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 11 

Abstract Spatio-temporal behavior of soil water is essential to understand the science of 12 

hydrodynamics. Data intensive measurement of surface soil water using remote sensing has 13 

established that the spatial variability of soil water can be described using the principle of self-14 

similarity (scaling properties) or fractal theory. This information can be used in determining 15 

land management practices provided the surface scaling properties are kept at deep layers. The 16 

current study examined the scaling properties of sub-surface soil water and their relationship 17 

to surface soil water, thereby serving as supporting information for plant root and vadose zone 18 

models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured 19 

along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal 20 

nature only during the wet period (from snowmelt until mid to late June) indicating the need 21 

for multiple scaling indices in transferring soil water variability information over multiple 22 

scales. However, with increasing depth, the SWS became monofractal in nature indicating the 23 

need for a single scaling index to upscale/downscale soil water variability information. In 24 

contrast, all soil layers during the dry period (from late June to the end of the growing season 25 

in early November) were monofractal in nature, probably resulting from the high 26 

evapotranspirative demand of the growing vegetation that surpassed other effects. This strong 27 

similarity between the scaling properties at the surface layer and deep layers provides the 28 

possibility of inferring about the whole profile soil water dynamics using the scaling properties 29 

of the easy-to-measure surface SWS data. 30 
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Knowledge on the spatial distribution of soil water over a range of spatial scales and time has 33 

important hydrologic applications including assessment of land-atmosphere interactions 34 

(Sivapalan, 1992), performance of various engineered covers, monitoring soil water balance 35 

and validating various climatic and hydrological models (Rodriguez-Iturbe et al., 1995;Koster 36 

et al., 2004). However, high variability in soil is a major challenge in hydrology (Quinn, 2004) 37 

as the distribution of soil water in the landscape is controlled by various factors and processes 38 

operating at different intensities over a variety of extents (Entin et al., 2000). The individual 39 

and/or combined influence of these physical factors (e.g. topography, soil properties) and 40 

environmental processes (e.g. runoff, evapotranspiration, and snowmelt) gives rise to complex 41 

and nested effects, which in turn evolve a signature in the spatial organization (Western et al., 42 

1999) or patterns in soil water as a function of spatial scale (Kachanoski and de Jong, 1988;Kim 43 

and Barros, 2002;Biswas and Si, 2011a). This complexity makes the management decision 44 

difficult at a scale other than that of measurement. Therefore, it is necessary to transfer 45 

variability information from one extent (e.g. pedon) to another (e.g. large catchment), which is 46 

called scaling. 47 

The scaling of soil water is possible if the distribution of some statistical parameters (e.g., 48 

variance) remain similar at all studied scopes. This feature, known as scale-invariance, means 49 

that the spatial feature in the distribution of soil water will not change if the length scales are 50 

multiplied by a common factor (Hu et al., 1997). Generally, the soil water will have a typical 51 

size or scale, a value around which individual measurements are centered. So the probability 52 

of measuring a particular value will vary inversely as a power of that value, which is known as 53 

the power law decay, a typical principle of the scaling process.  Now, as the spatial distribution 54 

of soil water follows the power law decay (Hu et al., 1997;Kim and Barros, 2002;Mascaro et 55 

al., 2010), the spatial variability can be investigated and characterized quantitatively over a 56 

large range of measurement extents using the fractal theory (Mandelbrot, 1982). When the 57 

spatial distribution of soil water is the response of some linear processes, the scaling can be 58 

done using a single coefficient over multiple scales and the distribution shows monofractal 59 

behavior. However, the spatial distribution of soil water is the nonlinear response of multiple 60 

factors and processes acting over a variety of scales and therefore needs multiple scaling 61 

indices (multifractals) for quantifying spatial variability (Hu et al., 1997;Kim and Barros, 62 

2002;Mascaro et al., 2010). 63 

The multifractal behavior in the surface soil water as a result of temporal evolution of 64 

wetting and drying cycles has been reported from a sub-humid environment of Oklahoma by 65 



Kim and Barros (2002). Mascaro et al. (2010) reported the multifractal behavior of soil water, 66 

which was ascribed as a signature of the rainfall spatial variability. Though these measurements 67 

can provide a quick estimate of soil water over a large area, they are limited to very few 68 

centimeters of the soil profile. These studies reported the multifractal behavior of only the 69 

surface soil water indicating the superficial scaling properties. Surface soil layer is exposed to 70 

direct environmental forces and is the most dynamic in nature. The scaling properties of surface 71 

soil water can be used for land management practices provided the observed scaling properties 72 

remain the same for the deep layers such as vadose zone or the whole soil profile. 73 

Understanding overall hydrological dynamics in soil profile needs information on the scaling 74 

properties and the nature of the spatial variability of soil water over a range of scales at deep 75 

layers as well (Biswas et al., 2012c). The information on the similarity in the nature of the 76 

spatial variability of soil water between the surface layer and deep layers may also help 77 

inferring about the soil profile hydrological dynamics. Therefore, the objectives of this study 78 

were to examine over time the scaling properties of sub-surface layers and their relationship 79 

with surface layers at different initial soil water conditions. We have examined the scaling 80 

properties of soil water storage at each layer and their trend with increasing depth from the 81 

surface (cumulative depth) over a 5-year period from a hummocky landscape from central 82 

Canada using the multifractal approach. The relationship between the scaling properties of the 83 

surface layer and the subsurface layers was also examined using the joint multifractal analysis. 84 

2 Materials and Methods 85 

2.1 Study site and data collection  86 

A field experiment was carried out at St. Denis National Wildlife Area (52°12ʹN latitude, 87 

106°50ʹW longitude and ~549 m above sea level), which is located 40 km east of Saskatoon, 88 

Saskatchewan, Canada. The landscape of the study area is hummocky with a complex sequence 89 

of slopes (10 to 15%) extending from differently-sized rounded depressions to irregular 90 

complex knolls and knobs, a characteristic landscape of the North American Prairie pothole 91 

region encompassing approximately 780,000 km2 from north-central United States to south-92 

central Canada (National Wetlands Working Group, 1997). Some of these potholes are 93 

seasonal in nature meaning to store water in the spring (wet period) and drying out during late 94 

summer and in fall season (dry period) (Fig. 1). Variable water distribution within the 95 

landscape and in different landform elements such as side slopes, knolls, and depressions 96 

support vegetation differently. For example, the large amount of stored water in depressions 97 

provide a luxurious supply of water to growing plants compared to knolls (Fig. 1). A transect 98 



of 128 points (576 m long) extending in the north-south direction covering multiple knoll-99 

depression cycles was established in 2004 at the study site to examine the soil water variation 100 

at field scale. The sample points were selected at 4.5 m regular intervals along the transect to 101 

catch the systematic variability of soil water. Soil water measurements were carried out at every 102 

20 cm depth down to 140cm along the transect over the period of 2007 to 2011, among which, 103 

the surface soil water (0 to 20 cm) was measured using vertically installed time domain 104 

reflectometry (TDR) probes and a metallic cable tester (Model 1502B, Tektronix, Beaverton, 105 

OR), while deeper layers down to 140 cm were measured using a neutron probe (Model CPN 106 

501 DR Depthprobe, CPN International Inc., Martinez, CA) (Biswas et al., 2012a). Soil water 107 

content data was then multiplied by depth and added together to obtain the overall soil profile 108 

water storage so as to examine the fractal behavior of SWS at different depths over time A 109 

detailed description of the study site, development of the transect, measurement of soil water 110 

and the calibration of measurement instruments can be found in earlier publications from this 111 

project (e.g. Biswas et al. (2012a)). 112 

2.2 Data analysis 113 

Various methods including geostatistics (Grego et al., 2006), spectral analysis (Kachanoski and 114 

de Jong, 1988), and wavelet analysis (Biswas and Si, 2011a, b) have been used to examine the 115 

scale-dependent spatial patterns of SWS. These methods generally deal with how the second 116 

moment of SWS changes with scales or frequencies. When the statistical distribution of SWS 117 

is normal, the second moment plus the average provide a complete description of the spatial 118 

series. However, for other distributions (e.g. left skewed distribution), higher-order moments 119 

are necessary for a complete description of the spatial series. For example, let’s define the qth 120 

moment of a spatial series z as zq. In this situation, for a positive value of q, the qth moment 121 

magnify the effect of larger numbers and diminish the effect of smaller numbers in z. While, 122 

on the other hand, for a negative value of q, the qth moment magnify the effect of small numbers 123 

and diminish the effect of large numbers in the spatial series z. In this way, using variable 124 

moments, we can look at the effect of the magnitude of the data in a series and better 125 

characterize its spatial variability.  126 

2.2.1 Statistical self-similarity or scale invariance 127 

Soil water is highly variable in space and time. If the variability in the spatial/temporal 128 

distribution remains statistically similar at all studied scales, the SWS is assumed to be self-129 

similar (Evertsz and Mandelbrot, 1992). Self-similarity, also called scale invariance, is closely 130 



associated with the transfer of information from one scale to another. We used the multifractal 131 

analysis to explore self-similarity or inherent differences in scaling properties of SWS in this 132 

study.  133 

2.2.2 Multifractal analysis 134 

On the spatial domain of the studied field, multifractal analysis was used to characterize the  135 

scaling property of SWS by statistically measuring the mass distribution (Zeleke and Si, 2004). 136 

The spatial domain or the data along the transect was successively divided into self-similar 137 

segments following the rule of the binomial multiplicative cascade (Evertsz and Mandelbrot, 138 

1992). This method required that the two segments divided from a unit interval to be of equal 139 

length. With regards to a unit mass M (a normalized probability distribution of a variable or 140 

measured in a generalized case) relating to the unit interval, the weight was also partitioned 141 

into [h × M] and [(1-h) × M], where h was a random variable (0 ≤ h ≤ 1) governed by a 142 

probability density function. Sequentially, the new subsets with their associated mass were 143 

equally divided into smaller parts. In this way, multifractal analysis was able to describe the 144 

scaling properties for the higher-order moments compared to semivariogram which can only 145 

measure the scaling properties of the second moment. In a special case, if the scaling properties 146 

do not change with q, the spatial series can be identified as monofractal, when one scaling 147 

coefficient is enough to characterize scaling property of SWS. Generally, the multifractal 148 

analysis is good at measuring the highly fluctuated mass (box size) within a scale interval. This 149 

also  provides physical insights at all scales regardless of any ad hoc parameterization or 150 

homogeneity assumptions in the analysis (Schertzer and Lovejoy, 1987).  151 

For SWS spatial series, the scale-invariant mass exponent, was termed as τ(q) (Liu and 152 

Molz (1997):  153 

  )q(q
x)x(z                      [1]                                     154 

where z was the SWS spatial series, x was the lag distance and the symbol  indicated 155 

proportionality. The τ(q) is widely used in multifractal analysis. If the plot of τ(q) vs. q [or τ(q) 156 

curve] has a single slope (i.e. a linear line), then the series is a simple scaling (monofractal) 157 

type. If τ(q) curve is nonlinear and convex (facing downward), then the series is a multiscaling 158 

(multifractal) type. In this study, we used the universal multifractal (UM) model of Schertzer 159 

and Lovejoy (1987) to create a reference line that represented  the perfect monofractal type of 160 

scaling. Assuming the conservation in mean value of SWS, this model simulated a cascade 161 

process with a scaling function in an empirical moment. It is thus used here to compare and 162 



characterize the observed scaling properties with a reference to the monofractal behavior. The 163 

goodness-of-fit between the τ(q) curves and the UM model was tested using the chi-square test. 164 

The sum of squared residuals (SSRs) between the τ(q) curve and the UM model was also 165 

calculated to test the deviation. The τ(q) curves over the range of q values (in this study -15 to 166 

15 at 0.5 intervals) were fitted with a linear regression line (referred to as a single fit). The 167 

linear fitting of the τ(q) curves with q<0 and q>0 (referred to as segmented fit) was also 168 

completed. The difference between the mean of slopes and segmented fits (for positive and 169 

negative q values) was checked using the Student’s t test.  170 

     With similar manner to Eq. [1], the qth order normalized probability measure of SWS,171 

),q(    (also known as the partition function), is proven to vary with the scale size, as below 172 
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where ε is scale size in the ith segment and )(pi  is the probability of a measure. )(pi   and 174 

measures the concentration of a variable of interest (e.g. SWS) by dividing the value of the 175 

variable in the segment to the whole support length(e.g. to the whole transect of length L units) 176 

(Meneveau et al., 1990;Evertsz and Mandelbrot, 1992). The mass exponent τ(q)  was related to 177 

the probability of mass distribution of SWS.  178 

      Moreover, the fractal dimension of the subsets of segments in scale size ε was measured by 179 

the multifractal spectrum f(q).When a coarse Hölder exponent (local scaling indices) of α was 180 

in the limit as 0 , f(q) was calculated as below (Evertsz and Mandelbrot, 1992): 181 
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and the local scaling indices, α, were given by  183 
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 Noting that f(α) was determined through the Legendre transform of the τ(q) curve: 185 

)q()q(q)(f   (Chhabra and Jensen, 1989). 186 

The multifractal spectrum is a powerful tool in portraying the similarity and/or differences 187 

between the scaling properties of the measures (e.g. SWS). The width of the spectrum (αmax - 188 

αmin) was used to examine the heterogeneity in the local scaling indices. The wider the 189 



spectrum, the higher was the heterogeneity in the distribution of SWS and vice versa. Similarly, 190 

the height of the spectrum corresponded to the dimension of the scaling indices. The small f(q) 191 

values indicated rare events (extreme values in the distribution), whereas the largest value was 192 

the capacity dimension (D0) obtained at q = 0.  193 

In addition to the multifractal spectrum, [f(q) vs. α(q)], for many practical applications, we 194 

used models to incorporate a few selected indicators to describe the scaling property and 195 

variability of a process. One of the widely used models for multifractal measure was the 196 

generalized dimension. The generalized dimension was calculated as below: 197 
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when q = 1,
1D  was referred to as the information dimension (also known as entropy dimension) 199 

which provided information about the degree of heterogeneity in the measure distribution in 200 

analogy to the entropy of an open system in thermodynamics (Voss, 1988). If the value of D1 201 

is close to unity, it indicated the evenness of measures over the sets of cell size, while the value 202 

approaching 0 indicated a subset of scale in which the irregularities were concentrated. The D2, 203 

known as the correlation dimension, was associated with the correlation function and measured 204 

the average distribution density of the SWS (Grassberger and Procaccia, 1983). For a 205 

monofractal distribution, D1 and D2 tend to be equal to D0. The same value of D0, D1 and D2 206 

indicates that the distribution exhibits perfect self-similarity and is homogeneous in nature. 207 

Contrarily, in multifractal type scaling, the D1 and D2 tend to be smaller than D0, showing D0 208 

> D1 > D2. Accordingly, the D1/D0 value can be used to describe the heterogeneity in the 209 

distribution (Montero, 2005). When this value equals to 1, it indicated exact monoscaling of 210 

the distribution.  211 

2.2.3 Joint multifractal analysis 212 

While the multifractal analysis characterized the distribution of a SWS spatial series along its 213 

geometric support, the joint multifractal analysis was used to characterize the joint distribution 214 

of two SWS spatial series along a common geometric support. As an extension of the 215 

multifractal analysis, the length of the datasets was also divided into several segments of size 216 

ε. Two variables (  iP  and  iR  representing two spatial series of SWS) were used here to 217 

measure the probability of the measure in the ith segment, when     LPi  and 218 



    LRi  . Among them, α and β were the local singularity strength which respectively 219 

represented the mean local exponents of   iP  and  iR  in the corresponding expressions 220 

above. The partition function for the joint distribution of  iP  and  iR , was calculated as 221 

below (Chhabra and Jensen, 1989;Meneveau et al., 1990;Zeleke and Si, 2004): 222 
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where the normalized μ was the partition function, q and t were the real numbers for weighting. 224 

And the aforementioned local singularity strength (coarse Hölder exponents) α and β were the 225 

function to q and t as well:   226 
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To indicate the dimension of the joint distribution, the multifractal spectra ),(f   , was given 229 

by 230 
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In fact, the joint partition function in Eq. [6] can be simplified to Eq. [2] when q or t is equal 232 

to 0. In this case, the joint multifractal spectrum was transformed to the multifractal spectrum 233 

with a single measure. When both q and t were 0, ),(f   reached maximum and indicated 234 

box dimension of the geometric support of the measures. Pair value of α and β fluctuates with 235 

the change of variable q and t. Therefore, it is possible to examine the distribution of high or 236 

low values (different intensity levels) of one variable with respect to another by varying the 237 

values of q or t. As the joint multifractal spectra ),(f   represent the frequency of the 238 

occurrence of certain values of α and β, high values of ),(f   represents strong association 239 

between the values of α and β. The Pearson correlation coefficient was used to quantitatively 240 

describe their relations across similar moment orders. In addition, correlation coefficients 241 

between the surface layer and subsurface layers were used as well to examine the similarity in 242 

the scaling properties. Additionally, a contour plot was used to represent the joint distribution 243 



of a pair of variables by permuting similar values (highs vs highs or lows vs lows) of q and t. 244 

The bottom left part of the contour graph presents the joint distribution of high data values of 245 

both variables while top right part represents the low data values of both variables. Therefore, 246 

a diagonal contour with low stretch indicate strong association between the variables in 247 

consideration (Biswas et al., 2012b). 248 

3 Results 249 

3.1 Spatial pattern of soil water storage at different depths 250 

Average SWS for the surface 0-20 cm layer over the five year period was 5.51 cm. A slight 251 

decrease in SWS was observed at the immediate deep layer (20-40 cm) and a gradual increase 252 

thereafter. Five-year average SWS was 5.45 cm, 5.48 cm, 5.56 cm, 5.61 cm, 5.69 cm and 5.77 253 

cm for the 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm, 100-120 cm and 120-140 cm layers, 254 

respectively. Average SWS for a single measurement varied from 3.40 cm to 7.16 cm. The 255 

highest average SWS for the surface layer was observed on 29 June 2011. The study area 256 

received large amount of spring snowmelt (2010 received 642 mm, double the annual average 257 

precipitation) and rainfall during 2011 leading to the high SWS in the surface layer (Weather 258 

Canada historical report). The lowest average SWS for the surface layer was observed on 23 259 

August 2008, which was one of the driest summers within the five-year study period. The 260 

highest average SWS (on 29 June 2011) at the surface layer gradually decreased to 6.55 cm at 261 

the deepest layer and the lowest average SWS (on 23 August 2008) at the surface layer 262 

gradually increased to 5.28 cm at the 120-140 cm layer (Table 1). These top and bottom 263 

boundaries formed a wider range (3.76 cm) of the average SWS at the surface layer compared 264 

to that at the deepest layer (1.27 cm). A big range (2.00 cm) in the standard deviation 265 

(maximum=2.43 cm and minimum=0.43 cm) of the measurement at the surface layer (0-20 266 

cm) was also observed compared to that at the deepest layer (120-140 cm; maximum=1.28 and 267 

minimum=0.76). This indicated large variations in SWS at the surface layer that gradually 268 

decreased at deeper layers. The coefficients of variation (CVs) at the surface layer (0-20 cm) 269 

varied from 10% to 43% and at the deepest layer (120-140 cm) varied from 13% to 23% 270 

(Supplementary Table S.1). 271 

The maximum SWS at the surface layer also varied widely (maximum=13.96 cm and 272 

minimum=4.64 cm) compared to the deepest layer (maximum=9.81 cm and minimum=6.71 273 

cm) (Table 1). There was a gradual decrease in the maximum value and increase in the 274 

minimum value from the surface to the deepest layer. The maximum SWS at different layers 275 



was much localized. For example, there was high SWS at different layers at the locations of 276 

100 to 140 m and 225 to 250 m from the origin of the transect. These locations had very high 277 

SWS compared to the field-average because they were situated in the depressions while low 278 

SWS was observed on the knolls. 279 

The variations in SWS with time were evaluated within a year. There was little change in 280 

the average SWS over measurements within the years from 2007-2011 except 2008 (Table 1). 281 

For example, average SWS was 6.47 cm, 6.03 cm, 6.54 cm, and 6.33 cm on 6 April 2010, 19 282 

May 2010, 14 June 2010 and 28 September 2010, respectively. However, the average SWS in 283 

2008 drops from 6.28 cm on 2 May 2008 to 3.51 cm on 17 September 2008 in the surface 0-284 

20 cm layer. This falling trend was observed at all soil layers. When compared between years, 285 

the trend over time and with depth was very similar in 2007 and 2009 while slightly different 286 

between 2010 and 2011 (Table 1). A decreasing trend of the variability was also observed with 287 

time. For example, the CV of the surface layer was around 28% on 2 May 2008, which 288 

gradually decreased to around 13% on 17 September 2008 (Supplementary Table S.1). 289 

The average water storage for soil layers with increasing depth was also calculated by 290 

adding the individual layers together. The time-averaged values of SWS were 10.96 cm, 16.44 291 

cm, 22.00 cm, 27.61 cm, 33.30 cm and 39.07 cm for the 0-40 cm, 0-60 cm, 0-80 cm, 0-100 cm, 292 

0-120 cm and 0-140 cm, respectively (Supplementary Table S.2). The CV of the 0-20 cm layer 293 

was the highest during the wet period and gradually declined to the smallest during the dry 294 

period (Supplementary Table S.3). The variability also gradually decreased with depth. 295 

3.2 Statistical scale invariance  296 

The power law relationships and the statistical scale invariance were evaluated using a log-log 297 

plot of the aggregated variance of SWS spatial series at different depths of soil layers and the 298 

level of disaggregation (or scales) at different q values or statistical moments. The linear 299 

relationship of the logarithm of the variance with scale indicated the presence of statistical scale 300 

invariance (Fig. 2). The scale invariance was observed for all measurements and at all depths 301 

though only all depths of three selected dates were presented as example. The coefficient of 302 

determination (r2) for a linear fit (n=7) was between 0.99 and 1.00 (significant at P=0.001) for 303 

any measurement days and depths. A similar trend in scale invariance was also observed for 304 

SWS with increasing depths. 305 

3.3 Multifractal analysis 306 



The τ(q) curves for the surface layer displayed deviation from the UM model during the wet 307 

period (Fig. 3). A high SSR value was observed between the τ(q) curves and the UM model. 308 

Nonlinearity in the τ(q) curve was observed and the slopes of the segmented fit of the τ(q) 309 

curves were significantly different from each other. For example, the SSR values between the 310 

τ(q) curve and the UM model were 27.74 and 50.49 for the surface layer (0-20 cm) on 2 May 311 

2008 and 31 May 2008, respectively. The slopes of the τ(q) curve for single fit were 0.97 and 312 

0.96, respectively for the surface layer of 2 May 2008 and 31 May 2008 (Fig. 3). The slopes of 313 

the segmented fit for these measurements were 1.04 (q<0) and 0.87 (q>0) and, 1.06 (q<0) and 314 

0.82 (q>0), respectively (Fig. 3; Supplementary Table S.4).  315 

With the maximum deviation at the surface layer, the τ(q) curves gradually became very 316 

similar to the UM model with depth. The SSR value decreased considerably in deep layers. 317 

The slopes of the τ(q) curve (single fit) became almost unity with no significant difference with 318 

the UM model. There was no significant difference between the slopes of the segmented fit. 319 

For example, the SSR value was 6.17, 4.98, 8.80, 8.50, 8.86, and 6.16 respectively for the 20-320 

40, 40-60, 60-80, 80-100, 100-120, and 120-140 cm layer of 2 May 2008. The slopes (single 321 

fit) for these layers were 0.99, 1.00, 1.01, 1.01, 1.00, and 0.99, respectively (Fig. 3). The slopes 322 

of the segmented fit were also very close to unity with no significant difference between them.  323 

The SSR values gradually decreased and the slopes became almost unity with increasing 324 

depth (Fig. 4). For example, the SSR values were 14.11, 9.31, 7.71, 6.86, 6.71 and 6.30 and the 325 

slopes (single fit) were 0.98, 0.99, 0.99, 1.00, 1.00, and 1.00, respectively for 0-40, 0-60, 0-80, 326 

0-100, 0-120 and 0-140 cm layer (Supplementary Table S.5). The slopes of the segmented fit 327 

for the τ(q) curve became almost the same as soil layers went deeper (Fig. 4). The linearity of 328 

the τ(q) curves was gradually strengthened and the SSR value gradually fell with the depth 329 

increase of soil layers at any time. A significant difference was observed between the slopes of 330 

the τ(q) curves in segmented fitting at the surface layer of the first three measurements in 2007 331 

(Supplementary Fig. S.1), two measurements in 2008 (Fig. 4), three measurements in 2009 and 332 

all measurements in 2010 and 2011 (Supplementary Fig. S.2). 333 

A decreasing trend in the SSR value was also observed over time within a year. During the 334 

dry period, the slopes (single fit and segmented fit) became almost unity with no significant 335 

difference (Supplementary Table S.6). For example, the SSR value was 14.12, 8.25, 1.30, 1.46, 336 

and 0.52 and the slope was 0.99, 0.99, 1.00, 1.00, and 1.00, respectively for the surface layer 337 

(0-20 cm) of 21 June 2008, 16 July 2008, 23 August 2008, 17 September 2008 and 22 October 338 

2008 (Fig. 3). Similarly, a small SSR value and consistent slope were also observed at the 339 



deepest layer (120-140 cm). The SSR values of the 120-140 cm were 2.47, 2.47, 3.31, 3.44 and 340 

4.57, respectively for the measurements on 21 June 2008, 16 July 2008, 23 August 2008, 17 341 

September 2008 and 22 October 2008 (Supplementary Table S.6). The slope (single fit) for all 342 

these measurements was equal to 1.01 (Fig. 3). There was very little difference in the slopes of 343 

the segmented fits. 344 

A significant difference in the slopes of the segmented fit was observed for the surface 345 

layer (0-20 cm) of three measurements in 2007 (17 July, 7 August, and 1 September; 346 

Supplementary Fig. S.1), and three measurements in 2009 (21 April, 7 May, and 27 May) 347 

(Supplementary Table S.4; Supplementary Fig. S.2). The difference became non-significant 348 

with depth and during other measurement times. The trend in deep layers over time was very 349 

similar to that of 2008. However, the trend in the SSR values and the slopes with time was 350 

different in 2010 and 2011 (Supplementary Table S6). There was very little difference in the 351 

SSR values at different times of the year. For example, the SSR value for the surface layer (0-352 

20 cm) was 20.79, 27.18, 24.63 and 26.66 and the slope (single fit) was 0.97, 0.97, 0.97, and 353 

0.97, respectively for the measurements on 6 April 2010, 19 May 2010, 14 June 2010, and 28 354 

September 2010 (Fig. 3). The slope of the segmented fit of the surface layer (0-20 cm) was 355 

significant for all measurements in 2010 and 2011. However, the trend with depth was similar 356 

to other years. 357 

The height of the multifractal spectrum at different depths of measurement was very similar 358 

over time. The width of the spectrum (αmax-αmin) varied with depth and time (Fig. 5). Generally, 359 

a comparative large value of αmax-αmin was observed at the surface layer during the wet period 360 

and the value gradually became smaller with depth. For example, the value of αmax-αmin for the 361 

surface soil layer (0-20 cm) was 0.23 and 0.31, respectively for the measurements of 2 May 362 

2008 and 31 May 2008 (Fig. 5). Meanwhile, the value of αmax-αmin for the soil layers of 20-140 363 

cm with 20 cm increment was 0.15, 0.14, 0.19, 0.20, 0.20, and 0.18 for 2 May 2008 and 0.25, 364 

0.19, 0.11, 0.14, 0.12, and 0.11 for 31 May 2008, respectively (Fig. 6). In the later part of the 365 

year, the width of the spectrum gradually decreased (Supplementary Table S.8). For example, 366 

the αmax-αmin values were 0.19, 0.16, 0.07, 0.08, and 0.05, respectively for the surface layer on 367 

21 June 2008, 16 July 2008, 23 August 2008, 17 September 2008 and 22 October 2008. Similar 368 

trend in values of αmax-αmin was also observed at deep layers (Fig. 6).  369 

The trend of the αmax-αmin values in 2007 and 2009 was very similar to that of 2008 370 

(Supplementary Table S.8). A higher value of αmax-αmin was observed in the first three 371 

measurements of 2007 (Supplementary Fig. S.5) and three measurements of 2009 372 



(Supplementary Fig. S.6). However, the values in the surface layer (0-20 cm) in 2010 and 2011 373 

were always higher compared to the deep layers (Fig. 6). There was no decreasing trend in 374 

values for the surface layer over time. For example, the αmax-αmin value was 0.21, 0.24, 0.21, 375 

and 0.22, respectively for the measurements on 6 April 2010, 19 May 2010, 14 June 2010, and 376 

28 September 2010 (Fig. 6). However, the trend in the αmax-αmin value of deep layers was 377 

similar to that of other years. A similar trend was observed for cumulative SWS with increasing 378 

depth over the years (Fig. 7). Generally, the value of αmax-αmin was also small with the highest 379 

in the 0-20 soil layers and gradually decreased with depth (Fig. 7; Supplementary Table S.9). 380 

A very similar height of the f(q) curve for all depths and all periods indicated a consistent 381 

frequency distribution of the scaling indices (Fig. 6 and 7). Additionally, the position and the 382 

symmetry of the curve revealed the distribution of scaling exponents. A symmetric f(q) curve 383 

indicated uniform distribution of the scaling exponents. The left side of the spectrum 384 

corresponded to the large SWS that were amplified by the positive values of q while the right 385 

side indicated smaller SWS that were amplified by negative q values. Symmetry leaning 386 

towards the left side during the early spring and in the surface layers in 2008 clearly showed 387 

the wider distribution of scaling indices and multifractal nature of the SWS (Fig. 6). While the 388 

shifting of the symmetry towards right side clearly indicated less variable scaling indices and 389 

thus reduction of multifractal behavior. During the wet years of 2010 and 2011, the symmetry 390 

towards left side indicated the variability in the scaling indices. This also persisted with depth. 391 

A similar trend was observed for different years at all depth layers (Fig. 7). 392 

Generally, the D1 and D2 values for different depths of different measurements were very 393 

close to 1 (Fig. 8 and Supplementary Table S.10). In general, the D1 value of the surface layers 394 

gradually increased with depth. Similarly, at any depth, the D1 values gradually increased from 395 

spring to fall season through summer (Fig. 8). Highest variation in D values with q was 396 

observed in the surface layer and in the spring season and gradually decreased with depth and 397 

later part of the growing season. For example, the first three measurements in 2007 and 2009 398 

presented high D values at high q values (Supplementary Figs. S.9 and S.10). This high D value 399 

gradually decreased in the dry period of the year. For example, the D value with positive q was 400 

high in the surface layer of 2 May 2008 and 31 May 2008 (Fig. 9), whereas it gradually 401 

decreased at the later part of the year (e.g. 17 September 2008).The trend with time and depth 402 

in 2007 and 2009 was very similar to that of 2008 (Supplementary Tables S.10 and S.11). A 403 

consistent high D value was observed in the surface layer for all 2010 and 2011 measurements 404 

(Fig. 9). The trend in D values with depth in 2010 and 2011 was also similar to other years. A 405 



high value of D1 and D2 were also observed at all depth layers for all measurements (Fig. 10; 406 

Supplementary Table S.11). 407 

3.4 Joint multifractal analysis 408 

There were strong correlations between the scaling property of the joint distribution of the 409 

surface soil layer and the deep soil layers. The narrow width and the diagonally oriented 410 

contours between SWS measured on 22 October 2008 at 0-20 cm and 20-40 cm layers clearly 411 

demonstrate strong association between those two layers (Fig. 11). The correlation between the 412 

surface 0-20 cm and the deep layers on 2 May 2008 (wet period) was larger than 0.9 (significant 413 

at P=0.001; Table 2). The highest correlation was observed between those layers closest to 414 

each other. The correlations gradually increased over time and showed high consistency 415 

between different layers on 17 September 2008 (Table 2). A very similar trend was observed 416 

in other years.  417 

4 Discussion 418 

The amount of water stored in the soil is the result of the dominant underlying hydrological 419 

processes. Located in semi-arid climate, the study area receives about 30% of the  long term 420 

annual average precipitation as snowfall during winter months (Pomeroy et al., 2007). 421 

Generally, the depressions receive snow from surrounding uplands or knolls as redistributed 422 

by strong prairie wind (Pomeroy and Gray, 1995;Fang and Pomeroy, 2009). The snow melts 423 

within a short period of time during the early spring and contributes a large amount of water. 424 

The frozen ground restricts infiltration and redistributes excess water within the landscape with 425 

greater accumulation in depressions (Fig. 1) (Gray et al., 1985). Apart from the snowmelt, the 426 

spring rainfall also contributes to the water inflow in the landscape (Fig. 1). This created a 427 

spatial pattern of SWS that was almost a mirror image of the spatial distribution of relative 428 

elevation (Biswas and Si, 2011a, c;Biswas et al., 2012a). 429 

In the spring, the sources of water loss were the deep drainage and the evaporation. As the 430 

loss of water through deep drainage in the study area was as low as 2 to 40 mm per year, 431 

occurring mainly through the fractures and preferential flow paths (Hayashi et al., 1998;van 432 

der Kamp et al., 2003), the major loss occurred mainly through evaporation from the surface 433 

of the bare ground and standing water in depressions. These processes lose a very small amount 434 

of water compared to the input of water in spring and early summer leaving the soil wet. 435 

Moreover, the surface soil with high organic matter content and low bulk density stored a larger 436 

amount of water than the deep layers where the organic matter gradually decreased and the 437 



bulk density increased. Reflecting the long-term history of vegetation growth in the landscape, 438 

the variability of organic matter content (CV=41%) may be one of the main factors of the high 439 

variability in surface layer SWS (Biswas and Si, 2011b). 440 

 As the vegetation developed in summer, strong evapotranspiration resulted in the lowest 441 

average SWS. High amount of water in the depressions allowed grasses to grow faster and 442 

transpire more water compared to the knolls (Fig. 1). For example, the aquatic vegetation 443 

growth within the depressions was as high as 2 m, while the grasses on the knolls grew to a 444 

maximum up to a meter tall. The uneven growth of vegetation and the high evapotranspirative 445 

demand in summer narrowed the range of SWS. In the soil where water is more available, 446 

evapotranspiration will be stronger while the less evapotranspirative demand will be shown in 447 

the relatively dry soil. As a result, the excessive water in the relatively wet soil will be offset 448 

by evapotranspiration, reducing the disparities between maximum and minimum values. This 449 

variable water uptake was visible in the growth of vegetation in the later part of the growing 450 

season as well (Fig. 1). The reduction in the range of SWS was the largest in the surface layer 451 

and gradually decreased at deeper layers. This is because the surface layer was exposed to 452 

various environmental forces.  For example, plants can take up more than 70% of the water 453 

they need from the top 50% of the root zone (Feddes et al., 1978). This dynamic behavior of 454 

the surface layer exhausted readily available water and finally reduced the range in water 455 

storage. This decrease in range also happened in the later part of the growing season.  456 

The multifractal and joint multifractal analyses explained the scaling behavior of SWS at 457 

different depths over time. The linearity in the log-log plot between the aggregated variance in 458 

SWS and the scale at all soil layers over time indicated that SWS behaved under scaling laws 459 

(Fig. 2). The near unity slope of the τ(q) curves and the insignificant difference from the UM 460 

model indicated a monofractal type scaling at all layers except the surface layer during the wet 461 

period (until mid to late June) where a multifractal behavior led to a slight convex downward 462 

curve (Fig. 3). This was also supported by a significant difference between the slope of single 463 

and segmented fit in the surface layer during the wet period. 464 

Generally during the wet period, excess water fills and drains macropores quickly and 465 

creates variations in SWS. Variations in the evaporation due to uneven solar incidence over 466 

micro-topography also triggered SWS variability in the surface layer. Additionally, the snow 467 

melt and the release of water controlled by local (e.g. soil texture) and non-local (e.g. 468 

topography)factors also affected the spatial distribution of SWS, making it more heterogeneous 469 

in the wet period (Grayson et al., 1997;Biswas and Si, 2012). Contrarily, as depth increased, 470 



less impact of environmental factors tended to create less variability in SWS and exhibited a 471 

monofractal behavior which was consistent with the uniform slope shown in Figure 3. During 472 

the dry period or later part of the growing season, the SWS storage variability at all depths was 473 

small and exhibited monofractal behavior (Fig. 3). Accordingly, the deeper layers in the wet 474 

period and all layers in the dry period can be accurately represented by only one scaling 475 

exponent while the surface layer in the wet period may require a hierarchy of exponents. A 476 

similar trend was observed in SWS of cumulative depth layers (Fig. 4). Resulting from 477 

increasingly buffering capacity of the deeper soil layers, the variability of cumulative SWS 478 

overlaid the multifractal nature of the surface layer, and finally exhibited monofractal behavior 479 

in general. 480 

The scaling patterns of SWS at different depths and periods were further examined using 481 

multifractal spectrum [f(q) vs. α(q)] (Fig. 6 & Fig. 7). The degree of convexity was used to 482 

characterize the heterogeneity of scaling exponents or the degree of multifractality. Large 483 

values of αmax-αmin indicated stronger heterogeneity in the local scaling indices of SWS or 484 

cumulative SWS and vice versa. The largest value for the surface layer(s) in the wet period 485 

indicated the most multifractal behavior of SWS. However, the value decreased with depth and 486 

gradually converged in deep layers (Fig. 6). This decline manifested a conformity in the scaling 487 

behavior of SWS at deeper layers. Over time, the αmax-αmin value of the surface soil layer 488 

decreased and became very similar to that of deep layers. This indicated a reduction in the 489 

degree of multifractality for surface soil layers from the wet period to the dry period. A 490 

consistent αmax-αmin value for all depths during the dry period suggested the homogeneity and 491 

least multifractal nature of SWS. A similar behavior was observed in the cumulative SWS (Fig. 492 

7).  493 

To sum up, both the unity slope of the τ(q) curves (Fig. 3 and Fig. 4) and the degree of 494 

convexity of the f(q) spectrum (Fig, 6 & Fig. 7) jointly demonstrated that dynamic behavior of 495 

surface soil layers in the wet period made SWS highly variable and exhibited multifractal 496 

nature, while less environmental forces and increased buffering capacity of deep layers led to 497 

monofractal nature. As a result, multiple scaling exponents were required to characterize the 498 

variability of SWS in the surface layer during the wet period, while less number of exponents 499 

was necessary for deeper layers during wet period or all layers during dry period.  500 

The height of the spectrum, f(q) revealed the dimension or frequency distribution of the scaling 501 

indices (Caniego et al., 2003). A low height of f(q) curve indicated rare events or extreme 502 

values in the distribution, while a high value represented uniform distribution in all segments. 503 



A very similar height of the f(q) curve for all depths and all periods indicated a consistent 504 

frequency distribution of the scaling indices.  505 

The two upper soil layers during the wet period tended to exhibit a longer tail of the curve 506 

on the left, showing more heterogeneity in the distribution of large values. However, when 507 

stepping into the dry period, the spectrum tended to display a longer tail on the right compared 508 

to the left side, suggesting more heterogeneity in the distribution of smaller values. A few 509 

locations with standing water leads to the spatial differences  during the wet period while a few 510 

points with very small SWS due to high evapotranspiration by growing vegetation during the 511 

dry period results in the heterogenic distribution in smaller values. 512 

The generalized dimension, Dq was subsequently used to characterize the scaling property 513 

and variability in SWS (Fig. 9 and Fig. 10). The largest value of f(q), referred to as the capacity 514 

dimension (D0) obtained at q = 0, was close to unity for all layers at different times (Fig. 9). 515 

The information dimension (D1) obtained at q = 1 was different from the correlation dimension 516 

(D2), which is denoted as the average distribution density of the measurement for the surface 517 

layers in the wet period (Grassberger and Procaccia, 1983). In this case, the different values of 518 

D0, D1 and D2 indicated multifractal nature of the distribution of SWS. Similarly, a non-unity 519 

value of D1/D0 (Montero, 2005) also indicated the multifractal nature of SWS at the surface 520 

layer(s) during the wet period. However, over the growing season, the D1 and D2 value 521 

approached to D0 and indicated a monofractal type behavior. Similar values of D0, D1 and D2 522 

during the dry period also indicated homogeneous distributions.  523 

Joint multifractal distribution between the surface to various subsurface layers indicated 524 

the similarity in the scaling patterns (Table 2). Basically, the hydrological processes of 525 

shallower layers were similar to those of the top layer, while deeper layers showed more 526 

disparities from the surface. The nearest subsurface (20-40 cm) layer showed generally the 527 

highest similarity with the surface (0-20 cm) layer.  However, in the wet period, the subsurface 528 

layers displayed the smallest similarity to the surface layer, suggesting a higher dynamic nature 529 

of hydrological processes. In the dry period, a stronger effect of vegetation overwhelmed the 530 

effect of small variations of water distribution, thus creating a more uniform distribution of 531 

SWS at all soil layers (Table 2).  532 

Overall, our result revealed a multifractal behavior of surface soil layers during the wet 533 

period due to the dynamic nature of hydrological processes. This behavior gradually changed 534 

with depth and time (Fig. 12). In the deeper layers during the wet period, the behavior became 535 



less multifractal or nearly monofractal. Similarly, in the dry period, the vegetation development 536 

and its high evapotranspirative demand in the semi-arid climate of the study area increasingly 537 

buffered the variation of SWS, as a result, all the soil layers showed uniform distribution or 538 

monofractal behavior (Fig. 12).  539 

5 Summary and Conclusions 540 

The transformation of information on soil water variability from one scale to another requires 541 

knowledge on the scaling behavior and the quantification of scaling indices. Surface soil water 542 

can be easily measured (e.g. remote sensing) and presents multi-scaling behavior (requiring 543 

multiple scaling indices). However, land-management practices require the understanding of 544 

the hydrological dynamics in the root zone and/or the whole soil profile.  545 

In this manuscript, the scaling properties of soil water storage at different soil layers 546 

measured over a five-year period were examined using multifractal and joint multifractal 547 

analysis. The scaling properties of soil water storage mainly suggested a monofractal scaling 548 

behavior. However, the surface layer in the wet period or with high soil water storage tended 549 

to be multifractal, which gradually became monofractal with depth. With the decrease in soil 550 

water storage, the scaling behavior became monofractal during the growing season. In he year 551 

with high annual precipitation, the soil stored more water in the surface layer throughout the 552 

growing period and displayed nearly multifractal scaling behavior. This multifractal nature 553 

indicated that the transformation of information from one scale to another at the surface layer 554 

during the wet period requires multiple scaling indices. On the contrary, the transformation 555 

requires a single scaling index during the dry period for the whole soil profile. The scaling 556 

properties of the surface layer were highly correlated with those of the deep layers, which 557 

indicated a highly similar scaling behavior in the soil profile. The study was conducted in an 558 

undulating landscape from a semi-arid climate and the results were very consistent over the 559 

years. Therefore, the observation completed at the field scale in this type of landscape and 560 

climate may be generalized in similar landscapes and climatic situations, otherwise may need 561 

to be examined thoroughly. The method used here can be transferred to examine the scaling 562 

properties in other experimental situations.  563 
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Figure captions 667 

Fig. 1: Conceptual schematics showing the vegetation growth patterns over the landscape at 668 

different times of the year. The figure is developed based on field observations and the scale is 669 

arbitrary. 670 

Fig. 2. Log-log plot between the aggregated variance of the SWS spatial series and the scale. 671 

A linear relationship indicated the presence of scale invariance and scaling laws for three 672 

selected dates. 673 

Fig. 3. Mass exponents for soil water storage spatial series measured at selected 20 cm soil 674 

layer down to 140 cm in 2008for a range of q (-15 to 15 at 0.5 increments). The solid line is a 675 

linear reference created following the UM model of Schertzer and Lovejoy (1987) passing 676 

through (q = 0). 677 

Fig. 4. Mass exponents for selected soil water storage spatial series from surface to different 678 

soil layers (cumulative storage) at 20 cm increment down to 140 cm in 2008 for a range of q (-679 

15 to 15 at 0.5 increments). The solid line is a linear reference created following the UM model 680 

of Schertzer and Lovejoy (1987) passing through (q = 0). 681 

Fig. 5. The width of the multifractal spectrum (αmax-αmin value) for soil water storage at different depths 682 

(20 cm increment) for all measurements completed during the study period. 683 

Fig. 6. Multifractal spectra of soil water storage spatial series measured at each 20 cm soil layer 684 

down to 140 cm in 2008, 2010 and 2011 for a range of q (-15 to 15 at 0.5 increments). 685 

Fig. 7. Multifractal spectra of soil water storage spatial series from surface to different soil 686 

layers (cumulative storage) at 20 cm increment down to 140 cm in 2008, 2010 and 2011 for a 687 

range of q (-15 to 15 at 0.5 increments). 688 

Fig. 8. The information dimension (D1) for soil water storage at different depths (20 cm 689 

increment) over the whole measurement period. 690 

Fig. 9. Generalized dimension spectra of soil water storage spatial series measured at each 20 691 

cm soil layer down to 140 cm in 2008for a range of q (-15 to 15 at 0.5 increments). 692 



Fig. 10. Generalized dimension spectra of soil water storage spatial series from surface to 693 

different soil layers (cumulative storage) at 20 cm increment down to 140 cm in 2008for a 694 

range of q (-15 to 15 at 0.5 increments). 695 

Fig. 11: Multifractal spectra of joint distribution of SWS at 0-20 cm and 20-40 cm measured 696 

on 22 October 2008. Contour lines show the joint scaling dimensions of the SWS measurement 697 

series. 698 

Fig. 12: Conceptual schematics showing vegetation development over time, dominant water 699 

loss processes and the scaling behavior of soil water storage at different depths. The figure is 700 

developed based on field observations and scaling analysis. The scale of the figure is arbitrary. 701 

Tables 702 

Table 1 703 



Table 1. Maximum, minimum, and average soil water storage (cm) at different depths (20 cm increment) over the whole measurement period. 704 

 0-20 cm 20-40 cm 40-60 cm 60-80 cm 80-100 cm 100-120 cm 120-140 cm 
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Jul 17 2007 13.96 3.25 5.65 11.55 3.09 5.63 9.43 2.59 5.73 9.06 3.34 5.90 9.51 3.22 5.89 9.81 3.55 6.05 9.81 3.54 6.14 

Aug 7 2007 13.96 3.05 4.90 9.28 2.73 5.04 8.30 2.40 5.21 9.36 2.75 5.48 8.23 2.96 5.57 7.52 3.17 5.62 9.11 3.17 5.67 

Sept 1 2007 13.96 2.26 5.29 9.28 3.00 5.08 8.08 2.42 5.23 6.98 2.75 5.38 7.17 2.92 5.52 8.08 3.20 5.64 9.07 3.23 5.73 

Oct 12 2007 8.30 3.40 5.04 6.92 3.07 5.03 6.74 2.43 5.19 7.60 2.81 5.36 8.39 2.93 5.48 7.92 3.25 5.60 8.55 3.25 5.67 

May 2 2008 13.96 4.49 6.28 9.96 4.09 6.03 9.43 3.69 5.80 8.83 3.16 5.74 9.51 2.90 5.66 9.81 3.26 5.70 9.81 3.30 5.75 

May 31 2008 13.96 3.30 5.21 9.28 1.54 5.51 8.08 1.58 5.55 6.85 3.00 5.58 7.08 3.08 5.64 8.08 3.22 5.70 8.39 3.25 5.79 

Jun 21 2008 8.77 3.06 4.70 7.84 3.43 5.25 6.86 2.80 5.38 6.78 2.77 5.52 7.08 3.04 5.61 7.73 3.28 5.69 8.48 3.23 5.77 

July 16 2008 7.07 2.78 4.03 6.78 3.06 4.77 6.71 2.60 5.10 6.75 2.56 5.30 6.84 2.91 5.43 6.98 3.17 5.56 7.01 3.16 5.64 

Aug 23 2008 4.96 2.44 3.40 5.66 2.73 4.11 6.02 2.37 4.59 6.44 2.36 4.90 6.56 2.63 5.12 6.85 3.04 5.30 6.81 2.99 5.42 

Sept 17 2008 4.64 2.66 3.51 5.63 2.79 4.07 5.91 2.49 4.55 6.28 2.45 4.85 6.59 2.63 5.05 6.68 3.05 5.25 6.91 2.96 5.37 

Oct 22 2008 6.11 3.83 4.96 6.03 3.10 4.37 5.92 2.52 4.53 6.13 2.46 4.79 6.55 2.63 5.00 6.61 3.00 5.18 6.73 1.22 5.28 

April 20 2009 13.96 4.73 6.67 11.55 3.62 5.84 10.49 3.23 5.62 8.83 2.97 5.48 9.51 2.67 5.38 9.81 3.08 5.49 9.81 2.85 5.66 

May 7 2009 13.96 4.45 5.97 9.51 3.68 5.70 8.08 3.26 5.49 8.30 3.00 5.36 7.85 2.73 5.35 9.81 3.01 5.43 8.91 2.84 5.51 

May 27 2009 12.60 3.67 5.43 8.15 3.55 5.52 8.08 3.43 5.39 6.78 3.13 5.37 7.16 2.64 5.39 8.08 2.96 5.51 8.45 2.80 5.53 

July 21 2009 6.92 3.16 4.56 7.24 3.16 4.83 6.55 2.91 5.00 6.72 2.95 5.23 6.77 2.58 5.24 6.91 3.02 5.34 6.89 3.24 5.43 

Aug 27 2009 6.64 3.42 5.01 6.67 3.57 5.07 6.32 2.84 4.92 6.50 2.85 5.03 6.76 2.57 5.16 6.79 3.00 5.25 6.90 3.02 5.34 

Oct 27 2009 6.65 3.89 5.30 6.44 3.44 4.90 6.04 2.74 4.80 6.36 2.68 4.91 6.55 2.60 5.05 6.71 3.05 5.17 6.71 2.79 5.29 

April 6 2010 13.96 4.67 6.47 9.51 3.53 5.52 9.43 3.19 5.31 8.83 2.91 5.35 9.51 2.61 5.23 9.81 3.01 5.34 9.81 2.83 5.41 

May 19 2010 13.96 4.08 6.04 11.32 4.28 5.94 10.49 4.46 5.94 8.75 4.08 5.93 8.60 3.55 5.90 9.81 4.03 5.91 9.81 3.96 5.85 

June 14 2010 13.96 4.38 6.54 11.55 4.48 6.32 10.49 4.58 6.31 8.83 4.27 6.29 9.51 3.86 6.22 9.81 4.37 6.24 9.81 4.50 6.20 

Sept 28, 2010 13.96 4.51 6.33 11.55 4.48 6.16 9.43 3.77 6.08 8.83 3.91 6.13 9.51 3.83 6.12 9.81 4.11 6.16 9.79 4.18 6.20 

May 13, 2011 13.96 4.82 7.12 11.55 4.87 6.61 10.49 4.75 6.50 9.21 4.54 6.40 9.51 4.16 6.34 9.96 3.17 6.32 9.79 4.30 6.45 

Jun 6, 2011 13.96 4.31 7.05 11.55 4.56 6.59 10.49 3.85 6.52 9.06 4.75 6.44 9.51 4.21 6.40 9.96 3.17 6.39 9.79 4.77 6.52 

Jun 29, 2011 13.96 4.93 7.16 11.55 4.96 6.73 10.49 4.29 6.64 9.74 4.42 6.57 9.51 4.28 6.49 9.96 3.17 6.46 9.79 4.30 6.55 

Sept 29, 2011 12.60 3.11 5.25 8.15 3.46 5.50 8.08 2.88 5.68 7.58 4.03 5.82 9.19 3.77 5.89 9.51 3.81 6.02 9.36 4.14 6.04 

5 year average   5.51   5.45   5.48   5.56   5.61   5.69   5.77 

 705 



Table 2: Correlation coefficients between joint multifractal indices (α and β) (n=440) of the 706 

surface layer with those from subsurface layers at 20cm intervals in 2008.  707 

 2 May 

2008 

31 May 

2008 

21 Jun. 

2008 

16 Jul. 

2008 

23 Aug. 

2008 

17 Sep. 

2008 

22 Oct. 

2008 

0-20 cm vs. 

20-40 cm 
0.96 0.98 0.99 0.99 0.99 1.00 1.00 

0-20 cm vs. 

40-60 cm 
0.93 0.96 0.96 0.97 0.97 1.00 1.00 

0-20 cm vs. 

60-80 cm 
0.93 0.94 0.95 0.95 0.96 0.99 0.99 

0-20 cm vs. 

80-100 cm 
0.92 0.92 0.93 0.94 0.94 0.98 0.99 

0-20 cm vs. 

100-120 cm 
0.92 0.92 0.93 0.93 0.93 0.97 0.99 

0-20 cm vs. 

120-140 cm 
0.93 0.94 0.95 0.94 0.94 1.00 1.00 
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