
Reply to referee’s comments

22 September 2016

General comments

We thank all reviewers for their comments, leading to an improvement of our manuscript.
We collected some general comments, since some issues were addressed by all reviewers.

Restructuring of the manuscript

We restructured the manuscript in the following way:

• We generally revised the text to avoid misunderstanding, following many sugges-
tions of the reviewers.

• We have shortened the derivation of the model and put the details into appendix
B.

• We expanded the analysis part as well as the description of the analysis tools.

• We also expanded our comparison of the model results with observations in order
to address the topic “subvisible cirrus clouds” adequately.

Dry adiabatic motion, latent heat release, temperature/velocity regime

If latent heat release was taken into account for the rate of RH i, the temperature equation
(18) would read
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and the latent heat term would need to be included in the rate equation for RH i:
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The contribution to temperature change from latent heat is obviously only important,
when there is substantial diffusional growth of ice particles, i.e. when dqc

dt |growth is con-
siderably large. In that case however, the latent heat term directly competes with the
growth term. The growth term is usually at least one order of magnitude larger than
the latent heat term. Hence, whenever latent heat release comes into play for temper-
ature changes, the rate of change of RH i is dominated by the water vapour sink due
to growth, anyway. Therefore, we omit latent heating in the RH i equation and stick
with the constant adiabatic forcing term. Including latent heating would produce an
additional highly nonlinear term (it contains RH i as a factor), which we would like to
avoid.
In terms of lapse rates we can state that due to phase changes a “moist” (or better “ice”)
adiabatic lapse rate might be more appropriate. However, since we investigate cirrus
clouds in the low temperature regime T < 235K, the difference between moist adiabatic
lapse rate and dry adiabatic lapse rate is less than 5% and decreases with decreasing
temperature. Thus, we can approximate the temperature change by adiabatic lapse rate
and omit the additional nonlinear term. This is also noted in the text.
We also describe the relevant regime for SVCs, i.e. low temperatures T < 235K and
slow vertical updraughts w < 0.05m s−1 in the first part of the manuscript.

Terminology

We changed the term “(positive) attractor” to “(positive) point attractor” or “stable fo-
cus” for clarity. We use the term “critical point” according to Verhulst [1996], which is
equivalent to “steady state” or “equilibrium point”. We add some information that the
limit cycle is a one-dimensional attractor.

Response to Peter Nevier

Boltzmann equation The evolution equation of the size distribution has a form that
is similar to the Boltzmann equation (e.g. in gas dynamics). However, since we have no
aggregation terms on the right hand side, we follow the suggestions and omit this name.

Eulerian vs. Lagrangian description Since we are interested in the time evolution of
an air parcel, the change from Eulerian to Lagrangian description seems reasonable. We
added more details for the transformation of the equations; especially, we describe the
reformulation of the evolution equation in advective form, using mass conservation of air
(appendix A).

ODE system We write the equation in a simpler way, using constants in order to
represent the essential non-linear features of the equations. We added a paragraph for
a qualitative description of the different terms (non-linear/linear, etc.) and calculated
the divergence for determining the quality of the system (externally forced dissipative
system).
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Spelling We corrected all typos, especially the names of the physicists and mathemati-
cians Euler and Lagrange.

Response to reviewer #1

Major comments

L252–256 See general comments.

L363–364 As it is a limit cycle, it takes infinitely long for the orbit to reach it. However,
in the numerical solution, the oscillation amplitude stays approximately constant after
several periods. This is apparent from the results from the Poincaré sections. The
sequence of intersection points reaches an accumulation point after ∼ 50 cycles. From
then on, the points only fluctuate minimally about the asymptotic limit, with no long
term trend.

L377–380 We thank the reviewer for the careful recalculation. Equation (42) was
indeed wrong. The error occurred when the equation was rearranged for better readability
and transferred to LATEX-Code. In the actual calculations for the analysis, the correct
equation was used. The correct equation is now provided (eq. 28) as well as a short
derivation in appendix C. The equation was solved using Newton’s method to obtain the
critical point for different parameter values (w,T ), and the corresponding Jacobians and
eigenvalues thereof.

L384–406 The dependence of the eigenvalues on w and T is shown in figures 3 and 4.

L405–413 The paragraph describing the construction of the Poincaré section is now
improved and accompanied by a more detailed explanation in appendix D. In fact, the
numerical results are needed for the determination of the limit cycle. The periods of the
limit cycle are shown in figure 11.

Minor comments

Comments regarding wording are not specifically addressed, since we rewrote the manuscript
considering these suggestions.

L11 See General comments.

L24 We changed the text in this respect. In fact, the exact net effect of liquid clouds
is not known yet. However, it is known that the albedo effect is usually dominant, thus
liquid clouds usually have a cooling impact on Earth’s energy budget. We cite now the
latest IPCC report for this qualitative behaviour of warm clouds.
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L28 In the revised version, the low temperature regime is now mentioned in the first
sentence of the introduction.

L41 We added more text, to make clear that they warm the Earth-Atmosphere system.

L50 Sedimentation is important for large crystals. In this work it plays a vital roll
for the described mechanism. In the revised version, this is explained in several parts
of the manuscript, e.g. in the first paragraph of section 3.1. In fact, the oscillations
can only take place because of sedimentation; otherwise, the system would fast reach an
equilibrium state.

L79 In the revised version, ∇x is defined in the passage after equation 1.

L83 We skip this term since it leads to confusion. We investigate an air parcel, i.e.
follow the time evolution of the parcel in a Lagrangian way; sedimentation leads to
motion of ice crystals relative to the motion of the air parcel.

L90 Splitting up the velocity into different components allows for separation of the
sedimentation term in (new) equation 3 and for changing to the Lagrangian perspective.

L94 and L101 For the microphysical parameterisations, non-integer moments arise from
integrating power-law relationships with non-integer exponents, as used for mass-length-
relations or representations of terminal velocities.

L113 A reference for the two-moment scheme approach is now provided Seifert and
Beheng [2006].

L115 J does not depend on r and is therefore just a factor in the integration w.r.t.
r. In the revised version, we left out the sentence because stating that “∂J/∂r = 0” is
sufficient.

L159 The geometric standard deviation of the lognormal distribution is dimensionless,
it represents the width of the distribution. This has been clarified in the text.

L158–161 We added a reference for the choice of the settings for solution droplet dis-
tribution, motivated by observations.

L208 We use a simple power law for representing the columnar shape of the ice crystals
in a simple way. For this purpose we “fit” this power law (coefficients Ci and αi) to a
more sophisticated relationship from the Spichtinger and Gierens [2009] model.
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L216 We define Si = pv/psi = RHi/100 %. Since qv/qv,si ≈ pv/psi, both definitions are
almost the same.

L246 See General comments.

L261 We now adjusted the spaces between the units.

L262 For studying the long-term behaviour of SVCs, we have to assure that constant
vertical motion is persistent. Slow vertical upward motions w < 0.05m s−1 can be main-
tained for quite a long time; examples are motions along warm fronts in the extra-tropics
or Kelvin waves in the tropics, leading to almost constant vertical velocities over long
time. We provided references for these situation. However, the temperature and pressure
change in such situations is quite small; this provides a justification for the assumption of
constant temperature and pressure, whereas temperature and pressure changes are used
in the evolution equation of relative humidity over ice.

L270-271 The partial derivative term with ∂/∂z is a hyperbolic term. See also section
2.2.4, point 3.

L292–294 We rewrote the section and added some more details.

L296 We referenced the wrong equation, it was supposed to be (37), now (19).

L299-300 The term DEPRH is wrong, it has to be DEPq, since

dqc
dt

∣∣∣∣∣
Dep

= DEPq. (3)

The factor ρ was also wrong. However, we changed notation so the terms are not called
NUC, DEP, SED anymore. Also, we got rid of ρ in (new) equation (3) using the continuity
equation, to avoid confusion.

L315–318 In the following sections, the abbreviation F is used for the right hand side
of the system, therefore we decided to already introduce it here.

L337 Yes, we mean that relative humidity increases again. Sedimentation removes ice
crystals, which constitute a sink for relative humidity due to growth.

L340 State 1 only occurs if either temperature is “rather high” (i.e. right side of the
interval 190 ≤ T ≤ 230K) or the vertical motion is slow (i.e. left side of the interval
0 < w ≤ 0.05m s−1). For the qualitative overview we stay at these vague statements, in
the bifurcation diagram the quantitative values are given.
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L392 See General comments. The critical point is a stable focus, i.e. a positive (point)
attractor.

L422 The critical point was found by first computing the roots wrt RHi of (new)
equation (28), former equation (42). From that, the values for Nc and qc were derived
analytically using (new) equations (C3) and (C4). See appendix C.

L439–441 In the revised version, we state that the bifurcation point is a function of w
and T .

L455 Mean sizes are calculated from the mass-size relationship L = Cim
αi , as provided

in appendix B. Here, we use the mean mass, as given by m = qc/Nc.

L462–464 More details on the Spichtinger and Gierens [2009] model are now given in
the first paragraph of section 3.6.

L487 Here we referred to comparison with the model by Spichtinger and Gierens [2009].
We clarified this in the new text.

L502 and L516 “Theoretical” refers to investigations with our simple “analytical” model.

L537 Crystal sizes in this work are to be interpreted as crystal length.

L610 A more detailed outlook on how minimal models could be useful for cloud pa-
rameterisations is given in the conclusions of the revised version.

Figure 7 The median is now indicated by a dotted-dashed line.

Figure 9 The correct unit is m s−1.

Response to Ulrike Wacker (reviewer #2)

Theory of dynamical systems

• We reduced some text about description of SVCs. We added text on the mathe-
matical methods and the conceptual model. We included all indicated references.

• We simplified the system introducing summarising coefficients. The relative hu-
midity is not changed by nucleation, since this constitutes a phase transition from
liquid to solid, whereas the gas phase is not changed.

The behaviour of pure ice clouds is completely different than for mixed-phase or
pure liquid clouds, which usually exist in a thermodynamic state close to water
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saturation. Ice clouds are usually not in thermodynamic equilibrium since ice
nucleation takes place at high supersaturations and diffusional growth/evaporation
is quite slow. Therefore, relative humidity is an important control variable, which is
more natural for ice clouds than specific humidity. Since the system does not fulfil
mass conservation, there is no additional benefit from changing the variable from
RHi to qv but the formulation of the nucleation rate would be more complicated.
Therefore we decided not to transform the system into different coordinates.

• We added a paragraph describing the quality of the different terms in the ODE
system.

• We expanded the discussion of the mathematical analysis, including figures of eigen-
values etc. .

Terminology We used many terms from theory of dynamical systems from the books
by Verhulst [1996] and Argyris et al. [2010]. We tried to change and explain the terms
in different ways.

Dry adiabatic lapse rate See general comment.

Derivation of system of equations We have shortened the derivation of equations;
especially the description of the cloud processes is now partly transferred to appendix B.

Dimensions We checked all terms again and corrected the inconsistencies.

Minor comments

• We skip the term “Boltzmann equation”.

• Equation (9): corrected

• Since the nucleation rate as described by Koop et al. [2000] is formulated as a
volume rate, we used this approach. The nucleation rate does not depend on the
size of droplets.

• We deleted the term “aerosol particles”.

• In contrast to liquid droplet formation the activity is not equal 1 for ice nucleation.
The nucleation rate J as described by Koop et al. [2000] can be formulated in terms
of differences in water activity (appendix B).

• We changed the layout of equation (16).

• Equation (17) was wrong, now corrected.

• “Length” indicates the length of an ice crystal, i.e. the long side of a columnar-
shaped ice crystal.
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• Droxtal is the term for very small and almost spherical ice crystals.

• We corrected (former) equation (24)

• We corrected (former) equation (30)

• We use latent heat and heat capacity in molar units, i.e. Lice is actually the molar
heat of sublimation; in addition with the molar mass Mair and the molar isobaric
heat capacity cp the units in the equations are correct. Please note that we also
corrected the equation for adiabatic temperature change.

• We moved the respective text.

• Yes, equation (37) is the correct reference.

• Na is the number concentration of solution droplets per mass dry air. We skip na
for clarification.

• We corrected the equation.

• We do not apply w < 0 in our model, only upward vertical motions are considered.

• This is correct, the nucleation rate J is positive for RHi > 100%. Due to the
exponential behaviour of J no significant amount of ice crystals is formed at low
supersaturations. Only if the supersaturation exceeds certain values (i.e. a “thresh-
old”) then a significant amount of ice crystals is produced. We added some text
and a reference about the concept of freezing probability and its description by a
differential equation, including the nucleation rate.

• We added more text about the use of the Poincaré section for the numerical deter-
mination of the limit cycle.

• We rewrote the complete section 3.

• l. 433: Decreased growth rates lead to slower reduction of supersaturation, thus
RHi stays longer above the “freezing thresholds” and more ice crystals can be
produced.

• We changed the text from “exponential behaviour” to “power law”.

• We restructured section 3.

• We added some more text for describing the features of the models by Spichtinger
and Gierens [2009] and Kärcher [2002].

• “Analytical model” refers to the model developed in this study.
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• Within the first 4 hours of integrations the oscillation is damped and the amplitude
in variables decreases. later, the amplitude of the variables increases again. Ad-
mittedly, the system does not reach a “constant” limit cycle, since the properties of
the limit cycle are continuously changed by cooling of the temperature. We added
some text for clarification.

• We added some text about sources, sinks and forcing terms in the beginning of
section 3.

• The microphysical properties of the attractors can be similar, since in the limit
cycle case the variables changes within a quite large range that includes also the
values of the point attractor.

• We arrange the figure captions in a way that they might be understandable without
reading the whole text. Thus, some repetition might be possible.

• The dependence of the mean mass on w is only marginal. We added some text in
the manuscript to clarify this issue.

Response to reviewer #3

Discussion of SVCs We enhanced the discussion of SVCs; in fact, we added comparison
with remote sensing observations and report more qualitative results of the simulations.

How realistic are model simulations?

• Both states can develop, if previous heterogeneous nucleation takes place. In fact,
the system will just start at a different point in phase space.

• We have not investigated the system in details for variations in vertical velocity. In
fact, it seems from numerical simulations that for weak perturbations, the system
approaches similar states as in the undisturbed scenarios. Theoretical analysis
would be much more difficult, since we have no longer an autonomous system. The
investigation of this system, externally forced by time-dependent vertical velocities
is beyond the scope of our study and is dedicated to future work.

Specific comments

1. Abstract: We changed the text following reviewer’s suggestions.

2. Introduction: We skip the word “usually”.

3. Introduction: We added more basic references about heterogeneous nucleation. We
also added the suggested references by Immler et al., 2008.

4. Section 2, additional settings: We rewrote section 2, changing also the titles of the
subsections.
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5. We added some text about the change in nc = Nc · ρ due to temperature/pressure
change.

6. We defined ODE in the text.

7. We rewrote the sentences.

8. We added some description of the attractor states, which occur also in the defini-
tions.

9. We added the processes.

10. We changed the text.

11. Former figure 5 (now figure 7) is now described in more details.

12. We changed the wording.

13. We discussed former figure 6 (now figure 8) in more details. The mean mass is
shown in figure 10, thus we do not add another panel to figure 6. We added
comparison with remote sensing observations considering the issue of subvisible
cirrus (or not).

14. In former figure 6 the stable or unstable point attractor is shown. The lines, both
solid and dashed, are valid at the respective critical point of the system. The critical
point is well defined for both states, it only has different implications, depending
on the nature of the state. For the point attractor regime (solid lines), it is a stable
focus and the long-term solution approaches it. For the limit cycle regime (dashed
lines), the critical point is approximately at the centre of the periodic orbit and
provides a good estimate of the mean (or median) properties of the cloud, in terms
of mass and number concentration and relative humidity. So the parallel lines in
former figure 6, now figure 8, are valid for the critical point which is either a stable
focus (solid lines) or an unstable focus (dashed lines).

15. We tried to keep the same wording.

16. We added some text, see also reply to reviewer #2.

Comments to figures

1. We changed the caption.

2. We changed the caption.

3. We changed the figure.

4. It is not possible to add other units, since we refer to different temperature, and
thus density, regimes. However, for figure 9 showing the number concentrations for
point attractor and limit cycle we added units per litre.
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5. Figure 7 (now figure 9): The solid line represents values at the critical point,
regardless of the nature of the critical point. It is well defined for both states, see
also comment 14.

6. We added some text and we changed the line for the median in the figure. However,
the median in the limit cycle case is close to the value at the critical point in the
limit cycle regime, not the point attractor. See also comment 14 and comment
to figure 6. Limit cycle and point attractor do not coexist, as the environmental
conditions determine which state is present.
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Abstract. Ice clouds, so-called cirrus clouds, occur very frequently in the tropopause region. A spe-

cial class are subvisible cirrus clouds with an optical depth lower than 0.03. Obviously, the ice crystal

number concentration of these clouds is very low. The dominant pathway for
::
the

:::::::::
formation

::
of

:
these

clouds is not known well. It is often assumed that heterogeneous nucleation at
::
on

:
solid aerosol parti-

cles is the preferred mechanism although homogeneous freezing of aqueous solution droplets might5

be possible
:
,
::::
since

:::::
these

::::::
clouds

:::::
occur

::
in
::::

the
:::
low

::::::::::
temperature

:::::::
regime

:::::::::
T < 235K. For investigating

subvisible cirrus clouds as formed by homogeneous freezing we develop a simple analytical
:::::
parcel

cloud model from first principles; the model consists of a three dimensional set of ordinary differ-

ential equations, including
:::
and

:::::::
includes the relevant processes as ice nucleation, diffusional growth

and sedimentation, respectively
:
.
:::
We

:::::
study

::
the

:::::::::
formation

:::
and

::::::::
evolution

::
of

:::::::::
subvisible

:::::
cirrus

::::::
clouds

::
in10

::
the

::::
low

::::::::::
temperature

::::::
regime

::
as

::::::
driven

::
by

::::
slow

:::::::
vertical

:::::::::
updraughts

::::::::::::::::::
(0<w ≤ 0.05m s−1). The model

is integrated numerically and is investigated using
:::
also

::::::::::
investigated

:::
by

::::::
means

::
of

:
theory of dynam-

ical systems. We found two
::::::::::
qualitatively

:
different states for the long-term behaviour of subvisible

cirrus clouds
:
.
::::
The

:::
first

:::::
state

::
is

:
a
:::::
point

:::::::
attractor

:::::
state

::::
with

:
a
::::::
stable

:::::
focus, i.e. an attractor case and

::
the

:::::::
solution

:::
of

::
the

::::::::::
differential

::::::::
equations

::::::::
performs

:::::::
damped

:::::::::
oscillations

::::
and

::::::::::::
asymptotically

::::::
reaches

::
a15

:::::::
constant

::::
value

::::::::::::
(equilibrium).

:::
The

::::::
second

::::
state

::
is
:
a limit cycle scenario

::
in

:::::
phase

:::::
space,

:::
i.e.

:::
the

:::::::
solution

:::::::::
approaches

::::::::::::
asymptotically

::
a

::::
state

::
of

::::::::
undamped

::::::::::
oscillations. The transition between the states consti-

tutes a Hopf bifurcation and is determined by environmental conditions as
::
two

::::::::::
parameters

:
–
:
vertical

updraughts and temperature. In both cases, the microphysical properties of the simulated clouds

agree reasonably well with simulations using a complex
::::
more

:::::::
detailed

:
model, with former analyt-20

ical studies and with observations of subvisible cirrus. In addition, the model can also be used for

explaining complex model simulations close to the bifurcation qualitatively. Finally, the
:::
The results

indicate that homogeneous nucleation might be
:
is
:
a possible formation pathway for subvisible cirrus
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clouds.
:::
The

::::::
results

:::::::
motivate

::
a
:::::::
minimal

:::::
model

:::
for

::::::
SVCs,

:::::
which

:::::
might

:::
be

::::
used

::
in

:::::
future

:::::
work

:::
for

:::
the

::::::::::
development

::
of

:::::::::::::::
parameterisations

:::
for

:::::
coarse

:::::
large

::::
scale

:::::::
models,

:::::::::::
representing

::::::::
structures

::
of

::::::
clouds.

:
25

1 Introduction

Clouds consisting exclusively of ice crystals, so-called cirrus clouds, are frequently found in the

tropopause region in the extratropics
:
at
::::
low

:::::::::::
temperatures

::::::::::
(T < 235K). Satellite observations show

frequencies of occurrence up to 40% in the extratropical
::::
extra

:::::::
tropical storm tracks and upto

::
up

::
to

60% in regions of tropical convection (Stubenrauch et al., 2010). Cirrus clouds influence the energy30

budget of the Earth-Atmosphere system like other clouds by reflecting and scattering incoming so-

lar radiation (albedo effect) and by absorbing and re-emitting thermal radiation (greenhouse effect).

In contrast to liquid cloudsthe net effect of cirrus clouds on the total energy budget is not known

yet, although usually a positive net effect is
:::
For

:::::
liquid

::::::
clouds,

:::
the

::::::
albedo

:::::
effect

:::::::
usually

:::::::::
dominates

::::::::::::::::::::::::::::
(Stocker et al., 2013, chapter 7) but

:::
for

::::
pure

:::
ice

:::::
clouds

::::
both

::::::
effects

::::::
(albedo

:::
vs.

:::::::::
greenhouse

::::::
effect)

:::
are35

::
of

:::::::::
comparable

:::::::
absolute

::::
size.

:::::::::
Therefore

:::::::::::
microphysical

:::::::::
properties

::::::::::::::::::::::::::::::::::::
(e.g. size or shape, see Zhang et al., 1999) or

::::::::::::
macrophysical

::::::::
properties

:::::
(e.g.

::::::
optical

:::::
depth

:::
or

::::::
spatial

:::::::::::::
inhomogeneity)

::::
can

::::::::
influence

:::
the

:::::::
balance

:::::::
between

::::
both

:::::::
radiative

:::::::
effects,

::::::
leading

::
to

::
a

:::
net

:::::::
warming

:::
or

:::::::
cooling.

:::::::::::
Nevertheless,

:::
for

:::::
cirrus

::::::
clouds

:
a
:::
net

:::::::
warming

::
of

:::
the

:::::::::::::::
Earth-Atmosphere

::::::
system

::
is

::::
often

:
assumed (Chen et al., 2000). Since the forma-

tion of ice crystals requires high supersaturation (e.g., Koop et al., 2000; Hoose and Möhler, 2012)
:::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Koop et al., 2000; Hoose and Möhler, 2012) and40

diffusional growth of ice crystals is quite slow in the low temperature regime (T < 235K
:::::::::
T < 235K)

cirrus clouds usually are
::::::
mostly

::::
exist

:::
in

::
a

:::::::::::::
thermodynamic

::::
state

:
far away from thermodynamic

equilibrium. Thus, in contrast to liquid clouds, which usually
:::::::::::
approximately

:
coincide with their

(super-)saturated environment,
::
for

:::
ice

::::::
clouds there can be a continuous transition from clear air over

very low ice crystal number concentrations to thick cirrus clouds with high mass and number concen-45

trations. A special class of cirrus clouds constitute the
:::::
Cirrus

::::::
clouds

::::
with

::::::
optical

::::::::
thickness

:
τ < 0.03

::::::::
constitute

:
a
::::::
special

:::::
class,

:
so-called subvisible cirrus clouds (SVCs) , which are usually defined by

an optical thickness τ < 0.03 (Sassen and Dodd, 1989). These clouds are difficult to detect; usually

:::::::
measure;

:
remote sensing techniques as LIDAR

::::::::::::::::::::::
(e.g., Immler et al., 2008b) or occultation observa-

tions (e.g., Wang et al., 1996) are used to detect these very thin cirrus clouds. Only few in situ mea-50

surements of subvisible cirrus clouds are available, suggesting very low values in ice crystal number

concentrations (e.g., Froyd et al., 2010; Kübbeler et al., 2011)
::::::::::::::::::::::::::::::::::
(Froyd et al., 2010; Kübbeler et al., 2011) .

Global observations from satellites (Wang et al., 1996; Stubenrauch et al., 2010; Hoareau et al., 2013)

as well as observations with stationary LIDAR systems (e.g., Sassen and Campbell, 2001; Hoareau et al., 2013)
:::::::::::::::::::::::::::::::::::::::::
(Sassen and Campbell, 2001; Hoareau et al., 2013) show

frequencies of occurrence of about 10–20% in the extratropics
::::::::::
extra-tropics; in the tropics the fre-55

quency of occurrence is much higher (up to 50%, see e.g. Wang et al., 1996). For these subvisible

clouds, a net warming
:
of
:::
the

::::::::::::::::
Earth-Atmosphere

:::::
system

:
is almost certain, since the albedo effect is al-

most negligible. Our knowledge about
::
of subvisible cirrus clouds is quite limited. Since the ice crys-
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tal number concentration in SVCs is very low, the question about the dominant formation mechanism

is still pending. In the cold temperature regime
::
At

::::
cold

:::::::::::
temperatures

:
(T < 235K),

::::::
where

::::
pure

:::
ice60

:::::
clouds

::::::
occur, two different formation mechanisms are generally possible, namely heterogeneous nu-

cleation at solid aerosol particles (Hoose and Möhler, 2012)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Dufour, 1861; aufm Kampe and Weickmann, 1951; Hosler, 1951) and

homogeneous freezing of aqueous solution droplets (Koop et al., 2000)
:::::::::::::::::::::::::::::::::::
(Sassen and Dodd, 1989; Koop et al., 2000) .

For subvisible cirrusKärcher and Solomon (1999) claimed ,
:::::::::::::::::::::::::::::
Kärcher and Solomon (1999) stated

:
that

both nucleation mechanisms might be possible; in contrast, Jensen et al. (2001) and Froyd et al.65

(2010) clearly suggested that the dominant mechanism should
::::
must

:
be heterogeneous nucleation.

However, analytical investigations by Kärcher (2002) indicated that also
:::
pure

:
homogeneous nu-

cleation might be possible, although in this study sedimentation of ice crystals was not explicitly

included in the model.

In the present study we focus on the formation of SVCs by homogeneous freezing of aqueous so-70

lution droplets (short
:::::::
hereafter: homogeneous nucleation). We study the formation and evolution of

SVCs in an air parcel , which
:::
that

:
is lifted in slow vertical upward motions (w ≤ 0.05ms−1

::::::::::::::::
0<w ≤ 0.05m s−1),

as typical for synoptic scale motions in the extratropics
::::::::::
extra-tropics

:
(e.g. along warm fronts, see

Kemppi and Sinclair, 2011) or in slow ascent regions in the tropics, as e.g. driven by Kelvin waves

(?) . We include the relevant processes for ice microphysics, i.e. ice nucleation, ice crystal growth due75

to diffusion of water vapour and sedimentation of ice crystals, respectively
:::::::::::::::::::
(Immler et al., 2008a) .

:::
We

::::::::::
concentrate

::
on

:::
the

:::::
cold

::::::::::
temperature

::::::
regime

:::::::::::
(T < 235K);

:::::
thus,

:::
we

:::::::
exclude

:::
the

:::::::::
possibility

:::
of

:::::
liquid

:::::
origin

:::
ice

::::::
clouds

:::::::::::::::::::::::::::::::::::
(Krämer et al., 2016; Wernli et al., 2016) .

::::
This

::
is
::::

not
:
a
::::::

strong
:::::::::
limitation

::::
since

:::
the

::::::::::::
microphysical

::::::::
properties

::
of

:::
ice

:::::
clouds

:::::::::
stemming

::::
from

:::::
mixed

:::::
phase

::::::
clouds

:::
are

::::
quite

::::::::
different,

::::
with

:::
high

:::
ice

::::::
crystal

::::::
number

::::
and

::::
mass

::::::::::::
concentrations

:::
and

::::::
higher

::::::
optical

:::::
depths

::::::::::::::::::
(Luebke et al., 2016) .80

:::
For

:::
the

:::::::::::
investigation

::
of

:::::::::
subvisible

::::::
cirrus

::::::
clouds

:::
we

:::::::
develop

:
a
::::::

parcel
::::::
model

::::
and

::
to

::::::
which

:::
we

::::
apply

:::::::::
numerical

:::
and

:::::::::
analytical

::::
tools. The model is developed on the basis of an evolution equation

for mass distributions of ice crystals, including
:
a description of microphysical processes based on

former work (Spichtinger and Gierens, 2009). However, for using the powerful theory of dynamical85

systems for analysing the model
:::
We

::::
take

:::
into

:::::::
account

:::
the

:::::::
relevant

::::::::
processes

::
for

:::
ice

::::::::::::
microphysics,

:::
i.e.

::
ice

::::::::::
nucleation,

::
ice

::::::
crystal

::::::
growth

::::
due

::
to

:::::::
diffusion

::
of

:::::
water

:::::::
vapour,

:::
and

::::::::::::
sedimentation

::
of

:::
ice

:::::::
crystals.

:::
For

:::::::
applying

:::::::::
analytical

::::
tools, we make use of some appropriate simplifications in order to obtain an

autonomous system of ordinary differential equations
::::::
(ODEs); the variables of the systems

::::::
system

are ice crystal mass and number concentration, respectively, as well as relative humidity with respect90

to ice.
:::::
Thus,

:::
we

::::
have

::
to

:::::::::
investigate

:
a
:::::::::::::::
three-dimensional

:::::::::::
autonomous

::::::
system

::
of

::::::
ODEs.

In section 2 we describe the development of the model, as derived from a more general approach

for mass distributions
:::
To

::::
study

:::
the

:::::::::
qualitative

:::::::::
behaviour

::
of

:::
the

::::::
model

:::
we

:::
use

::::::::
concepts

::::
from

::::::
theory

::
of

:::::::::
dynamical

:::::::
systems

::::::::::::::::::::::::::::::::::::::
(see, e.g., Verhulst, 1996; Argyris et al., 2010) .

::::
For

::::::::::
autonomous

:::::::
systems

:::
of

:::::
ODEs,

:::::::::::
equilibrium

:::::
states

:::
can

:::
be

:::::
found

::::::
easily.

::::
The

:::::::::
qualitative

:::::::::
properties

:::
of

:::
the

::::::
system

::::
near

::::
the95
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::::::
critical

:::::
points

:::
are

:::::::
relevant

:::
for

::
the

::::::
overall

:::::::::
behaviour

::
of

:::
the

:::::::
system.

:::
The

:::::::
stability

::
of

:::::
these

::::::::::
equilibrium

::::
states

::::
(i.e.

:::::
point

:::::::::
attractors)

:::
can

::
be

:::::::::::
investigated

::
by

::::::::
applying

:::::::::::
perturbations

::
to

:::
the

::::::::::
equilibrium

::::::
states.

::
In

::::
fact,

:::
we

::::::::
linearise

:::
the

::::::
system

:::
at

::::::::::
equilibrium

:::::
points

::::
and

:::::
apply

::::::::::::
perturbations

::
to

::::
this

:::::
state.

::::
The

:::::::::
eigenvalues

:::
of

:::
the

::::::::
linearised

:::::::
system

:::
are

::::
used

:::
for

::::
the

:::::::::::::
characterisation

::
of

::::
the

::::::
quality

:::
and

::::::::
stability

::
of

:::
the

::::::::::
equilibrium

:::::
states.

:::::
Some

::::::::
theorems

:::
are

::::::::
available

::
in

:::::
order

::
to

::::::
transfer

:::
the

:::::::::
qualitative

:::::::::
behaviour100

::
of

:::
the

::::::::
linearised

:::::::
systems

:::
to

:::
the

::::
full

::::::::
nonlinear

:::::::
system.

:::
For

:::
the

::::::::::::::
characterisation

::
of

:::::
more

::::::::
complex

::::::::
attractors,

::
as

:::
e.g.

:::::
limit

:::::
cycles,

:::::
more

:::::::::::
sophisticated

:::::::::
approaches

:::::
must

::
be

::::
used.

::::
For

:::::::
instance,

::::
limit

::::::
cycles

:::
can

::
be

::::::::::
determined

:::::
using

:::::::
Poincaré

:::::::
sections

::::::::::::::::::
(Argyris et al., 2010) .

::::::::::::
Investigations

::
of

:::::
cloud

::::::
models

:::
as

::::::::
dynamical

:::::::
systems

::::
were

::::::
carried

:::
out

:::
for

:::::
liquid

:::
and

:::::::::::
mixed-phase

:::::
clouds

:::::::::::::::::::::::::::::::::::
(Hauf, 1993; Wacker, 1992, 1995, 2006) as

:::
well

::
as
:::
for

::::::::::::::::::::::
cloud-aerosol-precipitation

:::::::
systems

::::::::::::::::::::::::::::::::::::::::::::::
(Koren and Feingold, 2011; Feingold and Koren, 2013) .105

:::
For

::::
pure

:::
ice

:::::
clouds

::::
such

::::::::::::
investigations

::::
have

:::
not

::::
been

::::::
carried

:::
out

::::
yet.

::
In

:::::::
contrast

::
to

::::::
clouds

::::::::
involving

:::::
liquid

:::::
phase,

::::::
which

:::
are

::::
close

::
to
::::::::::::::
thermodynamic

::::::::::
equilibrium,

:::
we

::::
have

::
to

:::::::
consider

:::::::
relative

::::::::
humidity

::
as

:
a
:::::::

control
::::::::
variable,

:::::
which

:::::
adds

:::::::
another

:::::::
equation

:::
to

:::
the

::::::
system

::::
and

::::::
makes

:::
the

::::::::
analysis

:::::
more

::::::::::
challenging.

:::
The

::::::::::::
mathematical

:::::::::::::
characterisation

::
of

:::
the

:::::
model

::::::
allows

:::
for

:
a
:::::
better

::::::::::::
understanding

::
of

:::
the

:::::::::
interaction

::
of

:::::::
different

::::::::
nonlinear

::::::::
processes

:::
and

:::
the

::::::
impact

::
of

:::::::
external

:::::::
forcings

::
as

::::::
vertical

::::::::::
updraughts.110

::::::
Finally,

:::
the

:::::::::
qualitative

:::::::
analysis

:::::
could

::
be

:::::
used

::
in

:::::
future

:::::
work

::
as

:::::::
starting

::::
point

:::
for

::::::::::
developing

:::::
cloud

::::::::::::::
parameterisations

::::
that

:::::::
represent

:::
the

:::::::::
qualitative

::::::::
structure

::
of

::::::::
subvisible

::::::
cirrus

::::::
clouds.

::
In

::::::
section

:
2
:::
we

:::::::
describe

:::
the

:::::::::::
development

::
of

:::
the

:::::
model. The results of the numerical integration as

well as
:::
and the mathematical analysis are presented in section 3. Here, we also present comparisons

with more complex modelsand observations. Finally, we ,
::
as

::::
well

::
as

:::::::::::
comparisons

::::
with

:::::::::::
observations115

:::
and

::::
more

:::::::
detailed

:::::::
models.

::
In

:::
the

::::
final

::::::
section,

:::
we

:::::::::
summarise

:::
the

::::::
results,

:
draw some conclusions and

give an outlook to future work.

2 Model

In this section we describe the development of a simple model, which is used for analytical and

numerical investigations. We include the relevant processes for ice clouds
::::::::
formation

::::
and

::::::::
evolution120

::
of

:::
ice

::::::
clouds

:::
into

::::
the

:::::
model

:::
but

:::
we

:::
try

:::
to

:::::
avoid

:::
too

:::::
much

::::::::::
complexity,

::::::
which

:::::
makes

:::::::
analysis

::::
too

::::::::::
complicated

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e. reducing the complexity paradox, see, e.g., Oreskes et al., 1994; Oreskes, 2003) .

::::
Since

::
we

::::::::::
investigate

::::::::
subvisible

::::::
cirrus

:::::
clouds

:
in the temperature regime T < 235K , namely

:::
and

::
at

::::
low

::::::
vertical

:::::::::
updraughts

:::::::::::::::::
0<w ≤ 0.05 m s−1,

:::
the

:::::::
relevant

::::::::
processes

:::
are ice nucleation, diffusional growth

and sedimentation, respectively.125

We start with the description of

2.1
::::
Basic

:::::::::
equations

::
An

:::
ice

:::::
cloud

::
is

::::::::::
represented

::
by

:
an ensemble of ice particlesforming a cloud; for this purpose we use

:
,
:::::
which

:::
can

::
be

::::::::
described

:::
by a mass distribution f(m,x, t) with mass of particles,m, as internal coor-
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dinate and space, x, and time, t, as external coordinates. (Notation follows the convention in population dynamics, see e.g. Ramkrishna, 2000) .130

The procedure is similar to the derivation by Seifert and Beheng (2006) and Beheng (2010)
:::::::
Notation

::::::
follows

:::
the

:::::::::
convention

:::
in

:::::::::
population

::::::::
dynamics

::::::::::::::::::::::::
(see e.g. Ramkrishna, 2000) . We investigate a test

volume with a certain fixed mass of dry air, therefore f has units [f ] = kg−1. Thus, we can formulate

the evolution equation for f in a Boltzmann-type way
:::::::::
[f ] = kg−2.

::::
The

::::::::
evolution

::
of

:::
this

:::::
mass

:::::::::
distribution

::
in

:::
time

::::
and

:::::
space

:
is
::::::::::
determined

::
by

:
a
::::::
partial

:::::::::
differential

:::::::
equation

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Hulburt and Katz, 1964; Seifert and Beheng, 2006; Beheng, 2010) :135

∂(ρf)

∂t
+∇x · (ρuf) +

∂(ρgf)

∂m
= ρh. (1)

Here, ρ denotes density of air, u and g are the advection velocities in
:::::::
physical space and phase

space of the internal coordinate
:
, and h represents sources and sinks for particles.

:::
The

::::::::::
divergence

::
in

:::::::
physical

:::::
space

::
is

::::::
denoted

:::
by

::::::::::::::::::::::
∇x = (∂/∂x,∂/∂y,∂/∂z).

:
Note, that all functions

:
,
:
u, g, h, generally140

depend on the full set of variables (m,x, t).

For the motion of the inertial system we assume a
:::
The fluid velocity v = v(x, t) , which is

determined by the underlying hydrodynamic motion , governed by some versions or approximations

of Navier-Stokes equation. In addition, a single cloud particle might experience a diffusion
::::::::
describes

::
the

:::::::
motion

::
of

:::
the

:::
air;

:::::
cloud

::::::::
particles

::::
may

:::::::::
experience

:
a
:

velocity v′ = v′(m,x, t) relative to v. The145

total velocity ,
::::
thus

:::
the

::::
total

:
u is thus given by

u(m,x, t) = v(x, t) +v′(m,x, t).

Thus, we can reformulate equation as follows:

∂(ρf)

∂t
+∇x · (ρvf) +∇x · (ρv′f) +

∂(ρgf)

∂m
= ρh.

::::
given

:::
by

::::::::::::::::::::::::::::
u(m,x, t) = v(x, t) +v′(m,x, t).

::
In

:::
our

::::::
study,

::
the

::::
only

:::::::
relevant

:::::::
relative

:::::::
velocity

::
of

:::::
cloud150

:::::::
particles

::
is

:::::::::::
gravitational

:::::::
settling

:::::::::
(hereafter:

:::::::::::::
sedimentation),

:::::
given

:::
by

::
a
:::::::
terminal

::::::::
velocity

:::
due

:::
to

::::::
balance

:::::::
between

:::::::::::
gravitational

:::::
force

::::
and

::::
drag.

::::
The

:::::::
terminal

::::::::
velocity

:::::::
depends

::
on

:::
ice

::::::
crystal

::::::
mass,

::
i.e.

:::::::::::::::::
v′ = (0,0,−vt(m)).

:::::
Note

:::
the

:::::::
direction

:::::::
towards

::::::
Earth’s

:::::::
surface,

::::::::
indicated

::
by

:::
the

::::::
minus

::::
sign.

We have to state here that (even with this simplification)we will not be able to derive a general

solution for f(m,x, t). However, since we are interested in bulk quantities as number and mass155

concentrations, we use the definition of
::::::
Instead

::
of

::::::
solving

::::::::
equation

::
(1)

:::
for

:::
the

:::::
entire

::::
mass

::::::::::
distribution,

::
we

::::::
derive

::::::::
equations

:::
for the general moments of f(m,x, t): ,

:::::::
defined

::
as

µk[m](x, t) :=

∞∫
0

f(m,x, t)mk dm, k ∈ R. (2)

A bounded mass distribution is uniquely determined by all its integer moments (see e.g. Feller,

1971). For deriving equations for the evolution of moments,
:::::::
However,

:::::
since

:::
we

::::::
cannot

::::
(and

:::
do

:::
not160

::::
want

:::
to)

::::
treat

::
an

::::::
infinite

:::::::
number

::
of

:::::::
moment

::::::::
equations,

:
we multiply equation by mk and integrate by
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parts, using f(0,x, t) = 0 and f(m,x, t)→ 0 form→∞, which are physically reasonable assumptions.

Thus, we end with the following equation:

∂(ρµk)

∂t
+∇x · (ρvµk) +∇x ·

 ∞∫
0

mkρv′f dm

=

k

∞∫
0

mk−1ρgf dm+

∞∫
0

mkρhdm, k ∈ R.165

The moments are not restricted tok ∈ N, instead we allow generalized moments with k ∈ R≥0.

Formally, the unit of the k-th moment is kgkkg−1.

Since we are interested in processes on cloud scale, we can neglect horizontal diffusion velocities;

the remaining relative components of v′ are determined by sedimentation of particles, i.e. v′ = (v′1,v
′
2,v
′
3) = (0,0,v′3)

and v′3 = v′3(m,x, t). For simplicity, we assume that the gravitational acceleration of ice particles is170

very quickly balanced by friction of air, thus we can assume that v′3 is represented by the terminal

velocity of an ice particle with mass m, i.e. v′3 = vt(m). We can include this simplification in the

following way:

∂(ρµk)

∂t
+∇x · (ρvµk)︸ ︷︷ ︸

time evolution + advection

=− ∂

∂z

 ∞∫
0

mkρvtf dm


︸ ︷︷ ︸

sedimentation

+k

∞∫
0

mk−1ρgf dm

︸ ︷︷ ︸
growth/evaporation

+

∞∫
0

mkρhdm.

︸ ︷︷ ︸
particle formation/elimination

175

We make the usual ansatz
:::::::::::::::::::::::::::::
(see e.g. Seifert and Beheng, 2006) for a double moment scheme

::::::::
(k = 0,1),

i.e. k = 0,1 leading to two prognostic
::
we

:::::
derive

::::
two equations for number concentration

:
(Nc = µ0:

)

and mass concentration
:
(qc = µ1:

∂(ρµ0)

∂t
+∇x · (ρvµ0)

=− ∂

∂z

 ∞∫
0

ρvtf dm)


︸ ︷︷ ︸

SEDn

+

∞∫
0

ρhdm

︸ ︷︷ ︸
NUCn

,180

∂(ρµ1)

∂t
+∇x · (ρvµ1) =

− ∂

∂z

 ∞∫
0

mρvtf dm)


︸ ︷︷ ︸

SEDq

+

∞∫
0

ρgf dm

︸ ︷︷ ︸
DEPq

+

∞∫
0

mρhdm

︸ ︷︷ ︸
NUC q

.
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:
)
::
of

:::
ice

::::::
crystals

:::::
from

:::::::
equation

:
(1),

:::
of

::
the

:::::::::
following

:::::
form:

∂µk
∂t

+v · ∇xµk︸ ︷︷ ︸
time evolution + advection

=
1

ρ

∂

∂z

 ∞∫
0

mkρvtf dm


︸ ︷︷ ︸

sedimentation

+k

∞∫
0

mk−1gf dm

︸ ︷︷ ︸
growth/evaporation

+

∞∫
0

mkhdm.

︸ ︷︷ ︸
particle formation/elimination

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)185

::::
Here,

:::
we

::::
also

::::
used

::::
mass

:::::::::::
conservation

::
of

:::
dry

:::
air

::
in

::::
order

::
to

::::::
rewrite

:::
the

::::
first

:::
two

:::::
terms

::
of

:::::::
equation

::::
(1),

::
for

::::::
details

:::
see

::::::::
appendix

::
A. Note the units ofNc and qc relative to the mass of dry air

(
[Nc] = kg−1, [qc] = kgkg−1

)
.

Now we will address the different terms in equations in more details. First, we have to specify the

mass concentration in order to close
::
are

:::::::::::
[Nc] = kg−1

:::
and

:::::::::::::
[qc] = kg kg−1,

:::::::::::
respectively.

:::
For

:::::::
closing190

the system of two moment equations mathematically.

2.2 Choice of distribution

We
::::::::
equations

:::::::::::::
mathematically,

:::
we

:
prescribe a fixed type of mass distribution for the ice crystals,

namely a lognormal-distribution
:
.
:::
As

::
in

:::
the

::::::
study

::
by

:::::::::::::::::::::::::::
Spichtinger and Gierens (2009) ,

:::
we

::::
use

::
a

:::::::::::::::::::
log-normal-distribution of the following formis considered:195

f(m,t) =
Nc(t)√

2π logσm
exp

−1

2

(
log( m

mm
)

logσm

)2
 1

m
, (4)

with the geometric mean mass mm and the
:::::::::::::
non-dimensional

:
geometric standard deviation σm:

,

::::::::::
determining

:::
the

:::::
width

::
of

:::
the

:::::::::::
distribution;

:::
log

::::::
denotes

:::
the

:::::::
natural

:::::::::
logarithm.

:::
The

:::::::
general

::::::::
moments

:::
can

::
be

::::::::
described

:::
by

µk[m] =Ncm
k
m exp

(
1

2
(k logσm)

2

)
=Ncm

kr
k(k−1)

2
0 ,

:::::::::::::::::::::::::::::::::::::::::::::

(5)200

::::
using

:::
the

:::::
mean

:::::
mass

:::::::::::::::::
m= qc/Nc = µ1/µ0.

For this special distributionthe k-th moment is given by

µk[m] =Ncm
k
m exp

(
1
2 (k logσm)

2
)

=Ncm̄
kr

k(k−1)
2

0 =N−kc qkc r
k(k−1)

2
0 .

Here, we use the definition of
:::::::::
introduced the dimensionless parameter,

:
205

r0 =
µ2µ0

µ2
1

= exp
(

(log(σm))
2
)
, (6)

for closing the set of equations. This parameter can also be formulated in terms of the “predominant

mass” mpre = µ2/µ1 (Spichtinger and Gierens, 2009; Höller, 1986) . In the following ;
:
r0 ::

is
:::
set

::
to

:
a
::::::::
constant,

:::
thus

:::
the

:::::::::
geometric

:::::::
standard

::::::::
deviation

::::::::::
representing

:::
the

:::::::::::
distribution’s

:::::
width

:
is assumed to

be constant. Among others Spichtinger and Gierens (2009) suggest a value of r0 = 3, corresponding210

to a geometric standard deviation σm ≈ 2.85.
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2.2 Nucleation
::::::::::::::
Parameterisation

:::
of

:::::::
relevant

:::::::::
processes

::
In

:::
the

::::::::
following

:::
the

::::::::::::
representation

:::
of

:::::::
relevant

::::::::
processes

::
is

::::::::
described

:::::::
briefly.

:::
For

:::::
more

::::::
details

:::
we

::::
refer

::
to

::::::::
appendix

::
B.

:::::::::::
Furthermore,

:::
we

:::::::
describe

::::::::
additional

:::::::::::
assumptions

:::
for

:::::::::::
simplification

:::
and

:::::::
present

::
the

::::
final

:::::::::
equations

::
of

:::
the

::::::
model.215

2.2.1
:::::::::
Nucleation

For the formation of ice crystals we exclusively consider homogeneous freezing of aqueous solution

droplets (e.g. Koop, 2004) . Supercooled solution droplets freeze spontaneously with a nucleation

rate J . Similar as for ice particles we can
::::::::::::::::::::::::::::::::::::::
(short: homogeneous nucleation, Koop, 2004) .

:::
We

:
de-

scribe the ensemble of solution droplets by a size distribution fa = fa(r), where r denotes the ra-220

dius. Again, we set [fa] = kg−1
::::
Units

:::
are

::::::::::::::
[fa] = kg−1m−1 and fa is normalised by the total number

concentration of aerosol particles
::::::
solution

:::::::
droplets

::
in

:::
dry

:::
air, Na = µ0[r].

We model homogeneous freezing
::::::::
nucleation

:
as a stochastic process with a

:::::::::
nucleation rate J .

:::
(for

::::::
details

:::
see

::::::::
appendix

::::
B). For the change in the size distribution fa(r) we can formulate the

following equation (acc. to Seifert and Beheng, 2006) Assuming
:::::::
assuming

:
J as a volume rate (i.e.225

[J ] = m−3s−1):

∂(ρfa(r))

∂t

∂fa(r)

∂t
::::::

∣∣∣∣∣freezingnucleation
:::::

=−4

3
πr3Jρfa(r). (7)

Integration of the equation leads to an equation for the total loss of aerosol particles
:::::::
solution

:::::::
droplets

∂(ρNa)

∂t

∂Na
∂t

::::

=−4

3
πρ

∞∫
0

r3Jfa(r)dr. (8)230

assuming
::::::::
Assuming

:
a bijective relation between ice crystals and aerosol particles

::::::
solution

:::::::
droplets,

we combine the total gain of ice particles as :

∂(ρNc)

∂t

∂Nc
∂t

::::

=−∂(ρNa)

∂t

∂Na
∂t

::::

=
4

3
πρ

∞∫
0

r3Jfa(r)dr =
4

3
πρJµ3,a[r], (9)

where µ3,a::::::
µ3,a[r]

:
denotes the third moment of the size distribution of solution droplets. Here, we

assume that ∂J/∂r = 0, thus we can treat the integral as a constant.235

Since
:
.
:::::
Since

:::
the

:::
ice

::::::
crystal

:::::::
number

::::::::::::
concentration

::
in

:::::
SVCs

:::
is

::::
very

::::
low,

:::
we

:::::::
assume

:::
that

:
only

a minor fraction of solution droplets is converted to ice , we can assume that
:::
and

:
the size dis-

tribution will be
:::::::
remains

:
constant in time. Thus, the third moment can be calculated

::::
once

::::
and

:
is
:::::

then
::::
used

:
as a constant , given by the type and parameters of fa(r)

::
in

:::
the

::::::::
resulting

::::::::
equations.

We assume fa(r) as a lognormal
::::::::
log-normal

:
distribution with a modal radius of rm = 100nm,240

a
:::::::::::
dimensionless

:
geometric standard deviation σr = 1.5 and a total number concentration ρNa =

3× 108m−3. Koop et al. (2000) give a parameterisation for the nucleation rate coefficient J as a
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function of ∆aw := aw − aiw (Koop et al., 2000, Table 1, eq. 7) . Here aw is the water activity of the

solution and aiw is the water activity of the solution in equilibrium with ice. Note, that the freezing

characteristics of the droplets do not depend on the chemical composition. By definition the water245

activity is the ratio esol/eliq of the vapor pressure over a solution, esol , and pure liquid water, eliq .

Neglecting the Kelvin effect and assuming that the solution droplets are in equilibrium with the

environment (e= esol ), the water activity is proportional to the water activity in equilibrium with

ice, which is the ratio of the water vapour pressure over ice and pure liquid water:

aw =
esol
eliq

=
e

eliq
=

RH i

100%

ei
eliq

=
RH i

100%
aiw.250

Both ei and eliq , only depend on temperature and are parameterised according to Murphy and Koop (2005, eq. 7 and 10, respectively) .

Hence, ∆aw is a function of RH i and T , as given by

∆aw(T,RH i) =
(
RH i

100% − 1
)
aiw(T )

=
(
RH i

100% − 1
)
ei
eliq
.

Therefore J is also a function of RH i and T .255

The logarithm of the nucleation rate is parameterised by a third order polynomial in ∆aw (Koop et al., 2000, table1, eq. 7) :

log10J(T,RH i) =−906.7 + 8502 ∆aw

−26924(∆aw)2 + 29180(∆aw)3.

With this, we can formulate the two terms for particle generation: ,
:::::::
similar

::
to

:::
the

:::::::
settings

:::
by260

::::::::::::::::::::::::::
Spichtinger and Gierens (2009) ,

::::::
which

:::
are

::::::::
motivated

:::
by

:::::::::::
observations

::::::::::::::::::
(Minikin et al., 2003) .

:::::
This

::::
leads

::
to

::
a

:::::::::
formulation

:::
of

NUCn=
∂(ρNc)

∂t

∂Nc
∂t

::::

∣∣∣∣∣NUC nucleation
:::::

=
4

3
πρNaρr

3
m

::
exp

(
1

2
(3logσr)

2

)
J(RHRH

:: i,T ) (10a)

and265

NUC q
∂qc
∂t
:::

∣∣∣∣∣nucleation
:::::

=m0NUCn·
∂Nc
∂t

::::

∣∣∣∣∣nucleation
:::::

, (10b)

using a typical droplet mean mass m0 = 10−15 kg
::::
(size

:::::::
∼ 1µm) in the spirit of the mean value theo-

rem.
:::
The

:::::::::
nucleation

:::
rate

::
J
::
is

::::::::::::
parameterised

::::::::
according

::
to

:::::::::::::::::::
Koop et al. (2000) and

:::
can

::
be

:::::::::
expressed

::
as

:
a
:::::::
function

::
of

::::::
relative

::::::::
humidity

::::
with

::::::
respect

::
to

:::
ice

:::
and

::::::::::
temperature.

:::
For

::::::
further

::::::
details

:::
see

:::::::
appendix

:::
B.270

2.3 Depositional growth

The growth
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2.2.1
:::::::::
Diffusional

:::::::
growth

:::
The

::::::
growth

::::
and

:::::::::
evaporation

:
of ice crystals is dominated by diffusion . The “advection velocity” g in275

the mass space is given by
::
of

:::::
water

::::::
vapour.

::::
With

:::::::
several

::::::::::::
simplifications

::
of

:
the growth equation for

a single ice crystal; this equation has the following form (see, e.g., Stephens, 1983) :

g(m) =
dm

dt
= 4πCD∗vρ(qv − qv,si)fv.

Here, qv,s = εpsi(T )/p denotes the saturation mixing ratio, the shape of the ice crystal is accounted

for by the capacityC (assuming the electrostatic analogy, see e.g. McDonald, 1963; Jeffreys, 1918) ,280

D∗v is the full diffusion constant including the kinetic correction for small particles (Lamb and Verlinde, 2011) and

fv denotes the ventilation coefficient.

In this study we make use of the following simplifications: Latent heat release at the crystal surface

is neglected and the temperature of the ice particles is assumed to be equal to temperature of ambient

air. We neglect kinetic corrections, since we are mostly interested in growth of larger crystals. Thus,285

we can assume

D∗v ≈Dv =D0

(
T

T0

)α(
p0

p

)
,

withD0 = 2.11 · 10−5 m2s−1, T0 = 273.15K, p0 = 101325Pa,α= 1.94 (e.g. Pruppacher and Klett, 1997) .

We neglet correction of ventilation, setting fv = 1. Since ventilation correction is relevant for very

large crystals, this is a reasonable assumption. The shape of ice crystals, is assumed to be prolate290

spheroids with a length and an eccentricity ε′, this leads to the following expression (McDonald, 1963) :

C = L
ε′

log
(

1+ε′

1−ε′

) .
For the mass-size relation we assume a simple power law L(m) = Cim

αi using
:::
(for

::::::
details

::::
see

:::::::
appendix

:::
B)

:::
we

:::::
obtain

:::
the

::::::::
following

::::::::
equation

:::
for

:::::::::
diffusional

::::::
growth

::
of

:
a
::::::
single

::::::
crystal:

:
295

g(m)≈ 4

3
πCiDvm

αiρqv,si(Si− 1),
:::::::::::::::::::::::::::::

(11)

::::
with

:::::::
constants

:
Ci = 1.02m,αi = 0.4 , which was fitted to the more complex description in Spichtinger and Gierens (2009) ,

where a transition between droxtals and columns is formulated and used.

The fraction in equation only depends weakly on the crystal mass and can be approximated by a300

constant mean value of 1/3. This yields

C =
1

3
Cim

αi .
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Thus, we end with the simplified expression for g(m):

g(m) ≈ 4
3πCim

αiρ(qv − qv,si)

= 4
3πCim

αiρqv,si(Si− 1),305

using the
:::
and

::::
using

:
saturation ratio Si = pv/psi and the saturation mixing ratio

qv,si(T,p) =
εpsi(T )

p
., (12)

Thus, we can derive the term DEPq in equation
::::::::::
respectively.

:::
We

:::
can

:::::::
express

:::
the

::::
term

:::
for

:::::::::
diffusional

::::::
growth

::
in

:::
the

:::::::
moment

::::::::
equations

:::
(3) by integration, i.e.:

DEPq
dqc
dt
:::

∣∣∣∣∣growth
::::

=

∞∫
0

ρg(m)f(m)dm=
4

3
πCiDv

::
ρqv,si(Si− 1)µai [m]310

=
4

3
πCiDv

::
ρqv,si(Si− 1)nN

:

1−αi
c qαic r

αi(αi−1)

2
0 . (13)

2.3 Sedimentation

2.2.1
::::::::::::
Sedimentation

For the derivation of the terms SEDq , SEDn we use the mean value theorem for describing the315

relevant integrals in equation as follows:

∞∫
0

vt(m)ρmkf(m)dm= v̄k

∞∫
0

ρmkf(m)dm= ρv̄kµk.

Thus, we can
::::::::
Following

::::::::::::::::::::::::::
Spichtinger and Gierens (2009) ,

:::
we

:
describe the weighted terminal velocity

v̄k for the flux of the k-th moment as

v̄k =
1

µk

∞∫
0

vt(m)mkf(m)dm., (14)320

:::
(for

::::::
details

:::
see

::::::::
appendix

:::
B). Here, we use a simple power law for the representation of the terminal

velocity in addition with

vt(m) = γmδcorr(T,p)
:::::::::::::::::::

(15)

::::
with

:::::::::::::::::::::
γ = 63292.36m s−1 kg

−δ ,
::::::::
δ = 0.57

:::
and

:
a density correction term c(T,p), i.e.:

vt(m) = γmδc(T,p)325

where

c(T,p) =

(
p

p00

)ai( T

T00

)a2
,
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T00 = 233K, p00 = 300Pa, a1 =−0.178, a2 =−0.397 (see e.g. Spichtinger and Gierens, 2009) and

γ = 63292.36ms−1kg−δ , δ = 0.57. Thus, we obtain the weighted velocities for number and mass

flux, respectively, in the following form:330

v̄0 = v̄n = γ µδµ0
c(T,p),

v̄1 = v̄q = γ µδ+1

µ1
c(T,p).

::::::::
corr(T,p)

::::
(see

::::::::
appendix

:::
B).

We can formulate
:::::::
compose the general terms for sedimentation in the moment equations

:::
(3):

SEDn=
∂

∂z
(ρv̄nNc) =

∂

∂z

(
ργ·µδ+1[m]cδ[m] · corr

::::::::
(T,p)

)
, (16a)335

SEDq=
∂

∂z
(ρv̄qqc) =

∂

∂z

(
ργ·µδ[m]cδ+1[m] · corr

::::::::::
(T,p)

)
. (16b)

2.3 Additional settings

2.2.1
:::::::::::::
Simplifications

In order to formulate
:::::
obtain

:
a consistent but simplified system of

::::::
ordinary

:
differential equations we340

make the following assumptions:

1. Instead of an Eulerian
::::::
Change

::
to
::::::::::

Lagrangian
:
point of view we change

:::
and

::::::
purely

:::::::
vertical

::::::
motion:

::::
Since

::::
we

:::
are

::::::::
interested

:::
in

:::
the

::::
time

::::::::
evolution

:::
of

:::::
cloud

::::::::
variables

::
in

::
a
::::::
single

::
air

:::::::
parcel,

:::
we

::::::
change

:::
our

:::::
point

::
of

::::
view

:::::
from

:::::::
Eulerian

:::::::::
description

:
to a Lagrangian viewpoint, i. e. the .

::::
The345

Eulerian time evolution and advection
::
of

:
a
:::::::
quantity

::
φ in the fluid motion ,

∂(ρφ)

∂t
+∇x · (ρvφ) ,

can be seen as total time derivative d(ρφ)
dt

dφ

dt
=
∂φ

∂t
+v · ∇xφ,

:::::::::::::::::

(17)

::::::::::
representing

:::
the

::::::::::
Lagrangian

:::::::::
description. Note that motions relative to the Lagrangian evolu-350

tion are still included, i.e. sedimentation still plays a role.

We will generally focus on the development inside a prescribed parcel, thus the Langrangian

description is adequate. We will exclusively consider vertical motions of the air parcel as

driven by a vertical velocity component w, i.e. v = (0,0,w(t)). Vertical
::
In

:::::
order

::
to

:::::
close

:::
the

::::::
system,

::::::::
equations

:::
for

::::::::::
temperature

:::
and

:::::::
pressure

:::::
must

::
be

:::::::
derived.

::::
The

::::::
vertical motion of the air355

parcel will lead to adiabatic processes, i.e. compression or expansion, leading to temperature

/pressurechanges dT
dt , dp

dt assuming hydrostatic balance , we can explicitly describe the temperature

12



/
::::
leads

::
to

::::::::
adiabatic

:::::::
changes

::
in

:::::::::::
temperature

:::
and

::::::::
pressure.

:::::
Since

:::
we

::::
can

::::::
assume

:::::::::::
hydro-static

::::::
balance

:::
for

::::::::
pressure

::
in

:
a
:::::

very
::::
good

:::::::::::::
approximation,

:::
we

::::::::
explicitly

::::::::
describe

::::::::::
temperature

::::
and

pressure rates:360

dT

dt
=

dT

dz

dz

dt
=− g

cp

g ·Mair

cp
::::::

w
dp

dt
,

dp

dt
::

=
dp

dz

dz

dt
=−gρw. (18)

:::::::
whereas

:
g
:::::::
denotes

::::::::::
acceleration

::
of

::::::
gravity,

:::::
Mair :

is
:::
the

:::::
molar

:::::
mass

::
of

:::
dry

::
air

::::
and

::
cp::

is
:::
the

:::::
molar

::::::
isobaric

::::
heat

::::::::
capacity.

:::
We

:::::
would

::::::
expect

::::::::
additional

::::::::::
temperature

:::::::
changes

::::
due

::
to

:::::
phase

:::::::
changes

:::::
(latent

::::
heat

:::::::
release),

:::::
when

:::
ice

::::::
crystals

:::::
grow

::
or

::::::::
evaporate

:::
by

::::
water

::::::
vapour

:::::::::
diffusion.

::::::::
However,365

::::
since

:::
we

:::::::::
investigate

:::
ice

::::::
clouds

:::
in

:::
the

:::
low

:::::::::::
temperature

::::::
regime,

:::::::::::
temperature

:::::::
changes

:::
due

:::
to

::::
latent

::::
heat

::::::
release

:::
can

:::
be

::::::::
neglected

::
in

::::
good

:::::::::::::
approximation.

:::
For

:::
low

:::::::::::
temperatures

:::::::::::
(T < 235K)

::
the

::::::::
deviation

::::
from

:::
the

:::
dry

::::::::
adiabatic

::::
lapse

::::
rate

::
is

:::
less

::::
than

:::
5%

:::
and

::
is

:::::::::
decreasing

::::
with

:::::::::
decreasing

::::::::::
temperature

:::::::::
Therefore,

::
we

:::::
omit

::::::::::
temperature

::::::
change

::::
due

::
to

:::::
latent

::::
heat

:::::::
release,

:::::
which

::::::
would

:::::
appear

::
as
:::
an

::::::::
additional

::::::::
nonlinear

:::::
term

::
in

:::
the

::::::
system

::
of

::::::::
equations.

:
370

2.
::::::
Closure

:::::
using

::
an

::::::::
equation

:::
for

::::::
relative

::::::::
humidity

::::
w.r.t.

::::
ice:

In our study, we will exclusively consider very low vertical velocities or vertical changes

with limited amplitude. Thus, we can approximately assume that temperature and pressure are

constant. In consequence, we also keep the volume of our air parcel constant and due to the

ideal gas law, density remains constant, too. Hence, ρ drops out in equation and all equations375

derived from it
::::::::::::::::::
(0<w ≤ 0.05m s−1),

:::::
which

:::
are

::::::
typical

:::
for

:::::::::
formation

::
of

:::::
SVCs

:
in
::::::::::

large-scale

::::::
upward

:::::::
motions.

:::::::::
Variations

::
in

::
w,

:::
i.e.

:::::::::::::
time-dependent

::::::::
velocities

::::
w(t)

:::
are

:::
not

::::::::::
investigated

:::::
since

:::
our

::::
main

:::::
focus

::
is

::
to

:::::::::
understand

:::
the

:::::::::
behaviour

::
of

:::::
SVCs

::
in

:::
this

:::::
quite

::::::
simple

:::
but

::::::
realistic

::::::
setup.

:::::::::::::
Time-dependent

:::::::
vertical

::::::::
velocities

::::::
would

::::::
largely

::::::::::
complicate

:::
our

::::::::::::
investigations

:::
and

:::::
thus

::
is

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
study.

:::
At

:::
low

:::::::
vertical

::::::::::
updraughts,

::::::::::
temperature

::::
and

:::::::
pressure

::
do

::::
not380

::::::
change

:::::
much. At an updraught velocity of w = 2 · 10−2ms−1

::::::::::::::
w = 0.02 m s−1,

:::
for

:::::::
instance,

temperature would decrease by
:::::
about

:
0.7 K per hour, meaning that after twelve hours the

temperature difference .
::
If

::
an

:::::::::
updraught

::
of

::::
this

:::::::
strength

::::
were

::::::::
sustained

:::
for

::::
12h,

:::
the

::::::::
resulting

::::::::::
temperature

:::::::
decrease would be about 8 K. However, we are not primarily interested in a highly

accurate model, but rather a model that is as simple as possible, describes the aspects of385

the mechanism qualitatively.
:::
8K.

::
A

::::::::::
persistence

::
of

::::
such

:::::
weak

::::::::::
updraughts

:::
for

:
a
::::
long

:::::
time

::
is

::::::
realistic

:::
for

:::::
warm

::::::
fronts

::
at

:::
mid

::::::::
latitudes

:::::::::::::::::::::::::
(Kemppi and Sinclair, 2011) or

::::::
Kelvin

::::::
waves

::
in

:::
the

:::::
tropics

:::::::::::::::::::
(Immler et al., 2008a) .

:

Finally, we can use this assumption for approximating the sedimentation terms. We have to

consider terms of the form390

∂

∂z
(ρv̄kµk) k = 0,1,

i.e. vertical changes in the sedimentation flux, jk = ρv̄k,µk. Since the volume does not change

we assume a box with volume V =A ·∆z with constant vertical extension ∆z and
::::
Thus,

:::
as
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::::::::::
temperature

:::::::
decrease

::
at

::::
slow

::::::
upward

:::::::
motions

::
is

::::
only

:::
very

::::::
small,

::
in

:
a
:::::
zeroth

:::::
order

::::::::::::
approximation

::
we

:::::::
assume constant base area A. The sedimentation flux jk is perpendicular to the surface of395

the base area. To avoid a hyperbolic term in our equations, we approximate the vertical change

of the flux by centered differences:

∂

∂z
jk ≈

1

∆z

(
jtop
k − jbottom

k

)
=

1

∆z

(
(ρv̄kµk)top− (ρv̄kµk)bottom

k

)
.

We investigate the top layer of a cloud, therefore by definition jtop
k = 0. Hence, we can write:400

SEDn =−ρv̄Nµ0

∆z =−ργ µδ∆z c(T,p)

SEDq =−ρv̄qµ1

∆z =−ργ µδ+1

∆z c(T,p).

::::::::::
temperature

:::
and

::::::::
pressure.

:::
In

:::::::::::
consequence,

:::
the

:::::::
parcel’s

:::::::
volume

:::::::
remains

::::::::
constant,

::::
too.

::::
The

:::::::
resulting

::::
error

:::
for

:::::::::
neglecting

::::::
density

:::::::
changes

:
is
:::::::
usually

::
of

::::
order

::::::
∼ 10%

::::::::::::::::::::::::
(see e.g. Weigel et al., 2015) .

Since we are mostly interested in the top cloud layer, where ice nucleation occurs (see, e.g., Spichtinger and Gierens, 2009) ,405

we set the thickness of the cloud layer to ∆z = 50m.
:::::::
primarily

::::::::
interested

::
in
::
a

:::::
simple

:::::::::
conceptual

:::::
model

::::::::::
describing

:::
the

::::
main

:::::::::
properties

::
of

::::::
SVCs,

::::
these

:::::::::::
assumptions

:::
are

:::::::
justified.

To close the systems of differential equations we introduce an evolution equation for relative

humidity, starting with the total derivative of RH i = pqv/(εpsi(T )):
::::::::::::::::::::::::
RHi = 100%pqv/(εpsi(T )):

410

dRH i

dt

dRHi

dt
:::::

=
∂RH i

∂T

∂RHi

∂T
:::::

dT

dt
+
∂RH i

∂p

∂RHi

∂p
:::::

dp

dt
+
∂RH i

∂qv

∂RHi

∂qv
:::::

dqv
dt

. (19)

The ascent of the air parcel is purely adiabatic and no diabatic effects are taken into account.

Thus
:::::
While

::::::::::
temperature

::::
and

:::::::
pressure

:::::::
remain

::::::::::::
approximately

:::
the

:::::
same

::::::
during

:::::
parcel

:::::::
ascent,

::
the

:::::::
relative

::::::::
humidity

::::::
should

::
be

:::::::
affected

:::
by

:::::
terms

::::::::
involving

::::::
dT/dt

::::
and

::::::
dp/dt,

:::::::::::
respectively.

:::::::::
Neglecting

:::::
latent

::::
heat

::::::
release

::
as

:::::
stated

:::::
above, the first two contributions are given by

:::::
terms

::
in415

:::::::
equation

::::
(19)

::::
read:

∂RH i

∂T

dT

dt
= RH i

Mair

RT 2
Lice ·

g

cp
w, (20a)

∂RH i

∂p

dp

dt
=

RH i

p
· ρgw =−RH i

Mair

RT
gw, (20b)

making use of equation , the dry adiabatic lapse rate, and the hydrostatic equilibrium. Mair is420

the molar mass of dry air andLice is the molar heat of sublimation; we use the parameterisation

for Lice by Murphy and Koop (2005). As usual, g denotes the gravitational acceleration and cp

is the
::::
molar

:
isobaric heat capacity of air. Since these two expressions account for the change of
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RH i due to adiabatic cooling they are subsumed under COOLRH . Note that using assumption

??,
::::
Note

:::
that

:
we only consider temperature /

:::
and pressure changes in equation (19), but leave425

temperature and pressure constant otherwise. Therefore, we do not include the equations for

dT/dt and dp/dt in our ODE system of the model. This approach will be useful for analytical

investigations.
:
,
:::::::
although

::::
this

::::::
implies

:
a
::::::

slight
:::::::::::
inconsistency.

::::
This

::::::
allows

:::
us

::
to

:::::
study

:::
the

::::
long

::::
term

::::::::
behaviour

::
of

:::
the

:::::::
system.

The last term in equation (19) represents the sink due to diffusional growth of ice particles and430

is denoted asDEPRH ,
:::
can

:::
be

::::::
written

:::
as:

∂RHi

∂qv

dqv
dt

=−∂RHi

∂qv

dqc
dt

∣∣∣∣∣
growth

::::::::::::::::::::::::::

=−4

3
πρDvCi(RHi − 100%)r

αi(αi−1)

2
0 N1−αi

c qαic .
::::::::::::::::::::::::::::::::::::::::

(21)

:::
We

:::
use

:::::::
relative

:::::::
humidity

:::
as

:
a
:::::::
control

:::::::
variable

::::::
instead

::
of

:::::::
specific

::::::::
humidity,

::::::
which

:::
has

:::::
been

::::
used

::
in

::::::
former

::::::
studies

:::::::::::::::::::::::::::::
(e.g. Hauf, 1993; Wacker, 1992) for

:::::
liquid

::
or

::::::::::
mixed-phase

::::::
clouds

:::::
close435

::
to

:::::::::::::
thermodynamic

::::::::::
equilibrium

::::::
(water

:::::::::
saturation).

::::::
Since

::::
pure

:::
ice

::::::
clouds

:::::::::
commonly

:::::
exist

::
at

::::
states

:::
far

:::::
away

:::::
from

::::::::::
equilibrium,

:::::::
relative

::::::::
humidity

:::
(or

:::::::::::
equivalently

::::::::
saturation

:::::
ratio)

::
is
::::

the

::::::
relevant

::::::::::::::
thermodynamic

:::::::
variable.

:::
In

:::::::
addition,

:::
the

::::::::::::
representation

:::
of

::::::::
processes

::::::::
changing

::::
this

::::::
variable

:::
or

::::::::
depending

:::
on

:::
this

:::::::
variable

::
is

:::::
much

:::::
easier

::::
than

:::
for

:::::::
specific

:::::::
humidity

:::
qv ,

::::
e.g.

::
in

:::
the

::::::::
nucleation

:::::::::::::::
parameterisation.440

3.
::::::::::::
Approximation

::
of

::::::::::::
sedimentation

::::
Since

:::
we

:::
are

::::::::
interested

:::
in

::
an

::::::::::
analytically

:::::::
treatable

::::::
model

::
of

:
a
:::::
single

:::
air

::::::
parcel,

:::
we

:::::
would

::::
like

::
to

::
get

:::
rid

::
of

::::::
partial

:::::::::
derivatives

:::::::::
describing

::::::::::::
sedimentation,

:::::
which

::::::::
generally

::::
lead

::
to

::
a

:::::::::
hyperbolic

::::::
system

::
of

:::::
partial

::::::::::
differential

::::::::
equations,

::::::
which

::
is

:::
too

::::::::::
complicated

:::
for

:::::::::
theoretical

:::::::
analysis.

::::
For

:::::::::::
simplification

::
of

:::
the

::::::::
equations

:::
we

::::
have

::
to
::::::::
consider

:::::
terms

::
of

:::
the

::::
form

:
445

∂

∂z
(ρv̄kµk) k = 0,1,

::::::::::::::::::::

(22)

i.e. :
::::::
vertical

::::::::
gradients

::
in

:::
the

::::::::::::
sedimentation

:::::
flux,

:::::::::::
jk = ρv̄kµk.

:::::
Since

:::
the

:::::::
volume

::::
does

::::
not

::::::
change,

:::
we

:::::::
assume

:
a
::::
box

::::
with

::::::
volume

:::::::::::
V =A ·∆z

::::
with

:::::::
constant

:::::::
vertical

::::::::
extension

:::
∆z

::::
and

:::::::
constant

::::
base

::::
area

:::
A.

:::
The

::::::::::::
sedimentation

::::
flux

:::
jk ::

is
:::::::::::
perpendicular

::
to
::::

the
::::::
surface

::
of

:::
the

:::::
base

::::
area.

:::
We

::::::::::
approximate

:::
the

:::::::
vertical

::::::
change

::
of

:::
the

::::
flux

::
by

:::::::
centred

::::::::::
differences:450

∂

∂z
jk ≈

1

∆z

(
jtop
k − jbottom

k

)
=

1

∆z

(
(ρv̄kµk)top− (ρv̄kµk)bottom

k

)
.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(23)

15



:::
We

:::::::::
investigate

:::
the

:::
top

::::
layer

::
of

::
a

:::::
cloud,

::::::::
therefore

::
by

::::::::
definition

::::::::
jtop
k = 0.

::::::
Hence,

:::
we

:::
can

:::::
write:

:

DEPRH=
∂RH i

∂qv

dqv
dt

=
1

ρ

∂

∂z
(ρ

:::::

v̄Nµ0)≈
::::::

− ∂RH i

∂qv

dqc
dt

v̄Nµ0

∆z
:::::

=−∂RH i

∂qv
· 1
ρ
DEPRHγ

µδ
∆z

c(T,p),
::::::::::

(24a)

1

ρ

∂

∂z
(ρ

:::::

v̄qµ1)≈− v̄qµ1

∆z
::::::::::::

=−4

3
πρDvCiγ

µδ+1

∆z
c

::::::

(RH i− 100%T,p
:::

)r
αi(αi−1)

2
0 N1−αi

c qαic .

(24b)455

2.3 System of ODEs

2.2.1
::::
Final

:::::::
system

::
of

:::::
ODEs

In summary, the full system of the model equations reads:

dNc
dt

=
4π

3

na
ρ
r3
m exp

(
1

2
(3ln(σr))

2

)
J(RH i,T )

−γ c(T,p)
∆z

r
δ(δ−1)

2
0 N1−δ

c qδc460

dqc
dt

=m0
4π

3

na
ρ
r3
m exp

(
1

2
(3ln(σr))

2

)

·J(RH i,T )− γ c(T,p)

∆z
r
δ(δ+1)

2
0 N−δc q1+δ

c

+περDvCi
ei
p

(
RH i

100%
− 1

)
r
αi(αi−1)

2
0 N1−αi

c qαic

465

dRH i

dt
= RH igw

Mair

RT

(
Lice

cpT
− 1

)

−πρDvCi(RH i− 100%)r
αi(αi−1)

2
0 N1−αi

c qαic .

dNc
dt

=
::::::

a · J(RH i ,T )︸ ︷︷ ︸
nucleation

−b ·N1−δ
c qδc︸ ︷︷ ︸

sedimentation
::::::::::::::::::::::

(25a)

dqc
dt

=
:::::

a ·m0 · J(RH i ,T )︸ ︷︷ ︸
nucleation

−c ·N−δc qδ−1
c︸ ︷︷ ︸

sedimentation

+ d · (RH i − 100%)N1−αi
c qαic︸ ︷︷ ︸

growth
::::::::::::::::::::::::::::::::::::::::::::::::::::::

(25b)470

dRH i

dt
=

:::::::

e ·w ·RH i︸ ︷︷ ︸
vertical motion

−f · (RH i − 100%)N1−αi
c qαic︸ ︷︷ ︸

growth
::::::::::::::::::::::::::::::::::

(25c)

:::::
where

::
a,

::
b,

::
c,

::
d,

::
e,

:::::
f > 0

::::::
denote

::::::
positive

::::
real

::::::::
constants

::
as

::::::::
indicated

::
in

::::::::
appendix

::
B.

::::
Note

::::
that

::::::
almost

::
all

::::::::::
coefficients

::::
also

::::::
depend

:::
on

:::
the

::::::
(fixed)

::::::::
parameter

:::
T . This is an autonomous system of ordinary
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differential equations. For better readability the equations are abbreviated: ,
:::
i.e.

:::
we

::::
can

:::::
write

:::
the475

::::::
system

::
in

:::
the

::::::::
following

:::::
form:

ẋ = F (x), with x = (Nc, qc,RH iRHi
:::

)T , (26)

and F the right hand side of (25). Note that the assumption of constant temperature, pressure and

vertical velocity ensures that the system (25) possesses critical points.

3 Results480

2.1 General features
:::::
Setup

We examine the system for a range of parameter values 0<w ≤ 0.05ms−1 and
:::::::::::::::::
0<w ≤ 0.05 m s−1

:::
and 190K≤ T ≤ 230K

::::::::::::::::
190K≤ T ≤ 230 K, at a pressure of p= 300hPa

:::::::
constant

:::::::
pressure

::
of

:::::::::::
p= 300 hPa,

which corresponds to upper tropospheric conditions with moderate vertical motions as in synoptic

weather situations or slow upward motions in the tropics (e.g. Kelvin waves). The485

:::
We

:::::::::
investigate

:::
the

::::::
model

:::::
using

::::::::
analytical

:::::
tools

::::
(see

:::::
details

:::
in

::::::
section

::
3)

::::
and

::::
also

::::::::
integrate

:::
the

:::::
model

:::::::::::
numerically.

:::
For

::::
this

::::::::
purpose,

:::
the

:
air parcel is initialized

::::::::
initialised

:
with no ice particles

(Nc(0) = 0, qc(0) = 0) and at high supersaturation w.r.t. ice (RH i(0) = 140%
::::::::::::::
RHi(0) = 140 %).

The prognostic equations (25) are integrated numerically using
:::
with

:
the LSODA algorithm from the

Fortran
::::::::::
FORTRAN library ODEPACK (Hindmarsh, 1983).490

3
::::::
Results

3.1
::::::
General

::::::::
features

::
of

:::
the

::::::
system

The general cloud formation mechanism works as follows: The adiabatic cooling causes the rela-

tive humidity, and thus the nucleation rate, to rise until the freezing probability is high enough to

allow ice nucleation . This corresponds merely with
::
ice

:::::::::
nucleation

::::::
occurs.

::::
Due

::
to

:::
the

::::::::
steepness

:::
of495

:
J
:::::
with

::::::
respect

::
to

:::::
RHi ,:::::::::

occurrence
:::

of
:::
ice

:::::::::
nucleation

::::::::::
corresponds

::::::::::::
approximately

:::
to a threshold in

relative humidity . According to Ren and Mackenzie (2005) , this threshold might be expressed as

RH i,crit = (2.349−T/259) · 100%, i.e. RH i,crit ≈ 140–150%
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(∼ 140− 150 %, see, e.g., Ren and Mackenzie, 2005; Kärcher and Lohmann, 2002) .

The stronger the dynamical forcing w, the stronger the nucleation event and the more ice parti-

cles form. Ice particle growth then reduces the relative humidity and hence the freezing rate is500

also reduced (see equation (19), last term) . The crystals, that have become large, fall out , thus

sedimentation reduces the ice crystal concentrations, which causes relative humidity to further increase

. In fact, sedimentation is the key process , which leads to different states in the cloud evolution. The

:::
and

:::::
hence

:::
the

:::::::::
nucleation

::::
rate

::
is

::::
also

:::::::
reduced.

:::::::
Crystals

:::::
grow

::
to

::::::
larger

::::
sizes

::::
and

:::::
begin

::
to

::::::::
sediment

:::
out

::
of

:::
the

:::
air

::::::
parcel.

::::::::::::
Sedimentation

:::::::
reduces

:::
ice

::::::
crystal

::::
mass

::::
and

::::::
number

:::::::::::::
concentrations,

::::
and

::::
thus505

:::::::
weakens

:::
the

::::::
growth

:::::
term.

::::
Then

:::::::
relative

:::::::
humidity

:::
can

::::::::
increase

::::
again

::::::::
allowing

:::
the

::::
cycle

::
to
::::
start

:::::
over.
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:::
The

::::::::::::
sedimentation

::::::
process

::::::
allows

::
for

::::::::::
oscillations

::
in

:::
the

::::::
system;

:::::::
without

:::::::::::
sedimentation

::::
(the

::::
only

::::
sink

::
for

:::
Nc:::

and
:::
qc):a::::::

steady
::::
state

::
at

::
ice

:::::::::
saturation

:::::
would

::
be

:::::::
reached

::::
soon

::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. Kärcher, 2002; Spichtinger and Gierens, 2009) .

::::
From

:::
the

:::::::::
numerical

::::::::::
simulations

:::
we

:::::
found

::::
that

:::
the system exhibits two qualitatively distinct be-510

haviours, depending on the parameter values of w and T .

State 1:
::::
First,

:::
we

:::
give

::
a
:::::::::
qualitative

::::::::
overview:

:

::::
State

::
1: At rather high temperatures and slow vertical velocities, the three competing microphysi-

cal processes
::::::::::
(nucleation,

::::::
growth,

:::::::::::::
sedimentation) are relatively slow and act on similar time

scales,
:
so none of them is dominant. In particular, freezing

::::::::
nucleation

:
rates are rather small in515

these cases, therefore only few ice crystals are formed initially,
:::::
which

:::::
grow

:::
and

::::
also

::::::::
sediment

::::
quite

::::::
slowly. The three processes are more or less in balance, resulting in a damped oscilla-

tion in all three variables, finally
:::
Nc, ::

qc,:::::
RHi , asymptotically reaching an equilibrium statein

numerical integrations of equations , as shown in figure 1. Note, that in this state, nucleation

is occurring continuously, as relative humidity remains above the freezing threshold
::::::
always520

::::::
present,

:::
as

::::::
strong

:::::::::::::
supersaturation

::::
with

:::::::
relative

::::::::
humidity

:::::
close

::
to

:::
the

:::::::::
nucleation

:::::::::
threshold

::::::
persists at all times and thus the nucleation rates are high enough to produce ice crystals

::::::::::
considerable

:::::::
amounts

::
of

:::
ice

:::::::
crystals

::::::::::
continuously. This results in smooth oscillations instead of sharp nu-

cleation events,
:::
as

::::::
usually

:::::::
expected

:::::::::::::::::::::::::::::::::
(see, e.g., Kärcher and Lohmann, 2002) . If the air parcel

is not disturbed and the vertical updraught remains unchanged
::
in

:::
the

::::
long

::::
term

::::::::
evolution, the525

cloud that forms will persist and will have
::::::
persists

:::
and

::::
has constant microphysical proper-

ties. The cloud in the steady state typically contains low crystal concentrations. The dynamic

equilibrium remains at high supersaturations, i.e. is far
:::
the

:::::
cloud

::::
stays

:::
far

::::
away

:
from thermo-

dynamic equilibrium. The cloud properties are discussed quantitatively in section ?? in more

detail.530

State 2:

::::
State

::
2: When increasing w or decreasing T , respectively, to a certain level, there is no damping and

stationarity is not reached
:::::::::
oscillations

:::
in

:::::::
variables

::::::::::
Nc, qc,RHi:::

are
:::
not

:::::::
damped

:
anymore (see

figure 2) because the processes are not in balance in this case
:::
and

::
no

::::::::::
asymptotic

::::::::::
equilibrium

:::
can

::
be

::::::::
observed

::::
(as

:::
e.g.

::
a
:::::
point

::
in

::::::
phase

:::::
space). Instead, we obtain pulse-like nucleation535

with distinct nucleation events and the nucleation rates fall far below the critical rates at

RH i,crit:::::::
followed

:::
by

:::::
phases

::::
with

::::::
almost

::::::::
vanishing

:::::::::
nucleation

:::::
rates

:
at
::::
low

::::::
relative

:::::::::
humidities.

The amplitude of the oscillation is very large in all variablesand the
:
;
:::
due

::
to

::::::::::::
sedimentation ice

particle concentration is reduced to a small fraction of the maximum value once in a period.

At colder temperatures and faster vertical velocities, the nucleation rates are much higher,540

so freezing
::::::::
nucleation

:
is the dominant process in the beginning,

:::::::
leading

::
to

:::::
pulse

:::::::::
nucleation

:::::
events. After a while, ice crystal growth becomes dominant and when the crystals have become
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large, sedimentation sets in and crystal numbers decrease rapidly. Finally, the cycle starts over.

In this case, the freezing
:::::::::
nucleation events are clearly separated, as opposed to the first case.

In
:::
For

:::
the

::::
time

::::::::
evolution

:::
we

::::
find

::::
that

::
in

:
the beginning, the amplitude in the three variables545

decreases slightly from one event to the next, but after a while, the amplitude stays constant.

The system reaches
:::::::::
Therefore,

:
it
::::::
seems

:::
that

:::
the

::::::
system

::::::::::::
asymptotically

::::::::::
approaches a limit cy-

cle , through which it passes over and over periodically
::::::::::::::
(one-dimensional

::::::::
attractor). This kind

of scenario was
:::
also observed in former studies (e.g. Spichtinger and Cziczo, 2010; Kay et al.,

2006) .
:::
but

:::
not

::
in

:
a
::::
long

::::
term

:::::::::
behaviour.

:
550

:::::::::
Obviously,

::
we

::::
find

:::
two

:::::::::::
qualitatively

:::::::
different

:::::
states

::
in

::
the

:::::::::
numerical

:::::::
solution

::
of

::
the

::::::
model,

:::::::::
depending

::
on

:::::::::
parameters

::
w

::::
and

::
T ,

:::::::::::
respectively.

::::
Next,

:::
we

:::::::::
investigate

:::
the

::::::
model

::
by

::::::
means

::
of

:::::::::
qualitative

::::::
theory

::
of

::::::::
dynamical

::::::::
systems.

In the following section, we conduct a classical dynamical system analysis of the ODE system

.Then, we discuss the properties of the modeled cloud555

3.2
:::::::::
Qualitative

:::::::::
behaviour

::
of

:::
the

::::::
model

:::
For

:
a
::::
first

::::::::::
investigation

:::
we

:::::::
discuss

:::
the

:::::::
different

:::::
terms

::
in

::::::::
equations

::::
(25).

:

:::
The

::::::
model

::
is

:::::
driven

:::
by

:::
an

:::::::
external

::::::
source;

:::::::
vertical

:::::
lifting

:::
of

:::
the

:::
air

:::::
parcel

:::::
leads

::
to

:::::::
increase

:::
of

::::::
relative

::::::::
humidity.

:::::
Since

:::::::::::
temperature

:::
and

::::::::
pressure

:::
are

::::
kept

::::::::
constant,

:::
the

::::
term

::::::::::
e ·w ·RH i:::::::

implies

:
a
:::::::::
permanent

:::::
water

:::::::
vapour

::::::
source,

::::::
which

::
is
:::::::::

necessary
:::
for

::::::::
studying

:::
the

:::::
long

::::
term

:::::::::
behaviour

:::
of560

::
the

:::::::
model.

:::
The

:::::::::
artificially

::::::::
produced

:::::
water

:::::::
vapour

::::
leads

:::
to

::::::
particle

::::::::::
generation.

:::::
Thus,

:::
the

:::::
terms

:::
of

::::::::
nucleation

::::
and

::::::
growth

:::
can

::
be

::::
seen

::
as

:::::::
internal

::::::::::::
transformation

:::::
terms.

:::::::
Finally,

:::::::::::
sedimentation

::::::
terms,

:::
i.e.

−b ·N1−δ
c qδc and compare it to other models and observations.−c ·N−δc qδ−1

c ,
::::::
remove

::::::::
particles

::::
(and

:::
thus

:::::
water

:::::
mass)

:::::
from

:::
the

::::::
model,

::
so

::::
they

::::::::
constitute

:::::::
internal

::::
sinks

:::
for

:::::
cloud

::::::::
variables.

::::::::::::
Qualitatively,

::
the

:::::::
external

:::::::
sources

::
of

:::::
water

:::::::
initiate

::::::
particle

::::::::::
generation;

:::::::::
diffusional

::::::
growth

:::::
terms

:::::::::
transform

:::::
water565

::::::
vapour

::::
mass

::::
into

:::::
cloud

::::
mass

::::
until

:::
the

:::::
mass

::
is

:::
lost

:::
by

:::
the

::::::
internal

:::::
sinks

::
of

:::::::::::::
sedimentation.

:::::
Thus,

:::
the

:::::
model

:::
can

:::
be

::::
seen

::
as

:::
an

:::::::::
externally

::::::
forced

:::::::::
dissipative

::::::
system

:
.
:::::
Note,

:::
that

:::
the

::::::
model

::::
does

:::
not

:::::
fulfil

::::
mass

:::::::::::
conservation

:::
due

:::
to

:::
the

::::::
sources

::::
and

:::::
sinks

::
of

:::::
water

::::::
vapour

::::
and

:::::
cloud

:::::
mass,

::::::::::
respectively.

::::
All

::::
terms

::::::
except

::
of

:::
the

:::::::
cooling

::::
term

:::::::::
e ·w ·RH i:::

are
:::::::::
non-linear

::
in

::::::::
variables

::::::::::
Nc, qc,RH i .:

:::
For

:
a
::::
first

:::::::
analysis

:::
we

:::::::
compute

:::
the

:::::::::
divergence

::
of

:::
the

::::::
system

::::
(i.e.

:::
the

::::
trace

::
of

:::
the

::::::::
Jacobian

:::::
DF):570

∇ ·F
::::

=−
[
(b(1− δ) + c(1 + δ))N−δc qδc + fN1−αi

c qαic
]

+ e ·w+ dαi(RH i − 100%)N1−αi
c qαi−1

c
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

=−
[
(b(1− δ) + c(1 + δ))mδ + fNcm

αi
]

+ e ·w+ dαi(RH i − 100%)mαi−1

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(27)

::::
using

:::
the

:::::
mean

::::
mass

::::::::::
m= qc/Nc:::

for
:::::
cloudy

::::::
states.

:::
For

::::
clear

:::
air

::::::::::::
(Nc = qc = 0),

:::
we

:::::
obtain

::::::::::::::
∇ ·F = e ·w > 0

:
,

:::::
hence

:::
the

::::::
system

::
is

::::::::
expanding

::
in
::::::

phase
:::::
space.

:::
For

::::::
cloudy

:::
air

:::::::
(m 6= 0)

:::::
there

:
is
::::::::::
competition

::::::::
between575

:::::::
different

:::::
terms

::::::::::
determining

:::
the

::::
sign

::
of

:::::
∇ ·F .

::::::::::::
Sedimentation

::::
and

::::::
change

::
of

:::::::
relative

:::::::
humidity

::::
due

::
to

:::::::::
diffusional

::::::
growth

::
are

:::::::::
dissipative

:::::
terms

::::
(i.e.

:::::::
negative

:::
sign

::
in
::::::::
equation

:::::
(27)),

::::
while

:::
the

:::::::
external

::::::
source
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::::
term

::::::
always

:::
has

:
a
:::::::
positive

::::
sign.

::::::::::
Diffusional

::::::
growth

::
of

:::
ice

:::::::
particles

:::
can

::::::
change

:::
its

:::
sign

:::::::::
depending

:::
on

::
the

::::::::::::::
thermodynamic

::::
state.

:::::
Since

:::
we

::::::
always

:::::::::
investigate

::
a
:::::::
situation

::::
with

::::::
w > 0,

:::
the

:::::::
system

::::
stays

::
in

::
a

::::::::::::
supersaturated

::::
states

:::::::::::::::::
(RH i − 100%> 0),

::::::::
therefore

:::
the

:::
last

::::
term

::
in

::::::::
equation

::::
(27)

:
is
::::::::
positive.580

:::
The

:::::::
balance

::
of

:::::
terms

::
in

:::::::
equation

:::::
(27),

::
i.e.

:::
the

::::
sign

::
of

:::::
∇ ·F

:::
for

::::::
cloudy

:::
air

::
is

:::::::
crucially

::::::::::
determined

::
by

:::
the

:::::
mean

:::::
mass

::
of

::::
the

:::::
cloud.

:::::
Note

::::
that

:::
for

::::
both

:::::::::
exponents

:::
we

::::
have

::::::::::::::
0< αi < δ < 1,

::::
and

::::
thus

::::::::::::::
−1< αi− 1< 0.

:::
For

:::::
large

:::
ice

::::::
crystal

:::::
mass,

:::
the

:::::
terms

::
of

::::
form

::::
mδ

:::
will

:::::::::
dominate,

::::
thus

::::::
leading

::
to

::
a

:::::::
negative

::::
sign

::
of

:::::
∇ ·F

:::
and

::
to

:::::::::
dissipation

:::
of

:::
the

::::::
system,

::::::
mainly

::::
due

::
to

::::::::::::
sedimentation

::
of

:::
ice

:::::::
crystals.

::::
This

:
is
:::::::::

especially
:::
the

::::
case

::
at

::::::
higher

:::::::::::
temperatures,

:::::
since

::::
then

:::::::::
diffusional

::::::
growth

::
is
:::::
faster

::::
and

:::::
mean585

::::::
masses

::
m

::::
tend

::
to

:::::
larger

::::::
values.

::
In

::::
such

::::::
cases,

:::
the

::::::
system

::::
tends

::
to
:::::
state

::
1.

:::
For

::::
very

:::::
small

:::
ice

:::::::
crystals,

:::
the

:::::
term

::::::::
including

::::::
mαi−1

::::
will

::::::::
dominate

:::::::
leading

::
to

::
a
:::::::
positive

::::
sign

::
of

:::::
∇ ·F .

::::
For

::::::::
instance,

::
at

:::::::::
nucleation

::::::
events,

:::
the

:::
ice

::::::
crystal

:::::
mass

:::::::
becomes

::::
very

::::::
small,

::::
thus

::
in

::::
this

:::::::
situation

:::
the

::::::
system

:::::
tends

::
to

::::::
expand

:::::::::
explosively

:::::::::::
(∇ ·F > 0).

:::
The

:::::
same

::
is

:::
true

::
if
::::::
almost

::
all

::::::::
particles

::::
have

:::::
fallen

:::
out

:::
and

::::
only

:::::
small

:::
ice

:::::::
crystals

:::
are

::::::::
contained

::
in

:::
the

:::
air

::::::
parcel.

:::::
These

::::::::
scenarios

:::
are

:::::
more590

:::::::
prevalent

::
at
::::
state

::
2,
:::
i.e.

::
at
:::::
lower

:::::::::::
temperatures

::::
and

:::::
higher

:::::::
upward

::::::::
velocities.

:

3.3 Mathematical analysis
:::::
Linear

::::::::
stability

::
of

:::
the

::::::
system

In a first step, the dynamical system (25) can be characterised by its critical points x0, i.e. the

values
:::::
points

::
in

::::::
phase

:::::
space

:
where F (x0) = 0. Since the system is autonomous the critical

::
or

::::::
singular

:
points are equilibrium points. The critical points of the

:::::
states

::
of

:::
the

::::::
system.

::::
The

::::::::::
equilibrium595

:::::
points

::
of

::::
this

:
system cannot be determined analytically. However, under the assumption that the

nucleation term NUC q for qc is negligible (it is several orders of magnitude smaller than the

other terms in equation ), it is possible to rearrange the equations (without losing any positive

solutions) in a way that only one equation for RH i has to be solved numerically. The critical ,
::::
due

::
to

:::::
strong

::::::::::::
nonlinearities.

:::
We

:::::::::
determine

:::
the

:::::
roots

::
of

:::
the

::::
right

:::::
hand

::::
side

::
of

::::::
system

::::
(25)

:::::::::::
numerically.600

::::
First,

:::
we

:::::::
observe

::::
that

:::
the

:::::
mass

::::
rate

::
of

:::::::::
nucleation

::::::::::::::::::::::::::::

dqc
dt

∣∣
nucleation = a ·m0 · J(RHi ,T )

::
is

:::::::::
negligible

::::::::
compared

::
to

:::::
other

:::::
mass

::::
rates

::
in

:::
the

::::::
system

::::
and

:::
can

:::
be

:::::::
omitted

:::
for

::::::::::::
simplification.

::::
This

:::::
leads

::
to

::
a

:::
new

::::::
system

::::::::::
ẋ = F̃ (x).

:::::
After

:::::
setting

::::::::::
F̃ (x) = 0,

:::
the

::::
three

::::::::
resulting

::::::::
equations

:::
can

:::
be

::::::::
combined

::
to

::
a

:::::
single

:::::::
equation

:::
for

::::
RHi::

as
:::::::
follows:

:

a · J(RH i ,T ) =
e ·w · b
f

·
(
d

c

) δ−αi
δ+1−αi

·RH i · (RH i − 100%)
1

αi−1+δ .

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(28)605

:::
For

:::::
details

:::
of

:::
the

::::::::
derivation

::
of

::::
this

:::::::
equation

:::
see

::::::::
appendix

::
C.

::::
The

::::
roots

:::
of

:::::::
equation

:
((28)

:
)
:::::::::
determine

::
the

::::::::::
equilibrium

::::::
values

::
of

:::::
RHi .:::::

Then,
:::
the

:
values of Nc and qc can be derived analyticallyfrom that.
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This equation reads:

4π

3

na
ρ
r3
m exp

(
1

2
(3ln(σr))

2

)
J(RH i,T )

=
γc(T,p)gwMair (Lice/cp− 1)

∆zRTπρCi
· r

δ
2 (δ−1)(αi−1)−αi2 (αi−1)
0610

·
(
περDvCiei∆z

γc(T,p)pi
·
(

RH i

100%
− 1

))δ−αi RH i

RH i− 100%
.

Equation
:
.
:::::::
Equation

:
(28) has a unique solution because the left-hand side is a strictly monotonic in-

creasing function of RH i ::::
RHi and the right-hand side is strictly monotonic decreasing. Therefore,

there exists a unique critical point, x0, in the relevant domain of the phase space (RH i > 100%
:::::::::::
RHi > 100 %,

Nc > 0, qc > 0).
:::
The

:::::
roots

::
of

:::::::
equation

::::
(28)

:::
are

::::::::::
determined

::::::::::
numerically

:::
for

:::
the

:::::::
relevant

:::::::
domain

::
in615

::
the

:::::::::
parameter

:::::
space,

:::
i.e.

:::::::::::::::::
0<w ≤ 0.05 m s−1

::::
and

:::::::::::::::
190≤ T ≤ 235 K.

In order to examine the qualitative behaviour of the solution in a neighbourhood of the equilibrium

state, the ODE system is linearised about the critical point x0:

ẋ = F (x0) +DF
∣∣
x0

(x−x0) +O(|x−x0|2), (29)

where DF|x0
is the Jacobian of F evaluated at the point x0.

::::
Note

::::
that

:::::::::
F (x0) = 0

:::
by

::::::::
definition.

:
The620

three eigenvalues of the Jacobian, λ1,λ2,λ3, determine the quality of the critical point (Verhulst,

1996, Chapter 3). The
:::::::::
eigenvalues

:::::
must

::
be

:::::::::
determined

::::::::::
numerically

:::
for

:::
the

:::::::
relevant

::::::::
parameter

::::::
values

:
w
::::

and
:::
T .

:::
The

:
Jacobian of the system has two complex conjugate eigenvalues, λ1 and λ2:::::::

λ1,2 ∈ C,

whose real part can be positive or negative, depending on the parameters, w and T .
::
In

:::::
figure

::
3

:::
the

:::::
values

::
of

:::
the

::::
real

::::
part

:::::::
Re(λ1,2)

::::
and

:::
the

:::::::
absolute

:::::
value

::
of

:::
the

:::::::::
imaginary

:::
part

:::::::::
|Im(λ1,2)|

:::
are

:::::::
shown.625

The third eigenvalue, λ3 ∈ R, is always negative,
::::::
values

:::
are

:::::
shown

::
in
::::::
figure

:
4.

If
:::::::
Complex

::::::::::
eigenvalues

::
of

:::
the

::::::::
linearised

::::::
system

:::::::
indicate

:::::::::
oscillatory

:::::::::
behaviour,

:::::
which

::
is

::::::::
prevalent

::
in

::
all

::::::::::
simulations.

:::
As

::::
can

::
be

::::
seen

::
in

::::::
figure

::
3, the real part of the complex conjugate eigenvalues is

negative (Re(λ1) = Re(λ2)< 0) ,
:::::::::
eigenvalues

::::
λ1,2:::

can
:::::::
change

::
its

::::
sign

:::::::::
depending

::
on

::::::::::
parameters

::
w

:::
and

::
T .

:
630

:::
For

:::::::
negative

::::::
values

:::
of

:::
the

::::
real

::::
part

:::::::::::::
(Re(λ1,2)< 0)

:
the critical point

:::
x0 is a positive attrac-

torin equation , which means that a solution that starts ,
:::
i.e.

::::::::
solutions

:::
of

:::
the

:::::
ODE

::::
(29)

:::::::
starting

in a neighbourhood of x0 will asymptotically converge to x0 (Verhulst, 1996) . This corresponds

to state 1, i.e. the damped oscillation where the system reaches stationarity
:::
this

::::
point

:::::::::
approach

:::
this

:::::
point

::::::::::::
asymptotically

:::::::::::::::::::::::
(Verhulst, 1996, Chapter 2) .

:::::
More

::::::::
precisely,

::::
this

:::::::::
equilibrium

:::::
point

:::
can

:::
be635

:::::::::::
characterised

::
as

:::::
stable

:::::
focus

::::::::::::::::::::::::::::::::::
(e.g. Verhulst, 1996; Argyris et al., 2010) . According to the Poincaré-

Lyapunov theorem (Verhulst, 1996, theorem 7.1), positive attraction in the linearised system is also

valid for the full non-linear system
:::::::
nonlinear

::::::
system

::::
(25). Therefore, x0 is asymptotically stable and

acts as a positive
::::
point

:
attractor in equation in state(25)

:
.
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::::
This

::::::::::
equilibrium

:::::
point

::::::
(stable

::::::
focus)

::::::::::
corresponds

::
to
:::::

state
:
1 (damping state)

::
in

:::
the

:::::::::
numerical640

::::::::::
simulations.

::::::::
Solutions

::
of

:::
the

::::::
system

::::
(25)

:::::::::
experience

:::::::
damped

::::::::::
oscillations

::::
until

::::
they

:::::::::::::
asymptotically

:::::::
approach

:::
the

:::::
stable

:::::::
attractor

::
in

:::::
phase

:::::
space.

::::
The

::::::::
imaginary

::::
part

::
of

:::
the

:::::::
complex

::::::::::
eigenvalues

:::::::::
determines

::
the

:::::::::
oscillation

::::::
period. Figure 5 shows the trajectory of a solution of the system (25) in the 3D phase

space, spiralling towards the equilibrium point, i.e. the positive attractor.

In case of undamped oscillation (state 2), the real part of the complex eigenvalues is positive645

(Re(λ1) = Re(λ2)> 0).

:::
For

::::::
positive

::::::
values

::
of

:::
the

:::
real

::::
part

:::::::::::::
(Re(λ1,2)> 0)

::
the

::::::
critical

:::::
point

:::
x0 ::

is
:
a
:::::::
negative

:::::
point

:::::::
attractor

:::::::
(unstable

::::::
focus).

::::::::
Solutions

:::::::
starting

::
in

:
a
::::::::::::
neighbourhood

::
of

:::
x0:::

run
:::::
away

::::
from

:::
the

:::::::
unstable

::::::::::
equilibrium

:::::
point.

::
In

:::
this

:::::
case,

:::
the

:::::::::::::
characterisation

:::
of

::
an

::::::::
unstable

::::::
critical

:::::
point

::
in

:::
the

::::::::
linearised

::::::
system

::
is
::::

not

:::::::
sufficient

::::
for

:
a
:::::::

general
::::::::::::::
characterisation

::
of

::::
the

:::
full

:::::::::
nonlinear

:::::::
system,

:::::
since

::::
after

:::::
short

::::
time

::::
the650

:::::::
solutions

:::
are

::::
too

:::
far

:::::
away

:::::
from

:::
the

::::::::::
equilibrium

::::::
points.

:::::::::
Numerical

::::::::::
integration

::::::
shows

:::::::::
undamped

:::::::::
oscillations

:::
for

::::::::
solutions

::::
that

:::
do

:::
not

:::::
start

::
in

:::
the

::::::::::
equilibrium

::::::
point;

::::
this

::::::::
behaviour

::::::
points

::
to
::::

the

::::::::
possibility

:::
of

:
a
:::::

limit
:::::
cycle

:::::::::::::::
(one-dimensional

::::::::
attractor).

:
The transition from positive

::::
point

:
attrac-

tor to limit cycle is a so called Hopf bifurcation (Verhulst, 1996) and is associated with a transition

from two conjugate complex eigenvalues with negative real part to two conjugate complex eigenval-655

ues with positive real part, via two purely imaginary eigenvalues. The bifurcation diagram is a line

in w-T -space that separates the two regimes positive attraction vs. limit cycle (see figure 7). The

bifurcation points were identified numerically using the eigenvalue criterion, Re(λ1) = Re(λ2) = 0.

The limit cycle was determined numericallyby computing
::
For

:::::::::
vanishing

::::
real

:::
part

:::
of

::::
λ1,2,

::::
the660

::::
Hopf

:::::::::
bifurcation

:::::::
occurs.

:::
The

::::::::
existence

::
of

:
a
:::::
limit

::::
cycle

::::::
cannot

:::
be

:::::
shown

::::::::::
analytically

:::
for

:::
this

:::::::
system;

:::::::
however,

:::
we

:::
can

:::::::::
determine

:::
the

::::
limit

:::::
cycle

:::::::::::
numerically.

:::
For

:::
this

::::::::
purpose,

:::
we

:::::::
compute

:
the Poincaré

map of the system (Argyris et al., 2010; Verhulst, 1996). Choose
:::
We

::::::
choose a two-dimensional plane

Σ in the phase space, which is transverse to the trajectory of the solution of equation (26); Σ is called

Poincaré section. The sequence of points in the phase space where the trajectory crosses Σ converges665

numerically to the the point on the limit cycle that is in Σ. Once we find one such
:
a point on the limit

cycle, we can use it as the initial condition in (26) to compute the complete limit cycle. However,

since this method requires numerical integration of equation , it is not of further interest for the

analytical investigation
::
An

:::::::
example

:::
of

:
a
::::::::
Poincaré

::::::
section

:::
for

::::::::::
determining

:::
the

:::::::::
respective

::::
limit

:::::
cycle

:
is
::::::

shown
:::
in

::::::::
appendix

::
D

::::::
(figure

::::
16).

::::
The

::::
limit

:::::
cycle

:::::
itself

:::::::::
constitutes

::
a

::::::::::::::
one-dimensional

:::::::
positive670

:::::::
attractor,

:::
i.e.

::::::::
solutions

:::::::
starting

::::::
outside

:::
of

:::
the

::::
limit

:::::
cycle

::::::::
approach

:::
the

:::::
limit

:::::
cycle

:::::::::::::
asymptotically.

:::::
Figure

::
6

:::::
shows

:::
the

::::::::
trajectory

::
of

::
a

::::::
solution

:::
of

::
the

::::::
system

:
(25)

:
in

:::
the

:::
3D

:::::
phase

:::::
space,

:::::::::::
approaching

:::
the

::::
limit

:::::
cycle,

:::::
which

:::::::::
constitutes

::
a
::::::
warped

:::::
circle

::
in

:::::
phase

::::::
space.

:::
The

::::::::
transition

:::::::
between

:::
the

::::
two

::::::
general

:::::
states

::
of

:::
the

::::::
system

::::::
(stable

:::::
point

:::::::
attractor

:::
vs.

::::
limit

::::::
cycle)

:::
can

::
be

::::::::::
represented

:::
in

:
a
::::::::::
bifurcation

:::::::
diagram

::
of

:::
the

::::::::::
w-T -space

::::::
(figure

:::
7).

:::
The

::::::::::
bifurcation

:::::
point

::
is675
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:
a
:::::::
function

::
of

::::
both

:::
w

:::
and

:::
T .

:::
The

::::::::
different

:::::
states

:::
are

::::::::
separated

::
by

::::::
points

::::
with

::::::::
vanishing

::::
real

:::
part

:::
of

:::::::::
eigenvalues

:::::
λ1,2,

:::::::
indicated

:::
by

:::
the

::::
thick

:::::
black

::::
line.

:::
The

:::::::::
bifurcation

::::::
points

::::
were

:::::::
obtained

::::::::::
numerically.

3.4 Discussion of results
:::::::::::
Quantitative

::::::::
overview

::::
After

:::::::::
discussing

:::
the

::::::::
different

:::::
states

:::
of

:::
the

::::::
system

:::::::::::
qualitatively,

:::
we

::::
now

::::
give

:::
an

::::::::
overview

::
of
::::

the

:::::::::
quantitative

:::::
cloud

:::::::::
properties

:::
and

::::::
relative

::::::::
humidity

::
for

:::
the

:::::
point

:::::::
attractor

:::
and

:::
the

::::
limit

:::::
cycle,

::::::::::
respectively.680

In the “
::::
point

:
attractor” regime

::::::
(stable

:::::
focus), i.e. state 1

::::
state

::
1 of the system, the critical point

corresponds to the equilibrium values within the finally persisting cloud. Hence, in this parameter

regime, we describe the properties of the modeled cloud by the values of the system variables at

the critical point. For the “limit cycle” regime,
:::
i.e.

::::
state

::
2

::
of

:::
the

:::::::
system, the critical point does not685

describe the changing properties of the cloud since it is only in the centre of the periodic orbit and

the trajectory does not approach it. A more revealing measure for the cloud properties in this regime

is a probability density of the values the variables take in
::::
along

:
the limit cycle, or at least median,

maximum and minimum values.

Figure 8 shows ice crystal mass and number concentrations, respectively, at the critical point, x0,690

as a function of vertical velocity (qc(w), Nc(w)) for different temperature regimes. The solid lines

in both panels correspond to state 1 (attractor regime
::::
point

:::::::
attractor

:::::::
regime,

:::::::
damped

::::::::::
oscillations),

whereas the dashed lines indicate the values at the critical point, x0, for state 2 (limit cycle regime
:
,

::::::::
undamped

::::::::::
oscillations); note that for state 2, x0 is an unstable focus.

Ice crystal number concentrations at the critical point take values in the range 3× 102 kg−1 ≤Nc ≤ 2× 105695

kg−1
:::::::::::::::::::::::::::::
3× 102 kg−1 ≤Nc ≤ 2× 105 kg−1 (figure 8, top), which corresponds to ice crystal number

densities of 0.1L−1 ≤ nc ≤ 110L−1
::::::::::::::::::::
0.1 L−1 ≤ nc ≤ 110 L−1. Ice crystal mass concentration ranges

between 4× 10−9 ≤ qc ≤ 3× 10−6 kg kg−1
:::::::::::::::::::::::::::::
4× 10−9 ≤ qc ≤ 3× 10−6 kg kg−1 (figure 8, bottom).

This corresponds to an ice water content of 2.2× 10−9 ≤ IWC ≤ 1.4× 10−6 kgm−3
::::::::::::::::::::::::::::::::::
2.2× 10−9 ≤ IWC ≤ 1.4× 10−6 kg m−3.

As expected from theory
::::::::::::::::::::::::::::
(e.g. Kärcher and Lohmann, 2002) and from former numerical investiga-700

tions (e.g. Kärcher and Lohmann (2002) )
::::::::::::::::::::::::::::::
(e.g. Spichtinger and Gierens, 2009) , the ice crystal num-

ber concentrations display a strong increase with rising vertical velocity. Due to increased crystal

growth rates at higher temperatures, Nc decreases with rising T .

In the double logarithmic representation in figure 8, the number concentrations Nc(w) at x0

appear as straight lines. For different temperature regimes, there seems to be a constant shift between705

the curves Nc(w)(i.e. a constant factor c(T)), leading to parallel lines in the double logarithmic

representation.

For the limit cycle regime (state 2), we can still derive the values of mass and number con-

centrations at the critical point, x0. However, since this point is unstable and is never reached
::
an

:::::::
unstable

:::::
focus, another representation is needed to describe the range of ice crystal concentrations.710

As indicated in figures 7 and 8, the limit cycle behaviour occurs for temperatures T < 230K for
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the investigated updraught regime 0≤ w ≤ 0.05ms−1. Thus, in figure 9 we represent maximum

, median
::::::
present

:::::::::
maximum

:
and minimum values

::::::
(dashed

:::::
lines)

::::
and

:::::::
median

:::::
values

:::::::::::
(dot-dashed

::::
lines)

:
for ice crystal number concentrations (dashed lines) in the limit cycle regime for temperatures

T = 190, 200, 210, 220K. In addition, the ice crystal number concentration at the critical point, x0,715

is displayed
:::::
(solid

::::
lines). We observe a large variation in the number concentrations of up to two or-

ders of magnitude
::::::
relative

::
to

:::
the

:::::::
median. This behaviour is reasonable since sedimentation reduces

the amount of ice crystals in a dominant manner, while new ice crystals are formed by nucleation in

a pulsating way.
::::
The

:::::::
absolute

:::::
values

:::
are

::
in

:::
the

:::::
range

:::::::::::::::::
0.2≤ nc ≤ 200 L−1.

:

The mass concentration of the ice crystals is largely determined by
:::
the

::::::::
efficiency

::
of

:
diffusional720

growth. As indicated in the model description (section 2), this term depends on temperature and

also on number concentration, leading again to an exponential behaviour
:
a

:::::
power

::::
law

::::::::::
relationship

as represented in figure 8 (bottom) and to a constant factor
::::
shift between the different temperatures,

represented as parallel lines.

For the
::::
point

:
attractor regime, we can directly investigate the mean mass of the ice crystals,725

m= qc/Nc, at x0, which is displayed in figure 10. The variation of m at the critical point due

to the vertical velocity is marginal, as indicated in the figure. Thus, we can assume that m can be

approximated by a function of temperature. The mean mass at x0 ranges betweenm∼ 10−12 kg and

m∼ 2× 10−10 kg, which corresponds to mean sizes between L∼ 16µm and L∼ 134µm. For the

limit cycle regime (state 2), we indicate the variation in the mean mass by box and whiskers plots,730

displaying the median value (red markers) as well as 25/75% percentiles and minimum/maximum

values. Note here that variation of mean mass is usually of one order of magnitude. For cold temper-

atures the variation is larger due to a higher variability in ice crystal number concentration (see figure

9), whereas the mass concentration in ice clouds is mainly dominated by available water vapour.

::
As

::::::::
indicated

::
in
:::::::

section
:::
3.3,

::::
the

::::::::
imaginary

::::
part

::
of
::::

the
:::::::
complex

::::::::::
eigenvalues

::::
λ1,2::::::::::

determines
:::
the735

:::::
period

::
of

:::
the

::::::::::
oscillations

::
in

::::
state

::
1
::::
near

:::
the

::::::::::
equilibrium

:::::
point.

::
In
::::::

figure
::
11

:::
the

::::::
period

:::::::::::
τ = 2π

Im(λ1,2)

::
as

:::::::::
calculated

::::
from

:::
the

:::::::::
imaginary

::::
part

::
is

::::::
shown

:::
for

:::
the

::::::
stable

:::::
focus

:::::
(solid

:::::
lines,

:::::::
colours

:::::::
indicate

:::::::
different

::::::::::
temperature

::::::::
regimes).

:::
For

:::
the

::::::::
unstable

:::::
focus,

:::
the

:::::::::
imaginary

:::
part

:::
of

:::
the

::::::::::
eigenvalues

::
is

:::
not

::::::::::
meaningful,

::
as

:::
the

::::
limit

:::::
cycle

::
is

:::
not

:::::
within

:::
the

:::::
linear

::::::
regime

:::
of

:::
x0.

:::::::
Instead,

:::
the

::::::
periods

::
of

:::
the

:::::
limit

::::
cycle

::
is

::::::
shown

::::::
(dashed

:::::
lines,

:::::::
colours

:::::::
indicate

:::::::
different

::::::::::
temperature

:::::::
regimes)

:::
as

::::::::
calculated

:::::
from

:::
the740

:::::::
Poincaré

::::
map.

:::::
Note

:::
that

:::
for

:::::::::
decreasing

::::::::::
temperature

:::
the

::::::
period

:
τ
::::::::
becomes

::::
very

:::::
large.

3.5 Comparison with other simulations
::::::::::
observations

For comparison with a more complex and realistic model we carry
::::::::::
observations

:::
we

:::
first

::::::::
consider

::
in

:::
situ

::::::::::::
measurements

::
of

:::
ice

::::::
crystals

::
in

:::::::::
subvisible

:::::
cirrus

::::::
clouds.

:::::
Since

::
it

:
is
::::
very

:::::::
difficult

::
to

:::::::
measure

::::
low

::::::
number

:::::::::::::
concentrations,

::::
only

::::
few

:::::::::::
measurement

::::::
studies

:::
are

:::::::::
available.

:::
We

:::::::
compare

::::
our

:::::
results

:::::
with745

:::::::::::
measurements

:::
by

:::::::::::::::::::
Kübbeler et al. (2011) ,

:::::::::::::::::::::
Lawson et al. (2008) and

::::::::::::::::
Davis et al. (2010) .
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:::
Our

:::::
model

::::::
results

::::
lead

::
to

::
ice

::::::
crystal

:::::::
number

::::::::::::
concentrations

::
in

::
the

:::::
range

::::::::::::::::::::::
0.1L−1 ≤ ρNc ≤ 200L−1

:::
and

:::::
mean

:::
ice

::::::
crystal

::::
sizes

::
in

:::
the

:::::
range

:::::::::::::::::::::
∼ 16µm≤ L≤ 134µm.

:::::
Note,

:::
that

:::
the

::::::::
variation

::
in

:::::::
number

::::::::::::
concentrations

::::
span

::::
over

::::
three

::::::
orders

::
of

:::::::::
magnitude

:::
and

:::
the

:::::::
variation

::
in

:::::
mean

::::
sizes

::
is
::::
still

:::::
within

::::
two

:::::
orders

::
of

:::::::::
magnitude.

::::::
These

:::::
values

:::::
agree

::::
quite

::::
well

::::
with

:::
the

::::::::::::
measurements.

::::::::::::::::::::::::::
Kübbeler et al. (2011) observed750

::::
quite

::::
high

:::::::
number

::::::::::::
concentrations

::
in

::::
order

:::
of

:::::::::
∼ 100L−1

:::
for

::::
small

:::
ice

:::::::
crystals

::::::::::
(L∼ 10µm)

:::
but

:::::
quite

:::
low

:::::::
number

::::::::::::
concentrations

:::::::::::::::::
0.1≤ ρNc ≤ 10L−1

::
for

:::::
large

:::
ice

::::::
crystals

:::::::::
(equivalent

::::::
radius

::::::::::
r > 50µm).

::::::::::::::::::::::::
Lawson et al. (2008) reported

::
ice

::::::
crystal

:::::::
number

::::::::::::
concentrations

::
in

::
the

:::::
range

:::::::::::::::::::::
22.5≤ ρNc ≤ 188.8L−1

::::
with

::::
mean

:::::
value

:::
and

:::::::
standard

::::::::
deviation

::::::::::::
66± 30.8L−1

:::
for

::
ice

:::::::
crystals

::
in

:::
the

:::
size

:::::
range

::::::::::::::
1≤ L≤ 200µm.

::::::
Finally,

:::::::::::::::::::::::
Davis et al. (2010) reported

::::
very

:::
low

:::
ice

::::::
crystal

:::::::
number

::::::::::::
concentrations

::::
with

::
a
:::::
mean

:::::
value755

::
of

:::::
2L−1

:::
and

:::::
mean

::::
sizes

::
of

::::::
14µm

:::::
during

:::
the

:::::::
tropical

:::::::::::
measurement

::::::::
campaign

:::::
TC4.

::::::::
However,

::
in

::::
their

::::
study

::::::
values

::::
from

::::::
former

:::::::::::
measurement

:::::::::
campaigns

:::
are

:::::::
reported

::
to

::
be

::
in

:::
the

::::
range

::::::::::::::::::
10≤ ρNc ≤ 100L−1

:::
and

:::
for

:::::::
effective

::::
radii

::::::::::::::
10≤ r ≤ 20µm.

::
In

::
a
::::::
second

::::
step

:::
we

::::::
expand

:::
our

::::::::::
comparison

::
to

:::::::::::
observations

::::
from

::::::
remote

:::::::
sensing.

:::::
Since

::::::
SVCs

:::
are

:::::::
optically

:::::
very

::::
thin,

:::
we

:::::::::
investigate

:::
the

:::::::::
extinction

:::::::::
coefficient

::
for

:::
the

::::::
visible

::::
part

::
of

:::
the

::::::::
spectrum.

::::
For

:::::::::
comparing

:::
our

::::::
results

::::
with

::::::::::::
measurements,

:::
we

::::::::
calculate

:::
the760

::::::::
extinction

::
β

::
in

:::
the

::::
solar

:::::
range

:::::
using

::::::::::::::
parameterisations

:::
by

:::::::::::::::::
Fu and Liou (1993) :

:

β = IWC ·
(
a+

b

De

)
,

:::::::::::::::::::

(30)

:::::
where

:::::::::::
IWC = qc · ρ:::::::

denotes
:::
ice

:::::
water

:::::::
content

::
in

::::::
g m−3

:::
and

:::
De::

is
:::
the

::::::::::
generalised

::::
size.

:::::::::
Constants

::
are

:::::
given

:::
by

:::::::::::::::::::::
a=−6.656 · 10−3 m2g−1

::::
and

::::::::::::::::::
b= 3.686 µm m2g−1.

::
As

::
a
:::::
useful

::::::::::::
approximation

:::
we

:::
set

:::::::
De = L,

:::::
where

:::
the

::::::::
quantity

::
L

:
is
:::::::::

calculated
:::::
from

:::
the

:::::
mean

::::
mass

:::
m

:::::
using

:::
the

:::::::::::::::::
mass-length-relation765

::::::::::
L= Cim

αi ,
::
as

:::::::::
indicated

::
in

::::::::
appendix

:::
B.

:::
In

:::::
figure

:::
12

:::
the

::::::
values

:::
for

::
β
::::

are
::::::
shown

:::
for

::::::::
different

::::::::::
temperature

::::::
regimes

::
as

:::::::::
calculated

:::
for

:::
the

::::
mean

::::::
values

::
at

:::
the

:::::
(stable

::::
and

:::::::
unstable)

:::::
focus

:::::::::::
(equilibrium

:::::
point).

:::::
Note

:::
that

::::
there

::
is
::::
only

::::::::
marginal

::::::::
difference

::
in

:::
the

:::::
values

:::
for

:::::::
different

::::::::::::
temperatures.

:::
The

::::::
values

::
are

::::::
within

:::
the

:::::::
interval

::::::::::::::::::::
10−4 ≤ β ≤ 0.02 km−1.

:::::::::::::::::::::
Seifert et al. (2007) report

:::::
mean

:::::
values

:::
for

:::::::::
extinctions

::
of

:::::
SVCs

::
in

:::
the

::::
range

::::::::::::::::::::
0.015≤ β ≤ 0.02km−1770

::::
with

:::::::
standard

:::::::::
deviations

:::::::::::::::::::::
σ ∼ 0.005− 0.009km−1

::::
(see

::::
their

:::::
table

:::
3).

:::
Our

::::::
results

:::
are

:::
in

:::
the

:::::
same

::::
order

:::
of

:::::::::
magnitude

::
or

:::::
even

::::::
smaller

:::
for

:::::
slow

:::::::
vertical

::::::::::
updraughts.

::::::::::::::::::::
Davis et al. (2010) report

::::::
much

::::::
smaller

:::::
values

::
of

:::::::::
extinction

:::::::
scattered

::
in

:::
the

:::::
range

:::::::::::
0< β < 0.01

::::
with

:
a
:::::
mean

::::
value

::
of
:::::::::::::::
β ∼ 0.001 km−1.

:::::
These

:::::
SVCs

:::::
were

::::::::
measured

::
in

:::
the

:::::::
tropics

::
at

::::
high

:::::::
altitudes

::::::::::::
(z ∼ 16 km),

:::
i.e.

::
at

::::
low

:::::::::::
temperatures

:::::::::
T < 195K,

::::::
where

::::
slow

::::::::::
large-scale

:::::::::
updraughts

::::
due

::
to
:::::::

Kelvin
:::::
waves

:::
in

:::::
order

::
of

::::::::::::::
w < 0.01 m s−1775

:::::::
dominate

::::::::::::::::::::
(Immler et al., 2008b) .

::::
This

:
is
:::::::::
consistent

::::
with

:::
our

::::::
results,

:::
see

::::::
figure

:::
12.

::::::
Overall,

:::
we

:::
can

:::::
state

:::
that

::::::::
regarding

:::
the

::::
high

::::::
spread

::
in

:::
the

:::::::::::
measurements

::::
our

:::::
results

:::::
from

:
a
::::::
simple

::::::::
analytical

:::::
model

:::::
agree

:::::
quite

::::
well

::::
with

::
in

:::
situ

::::::::::::
measurements.

:

3.6
::::::::::
Comparison

::::
with

:::::
other

:::::::
models

:::
For

:::::::::
comparison

::::
with

::
a

::::
more

:::::::
detailed

:::::
model

:::
we

::::::
carried out simulations with the boxmodel as

:::::::::
box-model780

described by Spichtinger & Gierens (2009) and Spichtinger & Cziczo (2010). In the following
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::::
This

:::::
model

::::::::
includes

::::
more

::::::::::::
sophisticated

::::::::
treatment

::
of

::::::::::::
microphysical

:::::::::
processes,

::::::::
although

::
it

::
is

::::
also

:
a
:::::::::::
two-moment

::::
bulk

::::::
model.

::
It
::::::
allows

::
a
::::::
change

::
in
::::

the
:::::
shape

::
of

:::
ice

:::::::
crystals

:::::
from

::::::
almost

::::::::
spherical

::::::
droxtals

::
to
::::::::
columns.

::::::::::::
Homogeneous

:::::::::
nucleation

:
is
::::::
treated

::
in

:::::
detail,

::::::::
including

::::::::::::
deliquescence

::
of

::::::::
sulphuric

:::
acid

::::
and

:::::::::
integration

::::
over

::
the

::::
full

:::
size

::::::::::
distribution

::
of

:::::::
solution

:::::::
droplets.

:::
For

:::::::::
diffusional

:::::::
growth,

::::::
kinetic785

:::
and

:::::::::
ventilation

:::::
effects

:::
are

::::::::
included.

:::::::
Finally,

::::::::::
temperature

:::
and

:::::::
pressure

:::::::
changes

:::
due

::
to

::::::
vertical

:::::::
upward

::::::
motions

::::
and

:::::
latent

::::
heat

::::::
release

:
is
::::::
added

::
to

:::
the

::
air

:::::::
parcel’s

:::::::::::
temperature.

:::::::::
Henceforth

:
this model is termed “complex model”. We scan through the T -w parameter space

using initial temperatures in the range 190≤ T ≤ 235K with a temperature increment of ∆T = 5K

:::::::::
∆T = 5 K and vertical velocities in the range 0.005≤ w ≤ 0.05ms−1

::::::::::::::::::::
0.005≤ w ≤ 0.05m s−1 with790

a velocity increment of ∆w = 0.005ms−1
:::::::::::::::
∆w = 0.005m s−1, leading to 90 simulations. Addition-

ally, we fixed initial conditions p= 300hPa and RHi= 140%. The
:::::::::::
p= 300hPa

:::
and

::::::::::::
RHi = 140%.

::::::::
Generally,

:::
the

:
results of these simulations are very similar to

:
in

:::::
good

:::::::::
agreement

::::
with the results of

the analytical model.

We can again identify regimes in the T -w parameter space showing the known two different795

states, i.e. damped oscillations (state 1) and limit cycle behaviour (state 2). In figure 13 the case of

damped oscillation is shown in both model simulations. Here, initial temperature of T = 220K is

used with a vertical velocity of w = 0.01ms−1
:::::::::::::
w = 0.01m s−1. Green lines indicate the evolution in

the complex model simulation, whereas blue lines represent the evolution in the simple analytical

model. Both model simulations agree quite well. For the variables number and mass concentration
:
,800

both models produce almost the same values, however the values for relative humidity are slightly

lower for the simple model simulation. In fact, the
:
.
::::
The onset of ice nucleation is shifted between

the two models due to differently detailed representation of ice nucleation in both models. This

leads to the difference in relative humidity values. Qualitatively, the models agree very well ,
:
– the

oscillation periods are very similar and also the damping is almost the same. Note that the agreement805

between the models is not always that good for all parameter values; however, the model results for

variables ice mass and number concentrations, respectively, always agree within less than one order

of magnitude
::
and

:::
the

::::::::::
magnitudes

::
of

:::
the

::::::::
damping

:::
are

::::
very

::::::
similar.

For the complex model simulations the environmental conditions change, i.e. temperature and

pressure are decreasing due to adiabatic expansion. Thus, no steady state can be reached. The val-810

ues for ice crystal number concentrations and relative humidity are slightly rising with time in the

quasi steady state at the end of the simulation. Ice crystal mass concentration is slightly decreasing.

Generally, we can say that for state 1 (damped oscillations) the agreement between the respective

two model simulations is very good; this holds for all cases of damped oscillations.

In figure 14,
:
a case of limit cycle behaviour is shown. As in figure 13, green lines indicate the815

complex model simulations and the simple model results are represented by blue lines, respectively.

The initial conditions for both models are given by T = 210K and w = 0.02ms−1
::::::::::::
w = 0.02m s−1.

Again, we find very good agreement in the cloud variables Nc, qc:::
Nc,:::

qc between both model sim-
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ulations. There is again a shift in relative humidity due to the representation of ice nucleation in the

different models. The limit cycle behaviour is present in both simulations; qualitatively
:::::::::::
Qualitatively820

they also agree very well in terms of the periods of the oscillations. Again, we have to state that the

agreement is not always that good in the absolute values of variables as in this represented case.

However, qualitatively the limit cycle cases agree very well.

The bifurcation diagram as represented
:::::::
displayed

:
in figure 7 cannot completely be reproduced

::
be

::::::::::
reproduced

::::::::
accurately

:
by the complex simulations. For initial conditions close to the boundary825

between state 1 and state 2 we observe a different behaviour. Since
::::
Since

::
in

:
the complex model

includes changes in temperature, the parameters are
:::
the

::::::::
parameter

::
T

::
is

:
changed during the simula-

tions. For instance, the simulation starts in the regime of a damped oscillation
:
,
::::::::
switching

::::
from

::::
one

::::::
regime

::
to

::
the

:::::
other

::
is

:::::::
possible

:::::
within

::::
one

:::::::::
simulation.

:::
If,

::
for

::::::::
instance,

:
a
:::::::::
simulation

:::::
starts

::
at

:
a
:::::
point

::
in

::::::::
parameter

:::::
space

:::::
within

:::
the

:::::
point

:::::::
attractor

::::::
regime (e.g. high temperature vales at low updraughts)and830

:
, the time evolution follows first this (theoretical) kind of time evolution

::::::
initially

:::::::
follows

:::
the

:::::::
damped

:::::::::
oscillations

::
as

::::::::
expected

::::
from

:::
the

:::::::::
bifurcation

:::::::
diagram

::
of

:::
the

::::::
simple

:::::
model. However, the temperature

change leads to a
:::::::::
(horizontal)

:
path in the phase diagram (figure

:
7) and at some stage the boundary

between the two states is crossed. Now, a different scenario, namely limit cycle behaviour, should be

present. In fact, if the oscillations are not already damped out, we can observe in ,
:::
and

:::::
from

::::
then

:::
on,835

the simulations that after crossing the bifurcation line in figure 7 the
:::::
system

::::
will

:::::::
perform

:::::::::
undamped

::::::::::
oscillations.

::::::
Indeed,

:::
we

:::::::
observe

:::
this

::::::::
transition

::
in

:::
the complex model simulationsthen exhibit a limit

cycle behaviour. An example for this situation is given in figure 15. Here, we show a long simulation

with the complex model for
:
,
::::
with initial conditions T = 225K and w = 0.035ms−1; thus, as shown

in the phase diagram (figure 7), the model starts in the regime of damped oscillations. In the time840

evolution, we can see the damped oscillation very clearly for up to about four hours. At this time,

the temperature is about T ∼ 220K and according to the phase diagram there is the transition to

::::::::::::::
w = 0.035m s−1.

::::
Note

::::
that

::
in the limit cycle behaviour. In the further time evolution, the limit cycle

behaviour is present, i.e. the oscillations are not damped but in contrast the amplitude in variables

Nc, qc and relative humidity increases slightly. After further cooling, we observe that the period845

::::::
regime

:::
the

::::::::
properties

::
of

:::
the

:::::::::::
theoretically

::::::::
expected

::::
limit

:::::
cycle

::::
also

::::::
change

::::
with

:::::::::
decreasing

:::
T .

::::
This

:::::
results

:::
in

::::::::
increasing

::::::::::
amplitudes

:
of the oscillations changes as well, since the period of the limit

cycle depends on environmental conditions
:
in
::::
Nc,:::

qc, ::::
RHi:::

and
:::

in
::::::::
increasing

:::::::
periods. Thus, we can

conclude that for realistic simulations including changes in environmental conditions there could be

transitions between the theoretically determined states. However, the behaviour of the actual states850

can still be explained by the phase diagram as obtained from our analytical considerations.

:::
We

::::
also

:::::::
compare

:::
our

::::::
results

:::::
with

:::
the

::::::::
analytical

::::::
model

::::::::::::::
Kärcher (2002) .

::::
This

::::::
model

:::::::
includes

::
a

::::
more

:::::::::::
sophisticated

::::::::::::
representation

::
of

:::::::::
nucleation

:::
and

:::::::
growth.

:::
The

:::::::
relevant

::::::::
equations

:::
are

::::::
treated

:::::
using

:::::
typical

::::
time

::::::
scales

:::
and

::::::::::::
approximation

::
of

:::
the

:::::::
occuring

:::::::::
intergrals. Comparison with theoretical results

by Kärcher (2002) shows good agreement as well. Actually, in our investigations with the simple an-855
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alytical model we found low ice crystal number concentrations similar to results by Kärcher (2002);

the dependence of number concentrations on w and T also agrees very well with analytical con-

siderations by Kärcher (2002). However, our approach goes beyond the results by Kärcher (2002)

since we allow for sedimentation of ice crystals. This additional process leads to the oscillatory be-

haviour in both cases, the damped oscillation in the attractor case (state 1) as well as the undamped860

oscillation in the limit cycle case (state 2)
:::::
states,

::::::::
whereas

::
in

:::
the

:::::
study

:::
by

::::::::::::::
Kärcher (2002) a

::::::
steady

::::
state

::
at

:::
ice

::::::::
saturation

::
is
:::::::
reached

::::
soon. Especially the continuous nucleation in the state 1 scenario

(damped oscillation) is only possible if we allow for sedimentation of ice crystals. Otherwise, the

nucleation event would stop after depositional growth has reduced the supersaturation such that

nucleation rates become negligible. Thus, we can state that our scenarios might be more realistic,865

although the microphysical poperties
::::::::
properties

:
in both studies are quite similar.

3.7 Comparison with observations

For comparison with observations we focus on in situ measurements of ice crystals in subvisible

cirrus clouds. Since it is very difficult to measure low number concentrations, only few measurement

studies are available. We compare our results with measurements by Kübbeler et al. (2011) , Lawson et al. (2008) and870

Davis et al. (2010) .

Our model results lead to ice crystal number concentrations in the range 0.1L−1 ≤ ρNc ≤ 110L−1

and mean ice crystal sizes in the range ∼ 16µm≤ L≤ 134µm. Note, that the variation in number

concentrations span over three orders of magnitude and the variation in mean sizes is still within two

orders of magnitude. These values agree quite well with the measurements. Kübbeler et al. (2011) indicated875

quite high number concentrations in order of ∼ 100L−1 for small ice crystals (L∼ 10µm) but quite

low number concentrations 0.1≤ ρNc ≤ 10L−1 for large ice crystals (equivalent radius r > 50µm).

Lawson et al. (2008) reported ice crystal number concentrations in the range 22.5≤ ρNc ≤ 188.8L−1

with mean value and standard deviation 66± 30.8L−1 for ice crystals in the size range 1≤ L≤ 200µm.

Finally, Davis et al. (2010) reported very low ice crystal number concentrations with a mean value880

of 2L−1 and mean sizes of 14µm during the tropical measurement campaign TC4. However, in their

study values from former measurement campaigns are reported to be in the range 10≤ ρNc ≤ 100L−1

and for effective radii 10≤ r ≤ 20µm. Overall we can state that regarding the high spread in the

measurements our results from a simple analytical model agree quite well with in situ measurements.

885

Actually, from in situ measurements, which constitute an Eulerian point of view by definition, we

cannot decide in which of the possible states (attractor regime vs. limit cycle) the observed cloud

might be. We also have to keep in mind that in reality the motion of air parcels might be disturbed

by small scale turbulence or other dynamical effects.
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4 Conclusions890

In this study we develop
::::::::
developed

:
an analytical model for describing subvisible cirrus clouds

::::::
formed

:::
by

:::::::::::
homogeneous

::::::::::
nucleation in the tropopause regionfrom first principles starting with a

Boltzmann-type equation for the evolution of a cloud mass distribution. The model consists of a set

of
::::::::::
autonomous ordinary differential equations for the variables ice crystal mass and number concen-

trationas well as
:
,
:::
and

:
relative humidity with respect to ice. The model

:
It contains the relevant cloud895

processes ice nucleation, diffusional growth and sedimentation, respectively. The forcing terms are

non-linear and the whole systemis autonomous. We use this model for numerical simulations as well

as for mathematical analysis, applying .
::::
The

::::::
model

:::
can

::
be

::::::
viewed

::
as

:::
an

::::::::
externally

::::::
forced

:::::::::
dissipative

::::::
system.

::::
The

:::::
model

::
is

:::::::::
integrated

::::::::::
numerically

:::
and

::::
also

::::::::::
investigated

:::::
using

:::::
linear theory of dynamical

systems. In the analysis we can show that there are two qualitatively different states in the long-term900

evolution of the model. The two states are (a) a positive attractor and (b)

:::::::::
Integration

:::
and

::::::::::
theoretical

:::::::
analysis

:::::
show

:::
that

::::
the

::::::
system

:::::::
contains

::::
two

::::::::
different

:::::
states,

::
a
:::::
point

:::::::
attractor

::::
state

:::
and

:
a limit cycle for the cloud variables. Thus, we find a Hopf bifurcation, which is

characterized by the change of the real part of the two conjugate-complex eigenvalues from negative

values to positive values via two purely imaginary eigenvalues. The transition between the states905

is determined by the parameters vertical velocity
:::::
state.

::::
The

:::::
states

::::::
depend

:::
on

:::
the

:::::::::::::
environmental

:::::::::
parameters

::::::
vertical

:::::::::
updraught,

:
wand environmental temperature

:
,
:::
and

:::::::::::
temperature, T .

:::
The

::::::::
transition

:::::::
between

:::
the

:::::
states

:::
can

:::
be

::::::::
described

:::
as

:::::
Hopf

::::::::::
bifurcation.

::::
Both

::::::
states

::::
show

::::::::::
oscillatory

:::::::::
behaviour,

:::::
either

::::::
damped

::::::
(point

:::::::
attractor)

:::
or

:::::::
basically

:::::::::
undamped

:::::
(limit

::::::
cycle).

The microphysical properties of the cloud in both states are similar and depend mostly on the910

environmental conditions as vertical velocity and temperature. However, for the limit cycle case the

spread in ice crystal mass and number concentration is obviously larger than in the attractor case. For

the equilibrium point
:::::
stable

::::
point

::::::::
attractor, the mean mass depends only slightly on vertical velocity,

thus we can approximate the mean mass as a function of temperature.

The comparison with a complex boxmodel by Spichtinger and Gierens (2009) shows
:::::::::::
Comparisons915

::::
with

:
a
:::::
more

:::::::
detailed

:::::::::
box-model

:::
by

::::::::::::::::::::::::::::::
Spichtinger and Gierens (2009) show

:
very good agreement. In

fact, the
:::
The

:
qualitative behaviour as determined for the analytical model can also be found for the

complex model simulations. Alsoin a quantitative way
:
,
::
in

:::::
terms

::
of

::::::::::
quantitative

:::::
results

:
both models

agree quite well.

Comparison with former
::::::
Former

:
analytical investigations by Kärcher (2002) shows also

:::::
show920

good agreement with our model
:
,
:::
too. However, since we include sedimentation in our model, our

results go clearly beyond the former investigations; the long-term behaviour is different, since the

inclusion of sedimentation crucially leads to the bifurcation, depending on environmental conditions.

Since there are only a few in situ measurements of subvisible cirrus available, it is quite difficult

to carry out solid comparisons. However, we try to compare with measurements as described by925

Kübbeler et al. (2011), Lawson et al. (2008), and Davis et al. (2010) and find good agreement with
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our results.
::::
Also

:::
the

::::::::
extinction

::::::::::
coefficient

::
as

:::::::::
calculated

::::
from

::::::
model

::::::
results

:::::
agree

::::
very

::::
well

:::::
with

::::::::::
observations

:::::::
obtained

:::::
with

::::::
remote

::::::
sensing

:::::::::
techniques

:::::::::::::::::::::::::::::::::
(Seifert et al., 2007; Davis et al., 2010) .

Thus, we can summarize
:::
The

::::::
major

:::::::::
qualitative

:::::
results

::::
can

::
be

::::::::::
summarised

::
as

:::::::
follows:

:

–
:::
We

:::::
could

::::
show

:
that homogeneous freezing of aqueous solution droplets at low temperatures930

(T < 235K) might be a possible candidate for formation of ice crystals und slow updraught

conditions, leading to very thin or
:
is

::
a
:::::::
possible

::::::::
pathway

:::
for

:::
the

:::::::::
formation

:::
of

:::::::::
subvisible

:::::
cirrus

:::::
clouds

::
at

::::
low

::::::
vertical

::::::::::
updraughts.

:::::
Thus,

:::
the

:::::::
question

:::::
about

:::
the

:::::::::
dominance

::
of

:::::::::
formation

::::::::::
mechanisms

:::
for

::::
these

::::
thin

::::::
clouds

::::::
remains

:::::
open

::::::::::::
(homogeneous

:::
vs.

::::::::::::
heterogeneous

::::::::::
nucleation).

935

–
::
In

::::::::::
unperturbed

:::::
weak

:::::
large

::::
scale

::::::::::
updraughts subvisible cirrus clouds . The final state of the

cloud
:::
can

::::
exist

::
in

::::
two

:::::::
different

:::::::::
qualitative

::::::
states,

:::::::
reaching

:::::
either

:::
an

::::::::::
equilibrium

::::
point

:::
in

:::
the

::::
long

::::
term

::::::::
behaviour

::
or

:::::::::::
experiencing

:::::::::
oscillation

:::::::::
behaviour

::
in

:
a
::::
limit

:::::
cycle

::::::::
scenario.

:::
The

:::::
state

:::::::
depends

::
on

:::::::
external

:::::::::
parameters

::
as

::::::::::
large-scale

::::::::
updraught

::::
and

::::::::::
temperature,

:::::::::::
respectively.

–
:::
The

:::::
cloud

::::::
particle

:::::::::
properties in the long-term behaviour is

:::
are very similar for both cases

::::
states.940

Therefore, we cannot decide from values of microphysical properties in a certain range in

which state the cloud might be. Even if we had more measurements, we probably would

not be able to decide between the two states just using the Eulerian measurements without a

Lagrangian point of view.

–
:::
The

:::::::
derived

:::::::::
bifurcation

:::::::
diagram

::::
may

::
be

::::::::::
interpreted

::
as

:
a
::::::::
minimal

:::::
model

:::
for

:::::::::
subvisible

:::::
cirrus945

::::::
clouds,

:::
i.e.

:
a
:::::::

damped
:::::::::

oscillator,
::::::
which

:::::::
changes

::
its

::::::::::
eigenvalues

:::::::::
depending

:::
to

::::::::::::
environmental

:::::::::
parameters

::
w

:::
and

:::
T ,

::::::::::
respectively,

::
in

:
a
:::::
Hopf

::::::::::
bifurcation.

:::
We

:::::
might

:::::
derive

::
a
:::::::
minimal

::::::
model

:::
for

:::::
SVCs

::::
from

:::
the

::::::::::
bifurcation

:::::::
diagram

::
in

:::
the

::::::::
following

:::::
way.

:
If
:::
we

:::::::
assume

:::
that

:::::
SVCs

:::
are

::::
well

::::::::::::
approximated

::
by

::::
their

:::::::::
attractors,

:::
we

:::::
could

::::::
express

:::::
cloud

::::::::
variables

:::
and

::::::
relative

::::::::
humidity

:::
by

:
a
::::::
simple

:::::::
damped

::::::::
harmonic

::::::::
oscillator

::
of

:::
the

::::
form

:
950

ẍ+κẋ+ω = 0,
:::::::::::::

(31)

::::
with

:::::::::::::::
x ∈ {Nc, qc,RHi}::::

and
:::::::::
parameters

:::::::::::
κ= κ(w,T )

::::
and

::::::::::::
ω = ω(w,T ),

::::::::::
respectively.

::
κ
:::::::::

describes

::::::::
damping,

::::::::
whereas

::
ω

::::::::
represents

:::::::::
oscillation

:::::::::
frequency.

::::
κ,ω

:::
can

:::
be

:::::::::
determined

:::::
using

::::::::::
eigenvalues

:::
λi

::
for

::::::::
damping

::::
and

:::::::::
oscillations

:::
in

:::
the

:::::
point

:::::::
attractor

::::
case

:::::::
(κ 6= 0).

::::
For

:::
the

::::
limit

:::::
cycle

:::::
case

:::::::
(κ= 0),

::::::
periods

::
as

::::::::
obtained

::::
from

:::
the

::::::::
Poincaré

:::::::
section

:::
(see

::::::
figure

:::
11)

::::
can

::
be

::::
used

:::
for

:::::::::
describing

:::
ω.

:::::
Such955

:
a
:::::::
minimal

::::::
model

:::::
could

::
be

:::::
used

:::
for

::::::::::
representing

:::::
SVCs

:::
in

:::::::::
large-scale

::::::
models

::::
and

:::
can

:::
be

::::
seen

::
as

::
a

::::::::
prototype

::
for

::::
new

:::::::::
generation

:::::
cloud

:::::::::::::::
parameterisations.

:::::
These

::::::
models

::::::::
describe

::
the

::::::::
structure

::
of

::::::
clouds

::
in

:::::
terms

::
of

:::::
cloud

::::::::
variables

:::
and

::::::::::::
environmental

::::::::::
conditions.

:::::
They

:::::
could

::
be

::::
used

:::
for

:::::::::
describing

:::::
such

::::::::
structures

::::::::
embedded

::::
into

:
a
::::::
coarse

:::
grid

::::::
model.

::::::::
However,

::::::
further

:::::::
research

::
in

:::
this

::::::::
direction

::
is

::::::::
necessary

::
in

::::
order

::
to

:::::::
proceed

:::::
from

::::
pure

:::::
model

:::::::::
prototypes

::
to

:::::
useful

:::::
cloud

::::::::::::::::
parameterisations.960
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Finally, we can state that we could develop a meaningful minimal
:::::
simple

:
model for describing

the main features of subvisible cirrus clouds. Former investigations using boxmodels
::::::::::
box-models

indicated that there might be different regimes in the behaviour of the clouds for longer simulation

times. For instance, in studies by Kay et al. (2006) and Spichtinger and Cziczo (2010) oscillatory

behaviours as well as attractors could be seen. However, only a detailed mathematical analysis could965

show that there is a bifurcation in the long-term behaviour and that it depends mostly on environ-

mental parameters as updraught velocity and temperature. This analysis was only possible , since we

developed an analytical model, which is close enough to complex models but is also simple enough

for mathematical analysis.

The determined Hopf bifurcation in addition with the
:::::::
observed

:::::
Hopf

::::::::::
bifurcation

::
as

:
a
:::::::::

transition970

:::::::
between two different states show

:::::
shows that clouds might show

:::::
exhibit

:
inherent structures, which

are crucially determined by the microphysical cloud processes themselves in addition to environ-

mental conditions. Similar structure formation was already seen in analytical cloud models for liquid

and mixed-phase clouds as developed by Wacker (1992, 1995, 2006) or Hauf (1993). Investigations

::::::::::
Investigation

:
and analysis of the microphysical processes in terms of sets of ordinary differential975

equations are a first but urgently necessary step in order to investigate structure formation inside

clouds. Once we understand the possible structures in clouds as determined by microphysics, we can

proceed further in order to investigate further
:::::::
continue

::
to

::::::
further

:::::::::
investigate

:
structure formation as

driven by diffusion processes
:::::
spatial

::::::::
diffusion

::::::::
processes,

::::::
mixing

:
and others, leading to spatial struc-

tures of clouds.
::
A

:::
first

::::::::
possible

::::::::
approach

:::::
might

::
be

:::
to

:::::::::
investigate

::::::::
equations

::::
with

:::::::::
additional

::::::
spatial980

:::::::
diffusion

:::::
terms

::::::::
regarding

:::::::
possible

::::::
Turing

::::::::::
instabilities

:::::::::::::
(Turing, 1952) .

::::::::
However,

::::::
further

::::::::
research

::
in

:::
this

:::::::
direction

::
is
:::::::::
necessary

::
in

::::
order

::
to
:::::::::
investigate

::::::::
structure

::::::::
formation

:::
of

::
ice

:::::::
clouds.

Last but not least we would like to note that simple models as the derived minimal model of

subvisible cirrus cloudsmight also serve as prototypes for new generation of cloud parameterisations

985

Appendix A:
:::::::::
Derivation

::
of

::::::
model

:::::::::
equations

:::::::
Splitting

:::
up

:::
the

:::::::
velocity

::
as

:::::::::
explained

::
in

::::::
section

::::
2.1,

:::::::::::::::::::::::::::::
u(m,x, t) = v(x, t) +v′(m,x, t),

:::
we

:::::
adapt

:::::::
equation (1)

::::::::::
accordingly:

:

∂(ρf)

∂t
+∇x · (ρvf) +∇x · (ρv′f) +

∂(ρgf)

∂m
= ρh.

::::::::::::::::::::::::::::::::::::::::::

(A1)

::
To

:::::
derive

:::::::::
equations

::
for

:::
the

::::::::
evolution

::
of

::::::::
moments,

:::
we

:::::::
multiply

::::::::
equation (A1)

::
by

::::
mk

:::
and

:::::::
integrate

:::
by990

::::
parts,

:::::
using

:::::::::::
f(0,x, t) = 0

::::
and

::::::::::::
f(m,x, t)→ 0

:::
for

:::::::
m→∞,

:::::
which

:::
are

:::::::::
physically

:::::::::
reasonable

:::::::::::
assumptions.
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::::
This

:::::
yields

:::
the

::::::::
following

::::::::
equation:

∂(ρµk)

∂t
+∇x · (ρvµk) +∇x ·

 ∞∫
0

mkρv′f dm

=

::::::::::::::::::::::::::::::::::::::::::

k

∞∫
0

mk−1ρgf dm+

∞∫
0

mkρhdm, k ∈ R.

:::::::::::::::::::::::::::::::::::::

(A2)995

:::
We

::::
allow

::::::::::
generalised

::::::::
moments

::
µk::::

with
::::::::
k ∈ R≥0,

:::::
which

:::::
occur

:::::::
naturally

:::::
from

:::::
cloud

::::::
physics

:::::::::::::::
parameterisations.

::::::::
Formally,

:::
the

:::
unit

:::
of

:::
the

:::
k-th

::::::::
moment

:
is
:::::::::
kgkkg−1.

:::
For

:::::::::
simplicity,

:::
we

::::::
assume

:::
the

:::::
mass

::::::::::
distribution

::
to

::
be

::::::::::
horizontally

::::::::::::
homogeneous,

:::
i.e.

:::::::::::
f = f(m,z).

:

:::::
Using

:::::::::::::::::
v′ = (0,0,−vt(m)),

:::
and

::::
with

:::
the

::::
help

::
of

:::
the

:::::::::
continuity

::::::::
equation,1000

∂ρ

∂t
+∇x · (ρv) = 0,

::::::::::::::::

(A3)

::
the

:::::::
moment

::::::::
equation (A2)

:
is

:::::::::
rearranged

::
to

::::::
obtain

:::::::
equation (3).

:

Appendix B:
::::::
Details

::
of

::::::::::::::::
parameterisations

:::::::::
Nucleation

::::::::::::
Homogeneous

:::::::::
nucleation,

:::
i.e.

:::
the

::::::::::::
transformation

::
of

::
a
:::::::
solution

::::::
droplet

::
to

:::
an

::
ice

:::::::
crystal,

:::
can

:::
be

::::
seen1005

::
as

:
a
:::::::::
stochastic

:::::::
process.

:::
The

::::::::
transition

::::
rate

::
ω

:::
for

:::
the

::::::::::::
transformation

::
of

::
a
:::::::
solution

::::::
droplet

::
of

:::::::
volume

::
V

:::
can

:::
be

::::::::
expressed

:::::
using

:
a
:::::::

volume
:::::::::
nucleation

::::
rate

::
J ,

:::
i.e.

:::::::::
ω = V · J .

::::
The

:::::::::
probability

:::::
P (t)

:::
for

:::
the

::::::::
nucleation

:::::::
process

::
of

:::::::
droplets

::
of

:::::::
volume

::
V

::::::
fulfil-ls

:::
the

::::::::
following

::::::::::
differential

::::::::
equation:

dP

dt
=−ωP (t).

::::::::::::

(B1)

:::
For

::::::
further

::::::
details

::
of

:::
the

:::::::
general

::::::::
derivation

:::
we

:::::
refer

::
to

::::::::::::::::
Koop et al. (1997) .

::::::::
Equation

:::::
(B1)

:::
can

:::
be1010

:::::::::
generalised

:::
for

::::
size

::::::::::
distributions

::
of

:::::::
solution

::::::::
droplets,

::::::
leading

::
to

:::
the

::::::::::
formulation

::
of

:::::::
equation

::::
(7).

:::::::::::::::::::::
Koop et al. (2000) provide

::
a
::::::::::::::
parameterisation

:::
for

:::
the

::::::
volume

:::::::::
nucleation

::::
rate

::
J
::
as

::
a
:::::::
function

:::
of

::::::::::::::
∆aw := aw − aiw:::::::::::::::::::::::::::::

(Koop et al., 2000, Table 1, eq. 7) .
::::
Here

:::
aw::

is
:::
the

:::::
water

:::::::
activity

::
of

::::
the

:::::::
solution

:::
and

:::
aiw :

is
:::
the

:::::
water

::::::
activity

::
of

:::
the

:::::::
solution

::
in

::::::::::
equilibrium

::::
with

:::
ice.

:::::
Note,

:::
that

:::
the

:::::::
freezing

::::::::::::
characteristics

::
of

:::
the

:::::::
droplets

::
do

::::
not

::::::
depend

:::
on

:::
the

::::::::
chemical

:::::::::::
composition.

:::
By

::::::::
definition

:::
the

:::::
water

:::::::
activity

::
is

:::
the1015

::::
ratio

:::::::
psol/pliq:::

of
:::
the

::::::
vapour

:::::::
pressure

::::
over

::
a
:::::::
solution,

:::::
psol ,:::

and
::::
pure

::::::
liquid

:::::
water,

::::
pliq .

::::::::::
Neglecting

::
the

::::::
Kelvin

::::::
effect

:::
and

::::::::
assuming

::::
that

:::
the

:::::::
solution

:::::::
droplets

:::
are

:::
in

::::::::::
equilibrium

::::
with

:::
the

:::::::::::
environment

:::::::::
(pv = psol ),:::

the
:::::
water

:::::::
activity

::
is

::::::::::
proportional

::
to

:::
the

:::::
water

:::::::
activity

::
in

::::::::::
equilibrium

::::
with

:::
ice,

::::::
which

::
is

::
the

:::::
ratio

::
of

:::
the

:::::
water

::::::
vapour

:::::::
pressure

::::
over

:::
ice

:::
and

::::
pure

:::::
liquid

::::::
water:

aw =
psol
pliq

=
pv
pliq

=
RHi

100%

psi
pliq

=
RHi

100%
aiw.

::::::::::::::::::::::::::::::::::::

(B2)1020

32



::::
Both

:::
psi :::

and
::::
pliq ,

::::
only

::::::
depend

::
on

::::::::::
temperature

:::
and

:::
are

::::::::::::
parameterised

::::::::
according

::
to

:::::::::::::::::::::::::::::::::::::::::::
Murphy and Koop (2005, eq. 7 and 10, respectively) .

::::::
Hence,

::::
∆aw::

is
:
a
::::::::
function

::
of

::::
RHi :::

and
:::
T ,

::
as

:::::
given

::
by

:

∆aw(T,RHi)
:::::::::::

=

(
RHi

100%
− 1

)
aiw(T ) =

(
RHi

100%
− 1

)
psi
pliq

.

:::::::::::::::::::::::::::::::::::::

(B3)

::::::::
Therefore

::
J

::
is

:::
also

::
a
:::::::
function

::
of

::::
RHi::::

and
::
T .

::::
The

::::::::
logarithm

:::
of

:::
the

::::::::
nucleation

::::
rate

::
is

::::::::::::
parameterised1025

::
by

:
a
:::::
third

::::
order

::::::::::
polynomial

::
in

:::::
∆aw :::::::::::::::::::::::::::

(Koop et al., 2000, table1, eq. 7) :

log10J(T,RHi) =−906.7 + 8502 ∆aw − 26924(∆aw)2 + 29180(∆aw)3.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B4)

:::::::::
Diffusional

:::::::
growth

:::
The

:::::::::
“advection

::::::::
velocity”

:
g
::
in
:::
the

:::::
mass

:::::
space

::
is

::::
given

:::
by

:::
the

::::::
growth

:::::::
equation

:::
for

:
a
::::::
single

::
ice

:::::::
crystal;

:::
this

:::::::
equation

:::
has

:::
the

:::::::::
following

::::
form

:::::::::::::::::::::::
(see, e.g., Stephens, 1983) :1030

g(m) =
dm

dt
= 4πCD∗vρ(qv − qv,si)fv.

:::::::::::::::::::::::::::::::

(B5)

::::
Here,

:::::::::::::::
qv,si = εpsi(T )/p

:::::::
denotes

:::
the

::::::::
saturation

::::::
mixing

:::::
ratio,

:::
the

:::::
shape

::
of

:::
the

:::
ice

:::::
crystal

::
is

:::::::::
accounted

::
for

:::
by

:::
the

:::::::
capacity

::
C

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(assuming the electrostatic analogy, see e.g. McDonald, 1963; Jeffreys, 1918) ,

:::
D∗v :

is
:::
the

:::
full

::::::::
diffusion

:::::::
constant

::::::::
including

:::
the

::::::
kinetic

::::::::
correction

:::
for

::::
small

::::::::
particles

:::::::::::::::::::::::::
(Lamb and Verlinde, 2011) and

::
fv:::::::

denotes
::
the

::::::::::
ventilation

:::::::::
coefficient.1035

::
In

:::
this

:::::
study

:::
we

:::::
make

:::
use

::
of

:::
the

::::::::
following

:::::::::::::
simplifications:

1.
:::::
Latent

::::
heat

::::::
release

::
at

:::
the

::::::
crystal

::::::
surface

::
is
:::::::::
neglected

:::
and

:::
the

::::::::::
temperature

::
of

:::
the

:::
ice

::::::::
particles

:
is
::::::::
assumed

::
to

::
be

:::::
equal

::
to

::::::::::
temperature

::
of

:::::::
ambient

:::
air.

:

2.
:::
We

::::::
neglect

::::::
kinetic

::::::::::
corrections,

:::::
since

:::
we

:::
are

:::::::
mostly

::::::::
interested

::
in

:::::::
growth

::
of

:::::
larger

::::::::
crystals.

::::::
Kinetic

:::::::::
corrections

:::
are

::::::
usually

::::::::
important

:::
for

:::
ice

:::::
crystal

::::::
growth

::
in
:::::::
regimes

::::
with

::::
high

::::::::::::
concentrations1040

::
of

:::::
small

:::::::
crystals.

:::
For

:::::
SVCs

:::
we

:::
can

:::::::
assume

:::::
small

::::::::::::
concentrations,

::::
thus

:::::::
crystals

::::
will

::::
grow

::::
fast

::
to

::::
sizes

:::::
larger

::::
than

::::::::
∼ 10µm.

:::::
Thus,

:::
we

:::
can

::::::
assume

:

D∗v ≈Dv =D0

(
T

T0

)α(
p0

p

)
,

:::::::::::::::::::::::::

(B6)

::::
with

::::::::::::::::::::
D0 = 2.11 · 10−5 m2s−1,

:::::::::::::
T0 = 273.15K,

::::::::::::::
p0 = 101325Pa,

:::::::
α= 1.94

::::::::::::::::::::::::::::
(e.g. Pruppacher and Klett, 1997) .

1045

3.
:::
We

::::::
neglect

::::::::
correction

:::
of

:::::::::
ventilation,

::::::
setting

::::::
fv = 1.

::::::::::
Ventilation

::::::::
correction

::
is

::::
only

:::::::
relevant

:::
for

::::
very

::::
large

:::::::
crystals,

:::
so

:::
this

::
is

:
a
::::::::::
reasonable

::::::::::
assumption,

::::
since

::
in
::::::

SVCs
:::
ice

::::::
crystals

:::
are

:::::::
usually

::::::
smaller

::::
than

:::::::::
∼ 200µm.

4.
:::
The

:::::
shape

::
of

:::
ice

:::::::
crystals

::
is

:::::::
assumed

::
to

::
be

::::::
prolate

:::::::::
spheroids

::::
with

:::::
length

::
L

:::
and

:::
an

::::::::::
eccentricity

::
ε′,

:::::
which

:::::
leads

::
to

:::
the

::::::::
following

:::::::::
expression

:::::::::::::::::
(McDonald, 1963) :1050

C = L
ε′

log
(

1+ε′

1−ε′

) .
:::::::::::::::

(B7)
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:::
For

:::
the

::::::::::
mass-length

::::::
relation

:::
we

::::::
assume

:
a
::::::
simple

:::::
power

::::
law

:::::::::::::
L(m) = Cim

αi
::::
using

:::::::::::
Ci = 1.02m,

:::::::
αi = 0.4.

:::::
This

::::::
power

:::
law

:::::::
mostly

:::::::::
represents

:::
the

::::::::
columnar

::::::
shape

::
of

:::
ice

::::::::
crystals,

:::::
which

:::
is

:::::::
assumed

:::
for

:::::::
crystals

::::
with

:::::
sizes

::::::::::
L > 10µm.

::::
The

::::::
power

:::
law

::::
was

:::::
fitted

::
to
::

a
:::::
more

::::::::
complex

:::::::::
description

::
in

::::::::::::::::::::::::::
Spichtinger and Gierens (2009) ,

::::::
where

:
a
::::::::
transition

:::::::
between

:::::::
droxtals

:::
and

:::::::
columns1055

:
is
::::::::::
formulated

:::
and

:::::
used.

:::
The

:::::::
fraction

::
in

:::::::
equation

:
(B7)

::::
only

:::::::
depends

::::::
weakly

:::
on

:::
the

:::::
crystal

:::::
mass

:::
and

::::
can

::
be

::::::::::::
approximated

::
by

:
a
::::::::
constant

::::
mean

:::::
value

::
of

::::
1/3.

::::
This

::::::
yields

C =
1

3
Cim

αi .
::::::::::::

(B8)

::::
With

:::::
these

::::::::::
assumptions,

::::::::
equation

::::
(B5)

:::
can

:::
be

:::::::::::
approximated

::
as

:::::::
follows:

:
1060

g(m)≈ 4

3
πCiDvm

αiρ(qv − qv,si) =
4

3
πCiDvm

αiρqv,si(Si− 1),
:::::::::::::::::::::::::::::::::::::::::::::::::::::

(B9)

::::::
leading

::
to

:::::::
equation

:::::
(11).

::::::::::::
Sedimentation

:::
The

::::::::::
description

::
of

::::::::::::
sedimentation

::
is

:::::
based

:::
on

:::
the

:::::::
concept

::
of

:::::
mass

::::
and

::::::
number

::::::::
weighted

::::::::
terminal1065

::::::::
velocities

::::::
defined

::
by

:::::::::::::::::::::::::::
Spichtinger and Gierens (2009) .

:::
An

:::::::::
expression

:::
for

:::
the

:::::::::::
sedimentation

::::
flux

::::
(i.e.

::
the

:::::::
integral

::
in
::::

the
:::::::::::
sedimentation

:::::
term

::
in

::::::::
equation (3)

:
),

:::
can

:::
be

:::::
found

:::
by

::::::::
applying

:::
the

:::::
mean

:::::
value

:::::::
theorem.

::::::::
Consider

:
a
:::::
mean

:::::::
velocity,

:::
v̄k,

::::
such

::::
that

∞∫
0

vt(m)ρmkf(m)dm= v̄k

∞∫
0

ρmkf(m)dm= ρv̄kµk.

::::::::::::::::::::::::::::::::::::::::::::

(B10)

:::::
There

:::::
exists

::
a

::::::::::::
corresponding

:::::::
velocity

:::
for

::::
each

::::::::
moment

::
of

:::
the

::::::::::
distribution

::::::
f(m).

:::
For

:::
the

:::::::
double1070

:::::::
moment

:::::::
scheme,

:::
the

:::::::
number

::::::::
weighted

::::::::
terminal

:::::::
velocity

::::
(for

:::
the

:::::::
number

:::::
flux),

:::::::
v̄0 = v̄n:::::::

(k = 0)

:::
and

:::
the

:::::
mass

::::::::
weighted

:::::::
terminal

:::::::
velocity

:::
(for

:::
the

:::::
mass

:::::
flux),

:::::::
v̄1 = v̄q :::::::

(k = 1),
:::
are

:::::::
relevant.

::::
For

:::
the

:::::::::
calculation

::
of

:::
the

::::::::
weighted

::::::::
velocities,

:::
we

:::
use

::
a
::::::
special

::::::::::::
representation

::
of

::::::
vt(m).

:::
The

::::::::::
dependency

::
of

:::
the

::::
fall

::::::
speeds

::
of

::::::::
individual

:::
ice

:::::::
crystals

:::
on

:::
the

::::::
crystal

::::
mass

::
is

::::::::::::
approximated

::
by

::
a

::::::
simple

:::::
power

::::
law

:::::::::::::::::::::
vt(m) = γmδcorr(T,p),

::::::::
including

:
a
:::::::::::

temperature
:::
and

::::::::
pressure

:::::::::
dependent1075

::::::
density

::::::::
correction

::::::
factor,

corr(T,p) =

(
p

p00

)ai( T

T00

)a2
,

:::::::::::::::::::::::::::

(B11)

::::
with

:::::::::::
T00 = 233K,

::::::::::::
p00 = 300hPa,

::::::::::::
a1 =−0.178,

:::::::::::
a2 =−0.397.

:::
The

::::::::::
coefficients

:::::::::::::::::::::
γ = 63292.36ms−1kg−δ

:::
and

::::::::
δ = 0.57

:::
are

::::::::
assumed

::
to

:::
be

:::::::
constant

::::
over

::::
the

:::::
entire

:::::
range

:::
of

:::
m,

::
as

::::::::
opposed

::
to

:::::
piece

:::::
wise

:::::::
constant

:::::
values

::
in

:::::::::::::::::::::::::::
Spichtinger and Gierens (2009) .

::::
This

::::::::::::
approximation

::
is

:::::::
justified

::::
since

:::
we

:::::::
assume1080

::
ice

:::::::
crystals

::
of

::::
sizes

:::
in

::
the

:::::
range

::::::::
between

:::::::
∼ 10µm

:::
and

:::::::::
∼ 200µm

::
for

::::::
SVCs.

::::
The

::::::::
weighted

::::::::
velocities

::
for

:::::::
number

:::
and

:::::
mass

::::
flux,

::::::::::
respectively,

:::::
have

:::
the

::::::::
following

:::::
form:

v̄0 = v̄n = γ
µδ
µ0
· corr(T,p),

:::::::::::::::::::::::

v̄1 = v̄q = γ
µδ+1

µ1
· corr(T,p).

::::::::::::::::::::::::

(B12)
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::::::::::
Coefficients1085

:::
For

:::::::::::
simplification

::
of

:::
the

::::::::::::
representation

::
of

:::
the

::::
main

::::::
system,

:::
we

:::::::::
introduced

::::::::::
coefficients

::
in

::::::::
equations

::::
(25).

::
In

:::
the

::::::::
following

:::
the

:::::::::
coefficients

:::
are

::::::::
provided.

:

a =
:::

4

3
πNaµ3,a[r]

::::::::::

(B13a)

b =
:::

γ

∆z
c(T,p)r

δ(δ−1)
2

0
::::::::::::::

(B13b)

c =
:::

γ

∆z
c(T,p)r

δ(δ+1)
2

0
::::::::::::::

(B13c)1090

d =
:::

4

3
πCiερDv

psi(T )

p
r
αi(αi−1)

2
0

1

100%
:::::::::::::::::::::::::::

(B13d)

e =
:::

g
Mair

RT

(
Lice

cpT
− 1

)
::::::::::::::::

(B13e)

f =
:::

4

3
πCiερDvr

αi(αi−1)

2
0

::::::::::::::::

(B13f)

Appendix C:
:::::::::
Derivation

::
of

:::
eq.

::::
(28)1095

:::
For

:::::::
deriving

:::::::
equation

::::
(28)

:::
we

::::
start

::::
with

:::
the

::::::
slightly

:::::::::
simplified

:::::::
systems

::
of

:::::::::
equations:

a · J(RH i ,T )− b ·N1−δ
c qδc =

::::::::::::::::::::::::
0
:

(C1a)

−c ·N−δc qδ−1
c + d · (RH i − 100%)N1−αi

c qαic =
::::::::::::::::::::::::::::::::::::::

0
:

(C1b)

e ·w ·RH i − f · (RH i − 100%)N1−αi
c qαic =

::::::::::::::::::::::::::::::::::::
0
:

(C1c)
1100

:::
We

::::::
convert

::::::::
equation

:::::
(C1b)

::::
into

:::
the

:::::::::
following

:::::
form,

:::::
using

:::
the

:::::
mean

:::::
mass

:::::::::
m= qc/Nc::::

for
::::::
cloudy

::::
states

:::::::::
(Nc 6= 0):

−c ·mδ + d · (RH i − 100%)mαi−1 = 0.
::::::::::::::::::::::::::::::::

(C2)

::::
From

::::
this

:::::::
equation

:::
we

:::::
obtain

::
a
::::::::::::
representation

::
for

:::
the

:::::
mean

:::::
mass:

:

m=

(
d

c
(RH i − 100%)

) 1
δ+1−αi

.

:::::::::::::::::::::::::::

(C3)1105

::
In

:
a
::::::
similar

::::
way,

:::
we

:::
can

::::::::
rearrange

::::::::
equation

:::::
(C1a)

:::
for

:
a
::::::::::::
representation

::
of

::::
Nc:

Nc =
a · J(RH i ,T )

b
·m−δ.

::::::::::::::::::::::

(C4)

:::::
Using

::::::::
equations

::::
(C3)

::::
and

::::
(C4)

::
in

::::::::
equation

:::::
(C1c)

:::
we

:::::
obtain

::::::::
equation

::::
(28).

::::
The

:::::
roots

::::
w.r.t.

::::
RHi:::

of

:::
this

:::::::
equation

:::
are

:::::::::
calculated

:::::
using

::::::::
Newton’s

:::::::
method.
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Appendix D:
:::::::
Example

:::
for

::
a
::::::::
Poincaré

::::::
section1110

::
In

:::::
figure

:::
16

:::
we

:::::::
present

::
an

::::::::
example

::
of

::
a
::::::::
Poincaré

:::::::
section,

::
as

:::::
used

:::
for

:::
the

::::::::::::
determination

::
of

::::
the

::::
limit

:::::
cycle.

::::
The

::::::
plane,

:::
Σ,

::
is

::::
such

::::
that

:::::
RHi ::

is
::::::::
constant

::
on

:::
Σ

:::
and

:::
x0:::

is in large-scale models;

since these models describe the structure of clouds in terms of cloud variables and environmental

conditions, these models might be used for describing such structures embedded into a coarse grid

model. However, further research in this direction is necessary in order to proceed from pure model1115

prototypes to meaningful cloud parameterisations
::
Σ.

::::
Two

::::::::
different

::::::::
scenarios

:::
are

::::::::::
represented

:::::
here.

::::
First,

:::
we

:::
use

:
a
:::::
point

::::
close

::
to

:::
the

:::::::
unstable

:::::
focus

::::
point

:::
as

:::::
initial

::::::::
condition

::
for

:::
the

:::::::::
numerical

:::::::::
integration

::::::::
(indicated

:::
by

:::
red

::::::
cross).

::::
The

:::
red

:::::
dots

:::::::
indicate

:::
the

::::::
section

:::
of

:::
the

:::::::::
trajectory

::::
with

:::
the

::::::::::
transversal

::::
plane

:::
Σ.

:::
The

:::
red

::::
dots

::::::::
converge

:::
fast

::
to

::::
two

:::::::::::
accumulation

::::::
points,

:::::
which

:::::::::
determine

::::::::::::
approximately

:::
the

::::::
section

::
of

:::
the

::::
limit

:::::
cycle

::::
with

:::
the

:::::
plane

::
Σ.

::
If

:::
we

::::
start

::::::::
“outside”

::
of

:::
the

::::
limit

:::::
cycle,

:::
the

::::::
section

::::::
points1120

::::::::
(indicated

::
by

::::
blue

:::::
dots)

:::::
again

:::::::
converge

::::
fast

::
to

:::
the

::::
same

::::
two

:::::::::::
accumulation

::::::
points.
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Figure 1. Here, a
::
A scenario in state 1 (damping

::::
point

::::::
attractor

::::::
regime,

::::::
damped) is shown at w = 0.01ms−1

::::::::::::
w = 0.01m s−1 and T = 220K. The continuous nucleation as well as similar time scales of nucleation, growth

and sedimentation lead to a damped oscillation with an equilibrium state for t > 7 h. In the phase space, the

attractor property is visible
::::
more

::::::
obvious (see figure 5).
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Figure 2. Here, a
::
A scenario in state 2 (limit cycle

:::::
regime) is shown at w = 0.02ms−1

::::::::::::
w = 0.02m s−1 and

T = 210K. Nucleation events occur as pulses, thus an undamped oscillation evolves, which describes a limit

cycle in the phase space (see figure 6).)
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Figure 3.
::::
Real

:::::
(upper

:::::
panel)

:::
and

:::::::
imaginary

::::
part

:::::
(lower

:::::
panel)

::
of

::
the

:::::::
complex

:::::::::
eigenvalues

:::
λ1,2::

of
:::
the

:::::::
Jacobian

:::::
DF|x0::

at
:::
the

:::::::::
equilibrium

::::
point

:::
x0.
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Real
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eigenvalue

::
λ3::

of
:::
the

::::::
Jacobian

::::::
DF|x0::

at
:::
the

::::::::
equilibrium

:::::
point

:::
x0.
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Figure 5. Positive
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point

:
attractor for state 1 at T = 220K, w = 0.01ms−1

::::::::::::
w = 0.01m s−1: orbit in the phase

space approaching the equilibrium point.
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Figure 6. Limit cycle for state 2: orbit in the phase space at T = 210K, w = 0.02ms−1
::::::::::::
w = 0.02m s−1.

::::
Note

:::
that

::
the

:::::::
solution

::::
starts

:::::::
“outside”

::
of

:::
the

::::
limit

::::
cycle

:::
and

::::::::
approaches

:::
the

::::
limit

::::
cycle

:::::::
attractor

:::::::::::
asymptotically.
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Figure 7. Bifurcation diagram for “positive
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w-T -space. The thick line indicates the location of the Hopf bifurcation.
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panel) at the critical point as a function of vertical velocity for different temperatures. Solid lines are for
::::::
indicate

parameter combinations (w, T ) in the
::::
point attractor regime (state 1), dashed lines are for

:::::::
represent

:
the limit

cycle regime (state 2).
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Figure 9. Ice crystal number concentrations for different temperature scenarios (T = 190, 200, 210, 220K).

The solid line represents values at the critical point x0:::::
(stable

::
or

:::::::
unstable

:::::
focus). For the limit cycle regime the

range of ice crystal number concentrations is indicated by the shaded area bounded by minimum and maximum

values for the updraught range 0.001≤ w ≤ 0.05ms−1
::::::::::::::::::
0.001≤ w ≤ 0.05m s−1; the median is indicated by

the dashed
::::::::
dot-dashed line.
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pends only slightly on the vertical velocity, the curve covers the area that corresponds to vertical velocities
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:::::::::::::::::::::::
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:
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Oscillation
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periods

:::
for

::
the

:::::
point

::::::
attractor
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regime

:
at
:::
x0:::::

(solid
:::::
lines),

:::
and

::
for

:::
the

::::
limit

::::
cycle

::::::
regime

::::::
(dashed

::::
lines).
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Extinction

::::::::
coefficient

:
at
:::
x0 ::

for
:::::::
different

::::::::::
temperatures

:
in
::::
point

:::::::
attractor

::::
state

:
1
::::
(solid

:::::
lines)

:::
and

::::
limit

::::
cycle

::::
state

:
2
::::::
(dashed
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lines).
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Figure 13. Attractor
:::
Point

:::::::
attractor

:
case (state 1): Comparison between simple box model and the complex

model by Spichtinger and Gierens (2009). w = 0.01ms−1
::::::::
Updraught

::::::::::::
w = 0.01 m s−1, temperature in the sim-

ple model and start temperature of the complex model is T = 220K.
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Figure 14. Limit cycle case (state 2): Comparison between simple box model and the complex model by

Spichtinger and Gierens (2009). w = 0.02ms−1
::::::::
Updraught

::::::::::::
w = 0.02 m s−1, temperature in the simple model

and start temperature of the complex model is T = 210K.
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Figure 15. Transition between attractor regime (state 1) and limit cycle regime (state 2): Simulation with the

complex model by Spichtinger and Gierens (2009) for w = 0.035ms−1
:::::::::::::
w = 0.035 m s−1 and start tempera-

ture: T = 225K. During the first two hours of simulations
::
the

:::::::::
simulation, the attractor characteristics can be

clearly seen. After reaching temperatures of about T ∼ 220K, the regime changes from state 1 (
::::
point attractor)

to state 2 (limit cycle), see also phase diagram in fig. 7. after
::::
After

:
this transition, the amplitudes of number

concentrations and relative humidity w.r.t. ice increase and at the end of the simulation also a shift in the oscil-

lation period can be seen
:
.
::::::
Increase

::
in

::::::::
amplitude

:::
and

::::
shift

::
in

::::::::
oscillation

:::::
period

:::
are due to

::::::
changes

::
of

:::
the

::::
limit

::::
cycle

:::::::
properties

:::
for

::::::::
decreasing

:
temperature change

:::
(see,

:
e.

::
g.,

::::
figure

:::
11)

50



0 10000 20000 30000 40000 50000 60000 70000 80000

Nc in kg−1

0

1

2

3

4

5

6

7

8

q c
in

k
g

k
g
−

1

×10−7

Figure 16.
:::::::
Example

:
of
::
a
::::::
Poincaré

::::::
section

::
in

::
the

::::
limit

::::
cycle

::::::
regime.

::::
Blue

:::
dots

:::::::
indicate

::::::::
intersection

:::::
points

::
of

:::
the

:::::::
trajectory

::::
with

:
Σ
:::::
when

::::::
starting

:::::::
“outside”

::
the

:::::
cycle,

:::
red

:::
dots

:::::::
indicate

::::::::
intersection

:::::
points

:::::
when

:::::
starting

::::
near

:::
the

:::::::
(unstable)

:::::::::
equilibrium

::::
point

:::
x0 :::

(red
:::::
cross).
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