
Reply to Ulrike Wacker’s comments

We thank Ulrike Wacker for her careful and important comments. As in the first round of reviews, these
comments helped to improve the manuscript’s quality.

In the following we give a detailed reply to all comments:

1. We changed the terminology for the whole manuscript, using equilibrium state instead of critical points
etc. For this purpose we used the wording from the standard reference Hirsch et al. (2013) as suggested
by the editor.

2. We skipped Appendix A and shortened the description of section 2. The presentation of coefficients
has been refined, using the same structures and variables.

3. The terminology is a bit misleading, but unfortunately these terms were already introduced to the
community by Krämer et al. (2016). For clarification, we added some words, here is a short summary
for the two different states:

• liquid origin ice formation: Freezing of pre-existing cloud droplets at thermodynamica states close
to water saturation and at temperatures T ≥ 235 K.

• in situ ice formation: Nucleation of ice crystals from solid aerosols (heterogeneous nucleation, as
e.g. deposition nucleation) or from supercooled solution droplets at thermodynamic states far
below water saturation (but ice supersaturation) and temperatures T < 235 K.

For details see also explanation in Wernli et al. (2016). We exclude liquid origin ice crystals, since we
are interested in ice formation in slow large-scale updraughts at low temperatures T < 235 K.

4. Done.

5. Sentence has been reformulated.

6. The units of fa are [fa] = kg−1 m−1, fa is normalized to the total number concentration of aerosols.

7. We have corrected the equations, now they are correct and consistent.

8. No, the factor is not missing, since ∂RHi

∂qv
= RHi

qv
= 100%

qv,si
. We clarified this in the text.

9. We added some words for clarification.

10. Correct.

11. We unified the representation of the correction factor.

12. We added some text for clarification and changed the description according to the suggestion.

13. Done.

14. We use this analysis as a first qualitative description; we removed the parts about the dissipative
character of the system, since we are interested in the time evolution in terms of expansion/contraction
of the system.

15. We keep the first part with the correct description of stability using neighbourhoods, since this is the
mathematically correct formulation. However, we added a sentence following the reviewer’s suggestion.

16. The Poincare map is used for the numerical determination of the limit cycle, thus we keep this part in
the manuscript.

17. We have chosen the term “reduced model”.

18. We changed the description.

19. Changed.

20. We keep the figures as they are, since the additional curves at the beginning would confuse the reader.
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Abstract. Ice clouds, so-called cirrus clouds, occur very frequently in the tropopause region. A

special class are subvisible cirrus clouds with an optical depth lower than 0.03. Obviously, the
:
,

::::::::
associated

::::
with

::::
very

::::
low ice crystal number concentration of these clouds is very low

:::::::::::
concentrations.

The dominant pathway for the formation of these clouds is not known well. It is often assumed

that heterogeneous nucleation on solid aerosol particles is the preferred mechanism although ho-5

mogeneous freezing of aqueous solution droplets might be possible, since these clouds occur in

the low temperature regime T < 235K. For investigating subvisible cirrus clouds as formed by ho-

mogeneous freezing we develop a simple parcel
:::::::
reduced cloud model from first principles; the

:
,

:::::
which

::
is

::::
close

:::::::
enough

::
to

:::::::
complex

:::::::
models

:::
but

:
is
::::
also

::::::
simple

::::::
enough

:::
for

::::::::::::
mathematical

:::::::
analysis.

::::
The

model consists of a three dimensional set of ordinary differential equations, and includes the rele-10

vant processes as ice nucleation, diffusional growth and sedimentation. We study the formation and

evolution of subvisible cirrus clouds in the low temperature regime as driven by slow vertical up-

draughts (0<w ≤ 0.05m s−1). The model is integrated numerically and also investigated by means

of theory of dynamical systems. We found two qualitatively different states for the long-term be-

haviour of subvisible cirrus clouds. The first state is a point attractor state with a stable focus, i.e.15

the solution of the differential equations performs damped oscillations and asymptotically reaches

a constant value (equilibrium )
::
as

:::
an

::::::::::
equilibrium

::::
state. The second state is a limit cycle in phase

space, i.e. the solution approaches asymptotically a state of undamped oscillations
::::::::::::
asymptotically

:::::::::
approaches

::
a

::::::::::::::
one-dimensional

:::::::
attractor

::::
with

::::::
purely

:::::::::
oscillatory

:::::::::
behaviour. The transition between

the states constitutes
::
is

:::::::::::
characterised

:::
by a Hopf bifurcation and is determined by two parameters20

– vertical updraughts
::::::::
updraught

:::::::
velocity

:
and temperature. In both cases, the microphysical prop-

erties of the simulated clouds agree reasonably well with simulations using
::::
from

:
a more detailed

model, with former analytical studies
:
, and with observations of subvisible cirrus. In addition, the

:
,
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::::::::::
respectively.

::::
The

:::::::
reduced model can also be used for explaining complex model simulations close

to the
::::::
provide

:::::::::
qualitative

::::::::::::
interpretations

::
of

::::::::::
simulations

::::
with

::
a
:::::::
complex

::::
and

::::
more

:::::::
detailed

::::::
model

::
at25

::::
states

:::::
close

::
to

:
bifurcation qualitatively. The results indicate that homogeneous nucleation is a possi-

ble formation pathway for subvisible cirrus clouds. The results motivate a minimal model for SVCs,

which might be used in future work for the development of parameterisations for coarse large scale

models, representing structures of clouds.

1 Introduction30

Clouds consisting exclusively of ice crystals, so-called cirrus clouds, are frequently found in the

tropopause region at low temperatures (T < 235K). Satellite observations show frequencies of oc-

currence up to 40% in extra tropical storm tracks and up to 60% in regions of tropical convection

(Stubenrauch et al., 2010). Cirrus clouds influence the energy budget of the Earth-Atmosphere sys-

tem like other clouds by reflecting and scattering incoming solar radiation (albedo effect) and by35

absorbing and re-emitting thermal radiation (greenhouse effect). For liquid clouds, the albedo effect

usually dominates (Stocker et al., 2013, chapter 7) but for pure ice clouds both effects (albedo vs.

greenhouse effect) are of comparable absolute size. Thereforemicrophysical properties (e.g. size or shape, see Zhang et al., 1999) ,

:::::::::::
microphysical

:::::::::
properties

:::::::::::::::::::::::::::::::::::::::::::
(e.g. ice crystal size or shape, see Zhang et al., 1999) or macrophysical prop-

erties (e.g. optical depth or spatial inhomogeneity) can influence the balance between both radiative40

effects, leading to a net warming or cooling. Nevertheless, for cirrus clouds a net warming of the

Earth-Atmosphere system is often assumed (Chen et al., 2000). Since the formation of ice crystals

requires high supersaturation (see, e.g., Koop et al., 2000; Hoose and Möhler, 2012) and diffusional

growth of ice crystals is quite slow in the low temperature regime (T < 235K), cirrus clouds mostly

exist in a thermodynamic state far away from equilibrium. Thus, in contrast to liquid clouds, which45

approximately coincide with their (super-)saturated environment, for ice clouds there can be a contin-

uous transition from clear air over very low ice crystal number concentrations to thick cirrus clouds

with high mass and number concentrations. Cirrus clouds with optical thickness τ < 0.03 constitute a

special class, so-called subvisible cirrus clouds (SVCs) (Sassen and Dodd, 1989)
::::::::::::::::::::::::::
(SVCs Sassen and Dodd, 1989) .

These clouds are difficult to measure; remote sensing techniques as LIDAR (e.g., Immler et al.,50

2008b) or occultation observations (e.g., Wang et al., 1996) are used to detect these very thin cirrus

clouds. Only few in situ measurements of subvisible cirrus clouds are available, suggesting very

low values in ice crystal number concentrations (Froyd et al., 2010; Kübbeler et al., 2011). Global

observations from satellites (Wang et al., 1996; Stubenrauch et al., 2010; Hoareau et al., 2013) as

well as observations with stationary LIDAR systems (Sassen and Campbell, 2001; Hoareau et al.,55

2013) show frequencies of occurrence of about 10–20% in the extra-tropics; in the tropics the fre-

quency of occurrence is much higher (up to 50%, see e.g. Wang et al., 1996). For subvisible clouds,

a net warming of the Earth-Atmosphere system is almost certain, since the albedo effect is almost
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negligible. Our knowledge of subvisible cirrus clouds is quite limited. Since the ice crystal num-

ber concentration in SVCs is very low, the question about the dominant formation mechanism is60

still pending. At cold temperatures (T < 235K), where pure ice clouds occur, two different forma-

tion mechanisms are generally possible, namely heterogeneous nucleation at solid aerosol particles

(e.g. Dufour, 1861; aufm Kampe and Weickmann, 1951; Hosler, 1951) and homogeneous freez-

ing of aqueous solution droplets (Sassen and Dodd, 1989; Koop et al., 2000). For subvisible cirrus,

Kärcher and Solomon (1999) stated that both nucleation mechanisms might be possible; in contrast,65

Jensen et al. (2001) and Froyd et al. (2010) clearly suggested that the dominant mechanism must be

heterogeneous nucleation. However, analytical investigations by Kärcher (2002) indicated that also

pure homogeneous nucleation might be possible.

In the present study we focus on the formation of SVCs by homogeneous freezing of aqueous

solution droplets (hereafter: homogeneous nucleation). We study the formation and evolution of70

SVCs in an air parcel that is lifted in slow vertical upward motions (0<w ≤ 0.05m s−1), as typical

for synoptic scale motions in the extra-tropics (e.g. along warm fronts, see Kemppi and Sinclair,

2011) or in slow ascent regions in the tropics, as e.g. driven by Kelvin waves (Immler et al., 2008a).

We concentrate on the cold temperature regime (T < 235K); thus, we exclude the possibility of

liquid origin ice clouds (Krämer et al., 2016; Wernli et al., 2016),
:::
i.e.

:::::::
freezing

:::
of

::::::::::
pre-existing

:::::
cloud75

::::::
droplets

:::
at

:::::
states

::::
close

:::
to

:::::
water

::::::::
saturation. This is not a strong limitation since the microphysical

properties of ice clouds stemming from mixed phase clouds are quite different, with high ice crystal

number and mass concentrations and higher optical depths (Luebke et al., 2016).

For the investigation of subvisible cirrus clouds we develop a parcel model and to which we apply

numerical and analytical tools. The model is developed on the basis of an evolution equation for mass80

distributions of ice crystals, including a description of microphysical processes based on former work

(Spichtinger and Gierens, 2009). We take into account the relevant processes for ice microphysics,

i.e. ice nucleation, ice crystal growth due to diffusion of water vapour, and sedimentation of ice

crystals. For applying analytical tools, we
::
We

:
make use of some appropriate simplifications in order

to obtain
:
a
:::::::
reduced

::::::
model

::::::::
consisting

:::
of an autonomous system of ordinary differential equations85

(ODEs); the ,
:::::::
suitable

:::
for

:::
the

::::::::::
application

::
of

:::::::::
analytical

:::::
tools.

::::
The variables of the system are ice

crystal mass and number concentration, respectively, as well as relative humidity with respect to ice.

Thus, we have to investigate a three-dimensional autonomous system of ODEs.

To study the qualitative behaviour of the model we use concepts from theory of dynamical sys-

tems (see, e.g., Verhulst, 1996; Argyris et al., 2010) . For autonomous systems of ODEs, equilibrium90

states can be found easily
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Verhulst, 1996; Argyris et al., 2010; Hirsch et al., 2013) . The

qualitative properties of the system near the critical points
:::::::::
equilibrium

:::::
states

:
are relevant for the

overall behaviour of the system. The stability of these equilibrium states (i.e. point attractors) can be

investigated by applying perturbations to the equilibrium states. In fact, we linearise the system at

equilibrium points and apply perturbations to this state. The
::::
after

::::::::::
linearisation

::::
and

::
is

:::::::::
determined

:::
by95
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::
the

:
eigenvalues of the linearised systemare used for the characterisation of the quality and stability

of the equilibrium states
::::::::
linearized

::::::
system. Some theorems are available in order to transfer the qual-

itative behaviour of the linearised systems to the full nonlinear system. For the characterisation

of more complex attractors, as e.g. limit cycles, more sophisticated approaches must be used. For

instance, limit cycles can be determined using Poincaré sections (Argyris et al., 2010). Investiga-100

tions of cloud models as dynamical systems were carried out for liquid and mixed-phase clouds

(Hauf, 1993; Wacker, 1992, 1995, 2006) as well as for cloud-aerosol-precipitation systems (Koren

and Feingold, 2011; Feingold and Koren, 2013). For pure ice clouds such investigations have not

been carried out yet. In contrast to clouds involving liquid phase, which are close to thermodynamic

equilibrium
:::
(i.e.

::::::::::::
RH ∼ 100%), we have to consider relative humidity as a control

:::::
system

:
variable,105

which adds another equation to the system and makes the analysis more challenging. The mathe-

matical characterisation of the
:::::::
reduced model allows for a better understanding of the interaction

of different nonlinear processes and the impact of external forcings
::::
such

:
as vertical updraughts. Fi-

nally, the qualitative analysis could be used in future work as starting point for developing cloud

parameterisations that represent the qualitative structure of subvisible cirrus clouds.110

In section 2 we describe the development of the model. The results of the numerical integration

and the mathematical analysis are presented in section 3, as well as comparisons with observations

and more detailed models. In the final section, we summarise the results, draw some conclusions and

give an outlook to future work.

2 Model115

In this section we describe the development of a simple
::::::
reduced

:::
ice

::::::
cloud model, which is

::::
later

used for analytical and numerical investigations. We include the relevant processes for formation and

evolution of ice clouds into the model but we try to avoid too much complexity, which makes analysis

too complicated (i.e. reducing the complexity paradox, see, e.g., Oreskes et al., 1994; Oreskes, 2003).

Since we investigate subvisible cirrus clouds in the temperature regime T < 235K and at low vertical120

updraughts 0<w ≤ 0.05 m s−1, the relevant processes are ice nucleation, diffusional growth and

sedimentation, respectively.

2.1 Basic equations

An ice cloud is represented by an ensemble of ice particles, which can be described by a mass

distribution f(m,x, t) with mass of particles, m, as internal coordinate and space, x, and time, t,125

as external coordinates. Notation follows the convention in population dynamics (see e.g. Ramkr-

ishna, 2000). We investigate a test volume with a certain fixed mass of dry air, therefore f has units

[f ] = kg−2[f ] = kg−2. The evolution of this mass distribution in time and space is determined by a

partial differential equation (see, e.g., Hulburt and Katz, 1964; Seifert and Beheng, 2006; Beheng,
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2010):130

∂(ρf)

∂t
+∇x · (ρuf) +

∂(ρgf)

∂m
= ρh. (1)

Here, ρ denotes density of air, u and g are the advection velocities in physical space and phase

space of the internal coordinate, and h represents sources and sinks for particles. The divergence

in physical space is denoted by ∇x = (∂/∂x,∂/∂y,∂/∂z)
::::::::::::::::::::::
∇x = (∂/∂x,∂/∂y,∂/∂z)T . Note, that

all functions, u, g, h, generally depend on the full set of variables (m,x, t). The fluid velocity v =135

v(x, t) describes the motion of the air; cloud particles may experience a velocity v′ = v′(m,x, t)

relative to v, thus the total u is given by u(m,x, t) = v(x, t) +v′(m,x, t). In our study, the only

relevant relative velocity of cloud particles is gravitational settling (hereafter: sedimentation), given

by a terminal velocity due to balance between gravitational force and drag. The terminal velocity

depends on ice crystal mass, i.e. v′ = (0,0,−vt(m)). Note the direction towards Earth’s surface,140

indicated by the minus sign.

Instead of solving equation (1) for the entire mass distribution, we derive equations for the general

moments of f(m,x, t), defined as

µk[m](x, t) :=

∞∫
0

f(m,x, t)mk dm, k ∈ R. (2)

A bounded mass distribution is uniquely determined by all its integer moments (see e.g. Feller,145

1971). However, since
:::
The

::::::::
evolution

::::::::
equations

:::
for

:::
the

::::::
general

::::::::
moments

::
are

:::::::
derived

::
by

::::::::::::
multiplication

::
of

:::::::
equation

:::
(1)

::
by

:::
mk

:::
and

:::::::::
integration

:::
by

:::::
parts,

::::
using

:::::::::::
f(0,x, t) = 0

::::
and

:::::::::::::::
f(m,x, t)

m→∞→ 0
::
as

::::::::
physically

:::::::::
meaningful

:::::::::::
assumptions.

:::::
Using

:::::::::::::::::
v′ = (0,0,−vt(m)),

:::
and

:::
the

::::
mass

:::::::::
continuity

:::::::
equation

:::::::::::::::::

∂ρ
∂t +∇x · (ρv) = 0,

:::::
yields

∂µk
∂t

+v · ∇xµk︸ ︷︷ ︸
time evolution + advection

=
1

ρ

∂

∂z

 ∞∫
0

mkρvtf dm


︸ ︷︷ ︸

sedimentation

+k

∞∫
0

mk−1gf dm

︸ ︷︷ ︸
growth/evaporation

+

∞∫
0

mkhdm.

︸ ︷︷ ︸
particle formation/elimination

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)150

::::
Since

:
we cannot (and do not want to) treat an infinite number of moment equations, we make the

usual ansatz (see e.g. Seifert and Beheng, 2006) for a double moment scheme (k = 0,1), i.e. we

derive two equations for number concentration (Nc = µ0) and mass concentration (qc = µ1) of ice

crystals from equation (1), of the following form:

∂µk
∂t

+v · ∇xµk︸ ︷︷ ︸
time evolution + advection

=
1

ρ

∂

∂z

 ∞∫
0

mkρvtf dm


︸ ︷︷ ︸

sedimentation

+k

∞∫
0

mk−1gf dm

︸ ︷︷ ︸
growth/evaporation

+

∞∫
0

mkhdm.

︸ ︷︷ ︸
particle formation/elimination

155
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Here, we also used mass conservation of dry air in order to rewrite the first two terms of equation (1),

for details see appendix ??. Note the units ofNc and qc relative to the mass of dry air are [Nc] = kg−1

and [qc] = kg kg−1, respectively. For closing the system of equations mathematically, we prescribe

a fixed type of mass distribution for the ice crystals. As in the study by Spichtinger and Gierens

(2009), we use a log-normal-distribution of the following form:160

f(m,t) =
Nc(t)√

2π logσm
exp

−1

2

(
log( m

mm
)

logσm

)2
 1

m
, (4)

with geometric mean mass mm and non-dimensional geometric standard deviation σm, determin-

ing the width of the distribution; log denotes the natural logarithm. The general moments can be

described by

µk[m] =Ncm
k
m exp

(
1

2
(k logσm)

2

)
=Ncm

kr
k(k−1)

2
0 , (5)165

using the mean mass m= qc/Nc = µ1/µ0. Here, we introduced the dimensionless parameter,

r0 =
µ2µ0

µ2
1

= exp
(

(log(σm))
2
)
,; (6)

for closing the set of equations; r0 is set to a constant, thus the geometric standard deviation repre-

senting the distribution’s width is assumed to be constant. Spichtinger and Gierens (2009) suggest a

value of r0 = 3, corresponding to a geometric standard deviation σm ≈ 2.85.170

2.2 Parameterisation of relevant processes

In the following the representation of relevant processes is described briefly. For more details we

refer to appendix A. Furthermore, we describe additional assumptions for simplification and present

the final equations of the model.

2.2.1 Nucleation175

::::::
Particle

:::::::::
formation

::
in

:::::
terms

::
of
::::

ice
:::::::::
nucleation

::
is

::::::::
described

:::
by

:::
the

:::
last

:::::
term

::
on

::::
the

::::
right

:::::
hand

::::
side

::
of

:::::::
equation

::
3.
:
For the formation of ice crystals we exclusively consider homogeneous freezing of

aqueous solution droplets (short: homogeneous nucleation, Koop, 2004). We describe the ensemble

of solution droplets by a size distribution fa = fa(r), where r denotes the radius. Units are [fa] =

kg−1m−1 and fa is normalised by the total number concentration of solution droplets in
:::
per

::::
unit180

::::
mass

::
of

:
dry air, Na = µ0[r]

:
,
::::
with

::::::::::
[Na] = kg−1.

We model
::::::
describe

:
homogeneous nucleation as a stochastic process with a nucleation rate J (for

details see appendix A). For the change in the size distribution fa(r) we can formulate the following

equation (acc. to Seifert and Beheng, 2006) assuming J as a volume rate (i.e. [J ] = m−3s−1):

∂fa(r)

∂t

∣∣∣∣∣
nucleation

=−4

3
πr3Jfa(r). (7)185
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Integration of the equation
:::
over

:::
all

::::
radii

:
r
:
leads to an equation for the total loss of solution droplets

∂Na
∂t

∣∣∣∣∣nucleation
:::::

=−4

3
π

∞∫
0

r3Jfa(r)dr. (8)

Assuming a bijective relation between ice crystals and solution droplets, we combine the total gain

of ice particles as

∂Nc
∂t

∣∣∣∣∣nucleation
:::::

=−∂Na
∂t

∣∣∣∣∣nucleation
:::::

=
4

3
π

∞∫
0

r3Jfa(r)dr =
4

3
πJµ3,a[r], (9)190

where µ3,a[r] denotes the third moment of the size distribution of solution droplets. Here, we as-

sume that ∂J/∂r = 0. Since the ice crystal number concentration in SVCs is very low, we assume

that only a minor fraction of solution droplets is converted to ice and the size distribution remains

constant in time. Thus, the third moment can be calculated once and is then used as a constant

in the resulting equations. We assume fa(r) as a log-normal distribution with a modal radius of195

rm = 100nm, a dimensionless geometric standard deviation σr = 1.5 and a total number concen-

tration ρNa = 3× 108m−3, similar to the settings by Spichtinger and Gierens (2009), which are

motivated by observations (Minikin et al., 2003). This leads to a formulation of

∂Nc
∂t

∣∣∣∣∣
nucleation

=
4

3
πNar

3
m exp

(
1

2
(3logσr)

2

)
J(RHRH

:::i,T ) (10a)
200

and

∂qc
∂t

∣∣∣∣∣
nucleation

=m0 ·
∂Nc
∂t

∣∣∣∣∣
nucleation

, (10b)

using a typical droplet mean mass m0 = 10−15 kg (size∼ 1µm) in the spirit of the mean value theo-

rem. The nucleation rate J is parameterised according to Koop et al. (2000) and can be expressed as a205

function of relative humidity with respect to ice and temperature. For further details see appendix A.

2.2.2 Diffusional growth

The growth and evaporation of ice crystals is dominated by diffusion of water vapour. With several

simplifications of the growth equation (for details see appendix A) we obtain the following equation

for diffusional growth of a single crystal:210

g(m)≈ 4

3
πCiDvm

αiρqv,si(Si− 1),

 RHi

100%
− 1

::::::::

 (11)

with constants Ci = 1.02m
:::::::::::::::
Ci = 1.02m kg−αi , αi = 0.4 and using saturation ratio Si = pv/psi and

saturation mixing ratio

qv,si(T,p) =
εpsi(T )

p
,215
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respectively
::::::
relative

:::::::
humidity

::::
over

:::
ice

:

RHi = 100%
pqv

εpsi(T )
= 100%

qv
qv,si

with saturation mixing ratio qv,si(T,p) =
εpsi(T )

p
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

::::
Here,

:::::::
psi(T )

::::::
denotes

:::::::::
saturation

::::::
vapour

::::::::
pressure

::::
over

:::
ice

:::
and

:::::::::
ε≈ 0.622

::
is

:::
the

:::::
ratio

::
of

:::::::::
molecular

::::::
masses

::
of

:::::
water

:::::::
vapour

:::
and

:::
air. We can express the term for diffusional growth in the moment

equations (3) by integration, i.e.:220

dqc
dt

∂qc
∂t
:::

∣∣∣∣∣
growth

=

∞∫
0

g(m)f(m)dm=
4

3
πCiDvρqv,si(Si

 RHi

100%
:::::

− 1)

µai [m]αi [m]
::::

=
4

3
πCiDvρqv,si(Si

 RHi

100%
:::::

− 1)

N1−αi
c qαic r

αi(αi−1)

2
0 . (13)

2.2.3 Sedimentation

Following Spichtinger and Gierens (2009), we describe the weighted terminal velocity v̄k for the225

flux of the k-th moment as

v̄k =
1

µk

∞∫
0

vt(m)mkf(m)dm, (14)

(for details see appendix A). Here, we use a simple power law for the representation of the terminal

velocity

vt(m) = γmδcorr(T,p) (15)230

with γ = 63292.36m s−1 kg
−δ , δ = 0.57 and a density correction term corr(T,p) (see appendix A).

We can compose the general terms for sedimentation in the moment equations (3):

∂

∂z
(ρv̄nNc) =

∂

∂z
(ργ ·µδ[m] · corr(T,p)) , (16a)

∂

∂z
(ρv̄qqc) =

∂

∂z
(ργ ·µδ+1[m] · corr(T,p)) . (16b)

235

2.2.4 Simplifications

In order to obtain a consistent but simplified system of ordinary differential equations we make the

following assumptions:

1. Change to Lagrangian point of view and purely vertical motion:

Since we are interested in the time evolution of cloud variables in a single air parcel, we240

change our point of view from Eulerian description to a Lagrangian viewpoint. The Eulerian

time evolution and advection of a quantity φ in the fluid motion can be seen as total time

derivative

dφ

dt
=
∂φ

∂t
+v · ∇xφ, (17)
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representing the Lagrangian description. Note that motions relative to the Lagrangian evolution245

are still included, i.e. sedimentation still plays a role. We will exclusively consider vertical

motions of the air parcel as driven by a vertical velocity component w, i.e. v = (0,0,w(t))
:
,

:::
and

:::
for

:::::::::
simplicity,

:::
we

::::::
assume

::::
the

::::
mass

::::::::::
distribution

::
to

:::
be

::::::::::
horizontally

::::::::::::
homogeneous. In or-

der to close the system,
::
we

::::::::::
additionally

::::::
derive

:
equations for temperature and pressure must

be derived. The vertical motion of the air parcel leads to adiabatic changesin temperature and250

pressure. Since we can assume hydro-static balance for pressure in a very good approximation,

we explicitly describe temperature and pressure rates: whereas
:::
rates

:

dT

dt
=

:::::

dT

dz

dz

dt
=−g ·Mair

cp
w,

::::::::::::::::::

dp

dt
=

::::

dp

dz

dz

dt
=−gρw,

:::::::::::::

(18)

::::::::
assuming

:::::::::
hydrostatic

:::::::
balance

:::
and

::::::::
adiabatic

:::::::
changes.

:::::
Here,

:
g denotes acceleration of gravity,255

Mair is the molar mass of dry air and cp is the molar isobaric heat capacity. We would expect

additional temperature changes due to phase changes (latent heat release), when ice crystals

grow or evaporate by water vapour diffusion. However, since
::::
Since

:
we investigate ice clouds

in the low temperature regime, temperature changes due to latent heat release can be neglected

in good approximation. For low temperatures (T < 235K) the deviation from the dry adiabatic260

lapse rate is less than 5% and is decreasing with decreasing temperature
:
. Therefore, we omit

temperature change due to latent heat release, which would appear as an additional nonlinear

term in the system of equations.

2. Closure using an equation for relative humidity w.r.t. ice:

In our study, we will exclusively consider very low vertical velocities (0<w ≤ 0.05m s−1),265

which are typical for formation of SVCs in large-scale upward motions. Variations in w, i.e.

time-dependent velocities w(t) are not investigated since our main focus is to understand the

behaviour of SVCs in this quite simple but realistic setup. Time-dependent vertical velocities

would largely complicate our investigations and thus is beyond the scope of this study. At low

vertical updraughts, temperature and pressure do not change much. At an updraught velocity270

of w = 0.02 m s−1, for instance, temperature would decrease by about 0.7 K per hour. If an

updraught of this strength were sustained for 12h, the resulting temperature decrease would be

about 8K
::
We

:::
are

:::::::::
interested

::
in

::::::::
long-time

:::::::::
behaviour

::
of

:::
the

:::::
model. A persistence of such weak

updraughts for a long time
:::
(e.g.

:::
12

:::::
hours

:::
or

::::
even

::::::
longer,

::::::::
resulting

::
in

:::::::::::
temperature

:::::::
changes

::::::
smaller

::::
than

:::::
10K) is realistic for warm fronts at mid latitudes (Kemppi and Sinclair, 2011) or275

Kelvin waves in the tropics (Immler et al., 2008a).
::
In

:
a
::::::
simple

::
but

:::::
quite

:::::::
realistic

::::::::::::
approximation

::
we

:::::::
assume

:::::::
constant

::::::
vertical

::::::::
velocity.

Thus, as
:::
As temperature decrease at slow upward motions is only very small, in a zeroth or-

der approximation we assume constant temperature and pressure. In consequence, the parcel’s

volume remains constant, too. The resulting error for neglecting density changes is usually280
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of order ∼ 10% (see e.g. Weigel et al., 2015). Since we are primarily interested in a simple

conceptual model
::
of

:::::::
reduced

::::::::::
complexity, describing the main properties of SVCs, these as-

sumptions are justified.
::::
Thus,

::
in
::::
our

::::::
reduced

::::::
model

:::
w,p

::::
and

::
T

:::
are

:::::::
assumed

::
to

::
be

:::::::
constant

::::
and

::
are

::::::
treated

:::
as

::::::
control

:::::::::
parameters.

:

To close the systems of differential equations we introduce an evolution equation for relative285

humidity, starting with the total derivative of RHi = 100%pqv/(εpsi(T ))
::::
RHi :

dRHi

dt
=
∂RHi

∂T

dT

dt
+
∂RHi

∂p

dp

dt
+
∂RHi

∂qv

dqv
dt

. (19)

While temperature and pressure remain approximately the same
:::::::
constant during parcel ascent,

the relative humidity should
:::::::::
nevertheless

:
be affected by terms involving dT/dt and dp/dt,

respectively. Neglecting latent heat release as stated above, the first two terms in equation (19)290

read:

∂RH i

∂T

dT

dt
= RH i

Mair

RT 2
Lice ·

g

cp
w, (20a)

∂RH i

∂p

dp

dt
=

RH i

p
· ρgw =−RH i

Mair

RT
gw, (20b)

Mair is the molar mass of dry air and Lice is the molar heat of sublimation; we use the param-295

eterisation for Lice by Murphy and Koop (2005). As usual, g denotes gravitational accelera-

tionand cp is the molar isobaric heat capacity of air. .
:
Note that we only consider temperature

and pressure changes in equation (19), but leave temperature and pressure constant otherwise

. Therefore, we do not include the equations for dT/dt and dp/dt in our ODE system of the

model.
:::
and

::::
thus

:::::
obtain

:
a
::::::::
reduced

:::::
model

:::
with

::::
only

:::::
three

::::::::
variables

::::::::::
Nc, qc,RHi . This approach300

will be useful for analytical investigations , although this implies a slight inconsistency. This

allows us to study
::
of the long term behaviour of the system.

The last term in equation (19) represents the sink due to diffusional growth of ice particles and

can be written as:

∂RHi

∂qv

dqv
dt

=−∂RHi

∂qv

dqc
dt

∣∣∣∣∣
growth

=−4

3
πρDvCi(RHi − 100%)r

αi(αi−1)

2
0 N1−αi

c qαic ., (21)305

::::
using

::::::::::::::::::

∂RHi

∂qv
= RHi

qv
= 100%

qv,si
.
:
We use relative humidity as a control variable instead of specific

humidity, which has been used in former studies (e.g. Hauf, 1993; Wacker, 1992) for liquid

or mixed-phase clouds close to thermodynamic equilibrium (water saturation). Since pure

ice clouds commonly
::::
often

:
exist at states far away from equilibrium, relative humidity (or310

equivalently saturation ratio)
:::
over

:::
ice is the relevant thermodynamic variable. In addition, the

representation of processes changing this variable or depending on this variable is much easier

than for specific humidity qv , e.g. in the nucleation parameterisation.
:
,
:::::::::
controlling

::::::
growth

::::
and

::::::::
nucleation

::
of
:::
ice

:::::::
crystals.

:

10



3. Approximation of sedimentation315

Since we are interested in an analytically treatable model of a single air parcel, we would like

to get rid of
:::
need

::
to

::::::::
eliminate

:::
the partial derivatives describing sedimentation, which generally

lead to a hyperbolic system of partial differential equations, which is too complicated for

theoretical analysis. For simplification of the equations we have to consider terms of the form

∂

∂z
(ρv̄kµk) k = 0,1, (22)320

i.e. vertical gradients in the sedimentation flux, jk = ρv̄kµk. Since the volume does not change,

we assume a box with volume V =A ·∆z with constant vertical extension ∆z and constant

base area A. The sedimentation flux jk is perpendicular to the surface of the base area. We

approximate the vertical change of the flux by centred differences:

∂

∂z
jk ≈

1

∆z

(
jtopk − jbottomk

)
=

1

∆z

(
(ρv̄kµk)top− (ρv̄kµk)bottomk

)
. (23)325

We investigate the top layer of a cloud, therefore by definition jtopk = 0. Hence, we can write:

1

ρ

∂

∂z
(ρv̄Nµ0)≈− v̄Nµ0

∆z
=−γ µδ

∆z
ccorr
:::

(T,p), (24a)

1

ρ

∂

∂z
(ρv̄qµ1)≈− v̄qµ1

∆z
=−γ µδ+1

∆z
ccorr
:::

(T,p). (24b)

2.2.5 Final system of ODEs330

In summary, the full system of the model equations reads:

dNc
dt

=a · J(RH i ,T )︸ ︷︷ ︸
nucleation

−b ·N1−δ
c qδc︸ ︷︷ ︸

sedimentation

(25a)

dqc
dt

=a ·m0 · J(RH i ,T )︸ ︷︷ ︸
nucleation

−c ·N−δc q1+δc︸ ︷︷ ︸
sedimentation

+ d · (RH i − 100%)N1−αi
c qαic︸ ︷︷ ︸

growth

(25b)

dRH i

dt
=e ·w ·RH i︸ ︷︷ ︸

vertical motion

−f · (RH i − 100%)N1−αi
c qαic︸ ︷︷ ︸

growth

(25c)

335

where a, b, c, d, e, f > 0 denote positive real constants as indicated in appendix A. Note that almost

all coefficients also depend on the (fixed) parameter T . This
::::::
reduced

:::::
model

:
is an autonomous system

of ordinary differential equations, i.e. we can write the system in the following form:

ẋ = F (x), with x = (Nc, qc,RHi)
T , (26)

and F the right hand side of (25). Note that the assumption of constant temperature, pressure and340

vertical velocity ensures that the system (25) possesses critical points.
::::::::::
equilibrium

:::::
states.

:

2.3 Setup

We examine the system for a range of parameter values 0<w ≤ 0.05 m s−1 and 190K≤ T ≤ 230 K,

at a constant pressure of p= 300 hPa, which corresponds to upper tropospheric conditions with

11



moderate vertical motions as in synoptic weather situations or slow upward motions in the tropics345

(e.g. Kelvin waves).

We investigate the
::::::
reduced

:
model using analytical tools (see details in section 3) and also integrate

the model numerically. For this purpose, the air parcel is initialised with no ice particles (Nc(0) = 0,

qc(0) = 0) (Nc(0) = 0, qc(0) = 0) and at high supersaturation w.r.t. ice (RHi(0) = 140 %). The

prognostic equations (25) are integrated numerically with the LSODA algorithm from the FORTRAN350

library ODEPACK (Hindmarsh, 1983).

3 Results

3.1 General features of the system

The general cloud formation mechanism works as follows: The adiabatic cooling causes the relative

humidity, and thus the nucleation rate, to rise until ice nucleation occurs. Due to the steepness of355

J with respect to RHi , occurrence of ice nucleation corresponds approximately to a threshold in

relative humidity (∼ 140−150 %, see, e.g., Ren and Mackenzie, 2005; Kärcher and Lohmann, 2002).

The stronger the dynamical forcing w, the stronger the nucleation event and the more ice particles

form. Ice particle growth then reduces the relative humidity (see equation (19), last term) and hence

the nucleation rate is also reduced. Crystals grow to larger sizes and begin to sediment out of the360

air parcel. Sedimentation reduces ice crystal mass and number concentrations, and thus weakens

the growth term. Then relative humidity can increase again allowing the cycle to start over. The

sedimentation process allows for oscillations in the system; without sedimentation (the only sink for

Nc and qc) a steady state at ice saturation
::::
RHi :::::

would
::::
drop

::
to

::::::
values

::::
close

::
to
:::::::::
saturation

:::
and

::
qc::::::

would

::::::::::
permanently

::::::::
increase;

::
no

::::::::::
equilibrium

:::::
state would be reached soon

::
for

::::
long

::::::::::
integration

:::::
times (see365

e.g. Kärcher, 2002; Spichtinger and Gierens, 2009).

From the numerical simulations we found that the system exhibits two qualitatively distinct be-

haviours, depending on values of w and T . First, we give a qualitative overview:

State 1: At rather high temperatures and slow vertical velocities, the three competing microphysi-

cal processes (nucleation, growth, sedimentation) are relatively slow and act on similar time370

scales, so none of them is dominant. In particular, nucleation rates are rather small in these

cases, therefore only few ice crystals are formed initially, which grow and also sediment quite

slowly. The three processes are more or less in balance, resulting in a damped oscillation in

all three variables, Nc, qc, RHi , asymptotically reaching an equilibrium state, as shown in

figure 1. Note, that in this state, nucleation is always present, as strong supersaturation with375

relative humidity close to the nucleation threshold persists at all times and thus the nucleation

rates are high enough to produce considerable amounts of ice crystals continuously. This re-

sults in smooth oscillations instead of sharp nucleation events, as usually expected (see, e.g.,

Kärcher and Lohmann, 2002). If the air parcel is not disturbed and the vertical updraught re-

12



mains unchanged in the long term evolution, the cloud persists and has constant microphysical380

properties
::
ice

::::::
crystal

:::::
mass

:::
and

:::::::
number

::::::::::::
concentrations. The cloud in the steady state typically

contains low crystal concentrations. The dynamic equilibrium
:::::::::
equilibrium

::::
state

:
remains at

high supersaturations, i.e. the cloud stays far away from thermodynamic equilibrium.

State 2: When increasing w or decreasing T , respectively, to a certain level, oscillations in variables

Nc, qc,RHi are not damped anymore (see figure 2) and no asymptotic equilibrium can be ob-385

served (as e.g. a point in phase space). Instead, we obtain pulse-like nucleation with distinct

nucleation events followed by phases with almost vanishing nucleation rates at low relative

humidities. The amplitude of the oscillation is very large in all variables; due to sedimentation

ice particle concentration is reduced to a small fraction of the maximum value once in a period.

At colder temperatures and faster vertical velocities, the nucleation rates are much higher, so390

nucleation is the dominant process in the beginning, leading to pulse nucleation events. After

a while, ice crystal growth becomes dominant and when the crystals have become large, sed-

imentation sets in and crystal numbers decrease rapidly. Finally, the cycle starts over. In this

case, the nucleation events are clearly separated, as opposed to the first case. For the time evo-

lution we find that in the beginning, the amplitude
::::::::
amplitudes

:
in the three variables decreases395

:::::::
decrease slightly from one event to the next, but after a while, the amplitude stays constant.

Therefore, it seems that the system asymptotically approaches a limit cycle (one-dimensional

attractor). This kind of scenario was also observed in former studies (e.g. Spichtinger and

Cziczo, 2010; Kay et al., 2006) but not in a long term behaviour.

Obviously, we find two qualitatively different states in the numerical solution of the model, depend-400

ing on parameters w and T , respectively. Next, we investigate the model by means of qualitative

theory of dynamical systems.

3.2 Qualitative behaviour of the model

For a first investigation we discuss the different terms in equations (25).

The model is driven by an external source; vertical lifting of the air parcel leads to increase of405

relative humidity. Since temperature and pressure are kept constant, the term e ·w ·RH i implies a

permanent
::::::
external

:
water vapour source, which is necessary for studying the long term behaviour of

the model. The artificially produced
:::::
source

::
of

:
water vapour leads to particle generation. Thus, the

terms of nucleation and growth
::::::::
Nucleation

::::
can

::
be

:::::::::
interpreted

::
as

:::::::
external

:::::::
source,

::::
since

::
it

::
is

:::::::
forming

::
ice

:::::::
crystals

:::
via

:::::
water

::::::
vapour

:::::
from

::
an

:::::::
external

::::::::::::
inexhaustable

:::::::
reservoir

::
of
::::::::

solution
:::::::
droplets.

:::::::
Growth410

can be seen as internal transformation terms. Finally, sedimentation terms, i.e. −b ·N1−δ
c qδc and

−c ·N−δc q1+δc , remove particles (and thus water mass) from the model, so they constitute internal

::::::
external

:
sinks for cloud variables. Qualitatively, the external sources of water initiate particle gen-

eration
::
by

:::::::::
nucleation; diffusional growth terms transform water vapour mass into cloud mass until

13



the mass is lost by the internal
:::::::
external sinks of sedimentation. Thus, the model can be seen as an415

externally forced dissipative system. Note, that the model does not fulfil mass conservation due

to the sources and sinks of water vapour and cloud mass, respectively. All terms except of
:::
for the

cooling term e ·w ·RH i are non-linear in variables Nc, qc,RH i .

For a first analysis
:
of

:::
the

:::::::
system we compute the divergence of the system (i.e. the trace of the

Jacobian DF)
:
,
:::
i.e.

:::
for

::::::::::
investigating

:::::::
possible

::::::::::
contraction

::
or

:::::::::
expansion

::
of

::::::
system

::::::::
solutions:420

∇ ·F =−
[
(b(1− δ) + c(1 + δ))N−δc qδc + fN1−αi

c qαic
]

+ e ·w+ dαi(RH i − 100%)N1−αi
c qαi−1c

=−
[
(b(1− δ) + c(1 + δ))mδ + fNcm

αi
]

+ e ·w+ dαi(RH i − 100%)mαi−1 (27)

using the mean mass m= qc/Nc for cloudy states. For clear air (Nc = qc = 0), we obtain ∇ ·F =

e ·w > 0, hence the system is expanding in phase space. For cloudy air (m 6= 0
:::::
m> 0) there is com-425

petition between different terms determining the sign of∇·F . Sedimentation and change of relative

humidity due to diffusional growth are dissipative terms
::::
sinks

:
(i.e. negative sign in equation (27)),

while the external source term always has a positive sign. Diffusional growth of ice particles can

change its sign depending on the thermodynamic state. Since we always investigate a situation with

w > 0, the system stays in a supersaturated states
:::
state

:
(RH i−100%> 0), therefore the last term in430

equation (27) is positive.

The balance of terms in equation (27), i.e. the sign of∇·F for cloudy air is crucially determined

by the mean mass of the cloud. Note that for both exponents we have 0< αi < δ < 1, and thus

−1< αi− 1< 0. For large ice crystal mass, the terms of form mδ will dominate, thus leading to a

negative sign of ∇ ·F and to dissipation
:::::::::
contraction

:
of the system, mainly due to sedimentation of435

ice crystals. This is especially the case at higher temperatures, since then diffusional growth is faster

and mean masses m tend to larger values. In such cases, the system tends to state 1.

For very small ice crystals, the term including mαi−1 will dominate leading to a positive sign

of ∇ ·F . For instance, at nucleation events, the ice crystal mass becomes very small, thus in this

situation the system tends to expand explosively (∇·F > 0). The same is true if almost all particles440

have fallen out and only small ice crystals are contained in the air parcel. These scenarios are more

prevalent at state 2, i.e. at lower temperatures and higher upward velocities.

3.3 Linear stability of the system

In a first step, the
:::::::::
autonomous

:
dynamical system (25) can be characterised by its critical points

:::::::::
equilibrium

:::::
states

:
x0, i.e. the points in phase space where F (x0) = 0. Since the system is autonomous445

the critical or singular points are equilibrium states of the system. The equilibrium points
:::
The

:::::::::
equilibrium

::::::
states of this system cannot be determined analytically, due to strong nonlinearities.

We determine the roots of the right hand side of system (25) numerically. First, we observe that the

mass rate of nucleation dqc
dt

∣∣
nucleation = a ·m0 ·J(RHi ,T ) is negligible compared to other mass rates

in the system and can be omitted for simplification. This leads to a new system ẋ = F̃ (x)
::::::::
ẋ = F̃ (x).450
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After setting F̃ (x) = 0
::::::::
F̃ (x) = 0, the three resulting equations can be combined to a single equation

for RHi as follows:

a · J(RH i ,T ) =
e ·w · b
f

·
(
d

c

) δ−αi
δ+1−αi

·RH i · (RH i − 100%)
1

αi−1+δ . (28)

For details of the derivation of this equation see appendix B. The roots of equation ((28) ) determine

the equilibrium values of RHi . Then, the values of Nc and qc can be derived analytically. Equa-455

tion (28) has a unique solution
:
,
:::
i.e.

::
a

:::::
single

:::::
point

::
in

:::::
phase

::::::
space,

:
because the left-hand side is a

strictly monotonic increasing function of RHi and the right-hand side is strictly monotonic decreas-

ing. Therefore, there exists a unique critical
:::::::::
equilibrium

:
point, x0, in the relevant domain of the

phase space (RHi > 100 %, Nc > 0, qc > 0). The roots of equation (28) are determined numerically

for the relevant domain in the parameter space, i.e. 0<w ≤ 0.05 m s−1 and 190≤ T ≤ 235 K.460

In order to examine the qualitative behaviour of the solution in a neighbourhood of the equilibrium

state, the ODE system is linearised about the critical point
:::::::::
equilibrium

::::
state

:
x0:

ẋ = F (x0) +DF
∣∣
x0

(x−x0) +O(|x−x0|2), (29)

where DF|x0
is the Jacobian of F evaluated at x0. Note that F (x0) = 0 by definition. The three

eigenvalues of the Jacobian, λ1,λ2,λ3, determine the quality of the critical point
:::::::::
equilibrium

:::::
state465

(Verhulst, 1996, Chapter 3). The eigenvalues must be determined numerically for the relevant param-

eter values w and T . The Jacobian of the system has two complex conjugate eigenvalues, λ1,2 ∈ C,

whose real part can be positive or negative, depending on the parameters, w and T . In figure 3 the

values of the real part Re(λ1,2) and the absolute value of the imaginary part |Im(λ1,2)| are shown.

The third eigenvalue, λ3 ∈ R, is always negative, values are shown in figure 4.470

Complex eigenvalues of the linearised system indicate oscillatory behaviour, which is prevalent in

all simulations. As can be seen in figure 3, the real part of the complex eigenvalues λ1,2 can change

its sign depending on parameters w and T .

For negative values of the real part (Re(λ1,2)< 0) the critical point
::::::::::
equilibrium

::::
state

:
x0 is a

positive attractor
::::
stable

::::::
point,

:::::::::
sometimes

::::
also

:::::
called

::::
sink

::::::::::::::::::::
(cf. Hirsch et al., 2013) , i.e. solutions of475

the ODE (29) starting in a neighbourhood of this point approach this point asymptotically (Verhulst,

1996, Chapter 2). More precisely
::::
Thus, this equilibrium point can be characterised as stable focus

(e.g. Verhulst, 1996; Argyris et al., 2010). According to the Poincaré-Lyapunov theorem (Verhulst,

1996, theorem 7.1), positive attraction in the linearised system is also valid for
::
an

:::::::::::::
asymptotically

:::::
stable

::::::::
linearized

::::::
system

::::
also

:::::::
ensures

:::::::::
asymptotic

:::::::
stability

:::
of the full nonlinear system (25). There-480

fore, x0 is asymptotically stable and acts as a positive point attractor in equation
::
for

::::
the

::::::::
nonlinear

::::::
system (25)

:::
and

:::::::::
constitutes

:
a
::::::

stable
:::::
focus.

:::::
Since

:::::
there

::
is

:
a
::::::
unique

::::::::::
equilibrium

:::::
state,

::
all

::::::::::
trajectories

::
in

:::::
phase

:::::
space

:::
tend

:::
to

:::
this

:::::
point

::::::::::::
asymptotically.

This
::
In

::::
this

::::
case

:::
the

:
equilibrium point (stable focus) corresponds to state 1 in the numerical

simulations. Solutions of the system (25) experience damped oscillations until they asymptotically485
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approach the stable attractor
::::
focus in phase space. The imaginary part of the complex eigenvalues

determines the oscillation period. Figure 5 shows the trajectory of a solution of the system (25) in

the 3D phase space, spiralling towards the equilibrium point, i.e. the positive attractor.

For positive values of the real part (Re(λ1,2)> 0) the critical
::::::::::
equilibrium point x0 is a negative

point attractor (unstable focus)
:::::::
unstable,

::::
also

:::::
called

::::::
source

::::::::::::::::::::
(cf. Hirsch et al., 2013) ;

:::::
more

::::::::
precisely490

:::
this

::::::::::
equilibrium

:::::
point

:::::::::
constitutes

:::
an

:::::::
unstable

:::::
focus. Solutions starting in a neighbourhood of x0

run away from the unstable equilibrium point. In this case, the characterisation
:::::::::::
identification

:
of an

unstable critical point in the linearised system is not sufficient for a general characterisation of the

full nonlinear system, since after short time the solutions are too far away from the equilibrium

points
::::
states

::::
and

:::::
linear

:::::::
stability

::
is

::
no

::::::
longer

:::::::::
applicable. Numerical integration shows undamped os-495

cillations for solutions that do not start in the equilibrium point; this behaviour points to the possibil-

ity of a limit cycle (one-dimensional attractor). The transition from positive point attractor a
::::::

stable

:::::::::
equilibrium

:::::
point

:
to limit cycle is a so called Hopf bifurcation (Verhulst, 1996) and is associated

with a transition from two conjugate complex eigenvalues with negative real part to two conjugate

complex eigenvalues with positive real part, via two purely imaginary eigenvalues. For
:
a
:
vanishing500

real part of λ1,2, the Hopf bifurcation occurs. The existence of a limit cycle cannot be shown analyti-

cally for this system; however, we can determine the limit cycle numerically. For this purpose
::::::
starting

:::
our

:::::::::
calculation

:::::
close

::
to

:::
the

::::
limit

:::::
cycle, we compute the Poincaré map of the system (Argyris et al.,

2010; Verhulst, 1996). We choose a two-dimensional plane Σ in phase space, which is transverse to

the trajectory of the solution of equation (26); Σ is called Poincaré section. The sequence of points505

in phase space where the trajectory crosses Σ converges numerically to the the point on the limit

cycle that is in Σ. Once we find one such a point on the limit cycle, we can use it as the initial condi-

tion in (26) to compute the complete limit cycle. An example of a Poincaré section for determining

the respective limit cycle is shown in appendix C (figure 16). The limit cycle itself constitutes a

one-dimensional positive attractor, i.e. solutions starting outside of the limit cycle approach the limit510

cycle asymptotically. Figure 6 shows the trajectory of a solution of the system (25) in the 3D phase

space, approaching the limit cycle, which constitutes
::::
forms

:
a warped circle in phase space.

The transition between the two general states of the system (stable point attractor vs. limit cycle)

can be represented in a bifurcation diagram of the w-T -space (figure 7). The bifurcation point is

a function of both w and T . The different states are separated by points with vanishing real part of515

eigenvalues λ1,2, indicated by the thick black line. The bifurcation points were obtained numerically.

3.4 Quantitative overview

After discussing the different states of the system qualitatively, we now give an overview of the

quantitative cloud properties and relative humidity for the point attractor
:::::
stable

:::::
focus and the limit

cycle, respectively.520
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In the “point attractor” regime (stable focus )
:::::
stable

:::::
focus

::::::
regime, i.e. state 1 of the system, the

critical point
:::::::::
equilibrium

::::
state

:
corresponds to the equilibrium values within

::::::::
properties

::
of

:
the finally

persisting cloud. Hence, in this parameter regime, we describe the properties of the modeled cloud by

the values of the system variables at the critical point
:::::::::
equilibrium

:::::
point

:::::
(stable

::::::
focus). For the “limit

cycle ”
::::
limit

:::::
cycle regime, i.e. state 2 of the system, the critical point

::::::
unstable

::::::::::
equilibrium

:::::
point

:::
x0525

does not describe the changing properties of the cloud since it is only in the centre of the periodic

orbit and the trajectory does not approach it. A more revealing measure for the cloud properties in

this regime is a probability density of the values the variables take along the limit cycle, or at least

median, maximum and minimum values.

Figure 8 shows ice crystal mass and number concentrations, respectively, at the critical point
::::::::::
equilibrium530

::::
state, x0, as a function of vertical velocity (qc(w), Nc(w)) for different temperature regimes. The

solid lines in both panels correspond to state 1 (point attractor regime
:::::
stable

:::::
focus, damped oscil-

lations), whereas the dashed lines indicate the values at the critical
:::::::::
equilibrium point, x0, for state

2 (limit cycle regime, undamped oscillations); note that for state 2,
:::
the

::::::::::
equilibrium

::::
point

:
x0 is an

unstable focus.535

Ice crystal number concentrations at the critical point
:::::::::
equilibrium

:::::
point

:::
x0:take values in the

range 3× 102 kg−1 ≤Nc ≤ 2× 105 kg−1 (figure 8, top), which corresponds to ice crystal number

densities of 0.1 L−1 ≤ nc ≤ 110 L−1. Ice crystal mass concentration ranges between 4× 10−9 ≤
qc ≤ 3×10−6 kg kg−1 (figure 8, bottom). This corresponds to an ice water content of 2.2×10−9 ≤
IWC ≤ 1.4× 10−6 kg m−3.540

As expected from theory (e.g. Kärcher and Lohmann, 2002) and from former numerical investi-

gations (e.g. Spichtinger and Gierens, 2009), the ice crystal number concentrations display a strong

increase with rising vertical velocity. Due to increased crystal growth rates at higher temperatures,

Nc decreases with rising T . In the double logarithmic representation in figure 8, the number con-

centrations Nc(w) at
::
the

::::::::::
equilibrium

:::::
point

:
x0 appear as straight lines. For different temperature545

regimes, there seems to be a constant shift between the curves Nc(w), leading to parallel lines in the

double logarithmic representation.

For the limit cycle regime (state 2), we can still derive the values of mass and number concentra-

tions at the critical point,
:::::::::
equilibrium

::::
state

:
x0. However, since this point is an unstable focus, another

representation is needed to describe the range of ice crystal concentrations. As indicated in figures550

7 and 8, the limit cycle behaviour occurs for temperatures T < 230K for the investigated updraught

regime 0≤ w ≤ 0.05ms−1. Thus, in
:
In

:
figure 9 we present maximum and minimum values (dashed

lines) and median values (dot-dashed lines) for ice crystal number concentrations in the limit cycle

regime for temperatures T = 190, 200, 210, 220K. In addition, the ice crystal number concentration

at the critical point
::::::
unstable

:::::
focus, x0, is displayed (solid lines). We observe a large variation in555

the number concentrations of up to two orders of magnitude relative to the median. This behaviour

is reasonable since sedimentation reduces the amount of ice crystals in a dominant manner, while
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new ice crystals are formed by nucleation in a pulsating way. The absolute values are in the range

0.2≤ nc ≤ 200 L−1
::::::::::::::::::
0.2≤ ρNc ≤ 200 L−1.

The mass concentration of the ice crystals is largely determined by the efficiency of diffusional560

growth. As indicated in the model description (section 2), this term depends on temperature and

also on number concentration, leading again to a power law relationship as represented in figure 8

(bottom) and to a constant shift between the different temperatures, represented as parallel lines.

For the point attractor
:::::
stable

:::::
focus

:
regime, we can directly investigate the mean mass of the ice

crystals, m= qc/Nc, at x0, which is displayed in figure 10. The variation of m at the critical point565

:::::::::
equilibrium

::::
state

:::
x0:due to the vertical velocity is marginal, as indicated in the figure. Thus, we can

assume that m can be approximated by a function of temperature. The mean mass at x0 ranges be-

tween m∼ 10−12 kg and m∼ 2× 10−10 kg, which corresponds to mean sizes between L∼ 16µm

and L∼ 134µm. For the limit cycle regime (state 2), we indicate the variation in the mean mass by

box and whiskers plots, displaying the median value (red markers) as well as 25/75% percentiles and570

minimum/maximum values. Note here that variation of mean mass is usually of one order of mag-

nitude. For cold temperatures the variation is larger due to a higher variability in ice crystal number

concentration (see figure 9), whereas the mass concentration in ice clouds is mainly dominated by

available water vapour.

As indicated in section 3.3, the imaginary part of the complex eigenvalues λ1,2 determines the575

period of the oscillations in state 1
:::::
(stable

:::::
focus

:::::::
regime)

:
near the equilibrium point

::
x0. In figure 11

the period τ = 2π
Im(λ1,2)

as calculated from the imaginary part is shown for the stable focus (solid

lines, colours indicate different temperature regimes). For the unstable focus, the imaginary part of

the eigenvalues is not meaningful, as the limit cycle is not within the linear regime of x0. Instead,

the periods of the limit cycle is shown (dashed lines, colours indicate different temperature regimes)580

as calculated from the Poincaré map. Note that for decreasing temperature the period τ becomes

very large.

3.5 Comparison with observations

For comparison with observations we first consider in situ measurements of ice crystals in subvisible

cirrus clouds. Since it is very difficult to measure low number concentrations, only few measurement585

studies are available. We compare our results with measurements by Kübbeler et al. (2011), Lawson

et al. (2008) and Davis et al. (2010).

Our model results lead to ice crystal number concentrations in the range 0.1L−1 ≤ ρNc ≤ 200L−1

and mean ice crystal sizes in the range ∼ 16µm≤ L≤ 134µm. Note, that the variation in number

concentrations span over three orders of magnitude and the variation in mean sizes is still within590

two orders of magnitude. These
::::::::
simulated values agree quite well with the measurements. Kübbeler

et al. (2011) observed quite high number concentrations in order of ∼ 100L−1 for small ice crystals

(L∼ 10µm) but quite low number concentrations 0.1≤ ρNc ≤ 10L−1 for large ice crystals (equiv-
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alent radius r > 50µm). Lawson et al. (2008) reported ice crystal number concentrations in the range

22.5≤ ρNc ≤ 188.8L−1 with mean value and standard deviation 66± 30.8L−1 for ice crystals in595

the size range 1≤ L≤ 200µm. Finally, Davis et al. (2010) reported very low ice crystal number con-

centrations with a mean value of 2L−1 and mean sizes of 14µm during the tropical measurement

campaign TC4. However, in their study values from former measurement campaigns are reported to

be in the range 10≤ ρNc ≤ 100L−1 and for effective radii 10≤ r ≤ 20µm.

In a second step we expand our comparison to observations from remote sensing. Since SVCs are600

optically very thin, we investigate the extinction coefficient for the visible part of the spectrum. For

comparing our results with measurements, we calculate the extinction β in the solar range using

parameterisations by Fu and Liou (1993):

β = IWC ·
(
a+

b

De

)
, (30)

where IWC = qc · ρ denotes ice water content in g m−3 and De :
in
::::
µm is the generalised size. Con-605

stants are given by a=−6.656 · 10−3 m2g−1 and b= 3.686 µm m2g−1. As a useful approximation

we set De = L, where the quantity L is calculated from the mean mass m using the mass-length-

relation L= Cim
αi , as indicated in appendix A. In figure 12 the values for β are shown for different

temperature regimes as calculated for the mean values at the (stable and unstable) focus (equilibrium

point). Note that there is only marginal difference in the values for different temperatures. The values610

are within the interval 10−4 ≤ β ≤ 0.02 km−1.

Seifert et al. (2007) report mean values for extinctions of SVCs in the range 0.015≤ β ≤ 0.02km−1

with standard deviations σ ∼ 0.005−0.009km−1 (see their table 3). Our results are in the same order

of magnitude or even smaller for slow vertical updraughts. Davis et al. (2010) report much smaller

values of extinction scattered in the range 0< β < 0.01 with a mean value of β ∼ 0.001 km−1.615

These SVCs were measured in the tropics at high altitudes (z ∼ 16 km), i.e. at low temperatures

T < 195K, where slow large-scale updraughts due to Kelvin waves in order of w < 0.01 m s−1

dominate (Immler et al., 2008b). This is consistent with our results, see figure 12.

Overall, we can state that regarding the high spread in the measurements our results from a simple

analytical
:::
the

:::::
results

:::::
from

:::
our

:::::::
reduced model agree quite well with in situ measurements.620

3.6 Comparison with other models

For comparison with a more detailed model
:
,
:
we carried out simulations with the box-model de-

scribed by Spichtinger Gierens (2009) and Spichtinger Cziczo (2010)
::::::::::::::::::::::::::::
Spichtinger and Gierens (2009) and

:::::::::::::::::::::::::
Spichtinger and Cziczo (2010) . This model includes more sophisticated treatment of microphysical

processes, although it is also a two-moment bulk model. It allows a change in the shape of ice625

crystals from almost spherical droxtals to columns. Homogeneous nucleation is treated in detail,

including deliquescence of sulphuric acid and integration over the full size distribution of solution

droplets. For diffusional growth, kinetic and ventilation effects are included. Finally, temperature and
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pressure changes due to vertical upward motions and latent heat release is added to the air parcel’s

temperature.630

Henceforth this model is termed “complex model”. We scan through the T -w parameter space

using initial temperatures in the range 190≤ T ≤ 235K with a temperature increment of ∆T = 5 K

and vertical velocities in the range 0.005≤ w ≤ 0.05m s−1 with a velocity increment of ∆w =

0.005m s−1, leading to 90 simulations. Additionally, we fixed initial conditions p= 300hPa and

RHi = 140%. Generally, the results of these simulations are in good agreement with the results of635

the analytical model
::::::
reduced

::::::
model

::
in

:::
this

:::::
study.

We can again identify regimes in the T -w parameter space showing
::::::::::
representing

:
the known two

different states, i.e. damped oscillations (
:::::
stable

:::::
focus

::::::
regime,

:
state 1) and limit cycle behaviour (state

2). In figure 13 the case of damped oscillation is shown in both model simulations. Here, initial

temperature of T = 220K is used with a vertical velocity of w = 0.01m s−1. Green lines indicate640

the evolution in the complex model simulation, whereas blue lines represent the evolution in the

simple analytical
::::::
reduced

:
model. For the variables number and mass concentration, both models

produce almost the same values. The onset of ice nucleation is shifted between the two models due

to differently detailed representation of ice nucleation in both models. This leads to the difference in

relative humidity values. Qualitatively, the models agree very well – the oscillation periods and the645

magnitudes of the damping are very similar.

For the complex model simulations the environmental conditions change, i.e. temperature and

pressure are decreasing due to adiabatic expansion. Thus, no steady state can be reached. The values

for ice crystal number concentrations and relative humidity are slightly rising with time in the quasi

steady state at the end of the simulation. Ice crystal mass concentration is slightly decreasing.650

In figure 14, a case of limit cycle behaviour is shown. As in figure 13, green lines indicate the

complex model simulations and the simple
:::::::
reduced model results are represented by blue lines,

respectively. The initial conditions for both models are given by T = 210K and w = 0.02m s−1.

Again, we find very good agreement in the cloud variables Nc, qc between both model simulations.

Qualitatively they also agree very well in terms of the periods of the oscillations.655

The bifurcation diagram displayed in figure 7 cannot be reproduced accurately by the complex

simulations. Since in the complex model the parameter T is changed during the simulations, switch-

ing from one regime to the other is possible within one simulation. If, for instance, a simulation starts

at a point in parameter space within the point attractor
:::::
stable

::::
focus

:
regime (e.g. high temperature at

low updraughts), the time evolution initially follows the damped oscillations as expected from the660

bifurcation diagram of the simple
::::::
reduced

:
model. However, the temperature change leads to a (hori-

zontal) path in the phase diagram (figure 7) and at some stage the boundary between the two states is

crossed, and from then on, the system will perform undamped oscillations. Indeed, we observe this

transition in the complex model simulations. An example for this situation is given in figure 15, with

initial conditions T = 225K and w = 0.035m s−1. Note that in the limit cycle regime the properties665

20



of the theoretically expected limit cycle also change with decreasing T . This results in increasing

amplitudes of the oscillations in Nc, qc, RHi and in increasing periods. Thus, we can conclude that

for realistic simulations including changes in environmental conditions there could be transitions

between the theoretically determined states. However, the behaviour of the actual states can still be

explained by the phase diagram as obtained from our analytical considerations.670

We also compare our results with the analytical model Kärcher (2002) . This model
::
by

:::::::::::::
Kärcher (2002) ,

:::::
which includes a more sophisticated representation of nucleation and growth. The relevant equations

are treated using typical time scales and approximation of the occuring intergrals. Comparison with

theoretical results by Kärcher (2002) shows good agreement as well. Actually, in our investigations

with the simple analytical
::::::
reduced

:
model we found low ice crystal number concentrations similar to675

results by Kärcher (2002); the dependence of number concentrations on w and T also agrees very

well with analytical considerations by Kärcher (2002). However, our approach goes beyond the re-

sults by Kärcher (2002) since we allow for sedimentation of ice crystals. This additional process

leads to the oscillatory behaviour in both states, whereas in the study by Kärcher (2002) a
:::::
quasi

steady state at ice saturation is reached soon. Especially the continuous nucleation in the state 1 sce-680

nario (
:::::
stable

:::::
focus,

:
damped oscillation) is only possible if we allow for sedimentation of ice crystals.

Otherwise, the nucleation event would stop after depositional growth has reduced the supersaturation

such that nucleation rates become negligible. Thus, we can state that our scenarios might be more

realistic, although the microphysical properties
:::::
values

::
of

:::::
mass

:::
and

:::::::
number

::::::::::::
concentrations

:
in both

studies are quite
::::
very

:
similar.685

4 Conclusions

In this study we developed an analytical
:
a
:::::::
reduced

:
model for describing subvisible cirrus clouds

formed by homogeneous nucleation in the tropopause region. The model consists of a set of au-

tonomous ordinary differential equations for the variables ice crystal mass and number concentra-

tion, and relative humidity with respect to ice. It contains the relevant cloud processes ice nucleation,690

diffusional growth and sedimentation. The model can be viewed as an externally forced dissipative

system. The model is integrated numerically and also investigated using linear
:::::
(linear)

:
theory of

dynamical systems.

Integration and theoretical analysis show that the system contains two different states, a point

attractor
:::::
stable

:::::
focus state and a limit cycle state. The states depend on the environmental parameters695

vertical updraught, w, and temperature, T . The transition between the states can be described as

Hopf bifurcation. Both states show oscillatory behaviour, either damped (point attractor
::::
stable

:::::
focus)

or basically undamped (limit cycle).

The microphysical properties
::
Ice

::::::
crystal

:::::
mass

:::
and

:::::::
number

::::::::::::
concentrations

:
of the cloud in both

states depend mostly on the environmental conditions as vertical velocity and temperature. However,700
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for the limit cycle case the spread in ice crystal mass and number concentration is obviously larger

than in the attractor case
:::
case

::
of

:::::
stable

::::::::::
equilibrium. For the stable point attractor

::::
focus, the mean mass

depends only slightly on vertical velocity, thus we can approximate the mean mass as a function of

temperature.

Comparisons with a more detailed box-model by Spichtinger and Gierens (2009) show very705

good agreement. The qualitative behaviour as determined for the analytical
::::::
reduced

:
model can also

be found for the complex model simulations. Also, in terms of quantitative results both models

agree quite well. Former analytical investigations by Kärcher (2002) show good agreement with our

::::::
reduced

:
model, too. However, since we include sedimentation in our model, our results go clearly

beyond the former investigations; the long-term behaviour is different, since the inclusion of sedi-710

mentation crucially leads to the bifurcation, depending on environmental conditions.

Since there are only few in situ measurements of subvisible cirrus available, it is quite difficult

to carry out solid comparisons. However, we try to compare with measurements as described by

Kübbeler et al. (2011), Lawson et al. (2008), and Davis et al. (2010) and find good agreement with

our
:::::
model

:
results. Also the extinction coefficient as calculated from model results agree very well715

with observations obtained with remote sensing techniques (Seifert et al., 2007; Davis et al., 2010).

The major qualitative results can be summarised as follows:

– We could show that homogeneous freezing of aqueous solution droplets at low temperatures

(T < 235K) is a possible pathway for the formation of subvisible cirrus clouds at low vertical

updraughts. Thus, the question about the dominance of formation mechanisms for these thin720

clouds remains open (homogeneous vs. heterogeneous nucleation).

– In unperturbed weak large scale updraughts subvisible cirrus clouds can exist in two different

qualitative states, reaching either an equilibrium point
:
a
:::::
stable

::::::::::
equilibrium

::::
point

::::::
(stable

::::::
focus)

in the long term behaviour or experiencing oscillation behaviour in a limit cycle scenario. The

state depends on external parameters as large-scale updraught and temperature, respectively.725

– The cloud particle properties in the long-term behaviour are very similar for both states.

Therefore, we cannot decide from values of microphysical properties
::::
mass

::::::
and/or

:::::::
number

::::::::::::
concentrations in a certain range in which state the cloud might be. Even if we had more

measurements, we probably would not be able to decide between the two states just using the

Eulerian measurements without a Lagrangian point of view. The derived bifurcation diagram730

may be interpreted as a minimal model for subvisible cirrus clouds, i.e. a damped oscillator,

which changes its eigenvalues depending to environmental parameters w and T , respectively,

in a Hopf bifurcation.

We might derive a minimal model for SVCs from the bifurcation diagram in the following way.

If we assume that SVCs are well approximated by their attractors, we could express cloud variables735
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and relative humidity by a simple damped harmonic oscillator of the form

ẍ+κẋ+ωx
:

= 0, (31)

with x ∈ {Nc, qc,RHi} and parameters κ= κ(w,T ) and ω = ω(w,T ), respectively. κ describes

damping, whereas ω represents oscillation frequency. κ,ω can be determined using eigenvalues λi

for damping and oscillations in the point attractor
:::::
stable

:::::
focus case (κ 6= 0). For the limit cycle case740

(κ= 0), periods as obtained from the Poincaré section (see figure 11) can be used for describing ω.

Such a minimal model could be used for representing SVCs in large-scale models and can be seen

as a prototype for new generation cloud parameterisations. These models describe the structure of

clouds in terms of cloud variables and environmental conditions. They could be used for describing

such structures embedded into a coarse grid model. However, further research in this direction is745

necessary in order to proceed from pure model prototypes to useful cloud parameterisations.

Finally, we can state that we could develop a meaningful simple
::::::
reduced

:
model for describing

the main features of subvisible cirrus clouds. Former investigations using box-models indicated that

there might be different regimes in the behaviour of the clouds for longer simulation times. For

instance, in studies by Kay et al. (2006) and Spichtinger and Cziczo (2010) oscillatory behaviours as750

well as attractors
:::::::::
asymptotic

:::::::
stability could be seen. However, only a detailed mathematical analysis

could show that there is a bifurcation in the long-term behaviour and that it depends mostly on

environmental parameters as updraught velocity and temperature. This analysis was only possible

since we developed an analytical
:
a
:::::::
reduced model, which is close enough to complex models but is

also simple enough for mathematical analysis.755

The observed Hopf bifurcation as a transition between two different states shows that clouds might

exhibit inherent structures, which are crucially determined by the microphysical cloud processes

themselves in addition to environmental conditions. Similar structure formation was already seen in

analytical cloud models for liquid and mixed-phase clouds as developed by Wacker (1992, 1995,

2006) or Hauf (1993). Investigation and analysis of the microphysical processes in terms of sets of760

ordinary differential equations are a first but urgently necessary step in order to investigate structure

formation inside clouds. Once we understand the possible structures in clouds as determined by mi-

crophysics, we can continue to further investigate structure formation as driven by spatial diffusion

processes, mixing and others, leading to spatial structures of clouds. A first possible approach might

be to investigate equations with additional spatial diffusion terms regarding possible Turing instabil-765

ities (Turing, 1952). However, further research in this direction is necessary in order to investigate

structure formation of ice clouds.

Appendix A: Derivation of model equations
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Splitting up the velocity as explained in section 2.1, u(m,x, t) = v(x, t) +v′(m,x, t), we adapt

equation accordingly:770

∂(ρf)

∂t
+∇x · (ρvf) +∇x · (ρv′f) +

∂(ρgf)

∂m
= ρh.

To derive equations for the evolution of moments, we multiply equation bymk and integrate by parts,

using f(0,x, t) = 0 and f(m,x, t)→ 0 for m→∞, which are physically reasonable assumptions.

This yields the following equation:

∂(ρµk)

∂t
+∇x · (ρvµk) +∇x ·

 ∞∫
0

mkρv′f dm

=775

k

∞∫
0

mk−1ρgf dm+

∞∫
0

mkρhdm, k ∈ R.

We allow generalised moments µk with k ∈ R≥0, which occur naturally from cloud physics parameterisations.

Formally, the unit of the k-th moment is kgkkg−1. For simplicity, we assume the mass distribution

to be horizontally homogeneous, i.e. f = f(m,z).

Using v′ = (0,0,−vt(m)), and with the help of the continuity equation,780

∂ρ

∂t
+∇x · (ρv) = 0,

the moment equation is rearranged to obtain equation .

Appendix A: Details of parameterisations

Nucleation

Homogeneous nucleation, i.e. the transformation of a solution droplet to an ice crystal, can be seen785

as a stochastic process. The transition rate ω for the transformation of a solution droplet of volume

V can be expressed using a volume nucleation rate J , i.e. ω = V · J . The probability P (t) for the

nucleation process of droplets of volume V fulfil-ls the following differential equation:

dP

dt
=−ωP (t). (A1)

For further details of the general derivation we refer to Koop et al. (1997). Equation (A1) can be790

generalised for size distributions of solution droplets, leading to the formulation of equation (7).

Koop et al. (2000) provide a parameterisation for the volume nucleation rate J as a function of

∆aw := aw−aiw (Koop et al., 2000, Table 1, eq. 7). Here aw is the water activity of the solution and

aiw is the water activity of the solution in equilibrium with ice. Note, that the freezing characteristics

of the droplets do not depend on the chemical composition. By definition the water activity is the795

ratio psol/pliq of the vapour pressure over a solution, psol , and pure liquid water, pliq . Neglecting
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the Kelvin effect and assuming that the solution droplets are in equilibrium with the environment

(pv = psol ), the water activity is proportional to the water activity in equilibrium with ice, which is

the ratio of the water vapour pressure over ice and pure liquid water:

aw =
psol
pliq

=
pv
pliq

=
RHi

100%

psi
pliq

=
RHi

100%
aiw. (A2)800

Both psi and pliq , only depend on temperature and are parameterised according to Murphy and Koop

(2005, eq. 7 and 10, respectively). Hence, ∆aw is a function of RHi and T , as given by

∆aw(T,RHi) =

(
RHi

100%
− 1

)
aiw(T ) =

(
RHi

100%
− 1

)
psi
pliq

. (A3)

Therefore J is also a function of RHi and T . The logarithm of the nucleation rate is parameterised805

by a third order polynomial in ∆aw (Koop et al., 2000, table1, eq. 7):

log10J(T,RHi) =−906.7 + 8502 ∆aw − 26924(∆aw)2 + 29180(∆aw)3. (A4)

Diffusional growth

The “advection velocity” g in the mass space is given by the growth equation for a single ice crystal;

this equation has the following form (see, e.g., Stephens, 1983):810

g(m) =
dm

dt
= 4πCD∗vρ(qv−qv,si)

 RHi

100%
− 1

::::::::

fv. (A5)

Here, qv,si = εpsi(T )/p denotes the saturation mixing ratio, the shape of the ice crystal is accounted

for by the capacity C (assuming the electrostatic analogy, see e.g. McDonald, 1963; Jeffreys, 1918),

D∗v is the full diffusion constant including the kinetic correction for small particles (Lamb and Ver-

linde, 2011) and fv denotes the ventilation coefficient.815

In this study we make use of the following simplifications:

1. Latent heat release at the crystal surface is neglected and the temperature of the ice particles

is assumed to be equal to temperature of ambient air.

2. We neglect kinetic corrections, since we are mostly interested in growth of larger crystals.

Kinetic corrections are usually important for ice crystal growth in regimes with high concen-820

trations of small crystals. For SVCs we can assume small
::::::
number concentrations, thus crystals

will grow fast to sizes larger than ∼ 10µm. Thus, we can assume

D∗v ≈Dv =D0

(
T

T0

)α(
p0
p

)
, (A6)

withD0 = 2.11·10−5 m2s−1, T0 = 273.15K, p0 = 101325Pa, α= 1.94 (e.g. Pruppacher and

Klett, 1997).825

3. We neglect correction of ventilation, setting fv = 1. Ventilation correction is only relevant for

very large crystals, so this is a reasonable assumption, since in SVCs ice crystals are usually

smaller than ∼ 200µm.
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4. The shape of ice crystals is assumed to be prolate spheroids with length L and an eccentricity

ε′, which leads to the following expression (McDonald, 1963):830

C = L
ε′

log
(

1+ε′

1−ε′

) . (A7)

For the mass-length relation we assume a simple power lawL(m) = Cim
αi usingCi = 1.02m

:::::::::::::::
Ci = 1.02m kg−αi ,

αi = 0.4. This power law mostly represents the columnar shape of ice crystals, which is as-

sumed for crystals with sizes L > 10µm. The power law was fitted to a more complex de-

scription in Spichtinger and Gierens (2009), where a transition between droxtals and columns835

is formulated and used.

The fraction in equation (A7) only depends weakly on the crystal mass and can be approximated

by a constant mean value of 1/3. This yields

C =
1

3
Cim

αi . (A8)

With these assumptions, equation (A5) can be approximated as follows:840

g(m)≈ 4

3
πCiDvm

αiρ(qv − qv,si) =
4

3
πCiDvm

αiρqv,si(Si− 1)

 RHi

100%
− 1

::::::::

 , (A9)

leading to equation (11).

Sedimentation

The description of sedimentation is based on the concept of mass and number weighted terminal845

velocities defined by Spichtinger and Gierens (2009). An expression for the sedimentation flux (i.e.

the integral in the sedimentation term in equation (3)), can be found by applying the mean value

theorem. Consider a mean velocity, v̄k, such that

∞∫
0

vt(m)ρmkf(m)dm= v̄k

∞∫
0

ρmkf(m)dm= ρv̄kµk. (A10)

There exists a corresponding velocity for each moment of the distribution f(m). For the double850

moment scheme, the number weighted terminal velocity (for the number flux), v̄0 = v̄n (k = 0)

and the mass weighted terminal velocity (for the mass flux), v̄1 = v̄q (k = 1), are relevant. For the

calculation of the weighted velocities, we use a special representation of vt(m).

The dependency of the fall speeds of individual ice crystals on the crystal mass is approximated

by a simple power law vt(m) = γmδcorr(T,p), including a temperature and pressure dependent855

density correction factor,

corr(T,p) =

(
p

p00

)ai( T

T00

)a2
, (A11)

with T00 = 233K, p00 = 300hPa, a1 =−0.178, a2 =−0.397. The coefficients γ = 63292.36ms−1kg−δ

::
for

:::
the

:::
fall

:::::
speed

::::::::::::::::::::::
γ = 63292.36m s−1 kg−δ and δ = 0.57 are assumed to be constant over the entire
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range ofm, as opposed to piece wise constant values in Spichtinger and Gierens (2009). This approx-860

imation is justified since we assume ice crystals of sizes in the range between∼ 10µm and∼ 200µm

for SVCs. The weighted velocities for number and mass flux, respectively, have the following form:

v̄0 = v̄n = γ
µδ
µ0
· corr(T,p), v̄1 = v̄q = γ

µδ+1

µ1
· corr(T,p). (A12)

Coefficients865

For simplification of the representation of the main system, we introduced coefficients in equa-

tions (25). In the following the coefficients are provided.

a =
4

3
πNaµ3,a[r] (A13a)

b =
γ

∆z
c(T,p)r

δ(δ−1)
2

0 (A13b)

c =
γ

∆z
c(T,p)r

δ(δ+1)
2

0 (A13c)870

d =
4

3
πCiερDv

psi(T )

p
r
αi(αi−1)

2
0

1

100%

qv,si
100%
:::::

(A13d)

e =g
Mair

RT

(
Lice

cpT
− 1

)
(A13e)

f =
4

3
πCiερDvr

αi(αi−1)

2
0 (A13f)

Appendix B: Derivation of eq. (28)875

For deriving equation (28) we start with the slightly simplified systems of equations:

a · J(RH i ,T )− b ·N1−δ
c qδc =0 (B1a)

−c ·N−δc qc
δ−11+δ

::
+ d · (RH i − 100%)N1−αi

c qαic =0 (B1b)

e ·w ·RH i − f · (RH i − 100%)N1−αi
c qαic =0 (B1c)880

We convert equation (B1b) into the following form, using the mean mass m= qc/Nc for cloudy

states (Nc 6= 0):

−c ·mδ + d · (RH i − 100%)mαi−1 = 0. (B2)

From this equation we obtain a representation for the mean mass:

m=

(
d

c
(RH i − 100%)

) 1
δ+1−αi

. (B3)885

In a similar way, we can rearrange equation (B1a) for a representation of Nc:

Nc =
a · J(RH i ,T )

b
·m−δ. (B4)

Using equations (B3) and (B4) in equation (B1c) we obtain equation (28). The roots w.r.t. RHi of

this equation are calculated using Newton’s method.
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Appendix C: Example for a Poincaré section890

In figure 16 we present an example of a Poincaré section, as used for the determination of the limit

cycle. The plane, Σ, is such that RHi is constant on Σ and x0 is in Σ. Two different scenarios

are represented here. First, we use a point close to the unstable focus point as initial condition for

the numerical integration (indicated by red cross). The red dots indicate the section of the trajectory

with the transversal plane Σ. The red dots converge fast to two accumulation points, which determine895

approximately the section of the limit cycle with the plane Σ. If we start “outside” of the limit cycle,

the section points (indicated by blue dots) again converge fast to the same two accumulation points.
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Figure 1. A scenario in state 1 (point attractor
:::::
stable

::::
focus

:
regime, damped

::::::::
oscillation) at w = 0.01m s−1

and T = 220K. The continuous nucleation as well as similar time scales of nucleation, growth and sedimen-

tation lead to a damped oscillation with an equilibrium state for t > 7 h. In phase space, the attractor property

::::::::
asymptotic

::::::
stability

:
is more obvious (see figure 5).
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Figure 2. A scenario in state 2 (limit cycle regime) is shown at w = 0.02m s−1 and T = 210K. Nucleation

events occur as pulses, thus an undamped oscillation evolves, which describes a limit cycle in phase space (see

figure 6).
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Figure 3. Real (upper panel) and imaginary part (lower panel) of the complex eigenvalues λ1,2 of the Jacobian

DF|x0 at the equilibrium point x0.
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Figure 4. Real eigenvalue λ3 of the Jacobian DF|x0 at the equilibrium point x0.
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Figure 5. Positive point attractor
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Stable
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focus

:
for state 1 at T = 220K, w = 0.01m s−1: orbit in phase space

approaching the equilibrium point
:::

state
:::::::::::
asymptotically.
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Figure 6. Limit cycle for state 2: orbit in phase space at T = 210K, w = 0.02m s−1. Note that the solution

starts “outside” of the limit cycle and approaches the limit cycle attractor asymptotically.
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Figure 7. Bifurcation diagram for “positive point attractor"
::::
stable

:::::
focus (state 1) and “limit cycle " (state 2)

regimes in the w-T -space. The thick line indicates the location of the Hopf bifurcation.
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Figure 8. Ice particle number concentration Nc (upper panel) and ice particle mass concentration qc (lower

panel) at the critical point
::::::::
equilibrium

::::
state

:::
x0:

as a function of vertical velocity for different temperatures.

Solid lines indicate parameter combinations (w, T ) in the point attractor
::::
stable

:::::
focus regime (state 1), dashed

lines represent the limit cycle regime (state 2),
:::
i.e.

::
at

::
the

:::::::
unstable

::::
focus

:::
x0.
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Figure 9. Ice crystal number concentrations for different temperature scenarios (T = 190, 200, 210, 220K).

The solid line represents values at the critical point
::::::::
equilibrium

::::
state

:
x0 (stable or unstable focus). For the

limit cycle regime the range of ice crystal number concentrations is indicated by the shaded area bounded by

minimum and maximum values for the updraught range 0.001≤ w ≤ 0.05m s−1; the median is indicated by

the dot-dashed line.
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Figure 10. Mean ice crystal mass m as a function of temperature. For the critical point
:::::::::
equilibrium

::::
state x0,

values of m depends only slightly on the vertical velocity, the curve covers the area that corresponds to vertical

velocities 0.001m s−1 ≤ w ≤ 0.05m s−1. Additionally, box and whiskers plots indicate median, 25%/ 75%

percentiles, and minimum/maximum values, respectively, for the limit cycle regime.
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Figure 11. Oscillation periods for the point attractor
::::
stable

:::::
focus regime at x0 (solid lines), and for the limit

cycle regime (dashed lines).
::
For

:::
the

:::::
stable

::::
focus

::::::
regime,

:::
the

::::::
periods

:::
are

:::::::
obtained

::::
from

::
the

::::::::
imaginary

::::
part

::
of

::
the

:::::::
complex

:::::::::
eigenvalues;

:::
for

::
the

::::
limit

::::
cycle

::::::
regime,

:::
the

::::::
periods

::
are

::::::::
calculated

::::
using

:::
the

:::::::
Poincaré

::::
map.
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Figure 12. Extinction coefficient at x0 for different temperatures in point attractor
::
the

:::::
stable

::::
focus

:
state 1 (solid

lines) and
:::
the limit cycle state 2 (dashed lines).
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Figure 13. Point attractor
::::
Stable

:::::
focus case (state 1): Comparison between simple box

::::::
reduced model

::::
(this

:::::
study)

:
and the complex

:::
box model by Spichtinger and Gierens (2009). Updraughtw = 0.01 m s−1, temperature

in the simple
:::::
reduced

:
model and start temperature of the complex model is T = 220K.
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Figure 14. Limit cycle case (state 2): Comparison between simple box
:::::
reduced

:
model

:::
(this

::::::
study) and the

complex
::
box

:
model by Spichtinger and Gierens (2009). Updraught w = 0.02 m s−1, temperature in the simple

::::::
reduced model and start temperature of the complex model is T = 210K.
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Figure 15. Transition between attractor
::::

stable
::::
focus regime (state 1) and limit cycle regime (state 2): Simulation

with the complex model by Spichtinger and Gierens (2009) for w = 0.035 m s−1 and start temperature: T =

225K. During the first two hours of the simulation, the attractor characteristics
:::
sink

:::::::
property can be clearly

seen. After reaching temperatures of about T ∼ 220K, the regime changes from state 1 (point attractor
:::::
stable

::::
focus) to state 2 (limit cycle), see also phase diagram in fig. 7. After this transition, the amplitudes of number

concentrations and relative humidity w.r.t. ice increase and at the end of the simulation also a shift in the

oscillation period can be seen. Increase in amplitude and shift in oscillation period are due to changes of the

limit cycle properties for decreasing temperature (see, e.g., figure 11)
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Figure 16. Example of a Poincaré section in the limit cycle regime. Blue dots indicate intersection points of the

trajectory with Σ when starting “outside” the cycle, red dots indicate intersection points when starting near the

(unstable) equilibrium point x0 (red cross).
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