common factor in the left-hand side, the result leads to770

(a ū1 + b ū1,x + c ū1,xx)t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A8)

what helps us to introduce a new variable, Ū1, which groups coefficients a, b, c and time derivatives

of ū1 and turns our problem into a numerically solvable expression in the form of

U1,t = Y (tn,xj) + (at ū1 + bt ū1,x + ct ū1,xx) (A9)

It is important to recall here that Y (tn,xj) and the spatial derivatives of ū1 are both evaluated at the775

current time-step (n); and, the time derivatives of a, b and c, which involve values of ζ at the current

(n) and new time-step (n+ 1), have been previously achivied with Eq. (53) via Adams-Bashforth

approximation. This allows to rewrite the above expression as

U1,t =R(tn,xj) (A10)

by grouping all known quantities on the right-hand side under the variable R(tn,xj). Next we need780

to discretize the time derivative of U1 but before doing that, we work out and discretize its spatial
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derivatives using Eqs. (A2) and (A3), what results in

U1 =
(
aj −

2 cj
2∆x

)
ū1j +

( −bj
2∆x

+
cj

(∆x)2

)
ū1j−1 +

( bj
2∆x

−
cj

(∆x)2

)
ū1j+1

which we rewrite by introducing factors d, e and f as follows

U1j = dj u1j + ej u1j−1 + fj u1j+1 . (A11)785

If we now discretize the time derivative of U1 and apply Adams-Bashftorth, we obtain a numerically

solvable expression for U1 at the next time step, which reads

U1
n+1

j = U1
n

j +
∆t

12

(
23Rnj − 16Rn−1j + 5Rn−2j

)
, (A12)

where U1
n+1

j actually includes

U1
n+1

j = dn+1
j ū1

n+1
j + en+1

j ū1
n+1
j−1 + fn+1

j ū1
n+1
j+1 . (A13)790

To close our system we still need to obtain ū1n+1
j for all j terms. To that end, the equation above

is more complicated to solve and gives rise to implicit equations, as we have not only the unknown

ū1
n+1
j , but also ū1n+1

j−1 and ū1n+1
j+1 , which come from the mixed second and third derivatives of u1

in Eq. (A7). However, this is a well-known problem that can be solved using the tridiagonal matrix

algorithm (TDMA), also known as the Thomas algorithm (Logan, 1987).795

Following the numerical strategy described above, the model resolution is closed for every new time

level n+ 1 and the model equations can be solved successfully.

The choice of the space-time steps ∆t and ∆x is based on two main requirements. Firstly, the reso-800

lution in x (∆x) must be sufficiently fine to resolve third-derivative terms and ensure that any short,

solitary-like waves are properly resolved. Nevertheless, dealing with equivalent equations to Miyata

(1988) and Choi and Camassa (1999), as we do in our model, Kelvin-Helmholtz instabilities are

not filtered out. In this regard, Jo and Choi (2002) found that solitary waves of sufficient amplitude

could be unstable at high wave numbers to Kelvin-Helmholtz instability. Thus, if the grid resolu-805

tion is too fine, unstable short waves will emerge near the wave crest and ultimately overwhelm the

calculations and explode numerically (Jo and Choi, 2002; Helfrich and Melville, 2006; Helfrich and

Grimshaw, 2008). In some cases, the instability can be controlled by filtering out wavenumbers

above a threshold (W. Choi 2007, personal communication cited in Helfrich and Grimshaw (2008)).

For our numerical experiments we consider a ∆x course enough to prevent the problem. A second810

condition follows from the requirement of stability. Then, for a given spatial step one may take the

Courant-Friedrichs-Lewy condition for the linearized equations as an indication of the required time

step. The criterion implies that ∆x/∆t should be larger than the phase speed of the wave; taking

special care where the advection by the barotropic tidal flow (here mimicked with the moving to-

pography) should be added to the phase speed to apply the criterion properly (Gerkema, 1994).815
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For the simulations we present, it was not needed to filter out wavenumbers above a threshold to

control Kelvin-Helmholtz instabilities as we designed the space-time grid to avoid this problem

following previous conditions. However, in some cases, specially in the simulations where the forc-

ing was fairly strong, an additional trick was needed to retain stability around the generation area820

(Gerkema, 1994). In those cases averages were taken in the vicinity of the top of the ridge (around

the steepest part of the topography), where the instabilities arised. At one particular point (xj , tn)

in space-time, new values of ūi, v̄i and ζ were calculated by taking the average of the old values at

xj−1, xj and xj+1, and subsequently in time between tn and tn−1. The disturbance provoked by

this procedure was tested and found to be a minor effect only, as it was only applied over the closest825

region to the top of the topography.

Appendix B

B1 forced-MCC-f model equations

In Appendix A, the numerical scheme used to solve the model is explained using a generic expression830

(A7) for the ui horizontal momentum equation (49). Here we present the full set of nondimensional

forced-equations actually used for the numerical solving of the model. The procedure to that end is

as follows.

Firstly, all terms of the ui horizontal momentum equation (49) are worked out and grouped according835

to their physical effects (i. e. linear, nonlinear and dispersive effects from the upper and lower layer,

and from topography), leaving unkown quantities involving time derivatives of u1 on the left-hand

side. The resulting expression (31) resembles (A7), where coefficients a, b and c involve derivatives

of space-time dependent variables and Y (tn,xj) is represented here by the sum of all terms on the

right-hand side,840

a ū1,t + b ū1,xt + c ū1,xxt = linear+nonlinear+ dispersive1 + dispersive2 + dispersivetopo

+δ2

[
(η2hx− η2ζx)φx−

η22
3
φxx +φ(

η2
2
hxx + ζxhx)

]
,

(B1)

ū2 =
Uh− η1ū1

η2
, (50)845

v̄1,t =−µū1− ū1v̄1,x +O(δ2) , (51)
850

v̄2,t =−µū2− ū2v̄2,x +O(δ2) , (52)
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ζt = (h1− ζ)ū1,x− ū1ζx . (53)855

with

φ=
1

η2

[
hUt +U2hx + (ū1− ū2)(η1ū1,x− ū1ζx) + ū2Uhx

]
(B2)

a(ζ,h) = 1 +
δη2

1−h

[
(η2hx − η2ζx)(η1/η2)x −

η22
3

(η1/η2)xx +
η1
η2

(η2
2
hxx + ζxhx

)]
, (B3)

860

b(ζ,h) = δ
(

1− η1
1−h

)
η1ζx +

δη2
1−h

[η1
η2

(η2hx − η2ζx)− 2η22
3

(η1/η2)x
]
, (B4)

c(ζ,h) = −δ
(

1− η1
1−h

)η21
3

− δη2
(1−h)

η1η2
3

, (B5)865

linear = µv̄1 + ζx +
1

1−h

[
hUt +U2hx + ū2ht −µ(η1v̄1 + η2v̄2)− η1ζx

]
, (B6)

870

nonlinear = −ū1ū1,x +
1

1−h

[
(ū1 − ū2)ζt + ū1η1ū1,x + ū2η2ū2,x

]
, (B7)

dispersive1 = δ
(

1− η1
1−h

)[
− η1ζx(ū1ū1,xx − (ū1,x)2) +

η21
3

(ū1ū1,xxx − ū1,xū1,xx)
]
, (B8)

875

dispersive2 =
δη2

1−h

[
− η2ζx(ū2ū2,xx − (ū2,x)2)− η22

3
(ū2ū2,xxx − ū2,xū2,xx)

]
, (B9)

dispersivetopo =
δη2

(1−h)

[
ū2hx(η2ū2,xx + ζxū2,x)880

+
η2
2

(Uthxx +U2hxxx + 2Uū2,xhxx + 2ū2Uhxxx + 3ū2ū2,xhxx + ū2
2hxxx)

+ζx(Uthx +U2hxx + 2ū2Uhxx + ū2
2hxx)

]
. (B10)

B2 Linear and quasi-linear forced-MCC-f model equations

The quasi-linear forced-MCC-f model follows from neglecting the purely nonlinear terms and weakly nonhy-885

drostatic dispersive terms in (B1) and (50)–(53). The equations are linear with regard to the baroclinic fields, but

the coefficients become time-dependent due to barotropic factors (which are prescribed) and, therefore, higher

harmonics will be generated when the forcing is increased. Then, the quasi-linear forced-MCC-f equations

read,

ū1,t = µv̄1 + ζx +
1

1−h

[
hUt +U2hx + ū2ht −µ(h1v̄1 + ((h2 −h)v̄2)−h1ζx

]
(B11)890

ū2 =
Uh−h1ū1

h2 −h
, (B12)
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895

v̄1,t = −µū1 , (B13)

v̄2,t = −µū2 , (B14)900

ζt = h1ū1,x . (B15)

We notice that the linear runs were actually done somewhat indirectly by taking the quasi-linear forced-MCC-f905

equations above, (B11)–(B15), and reducing the forcing by a factor of 100 since the quasi-linear terms cannot

be removed explicitly in this model setting without also removing the forcing. Afterwards we enhance the

amplitude in the plots accordingly. By reducing the forcing, we effectively enter the linear regime.

Appendix C910

Oscillating topography vs. tidal flow

A Galilean transformation involves two frames of reference which move with constant and rectilinear speed

with respect to each another. Hence, observations made in one frame can be converted to another, as physical

laws are identical. However, our oscillating topography is not an inertial frame since it is accelerated with re-

spect to a situation where the topography is at rest (as in the ocean). It is, therefore, not evident that the results915

from the two frames are equivalent.

We use the generation model of weakly nonlinear, weakly nonhydrostatic interfacial waves derived in Gerkema

(1996) (G1996), which works with tidal motion over a fixed topography, as a benchmark for testing the impact

of our ‘non-inertial’ frame of reference. If we compare interfacial waves generated from the nonlinear version920

of both models, differences are expected to arise from the fact that forced-MCC equations are fully nonlinear.

For this reason we restrict the comparison to the linear and quasi-nonlinear model versions. If the results be-

tween the models turn out to be similar, it thus seems reasonable to accept that within the parameter space of

study we can compare our present setting to that in the ocean setting.

925

In Fig. C.1, interfacial waves generated from both models are presented for various numerical experiments

under a fairly strong forcing, i. e. when both models may be expected to deviate more noticeably from each

other. Our interest focus then on the upper limit of the supercritical regime (Fr>1) that we can reach while

preserving a good agreement between both generation mechanisms. The different settings in Fig. C.1 differ

in the strength of stratification from top to bottom panels, while the thickness of the upper and lower layer930

(H1 = 30 m, H2 = 70 m) and the height and width of the sill are kept fixed (HT = 40 m and HL = 10 km in

Eq. 54).

34



Results from Fig. C.1 indicate that in all cases a close correspondence exists between numerical solutions

from G1996 (gray line) and the forced-MCC equations (black line), suggesting only a minor impact of the935

non-inertial nature of our frame of reference when reaching up to a Fr∼1.5. These results encourage us to

approach in our study the strength (velocity amplitude) of the oscillating topography as the ‘strength of the tidal

flow’ within the parameter space of study.
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Fig. C.1. Linear (left panels) and quasi-linear (right panels) interfacial waves generated via a tidal flow over

a sill from the model equations derived in (Gerkema, 1996) (grey line) and via a horizontally oscillating sill

from the model equations derived in this study (black line). The Froude number and corresponding strength

of the (mimicked) tidal flow are indicated in the upper-right corner of each panel. For scaling purposes one

must note that the wavelength of the linear long-wave interfacial wave, Lp, varies from top to bottom panels

as: Lp = 35.5 km (g′ = 0.03 m s−1) in (a, b); Lp = 29 km (g′ = 0.02 m s−1) in (c, d); and, Lp = 20.5 km

(g′ = 0.01 m s−1) in (e, f). The run time is 9 tidal periods.
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