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The work is devoted to a numerical analysis of the MCC-type equations describing
strongly nonlinear waves in a two-layer fluid. Its novelties are in adding earth rota-
tion (Coriolis force) and an oscillating forcing imitating a tidal current over a bottom
feature. Tidal forcing is represented by an oscillating bottom hill which in most cases
gives a reasonable approximation for the case of a fixed hill and periodic current. Ten
variants are computed which differ in forcing velocity, layer thicknesses ratio, relative
height of the hill, and the Coriolis force (latitude). Some interesting results regarding
the parameters of limiting solitons, rate of their formation (in tidal periods). Some re-
sults, such as decreasing of soliton amplitude with the increase of forcing, and chande
of amplitude and width of a strong limiting soliton, remain unexplained; I agree with
authors that it may be due to interaction with current induced by the oscillating source.

In general, the paper deserves publication. However, some questions and notes should
be taken into account. Among them are:

1. The MCC system which is the base of the model, allows strong nonlinearity but only
weak (quasi-hydrostatic) dispersion. On the other hand, stationary waves, including a
soliton, realize a balance between nonlinearity and dispersion. Thus, (unlike the weakly
nonlinear case), applicability of such systems for solitons cannot be taken for granted
and need to be verified. It is even possible that some numerical ’paradoxes’ are due
to this limitation (see, e.g., Ostrovsky & Grue, Phys. Fluids, 15, 2934, 2993). This
circumstance should at least be mentioned.

We agree on this important remark, which in a revised manuscript would be discussed
in section 5 (Discussion and conclusions), as follows:

‘As previously noted by Ostrovsky and Grue (2003), MCC-type models entail a paradox
to the effect that strongly nonlinear solitons appear from a set of equations that have
strong nonlinearity but weak dispersion, while the very existence of solitons presume a
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balance between the two. In our case, the MCC-type model is used, involving only the
lowest-order nonhydrostatic dispersive terms. Despite the small parameter featuring in
the nonhydrostatic terms, they may actually become large in practice (i.e., in the numer-
ical runs) if wave profiles are steepening, contradicting the original assumption. Indeed,
there is no guarantee that the higher-order dispersive terms, which were dropped from
these equations, would always remain small. A suggestion for future work is, therefore,
to check our results against a numerical computation with a fully nonlinear nonhydro-
static set of equations.

2. The weakly nonlinear and ‘quasi-nonlinear’ case is not quite clear for me. It should
be close to the eKdV case (where the limiting solitons also exist) but the results seem
somewhat different. The physic of this case should be better explained.

In a revised version, we would make more clear the distinction between the different set
of equations being used so that the physical interpretations are also more clear.

The quasi-nonlinear case involves neglecting the baroclinic interactions but retaining
the nonlinear terms involving a combination of barotropic and baroclinic fields. The
equations are then still linear with regard to the baroclinic fields, but the coefficients
become time-dependent due to barotropic factors (which are prescribed), so that higher
harmonics will be generated. Hence one should not expect the quasi-nonlinear case to
be close to the eKdV on showing limiting interfacial waves.

In a future version we will re-name the quasi-nonlinear interfacial waves as quasi-linear
interfacial waves because we understand that the former name has led to confusion when
we discussed the physical interpretations and findings.

3. Paragraph 120. ‘c0 is an approximate measure of the linear long wave phase speed.’
- Why approximate, what is the approximation?

It was not our intention to mean further approximations. The only point is that this
quantity is indicative of the phase speed of linear long interfacial waves but not exactly
equal to it, for the precise theoretical value has a factor H1H2/H, whereas the present
factor is D. For clarity, we have rephrased this paragraph as follows:

‘Since we allow waves to have large amplitudes (i.e. being strongly nonlinear), we may
take horizontal current velocities to scale with c0 = (g′D)1/2, where g′ is reduced gravity,
g′ = g (ρ2 − ρ1)/ρ̄; and, c0 is close to the linear long-wave phase speed for interfacial
waves (which would have H1H2/H instead of D). Thus, u and v will be scaled with c0.
For the interfacial displacement being allowed to be large, an appropriate scale of Z is
D.’

4. The reasoning in paragraph 325 should be made simpler and more clear.
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We agree. In a revised version lines 323-330 would read:

‘We use the generation model of weakly nonlinear, weakly nonhydrostatic interfacial
waves derived in Gerkema (1996), which works with tidal motion over a fixed topogra-
phy, as a benchmark for testing the impact of our ‘non-inertial’ frame of reference. If we
compare interfacial waves generated from the nonlinear version of both models, differ-
ences are expected to arise from the fact that forced-MCC equations are fully nonlinear.
For this reason we restrict the comparison to the linear and quasi-nonlinear cases. If the
results between the models turn out to be similar, it thus seems reasonable to conclude
that within the framework of study we can compare our present setting to that in the
ocean setting.

5. Figures 8 and 13. How comes that the numerical (color) circles for soliton velocity
do not go to 1 at zero amplitude limit? Is this due to some negative period-averaged
current?

For clarity, in a revised version Fig. 8 and Fig.13 would also show the corresponding di-
mensional values along secondary axes (see the new figures at the end of this document).

In all cases the scaled nonlinear phase speed of tide-generated solitons does go to 1
(left y-axis) when solitons approach their minimum amplitude, meaning that they are
approaching the linear long-wave phase speed for (baroclinic) interfacial waves. Never-
theless, we note that the soliton amplitude of our numerical solutions does never really
reach the zero amplitude limit, but it is always above zero. This is because, to get our
‘tracking algorithm’ working, we need the leading soliton to be large enough so its char-
acteristic points Za, Zb, Zc and Zd, as described in Fig. 6, can be identified and used
for computation of its amplitude and width. When the solitons are in their very early
stage of generation, i. e. amplitudes near zero, the former characteristic points are not
well defined yet. As a result, we can’t track solitons at the nearly zero amplitude limit.

To account for a more clear and comprehensive discussion of these results, lines 533-543
would read differently in a revised version:

‘Lastly, Fig. 8 compares the wave properties of tide-generated solitons from experi-
ment A1 with solitary wave solutions of the KdV and eKdV theories
(Kakutani and Yamasaki (1978), Ostrovsky and Stepanyants (1989), Helfrich and Melville
(2006), Gerkema and Zimmerman (2008)).

For a fair comparison, we compute the soliton width for KdV and eKdV theories fol-
lowing the same procedure as for the forced-MCC solitons, i. e. we use points Zc and Zd

(see Fig. 6c-e). The soliton amplitude and width are scaled, respectively, to the thickness
of the upper layer and total water depth. The nonlinear phase speed is scaled to the lin-
ear long-wave phase speed for (baroclinic) interfacial waves, c′o =

√
g′ (h1h2)/(h1 + h2).
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In Fig. 8a, small tide-generated solitons approach the linear long-wave phase speed for
(baroclinic) interfacial waves, as expected, while larger solitons have a phase speed follow-
ing a similar curve to that predicted from the eKdV theory. Nevertheless, tide-generated
solitons propagate in all cases slower than their eKdV counterparts. Tide-generated
solitons ride on interfacial tides and, hence, their wave properties are not simply the
response to a settled two-layer fluid system as it occurs for eKdV solitons, but involve
also the forcing of the system.

With respect to Fig. 13, former lines 603-621 would read now simpler:

‘When compared to classical solitary wave theories, tide-generated solitons in experi-
ments B1 and C1 resemble wave properties of strongly and weakly nonlinear solitons,
respectively (Fig. 13). As it occurred for experiment A1, tide-generated solitons prop-
agate in all cases slower than their eKdV (experiment B1) and KdV (experiment C1)
counterparts of similar amplitude.

In experiment B1, the largest solitons start to slightly broaden and present amplitudes
larger than those predicted by eKdV theory, although eventually they do not attain the
‘table-top’ form. In both experiments the largest solitons start to experience a decrease
of their amplitude and width when the tidal forcing increases above a certain value, as
previously noted from Figs. 11 and 12. These results highlight our finding that tide-
generated solitons may be subjected to limiting conditions beyond classical KdV theories.
We suggest that these limiting conditions are driven by the appearance of higher harmon-
ics with increasing forcing, and which saturate the underlying quasi-nonlinear internal
tide prior to its nonlinear disintegration (see Fig. 3).’

6. Arguments about the role of higher harmonics are unclear. First, there are no spectra
shown in the paper. Second, it remains unclear how the Coriolis dispersion can enhance
the table-top soliton form (paragraph 635).

We agree with the reviewer that spectra can be a useful tool to explore higher harmon-
ics, as was done, e.g., in Mercier et al (2012), their Fig. 9. However, we think that our
analyses presented in Fig. 3 and Fig. 4 already show convincingly that quasi-nonlinear
interfacial tides present limiting amplitudes when the tidal forcing increases, in contrast
to the linear regime where higher harmonics are neglected with the increase of the forc-
ing. For clarity, we include in this document a figure where the spectra of power density
is shown for several cases. Nevertheless, we prefer not to include these results in the
final paper unless this is further recommended. The reason is we think these results may
not be sheding more light beyond results from former analyses.

In a revised version, and regarding the mechanism by which the Coriolis dispersion can
enhance the ‘table-top’ soliton form, lines 628-645 would read:

‘Importantly, an unexpected feature must be noted for experiments A1, B1 and C1. At
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relatively low latitudes off the equator (c. f., numerical solutions for the rotationless case
and θ=15◦), rotational effects appear to favour the development of the leading solitons
up to reaching a ‘table-top’ form. This is especially noticeable in experiments B1 and C1,
panels (d) and (f), respectively, for which the rotationless cases do not lead to ‘table-top’
solitons.

In previous sections we have shown that higher harmonics generated by strong tidal
flows cause a saturation of the quasi-nonlinear tide by which solitons emerge, and that
this factor limits the development of the leading soliton. We suggest that at relatively low
latitudes, the saturation of the quasi-nonlinear interfacial tide weakens as the higher har-
monics weaken too due to Coriolis dispersion. Accordingly, underlying quasi-nonlinear
interfacial tides reach deeper troughs and favour, in the nonlinear regime, leading soli-
tons attaining a ‘table-top’ form under forcing conditions which would not generate such
solitary waves in the rotationless cases. As expected, at higher latitudes (θ=45◦) the
dispersive effect of the Coriolis force becomes stronger, thus not only dispersing the
higher harmonics but also preventing the nonlinear interfacial tide from disintegrating
into strongly nonlinear solitons.’

The above phenomenon, occurring at low latitudes, is also illustrated in Fig. 14, where
a set of power density spectra (panel b) is shown for the linear, quasi-nonlinear and
fully nonlinear interfacial waves of experiment B1 (panel a), without and with rotational
effects included (θ=15◦). Adding rotational effects at low latitudes causes a weakening
of the power density of the higher harmonics (c. f., blue and red thick lines in panel b),
favouring the rise of quasi-nonlinear interfacial tides with a deeper trough (c. f., blue
and red thick lines in panel a). In the nonlinear regime, the addition of rotational effects
follows the former pattern (c. f., blue and red thin lines in panels a and b), causing
deeper troughs of the underlying quasi-nonlinear interfacial tides which eventually allow
the leading solitons to develop a ‘table-top’ form that does not emerge in the rotation-
less case. Note here that the ‘table-top’ form for the rotational case is more evident in
Fig. 13c,d, where interfacial waves are ’zoomed in’ along the spatial domain.

In general: the work is interesting but it is overloaded with details at the expense of
clear physical interpretations. If the authors agree to take the above into account, I do
not insist on sending the revised paper back to me.

We agree with Referee #2 on that the discussion of the numerical results could be short-
ened in order to highlight more the physical interpretations we present. In a revised
version we would shorten section 4 following this suggestion.
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Figure 8: Solitary wave solutions of the KdV (black line) and eKdV (grey line) theo-
ries compared to tide-generated solitary waves derived from the forced-MCC
equations (colored dots) for experiments A1. The tide-generated solutions cor-
respond to the mean mature leading soliton propagating in Fig. 7 (experiment
A1) along its 4th tidal period of age. The different colors indicate the strength
of the tidal flow (see legend). (a) Nonlinear phase speed scaled to the linear
long-wave phase speed for (baroclinic) interfacial waves vs. soliton amplitude
scaled to thickness of the upper layer. (b) Soliton width scaled to total water
depth vs. soliton amplitude scaled to thickness of the upper layer. All panels
are also shown for the corresponding dimensional form (top and right axes).
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Figure 13: Solitary wave solutions of the KdV (black line) and eKdV (grey line) theo-
ries compared to tide-generated solitary waves derived from the forced-MCC
equations (colored dots) for experiments B1 (top row) and C1 (bottom row).
The tide-generated solutions correspond to the mean mature leading soliton
propagating in Figs. 11 (experiment B1) and 12 (experiment C1) along its 4th

tidal period of age. The different colors indicate the strength of the tidal flow
(see legend). (a,c) Nonlinear phase speed scaled to linear long-wave phase
speed for (baroclinic) interfacial waves vs. soliton amplitude scaled to thick-
ness of the upper layer. (b,d) Soliton width scaled to total water depth vs.
soliton amplitude scaled to thickness of the upper layer. The dashed lines
in (a) and (c) highlight the varying departure between soliton solutions from
eKdV and forced-MCC equations.
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Figure 14: (a) Time evolution of linear (L), quasi-nonlinear (QNL) and fully nonlinear
(FNL) tide-generated interfacial waves in experiment B1 computed from the
forced-MCC-f equations, without and with rotational effects included (blue
and red lines, respectively). Spectra of power density for interfacial waves in
(a). This time-series corresponds to a ‘mooring’ located at 115 km leftward
from the sill.
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