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Abstract Spatio-temporal behavior of soil water is essential to understand the science of 12 

hydrodynamics. Data intensive measurement of surface soil water using remote sensing has 13 

established that the spatial variability of soil water can be described using the principle of self-14 

similarity (scaling properties) or fractal theory. This information can be used in determining land 15 

management practices provided the surface scaling properties hold at deep layer. Current study 16 

examined the scaling properties of sub-surface soil water and its relationship to surface soil water, 17 

thereby serving as the supporting information for the plant root and vadose zone models. Soil water 18 

storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 19 

m for 5 years. The surface SWS showed multifractal nature only during the wet period (from 20 

snowmelt until mid to late June with large SWS) indicating the need of multiple scaling indices in 21 

transferring soil water variability information over multiple scales. However, with increasing 22 

depth, the SWS became monofractal in nature indicating the need of single scaling index to 23 

upscale/downscale soil water variability information. The dynamic nature made the surface layer 24 

soil water in the wet period highly variable compared to the deep layers. In contrast, all soil layers 25 

during the dry period (from late June to the end of the growing season with low SWS) were 26 

monofractal in nature, probably resulting from the high evapotranspirative demand of the growing 27 

vegetation that surpassed other effects. This strong similarity between the scaling properties at the 28 

surface layer and deep layers provides the possibility of inferring about the whole profile soil water 29 

dynamics using the scaling properties of the easy-to-measure surface SWS data. 30 
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1 Introduction 32 

Knowledge on the spatial distribution of soil water over a range of spatial scales and time has 33 

important hydrologic applications including assessment of land-atmosphere interactions 34 

(Sivapalan, 1992), performance of various engineered covers, monitoring soil water balance and 35 

validating various climatic and hydrological models (Rodriguez-Iturbe et al., 1995;Koster et al., 36 

2004). However, high variability in soil is a major challenge in hydrology (Quinn, 2004) as the 37 

distribution of soil water in the landscape is controlled by various factors and processes operating 38 

at different intensities over a variety of scales (Entin et al., 2000). The individual and/or combined 39 

influence of these physical factors (e.g. topography, soil properties) and environmental processes 40 

(e.g. runoff, evapotranspiration, and snowmelt) gives rise to complex and nested effects, which in 41 

turn evolve a signature in the spatial organization (Western et al., 1999) or patterns in soil water 42 

as a function of spatial scale (Kachanoski and Dejong, 1988;Kim and Barros, 2002;Biswas and Si, 43 

2011a). This complexity makes the management decision difficult at a scale other than the scale 44 

of measurement. Therefore, it is necessary to transfer variability information from one scale (e.g. 45 

pedon scale) to another (e.g. large catchment scale), which is called scaling. 46 

The scaling of soil water is possible if the distribution of some statistical parameters (e.g., 47 

variance) remain similar at all studied scales. This feature, known as scale-invariance, means that 48 

the spatial feature in the distribution of soil water will not change if the length scales are multiplied 49 

by a common factor (Hu et al., 1997). Generally, the soil water will have a typical size or scale, a 50 

value around which individual measurements are centered. So the probability of measuring a 51 

particular value will vary inversely as a power of that value, which is known as the power law 52 

decay, a typical of scaling process.  Now, as the spatial distribution of soil water follows the power 53 

law decay (Hu et al., 1997;Kim and Barros, 2002;Mascaro et al., 2010), the spatial variability can 54 

be investigated and characterized quantitatively over a large range of measurement scales using 55 

fractal theory (Mandelbrot, 1982). When the spatial distribution of soil water is the response of 56 

some linear processes, the scaling can be done using a single scaling coefficient over multiple 57 

scales and the distribution shows monofractal scaling behaviour. However, the spatial distribution 58 

of soil water is the nonlinear response of multiple factors and processes acting over a variety of 59 

scales and therefore needs multiple scaling indices (multifractal scaling) in quantifying spatial 60 

variability (Hu et al., 1997;Kim and Barros, 2002;Mascaro et al., 2010). 61 
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The multifractal scaling behaviour of soil water has been used in developing models to 62 

downscale soil water estimate from remotely sensed measurements with a large foot print area. 63 

The multifractal behaviour in the surface soil water as a result of temporal evolution of wetting 64 

and drying has been reported from a sub-humid environment of Oklahoma by Kim and Barros 65 

(2002). Mascaro et al. (2010) reported the multifractal behaviour of soil water, which was ascribed 66 

as a signature of the rainfall spatial variability. Though these measurements can provide an 67 

estimate of soil water over a large area quickly, they are limited to very few centimeters of the soil 68 

profile. These studies reported the multifractal behaviour of only the surface soil water indicating 69 

the superficial scaling properties. Surface soil layer is exposed to direct environmental forcing and 70 

are most dynamic in nature. The scaling properties of surface soil water can be used for land 71 

management practices provided the observed scaling properties holds for the deep layers such as 72 

vadose zone or the whole soil profile. Understanding overall hydrological dynamics in soil profile 73 

needs information on the scaling properties and the nature of the spatial variability of soil water 74 

over a range of scales at deep layers as well (Biswas et al., 2012b). The information on the 75 

similarity in the nature of the spatial variability of soil water between the surface layer and deep 76 

layers may also help inferring about the soil profile hydrological dynamics. Therefore, the 77 

objectives of this study were to examine the scaling properties of sub surface layers and their 78 

relationship with surface layers at different initial soil water conditions over time. We have 79 

examined the scaling properties of soil water storage at multiple depth layers and at soil layers 80 

with increasing depth from the surface (cumulative depth) over a 5-year period from a hummocky 81 

landscape from central Canada using the multifractal analysis. The relationship between the 82 

scaling properties of the surface layer and the subsurface layers was also examined using the joint 83 

multifractal analysis. 84 

2 Materials and Methods 85 

2.1 Study site and data collection  86 

A field experiment was carried out at St. Denis National Wildlife Area (52°12ʹN lat. and 106°50ʹW 87 

long.), which is located 40 km east of Saskatoon, Saskatchewan, Canada. The landscape of the 88 

study area is hummocky with a complex sequence of slopes (10 to 15%) extending from different 89 

sized rounded depressions to irregular complex knolls and knobs, a characteristic landscape of the 90 

North American Prairie pothole region encompassing approximately 780,000 km2 from north-91 
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central United States to south-central Canada (National Wetlands Working Group, 1997). A 92 

transect of 128 points (576 m long) extending in north-south direction was established in 2004 at 93 

the study site to examine the soil water variation at field scale. The sample points were selected at 94 

4.5 m regular interval along the transect to catch the systematic variability of soil water. Soil water 95 

measurements were carried out at every 20 cm depth along the transect over the period of 2007 to 96 

2011 and were used in this study to examine the fractal behavior of SWS at different depths of 97 

over time. A detailed description of the study site, development of the transect, measurement of 98 

soil water and the calibration of measurement instruments can be found in earlier publications from 99 

this project (e.g. Biswas et al., 2012a). 100 

2.2 Data analysis 101 

Various methods including geostatistics, spectral analysis, and wavelet analysis have been used to 102 

examine the scale-dependent spatial patterns of SWS. These methods generally deal with how the 103 

second moment of SWS changes with scales or frequencies. When the statistical distribution of 104 

SWS is normal, the second moment plus the average provide a complete description of the spatial 105 

series. However, for other distributions (e.g. left skewed distribution), higher-order moments are 106 

necessary for a complete description of the spatial series. For example, let’s define the qth moment 107 

of a spatial series z as zq. In this situation, for a positive value of q, the qth moment magnify the 108 

effect of larger numbers and diminish the effect of smaller numbers in z. While, on the other hand, 109 

for a negative value of q, the qth moment magnify the effect of small numbers and diminish the 110 

effect of large numbers in the spatial series z. In this way, using variable moments, we can look at 111 

the effect of the magnitude of the data in a series and characterize its spatial variability better. 112 

There is a pressing need to summarize how these moments change with scales so that we can 113 

compare and simulate spatially-variable SWS. 114 

2.2.1 Statistical self-similarity or scale invariance 115 

Soil water is highly variable in space and time. If the variability in the spatial/temporal distribution 116 

remains statistically similar at all studied scales, the SWS is assumed to be self-similar (Evertsz 117 

and Mandelbrot, 1992). Self-similarity, also called scale invariance, is closely associated with the 118 

transfer of information from one scale to another (scaling). We used the multifractal analysis to 119 

explore self-similarity or inherent differences in scaling properties of SWS in this study.  120 

 121 
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2.2.2 Multifractal analysis 122 

On the spatial domain of the studied field, multifractal analysis was used to characterize the scaling 123 

property of SWS by statistically measuring the mass distribution (Zeleke and Si, 2004). The spatial 124 

domain or the data along the transect was successively divided into self-similar segments following 125 

the rule of the binomial multiplicative cascade (Evertsz and Mandelbrot, 1992). This method 126 

required that the two segments divided from a unit interval to be of equal length. With regards to 127 

a unit mass M (a normalized probability distribution of a variable or measured in a generalized 128 

case) relating to the unit interval, the weight was also partitioned into [h × M] and [(1-h) × M], 129 

where h was a random variable (0 ≤ h ≤ 1) governed by a probability density function. Sequentially, 130 

the new subsets with its associated mass were equally divided into smaller parts. In this way, 131 

multifractal analysis was able to describe the scaling properties for the higher-order moments 132 

compared to semivariogram which can only measure the scaling properties of the second moment. 133 

In a special case, if the scaling properties do not change with q, the spatial series can be identified 134 

as monofractal, when one scaling coefficient is enough to characterize. Generally, the multifractal 135 

analysis is good at measuring the highly fluctuated mass (box size) as well as providing physical 136 

insights at all scales regardless of any ad hoc parameterization or homogeneity assumptions 137 

(Schertzer and Lovejoy, 1987).  138 

For SWS spatial series, the scale-invariant mass exponent, was termed as τ(q) (Liu and Molz 139 

(1997):  140 

  )q(q
x)x(z                      [1]                                     141 

where z was the SWS spatial series, x was the lag distance and the symbol  indicated 142 

proportionality. The τ(q) is widely used in multifractal analysis. If the plot of τ(q) vs. q [or τ(q) 143 

curve] has a single slope (i.e. a linear line), then the series is a simple scaling (monofractal) type. 144 

If τ(q) curve is nonlinear and convex (facing downward), then the series is a multi-scaling 145 

(multifractal) type. In this study, we used the UM model of Schertzer and Lovejoy (1987) to create 146 

a linear reference line which represented the perfect monofractal type of scaling. Assuming the 147 

conservation in mean value of SWS, this model simulated a cascade process with a scaling function 148 

in an empirical moment. It is thus used here to compare and characterize the observed scaling 149 

properties with a reference to the monofractal behavior. The goodness-of-fit between the τ(q) 150 

curves and the UM model was tested using the chi-square test. The sum of squared residuals 151 
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(SSRs) between the τ(q) curve and the UM model was also calculated to test the deviation. The 152 

τ(q) curves over the range of q values (in this study -15 to 15 at 0.5 interval) were fitted with a 153 

linear regression line (referred to as a single fit). The linear fitting of the τ(q) curves with q<0 and 154 

q>0 (referred to as segmented fit) were also completed. The difference between the mean of slopes 155 

and segmented fits (for positive and negative q values) was tested using the Student’s t test.  156 

     With similar manner to Eq. [1], the qth order normalized probability measure of SWS, ),q(    157 

(also known as the partition function), is proved to vary with the scale size, as below 158 

 
 

)q(

i

q
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q

i
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
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                                          [2]     159 

where ε is scale size in the ith segment and )(pi  is the probability of a measure and measures the 160 

concentration of a variable of interest (e.g. SWS) by dividing the value of the variable in the 161 

segment to the whole support length (e.g. to the whole transect of length L units) (Meneveau et al., 162 

1990;Evertsz and Mandelbrot, 1992). The mass exponent τ(q)  was related to the probability of 163 

mass distribution of SWS.  164 

      Moreover, the fractal dimension of the subsets of segments in scale size ε was measured by the 165 

multifractal spectrum f(q). When a coarse Hölder exponent (local scaling indices) of α was in the 166 

limit as 0 , f(q) was calculated as below (Evertsz and Mandelbrot, 1992): 167 
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and the local scaling indices, α, were given by  169 
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 Noting that f(α) was determined through the Legendre transform of the τ(q) curve: 171 

)q()q(q)(f   (Chhabra and Jensen, 1989). 172 

The multifractal spectrum is a powerful tool in portraying the similarity and/or differences 173 

between the scaling properties of the measures (e.g. SWS). This spectrum also enabled us to 174 

examine the local scaling property. The width of the spectrum (αmax - αmin) was used to examine 175 
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the heterogeneity in the local scaling indices. The wider the spectrum, the higher was the 176 

heterogeneity in the distribution of SWS and vice versa. Similarly, the height of the spectrum 177 

corresponded to the dimension of the scaling indices. The small f(q) values indicated rare events 178 

(extreme values in the distribution), whereas the largest value was the capacity dimension (D0) 179 

obtained at q = 0.  180 

In addition to the multifractal spectrum, [f(q) vs. α(q)], for many practical applications, we 181 

used models to incorporate a few selected indicators to describe the scaling property and variability 182 

of a process. One of the widely used models for multifractal measure were the generalized 183 

dimensions, which was calculated as below: 184 

)log(

)(plog

lim
q

D i

i

q











01

1
                                            [5]            185 

when q = 1,
1D  was referred to as the information dimension (also known as entropy dimension) 186 

which provided information about the degree of heterogeneity in the measure distribution in 187 

analogy to the entropy of an open system in thermodynamics (Voss, 1988). If the value of D1 is 188 

close to unity, it indicated the evenness of measures over the sets of cell size, while the value 189 

approaching 0 indicated a subset of scale in which the irregularities were concentrated. The D2, 190 

known as the correlation dimension, was associated with the correlation function and measured 191 

the average distribution density of the SWS (Grassberger and Procaccia, 1983). For a monofractal 192 

distribution, the D1 and D2 tend to be equal to the D0. The same value of D0, D1 and D2 indicates 193 

that the distribution exhibits perfect self-similarity and is homogeneous in nature. Contrarily, in 194 

multifractal type scaling, the D1 and D2 tend to be smaller than D0, showing D0 > D1 > D2. 195 

Accordingly, the D1/D0 value can be used to describe the heterogeneity in the distribution 196 

(Montero, 2005). The value equal to 1 indicated exact mono-scaling of the distribution. 197 

2.2.3 Joint multifractal analysis 198 

While the multifractal analysis characterized the distribution of a SWS spatial series along its 199 

geometric support, the joint multifractal analysis was used to characterize the joint distribution of 200 

two SWS spatial series along a common geometric support. As an extension of the multifractal 201 

analysis, the length of the datasets was also divided into several segments in size ε. Two variables 202 

(  iP  and  iR  representing two spatial series of SWS) were used here to measure the probability 203 
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of the measure in the ith segment, when     LPi  and     LRi  . Among them, α and β 204 

were the local singularity strength which respectively represented the mean local exponents of  205 

 iP  and  iR  in the corresponding expressions above. The partition function for the joint 206 

distribution of  iP  and  iR , was calculated as below (Chhabra and Jensen, 1989; Meneveau et 207 

al., 1990; Zeleke and Si, 2004): 208 
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where the normalized μ is partition function, q and t were the real numbers for weighting. And the 210 

aforementioned local singularity strength (coarse Hölder exponents) α and β were the function to 211 

q and t as well:   212 
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To indicate the dimension of the joint distribution, the multifractal spectra ),(f   , was given by 215 

   
( )

1
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N
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f N q t q t
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



   .     [9] 216 

In fact, the joint partition function in Eq. [6] can be simplified to Eq. [2] when q or t is equal to 0. 217 

In this case, the joint multifractal spectrum was transformed to the multifractal spectrum with a 218 

single measure. When both value of q and t were 0, ),(f   reached maximum and indicated box 219 

dimension of the geometric support of the measures. Pair value of α and β were determined by 220 

variable q and t. The Pearson correlation coefficient was used to quantitatively describe their 221 

relations across similar moment orders. In addition, correlation coefficients between the surface 222 

layer and subsurface layers were used as well to examine the similarity in the scaling properties.  223 

3 Results 224 

3.1 Spatial pattern of soil water storage at different depths 225 
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Average SWS for the surface 0-20 cm layer over five year period was 5.51 cm. A slight decrease 226 

in SWS was observed at the immediate deep layer (20-40 cm) and a gradual increase thereafter. 227 

Five-year average SWS was 5.45 cm, 5.48 cm, 5.56 cm, 5.61 cm, 5.69 cm and 5.77 cm for the 20-228 

40 cm, 40-60 cm, 60-80 cm, 80-100 cm, 100-120 cm and 120-140 cm layers, respectively (Table 229 

1). Average SWS for a single measurement varied from 3.40 cm to 7.16 cm. The highest average 230 

SWS was observed on 29 June 2011. The study area received large amount of spring rainfall during 231 

2011 leading to the high SWS in the surface layer. The lowest average SWS was observed on 23 232 

August 2008, which was one of the driest summer within the five-year study period. The highest 233 

average SWS (on 29 June 2011) at the surface layer gradually decreased to 6.55 cm and the lowest 234 

average SWS (on 23 August 2008) at the surface layer gradually increased to 5.28 cm at the 120-235 

140 cm layer (Table 1). This yielded a bigger range (3.76 cm) in the average SWS at the surface 236 

layer compared to that at the deepest layer (1.27 cm). A big range (2.00 cm) in the standard 237 

deviation (maximum=2.43 cm and minimum=0.43 cm) of the measurement at the surface layer (0-238 

20 cm) was also observed compared to that at the deepest layer (120-140 cm; maximum=1.28 and 239 

minimum=0.76). This indicated large variations in SWS at the surface layer and gradually 240 

decreased at deeper layers. The coefficient of variations (CVs) at the surface layer (0-20 cm) varied 241 

from 10% to 43% and the deepest layer (120-140 cm) varied from 13% to 23% (Supplementary 242 

Table S.1). 243 

The maximum SWS at the surface layer also varied widely (maximum=13.96 cm and 244 

minimum=4.64 cm) compared to the deepest layer (maximum=9.81 cm and minimum=6.72 cm) 245 

(Table 1). There was a gradual decrease in the maximum value and increase in the minimum value 246 

from the surface to the deepest layer. A similar trend was also observed for the minimum SWS at 247 

different layers. The maximum SWS at different layers was much localized. For example, there 248 

was high SWS at different layers at the locations of 100 to 140 m and 225 to 250 m from the origin 249 

of the transect. These locations had very high SWS compared to the field-average and were situated 250 

in the depressions while low SWS was observed on the knolls. 251 

The variations in SWS with time were evaluated within a year. There was little change in the 252 

average SWS over measurements within the years from 2007-2011 except 2008 (Table 1). For 253 

example, average SWS was 6.47 cm, 6.03 cm, 6.54 cm, and 6.33 cm on 6 April 2010, 19 May 254 

2010, 14 June 2010 and 28 September 2010, respectively. However, the average SWS in 2008 255 

drops from 6.28 cm on 2 May 2008 to 3.51 cm on 17 September 2008 in the surface 0-20 cm layer. 256 
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This falling trend was even observed at all soil layers. When compared between years, the trend 257 

over time and with depth was very similar in 2007 and 2009 while slightly different between 2010 258 

and 2011 (Table 1). A decreasing trend of the variability was also observed with time. For example, 259 

the CV of the surface layer was around 28% on 2 May 2008, which gradually decrease to around 260 

13% on 17 September 2008 (Supplementary Table S.1). 261 

The average water storage for soil layers with increasing depth was also calculated by adding 262 

the individual layers together. The time-averaged values of SWS were 10.96 cm, 16.44 cm, 22.00 263 

cm, 27.61 cm, 33.30 cm and 39.07 cm for the 0-40 cm, 0-60 cm, 0-80 cm, 0-100 cm, 0-120 cm 264 

and 0-140 cm, respectively (Supplementary Table S.2). The CV of the 0-20 cm layer was the 265 

highest during the wet period and gradually declined to the smallest during the dry period 266 

(Supplementary Table S.3). The variability also gradually increased with depth. This trend with 267 

depth and time has also been verified by the standard deviation of measurement. 268 

3.2 Statistical scale invariance  269 

The distribution of a statistical measure is considered as fractal (monofractal/multifractal) provided 270 

the moments obey the power law (Evertsz and Mandelbrot, 1992). The power law relationships 271 

and the statistical scale invariance were evaluated using a log-log plot of the aggregated variance 272 

of SWS spatial series at different depths of soil layers and the level of disaggregation (or scales) 273 

at different q values or statistical moments. The linear relationship of the logarithm of the variance 274 

with scale indicated the presence of statistical scale invariance (Fig. 1). The scale invariance was 275 

observed for all measurements and at all depths though only all depths of selected three 276 

measurements were presented as example. The coefficient of determination (r2) for a linear fit 277 

(n=7) was between 0.99 and 1.00 (significant at P=0.001) for any measurement days and depths. 278 

The scale invariance was also observed for SWS at soil layers with cumulative depths. 279 

3.3 Multifractal analysis 280 

The τ(q) curves for the surface layer displayed deviation from the UM model during the wet period 281 

(Fig. 2). A high SSR value was observed between the τ(q) curves and the UM model. Nonlinearity 282 

in the τ(q) curve was observed and the slopes of the segmented fit of the τ(q) curves were 283 

significantly different from each other. For example, the SSR values between the τ(q) curve and 284 

the UM model were 27.74 and 50.49 for the surface layer (0-20 cm) on 2 May 2008 and 31 May 285 

2008, respectively. The slopes of the τ(q) curve for (single fit) were 0.97 and 0.96, respectively for 286 
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the surface layer of 2 May 2008 and 31 May 2008 (Fig. 2). The slopes of the segmented fit for 287 

these measurements were 1.04 (q<0) and 0.87 (q>0) and, 1.06 (q<0) and 0.82 (q>0), respectively 288 

(Fig. 2; Supplementary Table S.4).  289 

With the maximum deviation at the surface layer, the τ(q) curves gradually became very similar 290 

to the UM model with depth. The SSR value decreased considerably in the deep layers. The slopes 291 

of the τ(q) curve (single fit) became almost unity with no significant difference with the UM model. 292 

There was no significant difference between the slopes of the segmented fit. For example, the SSR 293 

value was 6.17, 4.98, 8.80, 8.50, 8.86, and 6.16 respectively for the 20-40, 40-60, 60-80, 80-100, 294 

100-120, and 120-140 cm layer of 2 May 2008 (Supplementary Table S.4). The slopes (single fit) 295 

for these layers were 0.99, 1.00, 1.01, 1.01, 1.00, and 0.99, respectively (Fig. 2). The slopes of the 296 

segmented fit were also very close to unity with no significant difference between them.  297 

The SSR values gradually decreased and the slopes became almost unity with the increase of 298 

depth of soil layers (Fig. 3). For example, the SSR values were 14.11, 9.31, 7.71, 6.86, 6.71 and 299 

6.30 and the slopes (single fit) were 0.98, 0.99, 0.99, 1.00, 1.00, and 1.00, respectively for 0-40, 300 

0-60, 0-80, 0-100, 0-120 and 0-140 cm layer (Supplementary Table S.5). The slopes of the 301 

segmented fit for the τ(q) curve became almost the same as soil layers going deeper (Fig. 3). The 302 

linearity of the τ(q) curves was gradually strengthened and the SSR value gradually fell with the 303 

depth increase of soil layers at any time. A statically significant difference was observed between 304 

the slopes of the τ(q) curves in segmented fitting at the surface layer of first three measurements 305 

in 2007 (Supplementary Fig. S.1), two measurements in 2008 (Fig. 3), three measurements in 2009 306 

(Supplementary Fig. S.2), and all measurements in 2010 and 2011 (Fig. 3). 307 

A decreasing trend in the SSR value was also observed over time within a year. During the dry 308 

period, the slopes (single fit and segmented fit) became almost unity with no significant difference 309 

(Supplementary Table S.6). For example, the SSR value was 14.12, 8.25, 1.30, 1.46, and 0.52 and 310 

the slope was 0.99, 0.99, 1.00, 1.00, and 1.00, respectively for the surface layer (0-20 cm) of 21 311 

June 2008, 16 July 2008, 23 August 2008, 17 September 2008 and 22 October 2008 (Fig. 2). 312 

Similarly, a small SSR value and consistent slope were also observed at the deepest layer (120-313 

140 cm). The SSR values of the 120-140 cm were 2.47, 2.47, 3.31, 3.44 and 4.57, respectively for 314 

the measurements on 21 June 2008, 16 July 2008, 23 August 2008, 17 September 2008 and 22 315 
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October 2008 (Supplementary Table S.6). The slope (single fit) for all these measurements was 316 

equal to 1.01 (Fig. 2). There was very little difference in the slopes of the segmented fits. 317 

A significant difference in the slopes of the segmented fit was observed for the surface layer 318 

(0-20 cm) of three measurements in 2007 (17 July, 7 August, and 1 September; Supplementary 319 

Fig. S.1), and three measurements in 2009 (21 April, 7 May, and 27 May) (Supplementary Table 320 

S.4; Supplementary Fig. S.2). The trend in deep layers over time was very similar to that of 2008. 321 

However, the trend in the SSR values and the slopes with time was scarcely different between 322 

2010 and 2011 (Supplementary Table S6). There was very little difference in the SSR values at 323 

different time of the year. For example, the SSR value for the surface layer (0-20 cm) was 20.79, 324 

27.18, 24.63 and 26.66 and the slope (single fit) was 0.97, 0.97, 0.97, and 0.97, respectively for 325 

the measurements on 6 April 2010, 19 May 2010, 14 June 2010, and 28 September 2010 (Fig. 2). 326 

The slope of the segmented fit of the surface layer (0-20 cm) was statistically significant for all 327 

measurements in 2010 and 2011 (Fig. 2). However, the trend with depth was similar to other years 328 

(Supplementary Table S.7). 329 

The height of the multifractal spectrum at different depths of measurement over time was very 330 

similar. The width of the spectrum (αmax-αmin) varied with depth and time. Generally, a comparative 331 

large value of αmax-αmin was observed at the surface layer during the wet period and the value 332 

gradually became smaller at depths. For example, the value of αmax-αmin for the surface soil layer 333 

(0-20 cm) was 0.23 and 0.31, respectively for the measurements of 2 May 2008 and 31 May 2008. 334 

Meanwhile, the value of αmax-αmin for the soil layers of 20-140 cm with 20 cm increment was 0.15, 335 

0.14, 0.19, 0.20, 0.20, and 0.18 for 2 May 2008 and 0.25, 0.19, 0.11, 0.14, 0.12, and 0.11 for 31 336 

May 2008, respectively (Fig. 4). In the later part of the year, the width of the spectrum gradually 337 

decreased (Supplementary Table S.8). For example, the αmax-αmin values were 0.19, 0.16, 0.07, 338 

0.08, and 0.05, respectively for the surface layer measurement of 21 June 2008, 16 July 2008, 23 339 

August 2008, 17 September 2008 and 22 October 2008. Similar trend in values of αmax-αmin was 340 

also observed at deep layers (Fig. 4).  341 

The trend of the αmax-αmin values in 2007 and 2009 was very similar to that of 2008 342 

(Supplementary Table S.8). A higher value of αmax-αmin was observed in first three measurements 343 

of 2007 (Supplementary Fig. S.5) and three measurements of 2009 (Supplementary Fig. S.6). 344 

However, the values in the surface layer (0-20 cm) of measurements in 2010 and 2011 were always 345 
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higher compared to the deep layers (Fig. 4). There was no decreasing trend in values for the surface 346 

layer over time. For example, the αmax-αmin value was 0.21, 0.24, 0.21, and 0.22, respectively for 347 

the measurements on 6 April 2010, 19 May 2010, 14 June 2010, and 28 September 2010 (Fig. 4). 348 

However, the trend in the αmax-αmin value of deep layers was similar to that of other years. A similar 349 

trend was observed for cumulative SWS with increasing depth over the years (Fig. 5). Generally, 350 

the value of αmax-αmin was also small with the highest in the 0-20 soil layers and gradually 351 

decreased with depth (Fig. 5; Supplementary Table S.9). 352 

Generally, the D1 and D2 values for different depths of different measurements were very close 353 

to 1 (only varied at 3 decimal points; Supplementary Table S.10). Specifically, the D values for 354 

the surface layer during the wet period increased at high q values. For example, the first three 355 

measurements in 2007 and 2009 all presented high D values at high q values (Supplementary Figs. 356 

S.9 and S.10). This high D value gradually decreased in the dry period of the year. For example, 357 

the D value with positive q was high in the surface layer of 2 May 2008 and 31 May 2008 (Fig. 358 

6), whereas it gradually decreased at the later part of the year (e.g. 17 September 2008).The trend 359 

with time and depth in 2007 and 2009 was very similar to that of 2008 (Supplementary Tables 360 

S.10 and S.11). A consistent high D value was observed in the surface layer for all 2010 and 2011 361 

measurements (Fig. 6). The trend in D values with depth in 2010 and 2011 was also similar to 362 

other years. A high value of D1 and D2 were also observed at all layers of cumulative depths for 363 

all measurements (Fig. 7; Supplementary Table S.11). 364 

3.4 Joint multifractal analysis 365 

There were strong correlations between the scaling property of the joint distribution of the surface 366 

soil layer and the deep soil layers. The correlation between the surface 0-20 cm and the deep layers 367 

on 2 May 2008 (wet period) was larger than 0.9 (significant at P=0.001; Table 2). The highest 368 

correlation was observed between the layers closest to each other. The correlations gradually 369 

increased over time and showed high consistency between different layers on 17 September 2008 370 

(Table 2). A very similar trend was observed in other years.  371 

4 Discussion 372 

The amount of water stored in soil layers is the result of the dominant underlying hydrological 373 

processes. Located in semi-arid climate, the study area receives about 30% of the  long term annual 374 

average precipitation as snowfall during winter months (Pomeroy et al., 2007). Generally, the 375 
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depressions receive snow from surrounding uplands or knolls as redistributed by strong prairie 376 

wind (Pomeroy and Gray, 1995;Fang and Pomeroy, 2009). The snow melts within short period of 377 

time during the early spring and contributed a large amount of water. The frozen ground restricts 378 

infiltration and redistributes excess water within the landscape with greater accumulation in 379 

depressions (Fig. 8) (Gray et al., 1985). Apart from the snowmelt, the spring rainfall also 380 

contributes to the water inflow in the landscape (Fig. 8). This created a spatial pattern of SWS that 381 

was almost a mirror image of the spatial distribution of relative elevation (Biswas and Si, 2011a, 382 

b;Biswas et al., 2012a). 383 

In the spring, the sources of water loss were the deep drainage and the evaporation. . As the 384 

loss of water through deep drainage in the study area was as low as 2 to 40 mm per year, occurring 385 

mainly through the fractures and preferential flow paths (Hayashi et al., 1998;van der Kamp et al., 386 

2003), the major loss occurred mainly through evaporation from the surface of the bare ground 387 

and standing water in depressions. These processes lose a very small amount of water compared 388 

to the input of the water in spring and early summer leaving the soil wet. Moreover, the surface 389 

soil with high organic matter content and low bulk density stored larger amount of water than the 390 

deep layers where the organic matter gradually decreased and the bulk density increased. 391 

Reflecting the long-term history of vegetation growth in the landscape, the variability of organic 392 

matter content (CV=41%) may be one of the main factor of the high variability in surface layer 393 

SWS (Biswas and Si, 2011c).. 394 

 As the vegetation developed in summer, strong evapotranspiration resulted in the lowest 395 

average SWS in a year. High amount of water in the depressions allowed grasses to grow faster 396 

and transpire more water comparing to the knolls (Fig. 8). For example, the aquatic vegetation 397 

growth within the depressions was as high as 2 m, while the grasses on the knolls grew to a 398 

maximum up to a meter tall. The uneven growth of vegetation and the high evapotranspirative 399 

demand in summer narrowed the range of SWS. Stronger demand extracted more water from the 400 

soil where available and comparative less water from the soil where the availability was restricted, 401 

thus reducing the disparities between maximum and minimum values. This variable water uptake 402 

was visible in the growth of vegetation in the later part of the growing season as well (Fig. 8). The 403 

reduction in the range of SWS was the largest in the surface layer and gradually decreased at deep 404 

layers. This is because the surface layer was exposed to various environmental forcing and was 405 

very dynamic in nature.  For example, plants can take up more than 70% of the water they need 406 
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from the top 50% of the root zone (Feddes et al., 1978). This dynamic behavior of the surface layer 407 

exhausted readily available water and finally reduced the range in water storage. This decrease in 408 

range also happened in the later part of the growing season.  409 

The multifractal and joint multifractal analyses explained the scaling behavior of SWS at 410 

different depths over time. The linearity in the log-log plot between the aggregated variance in 411 

SWS and the scale at all soil layers over time indicated the presence of scaling laws (Fig. 1). The 412 

mass exponent, τ calculated over a range of moment orders (q) was used to examine the scaling 413 

behavior (monofractal and multifractal). The shape of the curve described the type of scaling 414 

involved. The curve with a single slope implied a monofractal scaling, while a convex downward 415 

curve with different slopes for negative and positive moment orders implied a multiple scaling 416 

(multifractal) (Evertsz and Mandelbrot, 1992). The deviation in the scaling property of SWS from 417 

the monofractal was also examined by comparing the τ(q) curve with the theoretical UM model 418 

and the SSR between them (Fig. 2). The near unity slope of the τ(q) curves and the insignificant 419 

difference from the UM model indicated a monofractal type scaling at all layers except the surface 420 

layer during the wet period (until mid to late June) where a multifractal behavior led to a slight 421 

convex downward curve (Fig. 2). This was also supported by a significant difference between the 422 

slope of single and segmented fit in the surface layer during the wet period. 423 

Generally during the wet period, excess water fills and drains macropores quickly and creates 424 

variations in SWS. Variations in the evaporation due to uneven solar incidence over micro-425 

topography also triggered SWS variability in the surface layer. Additionally, the snow melt and 426 

the release of water controlled by local (e.g. soil texture) and non-local (e.g. topography) factors 427 

also affected the spatial distribution of SWS, making it more heterogeneous in the wet period 428 

(Grayson et al., 1997; Biswas and Si, 2012). Contrarily, as depth increased, less impact of 429 

environmental forcing tended to create less variability in SWS and exhibited monofractal behavior 430 

which was consistent with the uniform slope shown in Figure 2. During the dry period or later part 431 

of the growing season, the SWS storage variability at all depths was small and exhibited 432 

monofractal behavior (Fig. 2). Accordingly, the deeper layers in the wet period and all layers in 433 

the dry period can be accurately represented by only one scaling exponent while the surface layer 434 

in the wet period may require a hierarchy of exponents to describe scaling property. A similar trend 435 

was observed in SWS of cumulative depth layers (Fig. 3). Resulting from increasingly buffering 436 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2015-81, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



16 
 

capacity of the deeper soil layers, the variability of cumulative SWS overlaid the multifractal 437 

nature of the surface layer, and finally exhibited monofractal behavior in general. 438 

The scaling patterns of SWS at different depths and different periods were further examined 439 

using multifractal spectrum [f(q) vs. α(q)] (Fig. 4 & Fig. 5). The degree of convexity was used to 440 

characterize the heterogeneity of scaling exponents or the degree of multifractality. Large value of 441 

αmax-αmin indicated stronger heterogeneity in the local scaling indices of SWS or cumulative SWS 442 

and vice versa. The largest value for the surface layer(s) in the wet period indicated the most 443 

multifractal behavior of SWS. However, the value decreased with depth and gradually converged 444 

in deep layers (Fig. 4). This decline manifested a conformity in the scaling behavior of SWS at 445 

deeper layers. Over time, the αmax-αmin value of the surface soil layer decreased and became very 446 

similar to that of deep layers. This indicated a reduction in the degree of multifractality for surface 447 

soil layers from the wet period to the dry period. A consistent αmax-αmin value for all depths during 448 

the dry period suggested the homogeneity and least multifractal nature of SWS. A similar behavior 449 

was observed in the cumulative SWS (Fig. 5).  450 

To sum up, both the unity slope of the τ(q) curves (Fig. 2 and Fig. 3) and the degree of 451 

convexity of the f(q) spectrum (Fig, 4 & Fig. 5) jointly demonstrated that dynamic behavior of 452 

surface soil layers in the wet period made SWS highly variable and exhibited multifractal nature, 453 

while less environmental forcing and increased buffering capacity of deep layers led to 454 

monofractal nature. As a result, multiple scaling exponents were required to characterize the 455 

variability of SWS in the surface layer during the wet period, while less number of exponents was 456 

necessary for deeper layers during wet period or all layers during dry period.  457 

The height of the spectrum, f(q) revealed the dimension or frequency distribution of the scaling 458 

indices. A low height of f(q) curve indicated rare events or extreme values in the distribution, while 459 

a high value represented uniform distribution in all segments. A very similar height of the f(q) 460 

curve for all depths and all periods indicated a consistent frequency distribution of the scaling 461 

indices. Additionally, the position and the symmetry of the curve revealed the distribution of 462 

scaling exponents. A symmetric f(q) curve indicated uniform distribution of the scaling exponents. 463 

The left side of the spectrum corresponded to the large SWS that were amplified by the positive 464 

values of q while the right side indicated smaller SWS that were amplified by negative q values.  465 
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Surface one or two layers during the wet period tended to exhibit longer tail of the curve on 466 

the left, showing more heterogeneity in the distribution of large values. However, when stepping 467 

into the dry period, the spectrum tended to display a longer tail on the right compared to the left 468 

side, suggesting more heterogeneity in the distribution of smaller values. Few locations had 469 

standing water thus large SWS during the wet period compared to few points with very small SWS 470 

during the dry period owing to stronger demand by growing vegetation.  471 

The generalized dimension, Dq was subsequently used to characterize the scaling property and 472 

variability in SWS (Fig. 6 and Fig. 7). The largest value of f(q), referred to as the capacity 473 

dimension (D0) obtained at q = 0, was close to unity for all layers at different times (Fig. 6). The 474 

information dimension (D1) obtained at q = 1 was different from correlation dimension (D2), the 475 

average distribution density of the measurement for the surface layers in the wet period 476 

(Grassberger and Procaccia, 1983). In this case, the different values of D0, D1 and D2 indicated 477 

multifractal nature of the distribution of SWS. Similarly, a non-unity value of D1/D0 (Montero, 478 

2005) also indicated multifractal nature of SWS at the surface layer(s) during the wet period. 479 

However, over the growing season, the D1 and D2 value approached closer to D0 and indicated 480 

monofractal type behavior. Similar values of D0, D1 and D2 during the dry period also indicated 481 

homogeneous distribution.  482 

Joint multifractal distribution between the surface and various subsurface layers indicated the 483 

similarity in the scaling patterns (Table 2). Basically, the hydrological processes of shallower 484 

layers was more similar to the top layer, while deeper layers showed more observable disparities 485 

from the surface. The nearest subsurface (20-40 cm) layer showed generally the highest similarity 486 

with the surface (0-20 cm) layer.  However, in the wet period, the subsurface layers displayed the 487 

smallest similarity to the surface layer, suggesting higher dynamic nature of hydrological 488 

processes. In the dry period, stronger effect of vegetation overwhelmed the effect of small 489 

variations, thus creating a more uniform distribution of SWS at all soil layers and showed stronger 490 

similarity to the surface layers (Table 2).  491 

Overall, our result revealed multifractal behavior of surface soil layers during the wet period 492 

due to its dynamic nature. This behavior gradually changed with depth and time (Fig. 9). In the 493 

deeper layers during the wet period, the behavior became less multifractal or nearly monofractal. 494 

Similarly, in the dry period, the vegetation development and its high evapotranspirative demand 495 
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in semi-arid climate of the study area increasingly buffered the variation of SWS, as a result, all 496 

the soil layers with less effect from environment forcing showed uniform distribution or 497 

monofractal behavior (Fig. 9).  498 

5 Summary and Conclusions 499 

The transformation of information on soil water variability from one scale to another requires 500 

knowledge on the scaling behaviour and the quantification of scaling index. Surface soil water can 501 

be easily measured (e.g. remote sensing) and presents multi-scaling behaviour (requiring multiple 502 

scaling indices). However, land-management practices requires the understanding of the 503 

hydrological dynamics in the root zone and/or the whole soil profile. The scaling properties of the 504 

surface soil layer can be used in the decision making provided the similar behavior holds at the 505 

deep soil layer.  506 

In this manuscript, the scaling properties of soil water storage at different soil layers measured 507 

over five-year period were examined using multifractal and joint multifractal analysis. The scaling 508 

properties of soil water storage mainly suggested monofractal scaling behavior. However, the 509 

surface layer in the wet period or with high soil water storage tended to be multifractal in nature, 510 

which gradually became monofractal with depth. With the decrease in soil water storage, the 511 

scaling behavior became monofractal in nature at the later part of the year or growing season. The 512 

year with high annual precipitation stored more water in the surface layer throughout the growing 513 

period and displayed nearly multifractal scaling behavior. This multifractal nature indicated that 514 

the transformation of information from one scale to another at the surface layer during the wet 515 

period requires multiple scaling indices. On the contrary, the transformation requires single scaling 516 

index during the dry period for the whole soil profile. The scaling properties of the surface layer 517 

were highly correlated with that of the deep layers, which indicated a highly similar scaling 518 

behaviour in the soil profile. The study was conducted in an undulating landscape from a semi-519 

arid climate and the results were very persistence over the years. Therefore, the observation 520 

completed at the field scale in this type of landscape and climate may be generalized in similar 521 

landscapes and climatic situations, otherwise may need to be examined thoroughly. The method 522 

used here can be transferred to examine the scaling properties in other experimental situations.  523 

6 Acknowledgements 524 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2015-81, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



19 
 

The project was funded by the Natural Science and Engineering Research Council of Canada. The 525 

help from the graduate student and the summer students of the Department of Soil Science at the 526 

University of Saskatchewan in collecting field data is highly appreciated.  527 

7 References 528 

Biswas, A., and Si, B. C.: Scales and locations of time stability of soil water storage in a hummocky 529 

landscape, J. Hydrol., 408, 100-112, 10.1016/j.jhydrol.2011.07.027, 2011a. 530 

Biswas, A., and Si, B. C.: Revealing the Controls of Soil Water Storage at Different Scales in a 531 

Hummocky Landscape, Soil Sci. Soc. Am. J., 75, 1295-1306, 10.2136/sssaj2010.0131, 2011b. 532 

Biswas, A., and Si, B. C.: Identifying scale specific controls of soil water storage in a hummocky 533 

landscape using wavelet coherency, Geoderma, 165, 50-59, 10.1016/j.geoderma.2011.07.002, 534 

2011c. 535 

Biswas, A., Chau, H. W., Bedard-Haughn, A. K., and Si, B. C.: Factors controlling soil water 536 

storage in the hummocky landscape of the Prairie Pothole Region of North America, Can. J. 537 

Soil Sci., 92, 649-663, 10.4141/cjss2011-045, 2012a. 538 

Biswas, A., and Si, B. C.: Identifying effects of local and nonlocal factors of soil water storage 539 

using cyclical correlation analysis, Hydrol. Proc., 26, 3669-3677, 10.1002/hyp.8459, 2012. 540 

Biswas, A., Zeleke, T. B., and Si, B. C.: Multifractal detrended fluctuation analysis in examining 541 

scaling properties of the spatial patterns of soil water storage, Nonlin. Proc. Geophys., 19, 227-542 

238, 10.5194/npg-19-227-2012, 2012b. 543 

Chhabra, A., and Jensen, R. V.: Direct determination of the f(α) singularity spectrum, Physical 544 

Review Letters, 62, 1327-1330, 1989. 545 

Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S. X., and Namkhai, A.: Temporal 546 

and spatial scales of observed soil moisture variations in the extratropics, J. Geophys. Res.-547 

Atm., 105, 11865-11877, 10.1029/2000jd900051, 2000. 548 

Evertsz, C. J. G., and Mandelbrot, B. B.: Self-similarity of harmonic measure on DLA, Physica A: 549 

Statistical Mechanics and its Applications, 185, 77-86, http://dx.doi.org/10.1016/0378-550 

4371(92)90440-2, 1992. 551 

Fang, X., and Pomeroy, J. W.: Modelling blowing snow redistribution to prairie wetlands, Hydrol. 552 

Proc., 23, 2557-2569, 10.1002/hyp.7348, 2009. 553 

Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field water use and crop yield., John 554 

Wiley & Sons Inc., New York, 1978. 555 

Grassberger, P., and Procaccia, I.: Characterization of Strange Attractors, Physical Review Letters, 556 

50, 346-349, 1983. 557 

Gray, D. M., Landine, P. G., and Granger, R. J.: SIMULATING INFILTRATION INTO FROZEN 558 

PRAIRIE SOILS IN STREAMFLOW MODELS, Can. J. Earth Sci., 22, 464-472, 1985. 559 

Grayson, R. B., Western, A. W., Chiew, F. H. S., and Bloschl, G.: Preferred states in spatial soil 560 

moisture patterns: Local and nonlocal controls, Water Resour. Res., 33, 2897-2908, 1997. 561 

Hayashi, M., van der Kamp, G., and Rudolph, D. L.: Water and solute transfer between a prairie 562 

wetland and adjacent uplands, 2. Chloride cycle, J. Hydrol., 207, 56-67, 1998. 563 

Hu, Z. L., Islam, S., and Cheng, Y. Z.: Statistical characterization of remotely sensed soil moisture 564 

images, Remote Sensing of Environment, 61, 310-318, 1997. 565 

Kachanoski, R. G., and Dejong, E.: Scale dependence and the temporal persistence of spatial 566 

patterns of soil-water storage, Water Resour. Res., 24, 85-91, 1988. 567 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2015-81, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



20 
 

Kim, G., and Barros, A. P.: Downscaling of remotely sensed soil moisture with a modified fractal 568 

interpolation method using contraction mapping and ancillary data, Remote Sensing of 569 

Environment, 83, 400-413, 2002. 570 

Koster, R. D., Dirmeyer, P. A., Guo, Z. C., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, 571 

S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, 572 

K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, 573 

R., Xue, Y. K., Yamada, T., and Team, G.: Regions of strong coupling between soil moisture 574 

and precipitation, Science, 305, 1138-1140, 10.1126/science.1100217, 2004. 575 

Liu, H. H., and Molz, F. J.: Multifractal analyses of hydraulic conductivity distributions, Water 576 

Resour. Res., 33, 2483-2488, 10.1029/97WR02188, 1997. 577 

Mandelbrot, B. B.: The fractal geometry of nature, W.H. Freeman and Company, San Francisco, 578 

1982. 579 

Mascaro, G., Vivoni, E. R., and Deidda, R.: Downscaling soil moisture in the southern Great Plains 580 

through a calibrated multifractal model for land surface modeling applications, Water Resour. 581 

Res., 46, W08546, 10.1029/2009WR008855, 2010. 582 

Meneveau, C., Sreenivasan, K. R., Kailasnath, P., and Fan, M. S.: Joint multifractal measures: 583 

Theory and applications to turbulence, Physical Review A, 41, 894-913, 1990. 584 

Montero, E. s.: Rényi dimensions analysis of soil particle-size distributions, Ecological Modelling, 585 

182, 305-315, http://dx.doi.org/10.1016/j.ecolmodel.2004.04.007, 2005. 586 

National Wetlands Working Group: The Canadian wetland classification system, University of 587 

Waterloo, ON, 1997. 588 

Pomeroy, J. W., and Gray, D. M.: Snowcover, accumulation, relocation, and management, in: 589 

NHRI Science Report No. 7, Environment Canada, Saskatoon, SK., 144, 1995. 590 

Pomeroy, J. W., de Boer, D., and Martz, L. W.: Hydrology and water resources, in: Saskatchewan: 591 

Geographic Perspectives, edited by: Thraves, B., CRRC, Regina, SK, Canada, 2007. 592 

Quinn, P.: Scale appropriate modelling: representing cause-and-effect relationships in nitrate 593 

pollution at the catchment scale for the purpose of catchment scale planning, J. Hydrol., 291, 594 

197-217, 10.1016/j.hydrol.2003.12.040, 2004. 595 

Rodriguez-Iturbe, I., Vogel, G. K., Rigon, R., Entekhabi, D., Castelli, F., and Rinaldo, A.: ON 596 

THE SPATIAL-ORGANIZATION OF SOIL-MOISTURE FIELDS, Geophys. Res. Lett., 22, 597 

2757-2760, 10.1029/95gl02779, 1995. 598 

Schertzer, D., and Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic 599 

scaling multiplicative processes, Journal of Geophysical Research: Atmospheres, 92, 9693-600 

9714, 10.1029/JD092iD08p09693, 1987. 601 

Sivapalan, M.: Scaling of hydrologic parameterizations, 1. Simple models for the scaling of 602 

hydrologic state variables, examples and a case study, Center for Water Research, University 603 

of Western Australia, Nedlands, WA, Australia, 1992. 604 

van der Kamp, G., Hayashi, M., and Gallen, D.: Comparing the hydrology of grassed and 605 

cultivated catchments in the semi-arid Canadian prairies, Hydrol. Proc., 17, 559-575, 606 

10.1002/hyp.1157, 2003. 607 

Voss, R.: Fractals in nature: From characterization to simulation, in: The Science of Fractal 608 

Images, edited by: Peitgen, H.-O., and Saupe, D., Springer New York, 21-70, 1988. 609 

Western, A. W., Grayson, R. B., Bloschl, G., Willgoose, G. R., and McMahon, T. A.: Observed 610 

spatial organization of soil moisture and its relation to terrain indices, Water Resour. Res., 35, 611 

797-810, 1999. 612 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2015-81, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



21 
 

Zeleke, T. B., and Si, B. C.: Scaling properties of topographic indices and crop yield: Multifractal 613 

and joint multifractal approaches, Agron. J., 96, 1082-1090, 2004. 614 

 615 

Figure captions 616 

Fig. 1. Log-log plot between the aggregated variance of the SWS spatial series and the scale. A 617 

linear relationship indicated the presence of scale invariance and scaling laws. 618 

Fig. 2. Mass exponents for soil water storage spatial series measured at each 20 cm soil layer down 619 

to 140 cm in 2008 and 2010 for a range of q (-15 to 15 at 0.5 increments). The solid line is a linear 620 

reference created following the UM model of Schertzer and Lovejoy (1987) passing through (q = 621 

0). 622 

Fig. 3. Mass exponents for soil water storage spatial series from surface to different soil layers 623 

(cumulative storage) at 20 cm increment down to 140 cm in 2008 and 2010 for a range of q (-15 624 

to 15 at 0.5 increments). The solid line is a linear reference created following the UM model of 625 

Schertzer and Lovejoy (1987) passing through (q = 0). 626 

Fig. 4. Multifractal spectra of soil water storage spatial series measured at each 20 cm soil layer 627 

down to 140 cm in 2008 and 2010 for a range of q (-15 to 15 at 0.5 increments). 628 

Fig. 5. Multifractal spectra of soil water storage spatial series from surface to different soil layers 629 

(cumulative storage) at 20 cm increment down to 140 cm in 2008 and 2010 for a range of q (-15 630 

to 15 at 0.5 increments). 631 

Fig. 6. Generalized dimension spectra of soil water storage spatial series measured at each 20 cm 632 

soil layer down to 140 cm in 2008 and 2010 for a range of q (-15 to 15 at 0.5 increments). 633 

Fig. 7. Generalized dimension spectra of soil water storage spatial series from surface to different 634 

soil layers (cumulative storage) at 20 cm increment down to 140 cm in 2008 and 2010 for a range 635 

of q (-15 to 15 at 0.5 increments). 636 

Fig. 8: Conceptual schematics showing the vegetation growth patterns in the different section of 637 

landscapes at different times of the year. The figure is developed based on field observations and 638 

the scale is arbitrary. 639 

Fig. 9: Conceptual schematics showing vegetation development over time, dominant water loss 640 

processes and the scaling behavior of soil water storage at different depths. The figure is developed 641 

based on field observations and scaling analysis. The scale of the figure is arbitrary. 642 
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Tables 643 

Table 1. Maximum, minimum, and average soil water storage at different depths (20 cm increment) over the whole measurement period. 644 

 0-20 cm 20-40 cm 40-60 cm 60-80 cm 80-100 cm 100-120 cm 120-140 cm 
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Jul 17 2007 13.96 3.25 5.65 11.55 3.09 5.63 9.43 2.59 5.73 9.06 3.34 5.90 9.51 3.22 5.89 9.81 3.55 6.05 9.81 3.54 6.14 

Aug 7 2007 13.96 3.05 4.90 9.28 2.73 5.04 8.30 2.40 5.21 9.36 2.75 5.48 8.23 2.96 5.57 7.52 3.17 5.62 9.11 3.17 5.67 

Sept 1 2007 13.96 2.26 5.29 9.28 3.00 5.08 8.08 2.42 5.23 6.98 2.75 5.38 7.17 2.92 5.52 8.08 3.20 5.64 9.07 3.23 5.73 

Oct 12 2007 8.30 3.40 5.04 6.92 3.07 5.03 6.74 2.43 5.19 7.60 2.81 5.36 8.39 2.93 5.48 7.92 3.25 5.60 8.55 3.25 5.67 

May 2 2008 13.96 4.49 6.28 9.96 4.09 6.03 9.43 3.69 5.80 8.83 3.16 5.74 9.51 2.90 5.66 9.81 3.26 5.70 9.81 3.30 5.75 

May 31 2008 13.96 3.30 5.21 9.28 1.54 5.51 8.08 1.58 5.55 6.85 3.00 5.58 7.08 3.08 5.64 8.08 3.22 5.70 8.39 3.25 5.79 

Jun 21 2008 8.77 3.06 4.70 7.84 3.43 5.25 6.86 2.80 5.38 6.78 2.77 5.52 7.08 3.04 5.61 7.73 3.28 5.69 8.48 3.23 5.77 

July 16 2008 7.07 2.78 4.03 6.78 3.06 4.77 6.71 2.60 5.10 6.75 2.56 5.30 6.84 2.91 5.43 6.98 3.17 5.56 7.01 3.16 5.64 

Aug 23 2008 4.96 2.44 3.40 5.66 2.73 4.11 6.02 2.37 4.59 6.44 2.36 4.90 6.56 2.63 5.12 6.85 3.04 5.30 6.81 2.99 5.42 

Sept 17 2008 4.64 2.66 3.51 5.63 2.79 4.07 5.91 2.49 4.55 6.28 2.45 4.85 6.59 2.63 5.05 6.68 3.05 5.25 6.91 2.96 5.37 

Oct 22 2008 6.11 3.83 4.96 6.03 3.10 4.37 5.92 2.52 4.53 6.13 2.46 4.79 6.55 2.63 5.00 6.61 3.00 5.18 6.73 1.22 5.28 

April 20 2009 13.96 4.73 6.67 11.55 3.62 5.84 10.49 3.23 5.62 8.83 2.97 5.48 9.51 2.67 5.38 9.81 3.08 5.49 9.81 2.85 5.66 

May 7 2009 13.96 4.45 5.97 9.51 3.68 5.70 8.08 3.26 5.49 8.30 3.00 5.36 7.85 2.73 5.35 9.81 3.01 5.43 8.91 2.84 5.51 

May 27 2009 12.60 3.67 5.43 8.15 3.55 5.52 8.08 3.43 5.39 6.78 3.13 5.37 7.16 2.64 5.39 8.08 2.96 5.51 8.45 2.80 5.53 

July 21 2009 6.92 3.16 4.56 7.24 3.16 4.83 6.55 2.91 5.00 6.72 2.95 5.23 6.77 2.58 5.24 6.91 3.02 5.34 6.89 3.24 5.43 

Aug 27 2009 6.64 3.42 5.01 6.67 3.57 5.07 6.32 2.84 4.92 6.50 2.85 5.03 6.76 2.57 5.16 6.79 3.00 5.25 6.90 3.02 5.34 

Oct 27 2009 6.65 3.89 5.30 6.44 3.44 4.90 6.04 2.74 4.80 6.36 2.68 4.91 6.55 2.60 5.05 6.71 3.05 5.17 6.71 2.79 5.29 

April 6 2010 13.96 4.67 6.47 9.51 3.53 5.52 9.43 3.19 5.31 8.83 2.91 5.35 9.51 2.61 5.23 9.81 3.01 5.34 9.81 2.83 5.41 

May 19 2010 13.96 4.08 6.04 11.32 4.28 5.94 10.49 4.46 5.94 8.75 4.08 5.93 8.60 3.55 5.90 9.81 4.03 5.91 9.81 3.96 5.85 

June 14 2010 13.96 4.38 6.54 11.55 4.48 6.32 10.49 4.58 6.31 8.83 4.27 6.29 9.51 3.86 6.22 9.81 4.37 6.24 9.81 4.50 6.20 

Sept 28, 2010 13.96 4.51 6.33 11.55 4.48 6.16 9.43 3.77 6.08 8.83 3.91 6.13 9.51 3.83 6.12 9.81 4.11 6.16 9.79 4.18 6.20 

May 13, 2011 13.96 4.82 7.12 11.55 4.87 6.61 10.49 4.75 6.50 9.21 4.54 6.40 9.51 4.16 6.34 9.96 3.17 6.32 9.79 4.30 6.45 

Jun 6, 2011 13.96 4.31 7.05 11.55 4.56 6.59 10.49 3.85 6.52 9.06 4.75 6.44 9.51 4.21 6.40 9.96 3.17 6.39 9.79 4.77 6.52 

Jun 29, 2011 13.96 4.93 7.16 11.55 4.96 6.73 10.49 4.29 6.64 9.74 4.42 6.57 9.51 4.28 6.49 9.96 3.17 6.46 9.79 4.30 6.55 

Sept 29, 2011 12.60 3.11 5.25 8.15 3.46 5.50 8.08 2.88 5.68 7.58 4.03 5.82 9.19 3.77 5.89 9.51 3.81 6.02 9.36 4.14 6.04 
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Table 2: Correlation between joint multifractal coefficients of surface to different subsurface 646 

layers measured at 20 cm interval in 2008. 647 

 2 May 

2008 

31 May 

2008 

21 Jun. 

2008 

16 Jul. 

2008 

23 Aug. 

2008 

17 Sep. 

2008 

22 Oct. 

2008 

0-20 cm vs. 

20-40 cm 
0.96 0.98 0.99 0.99 0.99 1.00 1.00 

0-20 cm vs. 

40-60 cm 
0.93 0.96 0.96 0.97 0.97 1.00 1.00 

0-20 cm vs. 

60-80 cm 
0.93 0.94 0.95 0.95 0.96 0.99 0.99 

0-20 cm vs. 

80-100 cm 
0.92 0.92 0.93 0.94 0.94 0.98 0.99 

0-20 cm vs. 

100-120 cm 
0.92 0.92 0.93 0.93 0.93 0.97 0.99 

0-20 cm vs. 

120-140 cm 
0.93 0.94 0.95 0.94 0.94 1.00 1.00 

 648 

 649 

 650 
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 653 

 654 

 655 

 656 

 657 

 658 

 659 
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Figure 2 664 

-20

-10

0

10

20

 (
q

)

-20

-10

0

10

20

-15 -10 -5 0 5 10 15
-20

-10

0

10

20

q
-15 -10 -5 0 5 10 15

-20

-10

0

10

20
0-20 cm

0-40 cm 

0-60 cm 

0-80 cm

0-100 cm

0-120 cm 

0-140 cm 

UM Model 
2 May 2008

31 May 2008

21 June 2008

16 July 2008

23 August 2008

17 September 2008

22 October 2008

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

13 May 2011

6 June 2011

29 June 2011

29 September 2011

6 April 2010

19 May 2010

14 June 2010

28 September 2010

 665 
Figure 3 666 
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Figure 6 672 
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 675 
Figure 8 676 
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Figure 9 678 
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