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This paper discusses the derivation and then numerical solutions of a fully-nonlinear,
weakly-dispersive model for internal tides and solitary-like waves in two-layer stratifica-
tions. The model is an extension of the Miyata-Choi-Camassa theory to include rotation
and variable topography. While the effects of rotation have previously been studied, the
inclusion of variable topography, and forcing of the internal tide by moving topography
is new. The authors find that increasing forcing (measured by the maximum speed of the
oscillating topography) leads to a maximum amplitude of the radiated internal tide and
that further increasing the forcing results in a reduction in radiated amplitude. This is
interesting and counter-intuitive result is attributed to the generation of higher harmon-
ics with increasing forcing. Overall the paper contains useful (e.g. the derivation of the
model) and interesting results and will be of some interest to the community. However,
there are issues with work as presented that need to be addressed. These are addressed
in the comments below.

1. I am not convinced that the model requires the introduction of a moving topography.
The authors claim they need to do this to avoid ‘nonlinearities in the barotropic flow’
(line 46). However, they impose a rigid lid and in doing so they can replace A(t) in their
equation (48) with Q(t) and set ht = 0. (integrate (46) with ht = 0.) Here Q(t) is a
specified, externally imposed barotropic flux. Perhaps this will complicate the equations,
but it is possible.

As the reviewer already indicates, introducing a barotropic flow in this setting compli-
cates the equations; indeed, the barotropic flow itself would become part of the problem.
The point is that one cannot impose a simple barotropic flow in a way that is consistent
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with the fully nonlinear equations; a barotropic flow would here involve higher harmon-
ics, generated by advective terms like UUx (U the barotropic flow). In other words,
one would actually have to solve the barotropic flow from the fully nonlinear equations.
Since we are not primarily interested in any intricacies of the barotropic flow, the easier
road is here to avoid the problem altogether and prescribe an oscillating topography.

2. In doing what is suggested above, the radiated tides will then be subject to advection
by the imposed barotropic flow. This may change the results significantly, especially
since they are imposing barotropic flows of order 1m/s in total depths of 100m and the
tides and internal waves have speeds of this order. It would certainly call into question
the near equivalence of the moving topography and correct barotropic forcing reference
frames.

We understand the referee’s initial concern in this regard; nevertheless, we consider we
have been conservative enough to restrict our study to a parameter space where a semi-
equivalence between two different generation models has been tested on the generation
of the linear and quasi-linear internal tides (Fig. 2 of the submitted manuscript in the
‘Discussion Forum’). If a significant departure between the mimicked tidal flow and
the use of an actual tidal flow would exist, it should be then noticeable in the above
model-comparison, especially over the top of the oscillating topography; but this was
not the case. Far from the sill, the bottom is flat and at rest so it is not expected that
the ‘non-inertial’ frame causes any artifact once the internal tide has been generated and
propagates.

Some of the main findings of our study are that quasi-linear tides become saturated as
the tidal forcing is increased and that, consequently, leading solitons of the disintegrated
internal tides may be also subjected to a limiting amplitude besides that predicted by
eKdV and MCC theories. For completeness, and as a double-check, we have tested these
findings with the weakly nonlinear model derived in Gerkema (1996), which works with
an actual tidal flow over topography. We don’t show in this document the full analyses
but just a hint of each of them.

Fig. I shows the amplitude saturation of quasi-linear internal tides as the tidal forcing,
cT , is increased. As the flow becomes supercritical1(Fr>1), a further increase of cT does
not generate larger internal tides. This agrees well with our findings from the quasi-
linearized version of the forced-MCC equations.

In Fig. II we solve the full set of weakly nonlinear equations derived in Gerkema (1996).
Results show how the saturation amplitude of the quasi-linear internal tide, as shown
in Fig. I, affects the growth of the leading solitons by also limiting its maximum am-

1To characterize the hydraulic state where internal waves propagate we use the Froude number calcu-
lated as Fr = cT

cp
, where the strength of the mimicked tidal flow acting as external forcing, cT , is

confronted to the linear long-wave phase speed for interfacial waves, cp.
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plitude. The Gerkema (1996) model is built around the weakly nonlinear framework of
the classical KdV theory and Klein-Gordon equations, where the amplitude saturation
of solitons does not occur. However, Fig. II shows that tide-generated solitons exhibit a
limiting amplitude even in the weakly nonlinear regime. Noting this it seems reasonable
to argue that the limiting factor is then related to the addition of a tidal forcing.

The above results give support to conclude that findings from the forced-MCC-f equa-
tions do not lie on an artifact of the oscillating topography and represent an insightful
extension to the fully nonlinear frame of work where tide-generated solitons may attain
limiting amplitudes even without reaching a ‘table-top’ shape, then also subjected to
a saturation amplitude of the underlying internal tide prior to its disintegration into
solitary waves.

3. The authors discuss a ‘quasi-nonlinear’ version of the model (see line37). However,
they never explicitly show the resulting equations, or the precise terms in (41) and (42)
that are ignored in this approximation. Further, they never make much of a case as
to why one should even explore this aspect. What precisely is learned from this part
of the work? How does one connect it to other, mathematically (e.g. asymptotically)
consistent models such as the weakly-nonlinear version of (49)-(53) (e.g., the Gerkema
and Zimmerman (1995) model). I don’t see the value of this part of the analysis.

In a revised version we will explain more explicitly the distinction between the different
set of equations and show in an additional Appendix how the (quasi)-linearization of the
forced-MCC-f equations was performed. Also, we will re-name the ‘quasi-nonlinear case’
as ‘quasi-linear case’ because we understand that the former name has led to confusion
when we discussed the physical interpretations and findings.

For both the forced-MCC-f and Gerkema (1996) models, the quasi-linear case involves
neglecting the baroclinic interactions but retaining the nonlinear terms involving a
combination of barotropic and baroclinic fields. The equations are then still linear
with regard to the baroclinic fields, but the coefficients become time-dependent due to
barotropic factors (which are prescribed), so that higher harmonics will be generated.
Hence one should not expect the quasi-linear case to be close to the eKdV case on show-
ing saturated interfacial waves.

The above feature is argued in our study to be the most likely factor limiting the growth
of leading solitons from the already limited quasi-linear internal tide (besides the soliton
saturation predicted by eKdV and MCC theories). This finding is the reason why we
find insightful and valuable to start our study on fully nonlinear tide-generated solitons
from the generation of the internal tide by which the formers will raise. In a revised
version we will make this point more clear as we consider crucial to keep the analyses
on the quasi-linear internal tides.

4. I found the discussion of the numerical experiments very difficult to follow. I was
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forced to repeatedly go back and forth between Table on and the figures. This was also
compounded by the use of dimensional variables. I think that they could simplify the
discussion if things are discussed in terms of the governing nondimensional parameters.
For example, variations of the reduced gravity g′ can be subsumed into a variable relat-
ing the timescale of the forcing to the propagation timescale H/c0, where c0 is the linear
long wave phase speed. There are of course, other choices, but use of non-dimensional
variables should lead to a more compact discussion and comparison of the cases.

In a revised version the discussion of the results will be held using the governing nondi-
mensional variables and the table listing the runs will be presented in a more clear and
simplified manner.

5. The authors claim that the appearance of the saturation in the amplitude of the
radiated tide with forcing strength is due to emergence of higher harmonics. While this
could be true they never demonstrate it. Furthermore, the emergence of higher harmonic
is an indication that the radiated internal tide is itself nonlinear. They might consider
that the increased nonlinearity of the radiated tide itself is important. For example,
Gerkema and Zimmerman (1995) and Li and Farmer (2011, JPO) discuss the role of
weakly-nonlinear internal tide solutions as have Helfrich and Grimshaw (2008) for the
fully-nonlinear case considered here. To simply say that higher harmonics is the cause
of the maximal response seems to miss the deeper issue. Also, they never show that the
same maximal amplitude appears in the full set (49)-(53).

We actually think we conclusively demonstrated that the saturation of the amplitude is
related to the generation of higher harmonics; this is the very reason why we considered
the quasi-linear case in detail. After all, the presence of higher harmonics is the only
difference between the linear and quasi-linear cases. In the purely linear case, obviously,
the solution grows linearly with the forcing. But as the results in Fig. 3 (of the submitted
manuscript) show, the quasi-linear case follows the linear growth as long as the barotropic
currents are weak, while deviations occur for stronger currents, and then the amplitude
becomes saturated. We cannot see any other connection than with the higher harmonics.

6. Figures 8 and 13 should include the dispersion curves from the Miyata-ChoiCamassa
model. After all, this paper is supposed to be about the fully nonlinear waves. Also,
some (most?) of the disagreement that is found is likely due to the fact that the solitary
waves are propagating on a variable background field (the internal tide). This could
be accounted for in the comparison. Note that if the barotropic forcing were included
as prescribed time-dependent flux Q(t), then the advection of the solitary waves by the
changing barotropic flow would be significant since wave speeds are in the range of 1m/s.

We agree. In a revised version the MCC analytical solutions will be included for discus-
sion and comparison with the forced-MCC numerical solutions. Also, we will account for
the suggestion made by the referee about the effect of the solitary waves being embedded
on a variable background flow, an argument we agree with.
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Additionally, in a revised version we will use the Froude number, as define above in item
(2), to account for the importance of advection by the changing barotropic flow.

7. The sentence starting on line 625 regarding soliton speeds with rotation is misleading.
The soliton speeds are only very weak affected by rotation. However rotation has a large
effect on the speed of the internal tide from which the solitons emerge and on which they
subsequently propagate (c2 = c2

0 + f2/k2 in the linear limit.

We agree on this important remark that will be corrected in a revised version.

8. Line 637. The authors never showed that the saturation occurs in the full set of
equations, nor did they demonstrate how it affects the resulting soliton amplitudes.

Regarding the demonstration of the limiting amplitudes by higher harmonics, we al-
ready provided an answer in item (5). About how this amplitude saturation affects the
resulting soliton amplitudes, we believe that we have shown numerical solutions doing
so. This is described on the basis of presented results, for instance, in lines 578-580 and
lines 606-612 of the manuscript submitted to the ‘Discussion Forum’. And it is further
discussed later in lines 659-670 (Sect. 5. Summary and conclusions) within the scope of
main results.

9. I suggest that the authors remove the linear and quasi-nonlinear results and devote
more effort into exploring the behavior of the fully-nonlinear model. After all, ‘fully
nonlinear’ is part of the title and the new aspect of the paper. The linear problem has
been well covered in the literature and the connection of the ‘quasi-nonlinear’ reduction
with existing weakly nonlinear and now the fully-nonlinear model is not obvious.

Following the referee’s request we will devote more effort in a revised version to explore
the physical interpretations of the fully nonlinear model by discussing the results using
the governing nondimensional parameters (as it was suggested in item (4)).

We understand that in the submitted version to the ‘Discussion Forum’ it was not clearly
explained how the quasi-linearization of the model equations was performed and how
that version differs from a weakly nonlinear set of equations. This obviously led to miss
an important point of our discussion. This is a topic which we further discussed and
answered above in item (3). In a revised version we will make a more clear distinction
between the different set of equations.

Regarding the purely linear case, we note this is well covered in the literature. In a
revised version we will make more clear that our aim on showing the linear results is
only to highlight its departure with the quasi-linear case. It is the latter which presents
a new and relevant feature that we investigate, i. e. the saturation amplitude of internal
tides subjected to the forcing.
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Figure I: Snapshots of the interfacial displacement of leftward propagating quasi-linear
internal tides for run A1 (H1 = 30 m; Lp = 35.49 km). The amplitude sat-
uration is evident as the tidal forcing is increased and the flow becomes su-
percritical, Fr>1 (see legend). The run time is 9 tidal periods. The model
equations used here are a quasi-linearized version of the weakly nonlinear model
in Gerkema (1996).
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Figure II: Snapshots of the interfacial displacement of leftward propagating weakly non-
linear internal tides and solitons for run A1 (H1 = 30 m; Lp = 35.49 km).
The limiting amplitude (which is here non ‘table-top’ shaped) is evident as
the tidal forcing is increased but the soliton amplitude becomes saturated.
The run time is 9 tidal periods. These waves are generated from the weakly
nonlinear generation model derived in Gerkema (1996).
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