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Answer to comments of the referees1

Compound extremes in a changing climate - a Markov Chain approach2

K.Sedlmeier, S. Mieruch, G. Schädler and C. Kottmeier3

In the following, we have answered all the comments of the three referees. The comments are4

highlighted in red color with our answers in black below. In these answers, we give a reference to5

the line of the latex diff file (attached below) in green where the changes in the manuscript can be6

seen.7

1 Referee 18

Section 3 discussion of results (approx L250 on), it would be good to see some com-9

parison with other research on the persistence of extremes in different regions and10

possible causes. e.g. Sillmann & Croci-Maspoli 2009, Furrer et al 2010, Photiadou11

et al 2014. Furrer, E.M., R.W. Katz, M.D. Walter, and R. Furrer, 2010: "Statistical12

modeling of hot spells and heat waves." Climate Research, 43, 191-205 Photiadou,13

C., Jones, M., Keellings, D., Dewes, C., 2014. Modeling European hot spells using14

extreme value analysis. Clim. Res. 58, 193–207. doi:10.3354/cr01191 Sillmann,15

J., Croci-Maspoli, M., 2009. Present and future atmospheric blocking and its im-16

pact on European mean and extreme climate. Geophys. Res. Lett. 36, L10702.17

doi:10.1029/2009GL03825918

We have added a reference to some of the above mentioned research in the discussion sections (L19

571-578). However a direct comparison is difficult as most papers refer to absolute univariate ex-20

treme events. Nevertheless follow up studies to analyze the interdependence between atmopsheric21

drivers and the here discussed dynamical aspects of relative extremes would be very interesting22

as they most likely also have an influence on the latter.23

Similarly a sentence or two comparing the reliability of different models and obser-24

vations would be good - e.g. CFSR and ERA-40 can be very different. This could be25

in the data section.26

Thank you for this comment, we included a sentence in the methods section (Sect. 2.1.,L 106 and 2.2 L 132)27

and at the end of Sect. 4 (L 432) of the revised versionas well as the comment that the detection28

of differences in observational/reanalysis datasets and models concerning the dynamical behavior29

of extreme events is an additional interesting application of the method.30

Did you test the significance of the changes in the reference period as well as the31

future? How did you account for uncertainty in the results?32

Regarding the uncertainty, we took advantage of the applied ensemble approach. In Figs. 4 and 533

(of the revised manuscript) we show the results of the ensemble for the reference period, where34
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we use a box plot for the ensemble: box = ensemble median and interquartile range, whiskers35

= ensemble minimum/maximum, gray bars: ensemble mean. This information is given in the36

text caption, to make it clear, we included it in the text under Sect. 4 (L 374ff). Similar box37

plots accounting for the ensemble uncertainty have been used in Figs. 10 and 11 showing the38

change signal of the descriptors. Here the changes were calculated for each ensemble member39

individually- the ensemble mean change is shown by the bar and the interquartile range of the40

change signal by the whiskers. As can also be seen from the figures we did not account for the41

uncertainties in the observational E-OBS dataset and consider the observations approximately42

as the truth. Nevertheless we included an additional section in the revised version where we43

calculated the error of the descriptors by a FT-resampling algorithm (Sect. 3.3, L 353-372). For44

this we used the MIAAFT algorithm (Venema et al., 2006) which in addition to preserving the45

original distribution of the data also preserves the auto and cross-correlation of the temperature46

and precipitation time series. 100 surrogate data sets for the 6 regions used throughout the paper47

were calculated for the E-Obs data set in the reference period (1971-2000) and their standard48

deviation taken as the error (by using the exact same regions the values are transferable to later49

chapter which would not be possible had we chosen a different number of data points). An50

overview of the errors can be seen in Tab. 2 (page 12). In comparison to differences between51

regions and time periods, the error is small but we will include it in the discussions of Sect. 4 and 5.52

Regarding the significance we use the ensemble uncertainty, as mentioned above. In Sect. 5.2 we53

use the nonparametric Mann-Whitney-Wilcoxon test for the change signal (Figs. 10, 11). The54

p-values are shown below the bars in the respective figures.55

L338 note about relative extremes - This should really be mentioned in the method56

section along with how you selected the extremes (e.g. thresholds, and at which57

level). Possibly a table of extremes would be informative for comparison?58

We introduced a new subsection in the methods section of the revised manuscript where the thresh-59

olds and the partitioning of the data are described. This section 2.1. is called The Markov descrip-60

tors for two compound extremes. (L 258-273)61

Minor corrections62

We corrected these mistakes, the line numbers of the diff file where the changes were made are63

given in green.64

L3 "the number of occurrences" L 365

L9 types L 966

L11 replace "which are" with "including" L 1267

L12 rogue comma before fullstop. L 1368

L26 occurrences L 3969

L36 changes in the number of L 3970

L46 should this be chaotic attractor? No71

L107 please put into present tense to match the rest of the text. L 11672
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L115 ditto L 11773

L145 unnecessary comma at start of line. L 16074

L180 "number of states" L 19575

L189 and 192 "Thus in the sense of successive compound..." L 20776

L216 should this be per 100 days? No, 1000days is correct because this number refers to the77

total number of days, not only the compound extreme states.78

L245 maybe say very rare? There are a lot of extremes in that sentence. L 38079

L273 highest persistence is L 41280

Figure 9 caption rogue fullstop before Percentages. now Fig. 781

82

2 Referee 283

In order to address the first comments of referee 2, we introduced a new section in the revised84

version called “Sensitivity analysis” (Sect. 3, L 274-371) where we address the spatial and natural85

variability and analyze the error by means of Fourier-Transform surrogate time series. Detailed86

comments can be found below.87

one should demonstrate that new descriptors reasonably reflect underlying physical88

mechanisms. Before using any new measure for characterization of ongoing and ex-89

pected climate change, one should investigate their variability in natural conditions.90

The authors use the gridded E-OBS data set, however, they unfortunately chose just91

a few grid points in six different areas. It is a pity, since the E-OBS data set gives92

an excellent opportunity to study spatial variability of any descriptor which has an93

ambition to characterize the temporal evolution of a physical quantity attributed to94

each grid point. I think the model is reasonably simple to compute full coverage for95

Europe for all three descriptors and map them. The simple visual evaluation would96

indicate if the descriptors reasonably reflects physical reality in the case the maps97

show interpretable smoothly changing patterns. Or, if the maps show just a colored98

grains or a sort of Pollocks paintings, than there is a problem with the descriptor99

and its connections to physical reality.100

We thank the referee for that comment and totally agree that new descriptors must be tested for101

revealing a connection to physical reality. Indeed, we did these tests prior to our analysis, which102

were also the basis for choosing the regions discussed in this paper. We have calculated a full103

coverage for the descriptors averaging over 3x3 grid points for the whole area and these maps104

show interpretable smoothly changing patterns as you can see in Fig. 1. This figure is included105

and discussed in the revised version of the paper in the newly introduced section (L 279-312)106

As to Pollock’s painting: a map like a Pollock’s painting might not be achieved easily for the107

Markov descriptors. Pollock’s paintings are not random and not noise, rather they are in between108

determinism and noise, they are fractal (Taylor et al., 2007, , and citations therein). Thus, due to109
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their fractal geometry they have deep underlying mechanisms in common with natural patterns110

and hence also with our atmospheric time series.111

While E-OBS data set can be used to test spatial variability, ECA&D station data set112

offers a number of long-term records in which temporal variability can be tested.113

So one can relate the change of the introduced descriptor due to climate change to114

their changes due to natural variability in preindustrial era. Real long-term records115

would reflect natural variability due to natural nonstationarity.116

This is a good suggestion. Unfortunately, there is only one station with a continuous (with-117

out missing values) temperature and precipitation record (starting in 1887) available from the118

ECA&D data set. Further, only a few stations within Germany have available continuous time119

series starting in 1900. Nevertheless we calculated the descriptors for a combined time series120

of the available 7 stations in Germany for running windows of 30 years starting in 1900. The121

combination of the time series is necessary in order to fulfill the stationarity criteria explained122

in Section 2.3. (non zero entries of the transition probability matrix and stationarity of the time123

series). It is important to note that we removed all linear trends for each 30 year section seper-124

ately as it has been done in the rest of the paper. The resulting time series of the descriptors125

are shown in Fig. 2 for both winter (black) and summer (gray) extremes. These results are in-126

cluded in Sect. 3, L 313-352) in the revised version of the paper. The stations used are listed127

in the data section (Tab. 1). Especially for the persistence and recurrence time, a clear shift is128

visible between 1930 and 1950. This time range is not preindustrial, but the crucial point is that129

the observed shift coincides with a globally oberved shift in the increase in CO2 around 1950130

(http://www.ldeo.columbia.edu/~spk/Research/AnthropogenicCarbon/images/ddic_uptake_hist.png).131

Thus from this finding we observe two main points:132

1. The descriptors (especially persistence and recurrence time) seem to be sensitive to changes133

of the CO2 increase. That means a stronger increase of CO2 (e.g. from 1950 on) yields134

a decrease of the persistence and increase of the recurrence time. Again it is of utmost135

importance to note, that we removed the linear trends from each 30 year section of the136

temperature and EDI data.137

2. Thus we can conclude that the natural variability can be approximated by the variability138

observed before and after the shift. This natural variability is smaller than the shift of the139

mean.140

Concluding, due to the non-availability of preindustrial data we could not really test natural vari-141

ability vs. natural nonstationarity. But we could show that natural variablity (before and after the142

shift in 1950) is smaller than the shift, which is probably due to the change in CO2 increase. The143

mean level shift for the winter extremes of the persistence is about 50% (from 0.2 to 0.1) and for144

the recurrence time it is about 20% (from 180 to 140 days). Regarding Fig. 10 we see that changes145

of the persistence above 50% have been observed (red and cyan regions) and changes of the recur-146

rence time above 20% (red and green). Thus, according to the sensitivity tests natural variability147
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can most probably be excluded as the sole cause for these changes. Interestingly our significance148

test also states that these changes are significant with very small p-values. These findings strongly149

support the results found in our study that changes of the succession of compound extremes are150

likely to occur in the future due to the increasing CO2 emissions, whereas natural variability plays151

a minor role.152

One can test numerical variability of the descriptors by constructing appropriate153

surrogate data. E.g., FT surrogate data generation averages dynamics over whole154

record randomized, so one can get ranges for random variability of the descriptors155

in a stationary data.156

We have done this as part of our analysis and will now include the results in the revised version157

in the newly introduced section (Sect. 3.3,L 353-371). To construct FT surrogates of our data, we158

used the MIAAFT algorithm (Venema et al., 2006) which in addition to preserving the original159

distribution of the data also preserves the auto and cross-correlation of the temperature and pre-160

cipitation time series. 100 surrogate data sets for the 6 regions used throughout the paper were161

calculated for the E-Obs data set in the reference period (1971-2000) and their standard deviation162

taken as the error (by using the exact same regions the values are transferable to later chapter163

which would not be possible had we chosen a different number of data points). An overview of164

the errors can be seen in Tab. 2. The errors are fairly similar for all regions and do not differ165

largely between the two seasons. As in the original manuscript, we will keep on using the ensem-166

ble approach for estimating the uncertainty of the descriptors and their climate change signal, but167

refer to these MIAAFT estimated errors when discussing the results throughout the paper.168

P. 9, last para ....Fig. 4) all regions except Bulgaria... Should not it be France?169

Yes thank you, it should be France we have changed that. (L 440)170

p 10, 4.2 The statistical treatment should be described in more details: Differences171

of the ensemble means are plotted, i.e. one get the mean and percentiles for each en-172

semble, then the difference of means is clearly defined, but what are the percentiles?173

The climate change signal is calculated for each ensemble member separately. What is shown in174

the plot is the mean difference (bar), as well as the interquartile range (whiskers). We added a175

sentence at the beginning of Sect. 5.2 (L 469ff) of the revised version so it becomes clearer and176

have clarified it in the captions of Figs. 10 and 11.177

Is this an appropriate way to evaluate the significance of changes?178

The significance of the changes is determined by the ensemble approach and we think that this179

is an appropriate way of analyzing significance in this context. Furthermore the changes can be180

compared to the errors as derived by the MIAAFT algorithm (of the newly added Chapter). Most181

changes are larger then the there derived errors which is an additional indicator of significance.182
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We additionally mentioned this in the text of the revised manuscript. Furthermore, as explained183

above, the significance test is in accordance to our sensitivity tests. These sensitivity tests have184

shown that changes of the persistence in the order of 50% (for recurrence time 20%) cannot be185

achieved by natural variability, but by a shift of the increase in CO2 emissions. Similarly, the186

significance test states that changes of the persistence in the order of 50% (recurrence 20%) are187

significant.188

The explanation has been expanded in the revised version, see L 482ff )189

3 Referee 3190

The authors should refer other approaches like the geostatistical analysis of spa-191

tially distributed extremes (Neves 2015). That is important because extremes have192

themselves some spatial organization.193

We included this in the introduction of the revised version. (L 36ff)194

There is no clear justification for the choice of the 6 box-regions and their size (6x6195

grid points). Why they are representative of the PRUDENCE regions? Some min-196

imal study about the spatial robustness of the Markov diagnostics should be pre-197

sented. For example, does the results keep similar or change substantially when198

contiguous boxes are considered? The ideal should be to present maps of the diag-199

nostics throughout Europe.200

We thank the referee for that comment, because indeed, we have performed tests on the robustness201

of the Markov descriptors, which are the basis for the decision to use the actual 6 box-regions. The202

crucial point, why we have used the 6 box-regions is to achieve that each region contains the exact203

same amount of grid points / data points. This is of utmost importance for the comparison of the204

regions, otherwise, if the regions have been chosen with differing sizes no consistent comparison205

would be possible due to the fact that the Markov descriptors depend on the underlying sample206

size of the used data. To account for the spatial robustness we calculated the Markov descriptors207

for every grid point in Europe and visualised the results on a maps. From these maps we have seen208

that the Markov descriptors vary in general not strongly within the prudence regions. Accordingly209

we have chosen the 6 box-regions within the Prudence regions, which are representative for the210

respective region, based on the results of the grid point maps. In the revised we included the maps211

showing the grid point results (see Fig. 1 in the revised version.)212

In the entropy definition H (eq. 7), log(1/m) must be replaced by log(m) so that H213

equals 1 for a random system without memory (all probabilities pij=1/m).214

Thank you for the comment but our definition corresponds to those of other papers (see eg. Hill215

et al., 2004). Maybe you have missed the - sign at the beginning or the "‘/"’ sign in the equation216
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(log(1/m) is the same as -log(m))? By using log(m) we would get negative entropies with our217

formula.218

Line 189: Authors claim that H between 0 and 1 is an identification of deterministic219

chaotic behavior. However that condition is necessary but not a sufficient condition220

for chaos. Authors shall carefully rephrase the paper by taking that into account.221

We agree with this comment and have rephrased the follwing sentence:222

The dynamics of complex chaotic systems lie in between these limits, thus the entropy can be used223

to identify and characterize complex dynamics like deterministic chaos, which is not possible with224

standard linear methods225

by226

The dynamics of complex chaotic systems lie in between these limits, thus the entropy can give a227

hint to underlying complex dynamics like deterministic chaos, which is not possible with standard228

linear methods. To really test for deterministic choas other methods, based on state space re-229

construction (e.g. estimating the correlation dimension, Lyapunov exponents etc.) to find strange230

attractors, are more suitable. (L 202ff)231

and references to the chaotic behavior accordingly throughout the revised version of the paper.232

Line 197: Authors say The reason for this is that the CO2 forcing is the only differ-233

ence. . .. In fact, decadal variability is also likely. That sentence must be weakened234

by replacing the only by the main difference beyond the natural decadal variability.235

No, because the crucial point is that this sentence (L 197) refers to the model runs (cf. line 198).236

The decadal variability of the model is not intrinsically changing with time. The only difference237

between the model runs in the past and in the future is the CO2 forcing. Thus, changes of the238

decadal variability are of course possible, but the only reason is a changing CO2 forcing. See239

L 15ff and the results in Sect. 3.2240

Eq. 8 explain the meaning of the bar and subscripts rm.241

Yes, we will do so and have also included a more detailed explanation of the EDI in the revised242

version (also see next comment). The bar in equation 8 stands for the climatological mean -243

EPd,rm refers to the climatological mean state of EP corresponding to day d, where the climato-244

logical mean is calculated by a running mean of rm days over the 30 years of the respective time245

period. (Sect.2.4., L 245ff)246
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Line 234: Droughts may have different time scales from months to years. That is247

the reason for defining the SPI (Standard Precipitation index) (McKee et al. 1993).248

The presented EDI is appropriate for annual scaled droughts. Add this comment to249

the text. Moreover the EDI has its own annual cycle since the precipitation weights250

contributing to EDI are larger near the Julian day d. Does the annual cycle of EDI251

was removed?252

The EDI does not have an annual cycle as this is intrinsically removed by the method

(e.g. http://atmos.pknu.ac.kr/~intra2/eng.calculation.htm). In the equation:

EDId =
EPd − EPd,rm

σ
(
EP − EP

)
d

(1)

(
EP

)
d

refers to the climatological mean state of EP and is calculated for each day as the 5day253

running mean over the 30years of the respective time period. Thus, by subtracting
(
EP

)
d

from254

EP, the annual cycle is removed. We are sorry that this did not become clear and have include a255

more thourough explanation of the EDI in the methods section of the revised version (Sect.2.4,256

L 251ff) and clearly state that the annual cycle is removed by the method.257

Furthermore, the EDI is not only appropriate for annual scaled droughts. Since it is calculated258

from daily values, it is also able to detect droughts of shorter lengths. It is highly correlated to the259

soil moisture. For example if there is heavy rain on August 1st and September 30th, the EDI can260

detect a water deficit in between these two dates, whereas a monthly indice would not detect this261

(see Byun and Wilhite, 1999).262

L235-238 Does temperature anomalies (Ta) and precipitation anomalies (Pa) refer to263

daily Ta and daily Pa with respect to the respective annual cycle. Please clarify. Add264

a sentence about the number of categories of the Markov chain and what categories265

of the compound attractor were considered? I suppose that authors have considered266

2 parameters with a partition of 2 categories each. Confirm that at this stage for the267

sake of the paper understanding.268

Yes, the Ta and Pa refer to daily temperature and precipitation anomalies with respect to the annual269

cycle. And we have considered 2 parameteres with a partition of 2 categories each which we then270

combined to a 4 state symbolic sequence. We added a new subsection to the methods section (271

Fig. 3 In the recurrence plot I cannot see the black triangle for region 1.272

thank you for the notice, we have changed that. (Fig. 5)273
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Fig. 4 In the caption, descriptors changes refer to changes in the period 1981- 2010274

with respect to 1951-1980? Rewrite it in a clearer way.275

We have replaced 1951-1980 vs 1981-2010. by changes between the time periods 1951-1980 and276

1981-2010 (see Figs. 6, 7,10,11)277

4 Additional changes278

We have recalculated the entropy as we detected an error in the original manuscript. Therefore the279

entropy values are changed in the revised version. Furthermore we have changed the results for280

the summer extremes from TA > 95th percentile to TA>90th percentile. This way the summer and281

winter extremes yield the same number of univariate compound extreme events and the behavior282

of the two compound events can be better compared.283
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Abstract. Studies using climate models and observed trends indicate that extreme weather has

changed and may continue to change in the future. The potential impact of extreme events such

as heat waves or droughts does not only depend on their number of occurrence
::::::::::
occurrences but also

on “how the
::::
these

:
extremes occur”, i.e. the interplay and succession of the events. These quanti-

ties are quite unexplored, for past changes as well as for future changes and call for sophisticated5

methods of analysis. To address this issue, we use Markov chains for the analysis of the dynamics

and succession of multivariate or compound extreme events. We apply the method to observational

data (1951-2010) and an ensemble of regional climate simulations for Central Europe (1971-2000,

2021-2050) for two type
::::
types of compound extremes, heavy precipitation and cold in winter and

hot and dry days in summer. We identify three regions in Europe, which are probably
:::::
turned

::::
out10

::
to

::
be

:::::
likely

:
susceptible to a future change in the succession or dynamics of heavy precipitation and

cold in winter, which are a region
:::::::
including

::
a

:::::
region

:::
in south western France, northern Germany

and in Russia around Moscow,.The
:
A

:
change in the succession of hot and dry days in summer will

probably affect
:::
can

::
be

::::::::
expected

:::
for regions in Spain and Bulgaria. The susceptibility to a dynamic

change of hot and dry extremes in the Russian region will probably decrease.15

1 Introduction

Multivariate extreme events (in this paper used in the sense of extremes of two or more climate

variables occurring simultaneously) are likely to impact society greater than their univariate coun-

terparts. For agriculture for example, the impact of a heat wave and a drought occurring at the same

time is higher than for a univariate extreme where the other variable is in a normal state. These mul-20

tivariate or so called compound events (IPCC, 2012) have received more and more attention in the

scientific literature over the past years although still not to the extent of extremes of only one vari-

able. Methods to analyze them include simple threshold analysis, multivariate distribution functions

using copulas (e.g. Schoelzel et al., 2008; Durante and Salvadori, 2010), Bayesian approaches (e.g.

Tebaldi and Sansó, 2009) or indices which are derived from multiple variables (e.g. the wildfire in-25

1



dex KBDI (e.g. Keetch et al., 1968) or the revised CEI Gallant et al. (2014)).
::::::::::
Furthermore,

::::::::
methods

::
of

::::::::::
multivariate

:::::::
extreme

::::::
models

::::
have

::::
been

:::::
used

::
for

:::
the

:::::::::::
geostatistical

:::::::
analysis

::
of

::::::::
spatially

:::::::::
distributed

:::::::
extremes

:::::::::::::
(Neves, 2015). All these methods focus mostly on the linear climate change signal - the

absolute change in the number of occurrence
::::::::::
occurrences or the calculation of return periods. The

succession, i.e. the temporal ordering of the compound events is in most cases mostly not the main30

objective. For instance, the IPCC (IPCC, 2012) states : “A changing climate leads to changes in the

frequency, intensity, spatial extent, duration, and timing of extreme weather and climate events, and

can result in unprecedented extreme weather and climate events.” What is implicitly addressed with

“duration and timing”, but not explicitly stated is the succession of extreme events, which is quite

unknown for past as well as future extremes.35

The method proposed here, which is based on Markov chains, concentrates on the dynamical

behavior or succession of these compound extreme events and studies an aspect of climate change

which has not received much attention up to now, but is nevertheless important. We investigate a

behavior of extremes which cannot be determined by simply analyzing the change of
::::::
changes

:::
in

the number of extremes. We can, for example, reveal changes in the entropy of the succession of40

compound extremes which is connected to the chaotic behavior of the climate variable. Thus an

observed increase of this measure could be connected with an increase in the chaotic, intermittent or

irregular nature of the system. On the other hand, a decrease of entropy corresponds to a slow-down

of these dynamics. Knowledge about such developments for future climate, which rarely exists,

could be important for many sectors e.g. agriculture, economy and society.45

Previous studies on model dynamics have concentrated more on overall dynamical behavior such

as Steinhaeuser and Tsonis (2014) who have conducted a model intercomparison study focusing on

dynamical aspects based on a climate networks framework. The method introduced in this paper is

modified from a work by
:::::::
inspired

::
by

:::
the

::::
work

:::
of Mieruch et al. (2010). The idea is to understand cli-

mate time series as trajectories on a complex, possibly strange attractor (Lorenz, 1963). We partition50

the time series or state space into a finite number of states. This yields a coarse-grained description

of the system, which can then be analyzed in the framework of symbolic dynamics (Ebeling et al.,

1998; Daw et al., 2003). We apply a Markov Chain analysis on these symbolic sequences represent-

ing compound extremes, and characterize their dynamical or successional behavior using a small set

of descriptors.55

In this paper we study two different kinds of compound extreme events which are likely to have an

impact on society, namely cold and heavy precipitation in winter, and heat and drought in summer.

The Markov method is applied to E-OBS observational data (1951-2010) (Haylock et al., 2008),

and an ensemble of regional climate simulations with the regional climate model COSMO-CLM

driven by different global climate model data and ERA-40 reanalysis (Uppala et al., 2005). The time60

periods considered are the recent past (1971-2000) and the near future (2021-2050).

2



We identify regions in Europe, where the dynamical behavior of the analyzed compound extremes

is prone to change. These findings highlight that it is not only the (simple)

linear increase of the occurrence of extremes (due to an increase in mean and variability), which

is a challenge for adaption and mitigation. On top of these changes the regions also have to struggle65

with changes in the succession of compound extremes (defined as relative to a new normal state with

changed mean and variability).

The strategy of this study is first to show that the Markov method is able to extract different

dynamics of compound extremes for different regions in Europe, based on observational data and

model data. Thus, on the one hand we see that the method yields meaningful information and on70

the other hand we show that the climate models are able to reproduce these dynamics in the frame

of acceptable uncertainties. Additionally, we extract temporal change signals of the dynamics of

compound extremes based on observations between the periods 1951-1980 and 1981-2010. This in-

formation is new and if used as supplementary information to other analyses, could lead to a better

understanding of changes of extremes in Europe. For this paper, the magnitude of the observed past75

changes have been assessed, because it is important for a better interpretation and classification of

future changes which are calculated by using the simulated regional climate model data. A compar-

ison of the change signals between 1971-2000 and 2021-2050 to the observed past changes shows

that they are of the same order of magnitude.

The paper is divided into the following sections. In Sect. 2, data and method will be introduced,80

followed by a
::::::::
sensitivity

:::::::
analysis

::
of

:::
the

:::::::
method

::::
with

::::::
respect

:::
to

:::::
spatial

::::
and

::::::::
temporal

::::::::
variability

:::
as

:::
well

:::
as

:::
the

::::
error

::
of

:::::::::
estimation

:::::
using

:::
FT

::::::::
surrogates

::
in

:::::
Sect.

::
3.

::
A validation of the model ensemble

::
is

:::::
shown

:
in Sect. 4. The change signal is analyzed in Sect. 5. Summary and outlook will be given in

Sect. 6 and some areas discussed where the application of this method might be of value.

2 Data and Methods85

2.1 Regional Climate Ensemble

For our analysis, we use a 12-member ensemble of regional climate simulations for Central Eu-

rope at a resolution of 50km. The ensemble has been generated by downscaling different global

climate model outputs with the regional climate model COSMO-CLM (COnsortium for Small scale

MOdelling model - in CLimate Mode, Doms and Schättler (2002); Rockel et al. (2008)), further90

referred to as CCLM. The CCLM is a non-hydrostatic climate model coupled to the soil vegetation

model TERRA and is the climate version of the numerical weather model of the German weather

service. Data from six different global climate models (GCMs) has been used as initial and bound-

ary data. Two of the GCMs have used the emission scenario A1B (Nakicenovic and Swart, 2000)

as external forcing : CCCma3 (Scinocca et al., 2008) and three realizations of ECHAM5 (Roeckner95

et al., 2003). The other four, ECHAM6 (Stevens et al., 2013), CNRM-CM5 (Voldoire et al., 2013),
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HadGM3 (Collins et al., 2011) and EC-EARTH (Hazeleger et al., 2010) have used the emission

scenario RCP8.5 (Riahi et al., 2011; Van Vuuren et al., 2011). Additionally the Atmospheric Forc-

ing Shifting method (Sasse and Schädler, 2014) was applied to the ECHAM6 data. For this method

the global climate data interpolated to the 50km grid is shifted by two grid points in all cardinal100

directions before being used as boundary data. This accounts for the uncertainty in positioning of

synoptic systems when interpolating the GCM data to the required resolution for forcing the RCM

simulations. As all five ECHAM6 driven simulations obtained this way exhibit a high correlation,

they are all weighed with a factor of 1/5 when calculating the mean. All other models receive a fac-

tor of one which leads to an effective ensemble size of eight. Additionally we use a COSMO-CLM105

run driven by ERA-40 (Uppala et al., 2005) boundary conditions.
:::
The

::::
ERA-

::
40

:::::::::
reanalysis

::::::::
boundary

::::::::
conditions

:::
are

::::::::
assumed

::
to

::
be

:::::
close

::
to

:::
the

:::::::
"‘true"’

::::::::
observed

::::
state.

::::::::::::
Nevertheless,

::::
they

::::::
depend

:::
on

:::
the

::::::
model,

::::::::::::
observational

::::
data

::::
and

::::::::::
assimilation

:::::::::
tequnique,

::::::
among

::::::
others

:::
and

:::
are

::::
not

:::
free

:::::
from

::::::
biases

::::::::::::::::::::::::::::::::::::::::::::
(see e.g. Hagemann et al., 2005; Simmons et al., 2004).

110

The simulation time periods are the recent past (1971-2000) and the near future (2021-2050). An

analysis of the temperature trends of different ensemble members showed that the distribution of

trend depends more strongly on the chosen global climate model than on the emission scenario. We

therefore combine simulations with boundary data from GCMs with different emission scenarios to

set up our ensemble.115

We chose
::::::
choose six regions, each comprising 6×6 grid points for our analysis. The regions were

::
are

:
chosen based on the PRUDENCE regions (Christensen and Christensen, 2007) which could not

be used because of the necessity of the same amount of grid points for each area, and due to test

results which show a different behavior for these regions. We investigate 30 year periods of daily

data, thus each time series consists of ≈ 11,000 data points, yielding ≈ 36× 11,000≈ 400,000120

points in time for each region and ensemble member. The model domain and the six investigation

areas, which are located in Spain, France, Germany, Scandinavia, Bulgaria, and Russia are shown in

Fig. 3. These roughly match the PRUDENCE regions which are not applicable for the analysis since

equal sized areas are a requirement for comparison among regions.

2.2 Observational data125

For the comparison of our regional climate ensemble with observations, we use temperature and pre-

cipitation data from the gridded E-OBS dataset (Haylock et al., 2008). This dataset was produced as

part of the ENSEMBLES project by interpolating station data from the ECA&D station dataset (Eu-

ropean Climate Assessment, Klok and Klein Tank, 2009) to a 25km grid. The station density is high-

est in Switzerland, the Netherlands and Ireland and rather low in Spain and the Balkans which leads130

to an over-smoothing in these areas. This especially affects extremes and has to be taken into account

when validating our ensemble against E-OBS data.
::::::::::
Furthermore

:
it
::::::
should

::
be

:::::
noted

::::
that

:
a
::::::::::
comparison
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Table 1.
:::::::
ECA&D

:::::
Station

::::
data

:::::
Station

::::::
(Station

:::::::
number)

:
1

:::::::
Bamberg

:::
(40)

:
2

:::::::
Hamburg

::::::::::
Fuehlsbuette

:::
(47)

:
3

:::::::::::::
Hohenpeissenberg

::::
(48)

:
4

::::::
Potsdam

::::
(54)

:
5

::::::::::::::::::::::
Hamburg-Botanischer-Garten

:::::
(4180)

:
6

:::::::
Hamburg

:::::::::
Sankt-Pauli

:::::
(4184)

:
7

:::::::::::::::
Hamburg-Wandsbek

:::::
(4186)

:
8

::::::::
Quickborn

:::::
Kurzer

:::::
Kamp

:::::
(4536)

::
of

::
E-

::::
OBS

::::
and

::::::
another

:::::::
gridded

:::::::
dataset,

::::::
namely

::::::
Hyras

:::::::::::::::::
(Rauthe et al., 2013)

:::::
(only

::::::
Central

::::::::
Europe),

::::
with

::::::
respect

::
to

:::
the

:::::::::
dynamical

:::::::
behavior

::::
that

:::
we

:::::::
analyze

::
in

:::
this

::::::
paper,

:::::::
revealed

:::::::::
differences

::::::::
between

::
the

::::
two

::::::
datsets

::::::::::::::::
(Sedlmeier, 2015).

::
A

::::::::::
comparison

:::
of

:::::::::
dynamical

::::::
aspects

:::
of

:::::::
different

::::::::::::
observational135

::::::
datasets

::::::
yields

::
an

:::::::::
interesting

:::::::::
application

:::
of

::
the

:::::::
method

:::::
which

::::::::
however

:::
will

:::
not

:::
be

::::::::
addressed

::::::
within

:::
this

:::::
paper.

:::
We

::::::::::
additionally

:::
use

:::::::
blended

::::::::::
temperature

::::
and

::::::::::
precipitation

::::
time

:::::
series

:::::::
starting

::::
from

:::::
1900

::
of

::::
eight

:::::::
stations

::::
(all

::
in

:::::::::
Germany)

::
of
::::

the
::::::::
ECA&D

::::::
dataset

:::
for

::
a

:::::::::
sensitivity

:::::::
analysis

::::::::
described

:::
in

::::
Sect.

::
3.

::::
The

::::
eight

:::::::
stations

:::
are

::::
listed

::
in
::::
Tab.

::
1.
:

2.3 Compound extremes with Markov Chain descriptors140

The method used in this paper consists of describing temperature and precipitation time series by a

Markov Chain and subsequently calculating descriptors, which characterize the dynamical (succes-

sional) behavior of the compound extreme states. The method has been used in biology (Hill et al.,

2004) to describe dynamics of succession of species in a rocky subtidal community. It has been in-

troduced to atmospheric science by Mieruch et al. (2010) who used it for climate classification and145

a comparative study of two regions. In this section, a short introduction to Markov chains is given,

followed by a step by step description of the method.

A first order, m state (m= number of discrete states of the Markov Chain), homogeneous Markov

Chain is a time discrete, state discrete stochastic process which fulfills the Markov property:

P (xt|xt−1,xt−2, ...,xt−n) = P (xt|xt−1) (1)150

meaning that the present state xt is only dependent on the preceding state xt−1. From the Markov

chain, a transition probability matrix P of the order m×m can be calculated which consists of all

possible conditional probabilities P (xt|xt−1) between the m different states of the Markov chain.

5



For a homogeneous (≡ stationary) Markov chain, the transition probability matrix is time indepen-

dent. A stationary distribution π is a vector that fulfills the following equation155

π = Pπ. (2)

To test for homogeneity one must solve the eigenvalue problem of equation 2 to calculate the sta-

tionary distribution π. If this is identical to the empirical distribution

π̂j =
nj∑
j nj

. (3)

, the time series is considered stationary. The entries (transition probabilities) of the transition matrix160

P are estimated by

p̂ij =
nij∑
inij

. (4)

In the following, the main steps of the Markov analysis are explained:

a) Partitioning and combining of univariate time series to a multivariate symbolic sequence

To represent the univariate time series (here daily mean temperature anomalies and daily pre-165

cipitation anomalies) by a Markov chain, each time series is partitioned into a symbolic se-

quence of extreme and non-extreme regimes. These univariate symbolic sequences are then

combined into a multivariate symbolic sequence of m= 2v different states (v number of vari-

ables). In this paper, v = 2, thus there are four possible states.

b) Calculation of the transition probability matrix170

From the 2v-state Markov chain, a transition probability matrix P of dimension 2v×2v can be

calculated. Two conditions have to be met when calculating the descriptors. No entry of the

transition probability matrix should be equal to zero and the time series needs to be stationary

for the transition probability matrix to be time independent (see equations 2, 3).

c) Calculation of the descriptors175

Following Mieruch et al. (2010), we focus on only three of the descriptors mentioned in Hill

et al. (2004): persistence, recurrence time and entropy. These descriptors can be estimated for

single states of the symbolic sequence or for the whole system. As the focus of this work lies

on the compound extreme state, only the single-state definition of the descriptors is considered.

Persistence:180

Pj = p̂jj (5)

The persistence gives the probability that the system will stay in an extreme state in the fol-

lowing time step if it resides in an extreme state at the current time step. The limits are 0 (the
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system will never stay in the extreme state) and 1 (the system will always stay in the extreme

state). Regarding the succession of the compound extremes, the persistence tells us how long185

the extremes last.

Recurrence time:

Rj =
1− π̂j

(1− p̂jj) π̂j
(6)

The recurrence time describes the number of days the system needs to get back to the extreme190

state. The limits are 0 (the system never leaves the state, corresponding to a persistence of 1)

and ∞ (the system never comes back to the extreme state). The recurrence time is connected

to the persistence. If the persistence increases, the recurrence time will also increase and vice

versa, except if a change in the number of states π̂j occurs. Thus, it is important to include the

absolute numbers
::::::
number of the states for the interpretation of the results.195

Entropy:

H (pj) =−
∑
i

p̂ij log p̂ij/log

(
1

m

)
(7)

According to Shannon (1948), the entropy is an inverse measure of the predictability of the200

Markov Chain. Its limits are 0 (deterministic system) and 1 (random system). The dynam-

ics of complex chaotic systems lie in between these limits, thus the entropy can be used to

identify and characterize
:::
give

::
a
:::
hint

::
to

:::::::::
underlying

:
complex dynamics like deterministic chaos,

which is not possible with standard linear methods.
::
To

:::::
really

::::
test

:::
for

:::::::::::
deterministic

::::::
chaos

::::
other

::::::::
methods,

:::::
based

::
on

:::::
state

::::
space

::::::::::::
reconstruction

::::
(e.g.

:::::::::
estimating

:::
the

:::::::::
correlation

::::::::::
dimension,205

::::::::
Lyapunov

:::::::::
exponents

::::
etc.)

::
to

::::
find

::::::
strange

:::::::::
attractors,

:::
are

:::::
more

:::::::
suitable.

:
Thus, in the sense of

the succession of
::::::::
successive

:
compound extremes a change in entropy tells us if the succession

of extreme states gets more chaotic or more regular.

d) Data pre-processing

In order to extract the information on the succession of
::::::::
successive

:
compound extremes, we210

have to remove linearities (e.g. trends) and cycles, which would bias the results. Thus, we

remove the external solar forcing by subtracting the mean annual cycle. A long-term trend is

removed by a linear regression. Although, e.g. the temperature trend due to the anthropogenic

CO2 emissions is removed from the data, we hypothesize that all changes in the succession of

extremes are linked to the CO2 increase. The reason for this is that the CO2 forcing is the only215

difference between the model runs for the periods 1971-2001 and 2021-2050.
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We use percentiles to partition our datasets, and keep the number of univariate extreme events

the same for different time periods and regions as well as for all ensemble members. By this,

the results can be compared among each other, differences are only due to different dynamical

behavior. For partitioning dry days, we did not use precipitation anomalies but the effective220

drought index (EDI). The EDI (see Sect. 2.4) is related to soil moisture and is therefore a much

better measure for describing dry extremes than precipitation itself, since all percentiles below

the percentage of dry days will lead to the same partitions.

In order to get a better feeling for the descriptors and understand how they relate with each other,

we will do a small thought experiment. We take a Markov chain consisting of a time series of 1000225

symbols of which 10% are extreme, the rest are normal. In this case a persistence of 0.5 would

mean that in half of the 100 extreme cases, the next case is also extreme, there are 50 transitions

from the extreme state to the extreme state. The maximum episode length in this case is thus 51

extreme states in a row (with all others randomly distributed). The recurrence time and entropy are

inversely related to how these 50 extreme transitions are ordered. Recurrence time depends on the230

number of episodes (fewer episodes lead to a larger recurrence time, more episodes to a shorter

recurrence time) and entropy additionally on the mean episode length. In this paper, we also look at

changes in the descriptors. A change in persistence of 0.05 in the above case would mean 5 more

extreme-extreme transitions per 1000 days, and an increase from 50/100 to 55/100 (extreme-extreme

transitions/extreme-normal transitions) is surely a noticeable change. The range of actually probable235

values of the descriptors is smaller than the whole possible range. A persistence of 0.99 for example,

would mean that there is only one extreme episode in the whole time period, all 100 extreme states

occur after each other. In a climate system, this is unlikely to happen. Thus, for climate one cannot

expect to observe a change of the daily persistence from e.g. 0.5 to 0.8, because such a change would

be catastrophic.240

2.4 Effective drought index: EDI

The effective drought index (EDI) is an index for detecting drought conditions by calculating daily

deviations of precipitation from a climatological mean state. It was proposed by Byun and Wilhite

(1999)and is calculated by the following formula for a given day d:

EDId =
EPd −EPd,rm

σ
(
EP −EP

)
d

245

:
. An important concept of the EDI is the use of effective precipitation EP, rather than precipitation

P itself. EP describes the depletion of water sources by a weighted summation over the 365 days

preceding a given day d:

EPd =

365∑
n=1

(∑n
m=1Pd−m

n

)
(8)
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By this, the memory effect of the soil is taken into account. EP therefore strongly correlates with250

soil moisture and the EDI is thus a good measure when considering droughts.
:::::
Using

:::
the

::::::::
effective

::::::::::
precipitation

:::
EP,

:::
the

::::
EDI

::
is

::::::::
calculated

:::
by

:::
the

::::::::
following

:::::::
formula

:::
for

:
a
:::::
given

:::
day

::
d:
:

EDId =
EPd −EPd,rm

σ
(
EP −EP

)
d

::::::::::::::::::::

(9)

:::::
where

:::::::
EPd,rm::

is
:::
the

::::::::::::
climatological

:::::
mean

::::::::::::
corresponding

::
to

:
a
:::::
given

::::
day

:
d
:::::::::
calculated

::
as

:::
the

:::::::
30-year

::::::
average

::::
over

::
a

:
5
:::
day

:::::::
running

:::::
mean

:::::::
(rm=5).

:::
By

:::::::::
subtracting

:::
this

::::::::::::
climatological

:::::
mean

::
of

:::
EP

:::::
from

:::
the255

::::
daily

::::::
value,

:::
the

::::::
yearly

::::
cycle

::
is
::::::::
removed

::::
from

:::
the

::::
EDI

::::
time

:::::
series.

:

3 Markovian descriptors for the reference period 1971-2000

2.1
:::
The

:::::::
Markov

::::::::::
descriptors

:::
for

::::
two

:::::::::
compound

::::::::
extremes

::
To

:::::::::
calculated

:::
the

:::::::
Markov

::::::::::
descriptors

:::
we

:::
first

:::::::::
calculated

::::::::::
temperature

::::
and

:::::::::::
precipitation

:::::::::
anomalies

::::
using

:::
the

:::::
mean

::::::
annual

:::::
cycle

::
of
::::

the
::::::::
respective

::::
time

::::::
period

::::
and

::::::::
ensemble

:::::::::::::::::
member/observation.

::::
We260

:::::::
calculate

:::
the

:::::::::
Markovian

::::::::::
descriptors

::
for

::::
two

:::::
types

::
of

:::::::
extremes

–
::::
cold

:::
and

::::::
heavy

::::::::::
precipitation

:::::::::::
(temperature

::::::::
anomaly

:::
(Ta

:
)
::
<

::::
10th

:::::::::
percentile

:::
and

:::::::::::
precipitation

:::::::
anomaly

::::
(Pa)

:
>
::::
75th

:::::::::
percentile)

::
in
::::::
winter

:::::
(DJF)

::::
and

–
:::
heat

::::
and

::::::
drought

::::
(Ta

:::::::::::::
>90thpercentile

:::
and

::::
EDI

:
<
:::::
25th

:::::::::
percentile)

::
in

:::::::
summer

:::::
(JJA),

:::
and

:::
for

:::
the

:::
six

::::::
regions

::::::
shown

::
in

::::
Fig.

::
3.

:::
As

::
an

::::::::
example,

:::
we

:::::
show

::::
how

:::
we

::::::::::
constructed

:::
the

:::::::
Markov265

::::
chain

:::
for

:::
the

::::::::::
cold/heavy

::::::::::
precipitation

:::::::
extreme

::
at
::

a
:::::
single

::::
grid

:::::
point.

:::::
First

:::
we

:::::::
identify

::::::::::
temperature

:::::
values

::::::
below

:::
the

::::
10th

:::::::::
percentile

:::
T`,t::::

and
::::::
above

::::
Th,t ::

(t
::
is

:::
the

::::
time

::::::
index).

:::::::::
Similarly

:::
we

:::::::
identify

:::
low

:::
and

:::::
high

::::::::::
precipitation

::::::
values

::::
P`,t :::

and
::::
Ph,t.:::::::::

Following
:::
we

::::::::
combine

::::
these

::::::::
symbols

:::
and

::::
find

:::
the

::::::::
following

:::::::
possible

::::::
states:

:::::::::
(T`,t,P`,t),:::::::::

(T`,t,Ph,t),:::::::::
(Th,t,P`,t)::::

and
::::::::::
(Th,t,Ph,t).::::

Now
::::

we
:::
can

:::::::
rename

::::
these

:::::
states

::
to

:::
e.g.

::::::
S`,`,t, :::::

S`,h,t,:::::
Sh,`,t::::

and
:::::
Sh,h,t:::

and
::::
then

::
a

::::::
Markov

:::::
chain

:::::
could

::::
look

::::
like:270

::::::::::::::::::::::::::::::::::::::::::::::::
S`,h,1,S`,`,2,S`,`,3,Sh,h,4,Sh,h,5,Sh,h,6,Sh,`,7, . . . ,Sh,h,N ,

:::::
where

:::
N

::
is
::::

the
::::
total

:::::::
number

::
of
:::::

data

:::::
points.

::::::
From

::::
such

::
a
::::::::
sequence

:::
we

::::::::
calculate

:::
the

:::::::::
transition

::::::::::
probability

::::::
matrix

:::
and

:::::
from

::::
this,

::::
the

:::::::::
descriptors.

:

3
:::::::::
Sensitivity

:::::::
analysis

:::::
Before

::::::::
applying

:::
the

::::::
method

::
to

:::
the

:::::::::::
observational

::::
data

:::
and

:::
the

:::::
model

:::::::::
ensemble,

::
we

:::::
tested

:::
the

::::::::::
applicability275

::
of

:::
the

::::::
method

:::
by

::::::
several

::::::::
sensitivity

::::
tests

:::::
using

:::
the

:::::
above

:::::::
defined

:::::::::
descriptors.

:::::::::
Therefore

::
we

::::::::
consider

::
the

:::::::
gridded

::
E-

::::
OBS

::::
data

::::
and

::::::::::
additionally

:::::::
ECA&D

::::::
station

::::
data.

:
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3.1
::::::
Spatial

:::::::::
variability

::
In

:::::
order

::
to

:::
test

:::
the

::::::
spatial

:::::::::
variability

:::
of

:::
the

:::::::::
descriptors

:::
we

:::::::::
calculated

:::::
them

:::
for

:::
the

:::::
entire

::
E-

::::
OBS

::::::
dataset

::
for

:::
the

::::
time

::::::
period

:::::::::
1971-2000

::
for

:::
the

:::
two

:::::
types

::
of

::::::::
extremes

::::::::
mentioned

::::::
above.

::::
The

:::::::::
descriptors280

::::
were

:::::::::
calculated

::::
over

:
a
:::::::

moving
:::::::
window

:::
of

:
9
::::::::::

gridpoints.
:::
The

:::::
time

:::::
series

:::
for

::::
each

::::
grid

:::::
point

:::::
were

::::::::
detrended

:::
and

::::::::::
partitioned

::::::::
separately

::::::
before

:::
the

::
9
:::::::::
partitioned

::::
time

::::::
series

::::
were

:::::::
merged

::
to

::::::::
calculate

::
the

::::::::::
descriptors.

::::
The

:::::
value

:
is
::::::::
assigned

::
to

:::
the

:::::
center

::::
grid

:::::
point.

:

:::
For

::::
both

::::
type

::
of

::::::::
extremes,

:::
the

:::::::::
descriptors

:::::
show

:::::::
smooth

:::::
spatial

:::::::
patterns

::::
(see

::::
Fig.

::
1),

:::::::::::
nevertheless

::::::::
variations

:::::::
between

:::::::
different

:::::::
regions

:::
can

::
be

:::::::::
identified.285

:::
The

::::::::::
persistence

:::
for

:::
the

:::::
winter

::::::::
extremes

::::
(left

::::
side

::
of

::::
Fig.

::
1)

::
is
:::::
lower

::::
than

:::
for

:::::::
summer

:::::::::
extremes,

::::::::
especially

::
in

:::::::
northern

::::
and

::::::
Central

:::::::
Europe

:::::::::
compound

::::
cold

:::
and

::::
wet

:::::
events

:::
are

:::::
most

:::::
likely

:::::
events

:::
of

:
a
::::
short

::::::::
duration

:::
and

:::::
rather

::::
rare

:::::
(with

:::::::::
recurrence

:::::
times

::
of

::
up

::
to

:::::::::
400days).

:::::
Along

:::
the

:::::::::::::
Mediterranean

::::
coast

::::
and

:::::
south

::::::
eastern

::::::
Europe

::::
the

:::::
values

:::
are

::::::
higher

::::
and

::::::::::
probabilities

:::
of

:::::::
residing

::
in

::
a

:::::::::
compound

::::::
extreme

:::::
state

::
of

::::
over

::::
50%

:::
are

::::::::
observed.

::::
The

:::::::::
recurrence

::::
time

:::
for

:::::
these

:::::
events

::
is

::::
also

::::::::::::
comparatively290

:::
low

:::::::
(around

::::::::
100days).

::::::::::
Interpreting

:::
the

::::::
results,

::::
one

:::
has

::
to

::::
keep

::
in

:::::
mind

:::
that

:::
we

:::
are

::::::
always

::::::::
referring

::
to

::::::
relative

:::::::::
compound

::::::::
extremes.

::::
The

:::::::
entropy

::
is

::::::
around

:::
0.9

:::
for

:::::
most

::
of

:::
the

::::
area

::::
with

:::::
small

:::::::
regions

:::::::
showing

:::::
lower

:::::::
entropies

:::::
down

::
to

::::
0.5.

:::::
These

::::
high

::::::
values

:::
can

::
be

::::::::
explained

:::
by

:::
the

:::
low

:::::::::
persistence

::
-
::
as

::::::::
compound

::::::
winter

::::::::
extremes

::
are

:::::::
grouped

::
in

::::
very

:::::
short

:::::::
episodes

::::
(low

::::::::::
persistence),

::::
they

:::
are

::::
very

::::
hard

::
to

::::::
predict.

::::
The

::::::
highest

::::::::::
persistences

:::
for

::::::
summer

::::::
events

:::::
(right

:::
side

::
of

::::
Fig.

::
1)

:::
are

::::::::
observed

::
in

::::::::::
Scandinavia295

:::
and

:::
the

::::::
eastern

::::
part

::
of

:::
the

::
E-

::::
OBS

::::::
domain

::::
and

::::::
lowest

::
in

::::::
Central

:::::::
Europe

:::
and

:::
the

::::::::
northern

::::
coast

:::
of

:::::
Spain.

::::
The

:::::::::
persistence

:::
is

:::::
above

::::
50%

:::
for

::::
the

:::::
whole

:::::::
domain,

::::::
which

::::::
means

::::
that

:::
the

:::::::::
probability

:::
of

::
the

:::::::
system

:::::::
residing

::
in

:
a
:::::::::
compound

:::::::
extreme

:::::
state

::
is

::::
high

:::
and

:::::
these

::::::
events

:::
are

:::::::
grouped

::
in

::::::::
episodes

::
of

::::
long

::::::::
duration.

:::
The

:::::::::
recurrence

:::::
time

:::
lies

:::::::
between

:::
40

:::
and

::::::::
100days

:::
and

::
is
::
as

:::::
such

::::
also

:::::
lower

::::
than

:::
that

:::
for

:::::::::
compound

:::::
winter

::::::
events.

:::::::
Lowest

:::::
values

:::
are

::::::::
observed

::
in

:::
the

::::::
Balkan

::::::
region.

::::
The

::::::
entropy

::::
lies300

:::::::
between

:::
0.4

:::
and

::::
0.65

::::::
which

:::::
means

::::
that

:::
the

:::::::
extreme

:::::
events

:::
are

:::
not

:::
so

::::
easy

::
to

::::::
predict,

:::::::::
especially

:::
for

::::
parts

::
of

::::::
Central

:::::::
Europe

:::::
where

:::
the

::::::
entropy

::
is

:::::::
highest.

::::::::
However,

::::::::
according

::
to

:::
our

::::::::::
definitions,

:::::::
summer

:::::::
extremes

:::
can

::::::
better

::
be

::::::::
predicted

::::
than

:::::
winter

:::::::::
extremes.

:::
For

:::
the

::::
main

::::::::
analysis

::
in

:::
this

:::::
paper

:::
we

:::::
apply

::::
the

::::::
method

::
to

::
6
::::::
regions

::::::
which

:::
we

:::::
chose

::
in
::::::

rough

::::::::
agreement

:::::
with

:::
the

::::::::
Prudence

:::::::
regions.

:::
The

:::::::
crucial

::::
point

:::
for

:::::
being

::::
able

:::
to

:::::::
compare

:::
the

::::::::::
descriptors305

::
of

:::::::
different

:::::::
regions

::
is

::::
that

::::
each

::::::
region

::::::::
contains

:::
the

:::::
same

:::::::
amount

::
of

::::::::
grid/data

::::::
points.

:::::
Since

::::
the

:::::::::
descriptors

::
do

::::
not

::::
vary

:::::::
strongly

::::::
within

:::
the

::::::::
Prudence

:::::::
regions,

:::
we

:::::
chose

:::::::
regions

:::::::::
consisting

::
of

::::
6x6

::::::::
gridpoints

:::::
from

:::::
within

:::::
these

::::::
widely

::::
used

:::::::
regions.

:::
The

:::::::
regions

:::::
which

::::
will

::
be

::::::::
analyzed

::
in

:::
the

::::::
further

::::::
sections

:::
of

:::
this

:::::
paper

:::
are

::::::
shown

::
in

:::
Fig.

::
3.

:

::::
Note

::::
that

:::
the

:::::
results

::::::
shown

::
in

::::
Fig.

::
1

:::
can

::::
only

:::
be

::::::::::
qualitatively

:::::::::
compared

::
to

:::::
those

::
of

:::
the

:::::::
regions310

:::::::::
considered

::::
later

::
or

::::
the

::::::
station

::::
data

::
in

:::
the

::::
next

:::::::
section

::
as

:::
the

:::::::
number

:::
of

:::
grid

::::::
points

:::
(or

::::::::
stations)

::::::::::
contributing

::
to

:::
the

:::::::
analysis

::::::
differs.
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3.2
::::::::
Temporal

:::::::::
variability

::
To

:::::
assess

:::
the

::::::::
temporal

::::::::
variability

::
of

:::
the

::::::::::
descriptors

::
we

:::::::::
calculated

:::
the

:::::::::
descriptors

:::
for

::::::
30-year

:::::::
moving

:::::::
windows

:::
of

:::::::::::
observational

::::::
station

::::
data

:::::
from

:::
the

::::::::
ECA&D

::::::
station

::::::
dataset

:::::::::::::::::::::
Klein Tank et al. (2002).315

::::
Since

:::
we

:::
are

::::::::
interested

::
in

:::
the

::::
daily

::::::
values

::
of

::::::::::
temperature

:::
and

:::::::::::
precipitation,

::::
only

::::::
stations

:::::
were

::::::
chosen

::::
with

:
a
:::::::::
continuous

:::::
daily

:::::
record

:::::
(with

::
an

:::::::::
allowance

::
of

::
50

:::::::
missing

:::::
values

::
at
::::::
most).

:::::
Using

:::::
these

::::::
criteria

::::
there

:::
are

:::::
eight

::::::
stations

::::
with

::::::::::
temperature

::::
and

:::::::::::
precipitation

::::
time

:::::
series

::::
from

:::::::::
1900-2015

:::
of

:::::
which

:::
all

::
are

:::
in

::::::::
Germany

::::
(see

::::
Tab.

::
1).

::::
One

::::::
station

::::
has

::
15

:::::::
missing

::::::
values

:::
for

::::::::::
temperature.

::::::
These

::::
days

:::::
were

:::::::
excluded

:::::
from

:::
the

::::::::
analysis,

::::::::::
considering

:::
the

::::::
30year

::::
time

::::::::
windows

:::::::::
consisting

::
of

::::::
10950

:::::
days,

::::
this320

:::::::
amounts

::
to

:::::::
roughly

::::
0.1%

::
of

:::
the

::::::
values

:::
and

::::
does

:::
not

::::
alter

:::
the

:::::
value

::
of

:::
the

::::::::::
descriptors.

:::
Of

::::
these

:::::
eight

:::::::
stations,

:
5
:::
are

:::
in

:::
the

::::::
vicinity

:::
of

::::::::
Hamburg

:::
and

:::::
have

:::
the

:::::
same

:::::
values

:::
for

:::
the

::::
first

::::::
17-22

:::::
years.

::::
The

::::::
records

::
of

::::
two

::::::
stations

:::
in

::::::::
Hamburg

:::
are

:::::::
identical

::::::::::
throughout

:::
the

:::::
whole

::::
time

:::::::
period,

:::::::
therefore

:::::
only

:::
one

::
of

:::::
them

:
is
::::::::
included

::
in

:::
the

:::::::
analysis

:::::
which

::::::
leaves

:
a
::::
total

::
of

:::::
seven

:::::::
stations.

:

:::
The

::::::::::
descriptors

::::
were

:::::
again

:::::::::
calculated

:::
for

:::::
both

:::::
types

::
of

:::::::::
compound

::::::
events.

::::::
Linear

:::::::::::
temperature325

:::::
trends

::::
were

:::::::
removed

:::::::::
separately

:::
for

::::
each

::
of

:::
the

:::::
30year

::::::::::::
time-windows

:::
and

::
in
:::::
order

::
to

:::::
fulfill

:::
the

::::::
criteria

::
of

:::
the

:::::::
Markov

:::::::
method

::::::::::
(stationarity

::::
and

:::::::
non-zero

:::::::
entries

::
of

:::
the

::::::::
transition

::::::::::
probability

::::::
matrix,

::::
see

:::
Sec.

:::::
2.3),

:::
the

:::::::::
partitioned

::::
data

::
of

:::::
these

:::::
seven

::::::
stations

:::::
were

::::::::
combined

::
to

::::
one

::::
time

:::::
series

::
to

::::::::
calculate

::
the

::::::::::
descriptors.

:

:::
The

::::::
results

:::
are

:::::
shown

::
in

::::
Fig.

:
2
:::
for

::::
both

:::::
winter

:::::::
(black)

:::
and

:::::::
summer

:::::
(gray)

::::::::
extremes.

:::::::::
Especially

:::
for330

::
the

::::::::::
persistence

:::
and

:::::::::
recurrence

:::::
time,

:
a
:::::
clear

::::
shift

::
is

:::::
visible

::::::::
between

::::
1930

::::
and

:::::
1950.

::::
This

::::
time

:::::
range

:
is
:::
not

:::::::::::
preindustrial,

:::
but

:::
the

::::::
crucial

:::::
point

::
is

:::
that

:::
the

::::::::
observed

::::
shift

::::::::
coincides

::::
with

::
an

::::::::
observed

::::
shift

::
in

::
the

::::::
global

:::::::
increase

::
in
:::::

CO2 ::::::
around

::::
1950

:::::::::::::::::::::::::::::::::::::::
(see e.g. Pachauri et al., 2014, Fig. SPM.1 (d)).

:::::
From

::::
this

::::::
finding

:::
we

:::::::
observe

::::
two

::::
main

::::::
points:

:

1.
:::
The

:::::::::
descriptors

::::::::::
(especially

:::::::::
persistence

::::
and

:::::::::
recurrence

:::::
time)

::::
seem

::
to
:::

be
:::::::
sensitive

:::
to

:::::::
changes335

::
of

:::
the

::::
CO2 :::::::

increase.
::::
That

::::::
means

:
a
:::::::
stronger

:::::::
increase

::
of

::::
CO2::::

(e.g.
:::::
from

::::
1950

:::
on)

:::::
yields

::
a
:::::
lower

::::
level

::
of

:::::::::
persistence

::::
and

::
to

:
a
::::::
higher

::::
level

:::
of

:::::::::
recurrence

::::
time.

::::::::
Although

::::
CO2::

is
::::
still

:::::::::
increasing

::::
after

:::::
1950,

:::
the

::::::::
recurrence

::::
time

::::
e.g.

:::::::
remains

:::::::
constant.

::::::
Hence,

:::
the

:::::::::
recurrence

::::
time

::::::
seems

:::
not

::
to

::
be

:::::::::
dependent

::
on

:::
the

:::::::
absolute

::::
CO2::::::::::::

concentration,
:::
but

:::
on

:::
the

:::::::
increase

::
of

:::::
latter.

2.
::::
Thus

:::
we

:::
can

::::::::
conclude

::::
that

:::
the

::::::
natural

:::::::::
variability

::
of

:::
the

::::::::::
descriptors

:::
can

::
be

::::::::::::
approximated

:::
by340

::
the

:::::::::
variability

::::::::
observed

::::::
before

:::
and

::::
after

:::
the

:::::
shift.

::::
This

::::::
natural

:::::::::
variability

::
is

:::::::
smaller

::::
than

:::
the

::::
shift

::
of

:::
the

:::::
mean.

::::::::::
Concluding,

:::
due

:::
to

:::
the

:::::::::::::
non-availability

:::
of

:::::::::::
preindustrial

::::
data

:::
we

:::::
could

:::
not

::::::
really

:::
test

:::
the

:::::::
natural

::::::::
variability

::
of

:::
the

::::::::::
descriptors

::
in

::::::::::
preindustrial

::::::
times.

:::
But

:::
we

:::::
could

:::::
show

:::
that

:::
the

:::::::::::
approximate

::::::
natural

::::::::
variability

:::::::
(before

:::
and

:::::
after

:::
the

::::
shift

::
in

::::::
1950)

::
is

::::::
smaller

::::
than

::::
the

::::
shift,

::::::
which

::
is

::::::::
probably

:::
due

:::
to345

::
the

:::::::
change

::
in

::::
CO2::::::::

increase.
:::
Just

:::
for

::
a
:::::
rough

::::::::::
estimation:

:::
the

::::
mean

:::::
level

::::
shift

::
of

:::
the

::::::::::
persistence

:::
for

:::::
winter

::::::::
extremes

::
is

:::::
about

::::
50%

:::::
(from

::::
0.2

::
to

::::
0.1)

:::
and

:::
for

:::
the

:::::::::
recurrence

::::
time

::
it
::
is

:::::
about

::::
20%

::::::
(from

:::
180

::
to

::::
140

:::::
days).

:::::::::
Regarding

::::
our

:::::
results

:::
of

:::::::
changes

::
of

:::
the

::::::::::
descriptors

::::::::::
(1971-2000

:::
vs.

::::::::::
2021-2050)
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::::::::
presented

:::::
below

::::
(see

:::
see

:::::
Sect.

::
6),

:::
we

::::
find

:::::::
changes

::
of

:::
the

::::::::::
persistence

:::::
larger

::::
than

::::
50%

::::
and

:::::::
changes

::
of

:::
the

:::::::::
recurrence

::::
time

::::::
larger

::::
than

:::::
20%.

:::
We

::::::::::
additionally

:::::::
perform

::::::::::
significance

:::::
tests

::
on

::::
our

::::::
results350

:::::
which

:::::
show

:::
that

:::::
these

:::::::
changes

:::
are

:::::
indeed

::::::::::
significant,

::::::::
excluding

::::::
natural

:::::::::
variability

::
as

:::
the

::::::
source

:::
for

::
the

::::::::
observed

::::::::
changes.

3.3
::::
Error

:::
of

:::::::::
estimation

:::::
using

:::::::
Fourier

::::::::::
Transform

::::
(FT)

::::::::::
surrogates

::
To

:::::
assess

:::
the

:::::::::
estimation

::::
error

::
of

:::
the

:::::::::
descriptors

:::
we

::::
used

:::
the

::::::::::
Multivariate

::::::
Iterated

:::::::::
Amplitude

::::::::
Adjusted

::::::
Fourier

:::::::::
Transform

:::::::::
(MIAAFT)

::::::::
algorithm

::
as

::::::::
described

:::
by

::::::::::::::::::::::::::::::::::::::::::
Venema et al. (2006); Schreiber and Schmitz (2000).355

::
By

::::
this

:::::::::
algorithm,

:::
the

::::
data

::
is

:::::::
shuffled

::::
and

::::
thus

:::
the

:::::::
original

::::::::::
distribution

::
is

:::::::::
preserved.

::
In

::::::::
addition,

::
the

:::::
auto

:::
and

::::::::::::::
cross-correlation

:::
of

:::
the

::::::::::
temperature

::::
and

:::::::::::
precipitation

::::
time

:::::
series

:::
are

:::::::::::::
approximately

::::::::
preserved.

:::
We

::::::::::
constructed

::::
100

::::::::
MIAAFT

::::::::
surrogates

:::
for

:::
the

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::::::::
anomalies

::
(or

:::
the

:::::
EDI

::::
time

:::::
series

:::
for

:::::::
summer

::::::
events,

:::::::::::
respectively)

:::
for

::::
the

::
E-

::::
OBS

::::::
dataset

:::
for

::::
the

::::::::
reference

:::::
period

:::::::::::
(1971-2000).

::::
We

::::
then

::::::::
estimated

:::
the

::::::::
standard

::::::::
deviation

:::
of

:::
the

:::::::::
descriptors

:::::::::
calculated

:::::
from360

::::
these

::::::::
surrogate

::::::::::
time-series.

::
It

:
is
:::::::::
important

::
to

::::
note

:::
that

::::
this

:::::::
standard

::::::::
deviation,

:::::
under

:::
the

::::::::::
framework

::
of

::::
such

:
a
::::::::
bootstrap

::::
test,

::::::
already

:::::::::
represents

:::
the

:::::::
standard

:::::
error

::
of

:::
the

:::::
mean,

:::::
which

:::::::::::
corresponds

::
to

:::
the

::::::
normal

:::::::
standard

::::::::
deviation

::::::
devided

:::
by

::::

√
N .

::::
The

:::::
errors

:::
for

::::
both

:::::
types

::
of

:::::::
extremes

::::
and

:::
the

::
six

:::::::
regions

::
are

:::::
listed

::
in

::::
Tab.

::
2.

:::
The

:::::
errors

:::
do

:::
not

::::
vary

:::::
much

:::::::
between

:::
the

:::::::
different

:::::::
extremes

::::
and

:::::::
regions,

::
the

:::::
error

::
of

:::
the

:::::::::
persistence

::
is

::
in

:::
the

:::::
order

::
of

::::
0.01

::
or

::::::
lower,

:::
the

:::
one

::
of

:::
the

:::::::::
recurrence

::::
time

::::::::
between

:
1
::::
and

:::
2.6365

:::
and

:::
the

::::
error

::
of
:::

the
:::::::
entropy

::
in

:::
the

:::::
order

::
of

::::::
0.005.

::::::::
Adopting

::::
these

::::::
errors

::
to

:::
the

:::::
values

::
of

:::
the

::
E-

::::
OBS

:::::::::
descriptors

:::
for

:::
the

::::::::
reference

::::::
period

::::::
(shown

::
in

:::::
Figs.

:
4
::::
and

:
5
:::
in

::::
Sect.

::
4)

:::
the

:::::
error

::
of

:::
the

::::::::::
persistence

:
is
:::::
about

:::::::
2-10%,

:::
for

:::
the

:::::::::
recurrence

::::
time

:::::
about

:::
2%

:::
and

:::
for

:::
the

:::::::
entropy

:::::
about

:::::
1-2%

:::
(cf.

::::
Tab.

:::
2).

::::
This

::::::::
estimation

:::::
error

:
is
:::::
much

:::::::
smaller

::::
than

:::
the

::::::::
ensemble

:::::::::
uncertainty

:::
and

::::
can

::::::::::::
approximately

::
be

:::::::::
neglected.

::::
This

:::::
shows

:::
that

:::
the

:::::::::
estimation

::
of

:::
the

::::::::::
descriptors

:
is
::::::
robust.

:::::::
Further,

:::
we

:::
will

::::::::
consider

:::
the

:
E-

::::
OBS

::::
data370

::::::::::::
approximately

::
as

::::
truth

:::
and

:::
we

::::
will

:::
use

:::
the

::::::::
ensemble

:::::::::
uncertainty

:::
as

:::
the

::::
error

:::
for

:::
our

::::
main

::::::::
analysis.

Table 2.
::::::::
Estimation

::
of

:::
the

::::
error

:::
of

:::
the

::::::::
descriptors

:::
by

:::::
using

:::::::
MIAAFT

::::::::
surrogates

:::
for

::::::
winter

:::
and

:::::::
summer

:::::::
extremes.

::::
The

:::::
values

::::
were

::::::::
calculated

:::::
using

:::
the

::
E-

:::
OBS

::::::
dataset

:::
for

:::
the

::::::::
reference

:::::
period

::::::::::
(1971-2000).

:::
In

::::::::
parentheses

:::
the

:::::::::
percentage

::
of

::
the

::::
error

::::
with

::::::
respect

::
to

:::
the

::::
value

::
of

:::
the

::
E-

::::
OBS

::::::::
descriptors

:::
for

:::
the

::::
same

::::
time

:::::
period

:::
and

:::::
region

::
are

:::::
given.

:

:::
DJF

::
JJA

:
P

:
R

:
E

:
P

:
R

:
E
:

:::
reg1

::::
0.010

:::::
(7.9%)

: ::::
1.701

::::::
(2.1%)

::::
0.004

::::::
(0.5%)

::::
0.007

::::::
(1.2%)

::::
1.183

::::::
(1.8%)

::::
0.009

::::::
(1.6%)

:::
reg2

::::
0.011

:::::
(8.2%)

: ::::
2.182

::::::
(1.5%)

::::
0.010

::::::
(1.0%)

::::
0.010

::::::
(1.7%)

::::
2.055

::::::
(3.5%)

::::
0.010

::::::
(1.7%)

:::
reg3

::::
0.010

:::::
(7.9%)

: ::::
2.563

::::::
(1.5%)

::::
0.005

::::::
(0.6%)

::::
0.009

::::::
(1.6%)

::::
0.923

::::::
(1.4%)

::::
0.007

::::::
(1.1%)

:::
reg4

::::
0.008

:::::::
(12.3%)

::::
1.150

::::::
(1.0%)

::::
0.005

::::::
(0.6%)

::::
0.008

::::::
(1.3%)

::::
0.990

::::::
(1.8%)

::::
0.011

::::::
(1.9%)

:::
reg5

::::
0.010

:::::
(3.9%)

: ::::
2.450

::::::
(1.0%)

::::
0.010

::::::
(2.2%)

::::
0.008

::::::
(1.3%)

::::
1.103

::::::
(1.7%)

::::
0.009

::::::
(1.5%)

:::
reg6

::::
0.007

:::::
(1.8%)

: ::::
0.797

::::::
(1.4%)

::::
0.004

::::::
(0.4%)

::::
0.009

::::::
(1.6%)

::::
1.150

::::::
(2.0%)

::::
0.009

::::::
(1.7%)

12



4
::::::::::
Markovian

::::::::::
descriptors

:::
for

:::
the

::::::::
reference

::::::
period

:::::::::
1971-2000

Fig. 4 shows the descriptors for cold extremes and heavy precipitation in winter from 1971-2000.

The
::
As

:::
for

:::
all

:::::::
boxplots

:::
in

:::
this

:::::::
chapter,

:::
the

:
boxes show the 25th and 75th quantile of the ensem-

ble ,
::::::::::
(interquartile

::::::
range)

::::
and the whiskers the minimum and maximum

::::
value

::
of
:::
the

:::::::::
ensemble. The375

colored line marks the ensemble median and the gray line the ensemble mean. Crosses mark the de-

scriptors of the observations. The observed persistence for the different regions lies between 0.06 and

0.37. This means that the system does not stay in this extreme state for a very long time, the lowest

observed persistence is in region 4 (Scandinavia) where extreme-extreme transitions are extremely

::::
very rare. The recurrence times vary strongly between the regions, the values are between 64 and 314380

days. Regions 1 and 6 (Spain and Bulgaria) show the lowest recurrence times. In region 6 (Bulgaria)

the compound cold and wet episodes have the longest duration and occur with the highest frequency.

The entropy of the observations lies between 0.23
:::
0.86

:
in region 3 (Germany) and 0.25

::::
0.96 in re-

gion 1 (Spain) and between 0.19
::::
0.74

:
in region 3 (Germany) and 0.26 in region 5 (Russia

:::
0.98

:::
in

:::::
region

::
1

:::::
(Spain) for the CCLM ensemble. Thus, the deduced entropy (both, observations and model)385

covers a rather small portion of the range of theoretically possible values from 0 to 1. As mentioned

in Sect. 2.3 the range in which we actually expect the values of the descriptors is smaller. There-

fore, when comparing the descriptors, the values have to be interpreted relative to the regions. One

must be careful, however, because the descriptors do not permit to draw any conclusions about the

absolute predictability of the states as long as the total numbers of states are not considered.390

Focusing on the descriptors for the CCLM ensemble (box plots and gray bars in Fig. 4), we can see

that with this method we are able to detect significant differences in dynamical behavior between

some of the regions. In comparison to the descriptors of the observations (crosses in Fig. 4), the

ensemble is able to capture the differences between the regions fairly well except for the persistence

in region 5 where the ensemble shows a much lower persistence and the recurrence time of region 4395

(Scandinavia) which is lower for the observations. However, these are regions where the the density

of station data underlying the E-OBS dataset is not very high and the E-OBS results may not be

as reliable. The highest persistence is again in region 6 (Bulgaria) which also shows the lowest

recurrence time and therefore has comparatively long events which occur more frequently than in

other areas. The triangles mark the descriptors of the reanalysis driven simulations. They fit well400

for some regions, for others they are farther away from the observations than the CCLM-ensemble.

such that the number of univariate extremes is the same for hot and dry extremes and cold and wet

extremes

Fig. ??
:
5 shows the descriptors for hot and dry extremes in summer. Crosses again mark the

descriptors of the observations. All descriptors are higher
:::::::::
Persistence

:::
and

:::::::::
recurrence

::::
time

:::
are

::::::
higher,405

::::::
entropy

::
is

:::::
lower

:::
for

::::
hot

:::
and

:::
dry

::::::::
summer

:::::::
extremes

:
than for cold and wet extremes in winter, this

also holds when partitioning the data.
:::

A
:::::
direct

::::::::::
comparison

::::
can

::
be

::::::
made

:::::::
because

:::
the

::::
data

:::::
were

:::::::::
partitionedsuch that the number of univariate extremes is the same for hot and dry extremes and cold
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and wet extremes (not shown). This might partly be due to the lower variability of EDI compared to

precipitation anomalies but one would also expect the dynamical behavior of these extremes to be410

different. By our definition, hot and dry episodes in summer are longer and not as frequent as cold

and wet extremes in winter. The highest persistences are in regions 2,
::::::::
persistence

::
is
::
in

:::::::
regions 4 and 5

(France, Scandinavia and Russia), the lowest in region 3 (Germany). The entropy lies between 0.24

and 0.25 and is fairly similar for all regions considered. This is a higher value
::::
0.53

:::
and

::::
0.60

::::
and

::
is

::::::
highest

::
in

:::::
region

::
2

:::::::
(France)

:::
and

::::::
lowest

::
in

::::::
region

:
6
:::::::::
(Bulgaria).

::::
The

:::::
values

:::
are

:::::
lower

:
than for the cold415

and wet extremes, so this state probably
::
the

::::::
winter

:::::::::
compound

:::::::
extreme

::::
state exhibits more complex

dynamics and is harder to predict (caution: this is also influenced by the total number of extremes).

The CCLM ensemble (box plots) again captures the tendencies of the observed descriptors fairly

well but shows a large spread and differences between the regions are not significant
:::::
mostly

::::
not

::::::::
significant

:::
for

::::::::::
persistence

:::
and

:::::::::
recurrence

::::
time. The ERA-40 driven CCLM simulations (triangles in420

Fig. ??)
::
5)

::::
again

:
fit well to the observations for most regions

:::::
some

::::::
regions

::::
and

::::
show

::::
very

::::::::
different

:::::::
behavior

:::
for

:::::
others.

For both types of compound extremes the ensemble mean and median seem to be able to capture

the differences between regions shown by observations although not always in absolute numbers.

An interesting result is that reanalysis driven CCLM data is sometimes farther away from the ob-425

servational descriptors than the model data, especially for the cold and wet extremes in winter. This

leads to the question whether the dynamical behavior of the driving GCM is greatly altered by

the RCM downscaling and errors in both models compensate during the downscaling process. A

:::::
further

:::::
cause

:::
of

:::
this

::::::::
deviation

::
of

:::
the

::::
ERA-

::
40

::::::
driven

:::::::::
simulations

:::::
could

:::
be

:
a
:::::::::::::::
misrepresentation

::
of

:::
the

::::::::
dynamics

::
by

:::
the

:::::::::
reanalysis

::::::
dataset.

::
A

:
follow up study comparing dynamical behavior of both RCM430

and GCM
:::::
GCMs

:
is planned for the future.

::::::::::
Additionally

::
it
::::::

would
:::
be

:::::::::
interesting

::
to

::::
also

::::::::
compare

:::::::
different

:::::::::
reanalysis

:::::::
datasets

:::::
using

:::
this

:::::::
method

::
as

:::::
there

:::::
have

::::
been

::::::
studies

::::::::
showing

:::::::::
differences

:::
in

::::
their

::::::::
variability

::::::::::::::::::::::::
(e.g. Hagemann et al., 2005)

5 Climate change signal of the Markovian descriptors

5.1 Change signal within the reference period435

In order to get an idea about the order of magnitude of the change signal, the observational E-OBS

dataset was split into two equal parts of 30 years, 1951-1980 and 1981-2010. The descriptors were

calculated for both time periods and a change signal derived.

For cold and wet extremes (see Fig. ??
:
6) all regions except Bulgaria

::::::
France show a decrease in

persistence, region 5 and 6 (Russia and Balkan) show the strongest absolute decrease (≈ 0.15) and440

Germany the highest relative decrease of -72 % (relative changes are shown above the respective

bars). The recurrence time does not change much for all regions except region 5 (Russia) where it

decreases by 150 days. In this region, compound cold and wet extremes occurred more frequently
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but were of shorter duration in 1981-2010. The entropy only shows changes greater
:::::
shows

:
a
::::::::
decrease

::
of

::::
more

:
than 5 % in Scandinavia where it decreases and

::
%

::
in

:::::
Spain

:::
and

::::::::
Germany

::::::
where the system445

becomes more regular.
::
In

:::::
Spain

:::
an

:::::::
increase

:::
of

:::::::
entropy

::
is

::::::::
observed

:::
and

::::
the

:::::::::
compound

::::::::
extremes

::
are

::::::
harder

::
to

::::::
predict

::
in
::::::::::
1981-2010

::::
with

::::::
respect

::
to

::::::::::
1951-1980.

:::
The

:::::::
change

:::::
signal

:::
for

::
all

::::::::::
descriptors

:::
and

:::::::
seasons

::::::
(except

:::
for

:::
the

:::::::
entropy

::
of

::::::
France

::::
and

:::::::
Russia)

:::
are

::::::
greater

::::
than

:::
the

::::::::
estimated

:::::
error

:::
by

:::::::::::
FT-surrogates

::::
(see

::::
Tab.

::
2),

::::
thus

:::::
these

:::::::
changes

:::
are

::::::
robust.

Changes for hot and dry extremes in summer (see Fig. ??)
:
7)show a decrease in all descriptors450

:::
are

::::::
below

::::
10% for most regions, region 5 (Russia)is the only one with an increase in persistence

and recurrence time. The order of magnitude of the change signal is slightly lower than for cold

and wet extremes in winter (maximum change persistence: -0.07, recurrence time -7 days) and here,

regions 3 (Germany) and 4 (Scandinavia) are the ones with the largest changes
:
.
:::::::::::
Nevertheless

:::
for

::::
most

::::::
regions

:::::
these

:::::::
changes

:::
are

::::
still

::::::
greater

::::
than

:::
the

::::::::
estimated

:::::
errors

:::
by

:::::::::::
FT-surrogates

::::
(see

::::
Tab.

:::
2).455

::
In

::::::::::
Scandinavia,

:::::
both

:::::::::
persistence

::::
and

:::::::::
recurrence

::::
time

::::
show

::
a
::::::::
decrease,

:::
the

:::::::
extreme

:::::::
episodes

:::
are

:::
of

::::::
shorter

:::::::
duration

:::
but

:::::
occur

:::::
more

:::::
often.

::
In

:::::
Spain

::::
and

::::::::
Germany,

:::::
both

:::::::::
descriptors

:::::
show

::
an

:::::::
increase

::
-

::::::::
especially

::
in

:::::::::
recurrence

::::
time,

::::
thus

:::::::
episodes

::
of

:::::::::
compound

::::::::
extremes

:::::
occur

:::
less

:::::::::
frequently.

:::
An

:::::::
increase

::
in

:::::::::
recurrence

::::
time

::::
can

::::
also

:::
be

::::
seen

::
in

:::::::
Russia.

::::
The

:::::::
entropy

::::::::
increases

::
in

:::::::
regions

:::
3-6

::::::::::
(Germany,

::::::::::
Scandinavia,

::::::
Russia

::::
and

:::::::
Balkan),

::
in

:::::
these

::::::
regions

:::
the

:::::::
system

:::::::
becomes

::::
less

::::::
regular

::::
with

:::::::
respect

::
to460

::::::::
compound

::::
hot

:::
and

:::
dry

::::::
events

:::
and

::::::
harder

::
to

::::::
predict,

:::::::
whereas

::
in
::::::
Spain

::
the

:::::::
Entropy

::::::
shows

:
a
::::::::
decrease

:
-
::::
these

:::::::::
compound

::::::
events

:::
are

:::::
easier

::
to

::::::
predict.

5.2 Projected changes in the near future

In a second step we calculate the change signal between 1971-2000 and 2021-2050 for all members

of the CCLM-ensemble. An additional information of interest for the interpretation of the results is465

the change in the number of compound extreme days. The number of univariate extreme days are

kept constant when partitioning the data (see Sect. 2.3) but the combination can change.

:::
The

:::::::
climate

::::::
change

:::::
signal

::
is

:::::::::
calculated

::::::::
separately

:::
for

::::
each

::::::::
ensemble

:::::::
member

::::
and

::::
then

:::
the

:::::
mean

::::::
climate

::::::
change

:::::
signal

::::
(bar

::
in
:::

the
:::::::::

following
:::::
plots)

::
as

::::
well

::
as

:::
the

:::::::::::
interquartile

:::::
range

:::::::
(marked

:::
by

:::
the

::::::::
whiskers)

::
of

:::
the

:::::::::
individual

::::::
change

::::::
signals

::::
are

::::::::
calculated

::::
and

::::::::
pictured. The number of compound470

cold and wet extreme days increases in all regions except region 5 (Russia) between the two time

periods 1971-2000 and 2021-2050 and the number of compound extreme days differs between the re-

gions. Regions 1 and 6 (Spain and Bulgaria) show the highest number of compound extreme events.

(see Fig. 8). The ensemble mean values of the descriptors for cold and wet extremes in winter are

shown in Fig. 10, whiskers give the interquartile range. The significance of the change signal was475

calculated using the nonparametric MannWhitneyWilcoxon test , the
:::::
which

::::
tests

:::
for

:
a
:::::::::
difference

::
in

::::::
location

:::
of

:::
the

::::::
values

::
of

:::
the

::::::::
ensemble

:::
for

:::
the

::::
two

:::::::
different

:::::
time

:::::::
periods.

:::
The

:
p-values are shown

below the bars in the respective figures. Most of results of this chapter are not
:::::
About

::::
one

::::
third

:::
of

::::
these

:::::::
p-values

:::
are

:::::::
smaller

::::
than

:::
0.5,

::::
thus

:
significant at the 5% significance level,

:::
e.g. region 5 (Rus-
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sia) however shows a significant change signal for the persistence and some changes are significant480

at the 10 % or 20% significance level (P-value
::::::
p-value

:
≤ 0.1 or ≤ 0.2). Following

:::::::::::
Nevertheless

::
we

::::::
follow

:
von Storch and Zwiers (2013), who propose to

:::::::
question

:::::::::
hypotheses

::::::
testing

:::
on

::::::
future

::::::
climate

:::::::::
ensembles

:::
and

:::::::
instead

::::::
propose

:::
to

:::::
better use “a simple descriptive approach for character-

izing the information in an ensemble of scenarios”instead of the ensemble significance, we also
:
.

:::::
Being

::::::::
conscious

::::::
about

:::
the

:::::::::
difficulties

:::::
which

:::::
may

::::
arise

::::::
during

::::::::::
hypotheses

::::::
testing,

:::
we

:
look at the485

ensemble spread in form of the interquartile range to assess the robustness of the results,
:::
and

:::::::
consult

::
the

::::::::::
significance

::::
test

::
to

::::::
support

:::
our

:::::::
findings. In many cases, the majority of ensemble members show

a change signal in the same direction and the change signal is of a similar order of magnitude as the

observed past changes in the preceding section (Figs. ?? and ??)
:
6
:::
and

:::
7).

::
In

:::::::
addition,

::
a
::::::::::
comparison

::
to

:::
the

:::::
results

:::
of

:::
the

::::
error

:::::::::
estimation

:::::
using

:::::::::::
FT-surrogate

::::
time

:::::
series

:::::
(Tab.

::
2)

:::::
yields

::::
that

:::
the

:::::::
changes490

::
are

::::::
higher

::::
then

:::
the

::::::::
estimated

::::
error. Therefore we conclude that these results do show that there might

be possible changes
:::::
future

:::::::
changes

::
of

:::
the

:::::::::
succession

:::
of

::::
cold

:::
and

::::
wet

::::::::
extremes

::
in

::::::
winter in some

regions and in the following we will discuss the changes of the ensemble mean values
:
in

:::::::
Europe

:::
can

::
be

::::::::
expected.

::::::
These

:::::::
changes

::::
are,

::
for

::::
the

::::::::
significant

::::::
cases,

:::::
larger

::::
than

:::::
50%

:::
for

:::
the

::::::::::
persistence,

:::::
larger

::::
than

::::
20%

:::
for

:::
the

:::::::::
recurrence

::::
time

:::
and

::::::
larger

::::
than

:::
5%

:::
for

:::
the

:::::::
entropy.

:::::::::
Regarding

:::
the

:::::::
findings495

::::
from

:::
our

:::::::::
sensitivity

:::::::
analysis

:::::
(Sect.

::::
3.2)

:::::
such

:::::::
changes

:::
are

:::::
larger

::::
than

:::
the

::::::
natural

:::::::::
variability

:::
of

:::
the

:::::::::
descriptors,

::::::
which

:::::
hence

::::
can

:::
be

::::
ruled

::::
out

::
as

:::
the

::::::
cause.

:::::::
Further,

:::
the

:::::::::
sensitivity

:::::
study

::::
has

::::::
shown

:::
that

::::
such

:::::::
changes

:::
in

:::
the

::::
past

:::::::
occurred

:::::::::::
concurrently

:::::
with

:
a
::::::
strong

:::::::
increase

::
in

:::::
CO2 :::::::::

emissions.
:::
As

::::::::
explained

::
in

:::::
Sect.

:::
2.3,

:::
the

::::
only

:::::::::
difference

:::::::
between

::::
the

:::::
model

::::
runs

:::
for

:::
the

:::::::
periods

:::::::::
1971-2001

::::
and

:::::::::
2021-2050

::
is

:::
the

::::
CO2:::::::

forcing,
::::
thus

:::
the

::::
most

::::::::
probable

::::::
reason

::
for

:::::
these

:::::::
changes

::
in

:::
the

::::::
future

::
is

:::
the500

:::::::
increase

::
in

::::
CO2 ::::::::

emissions.

Fig. 10 reveals three regions which seem to be particularly susceptible to changes of the dynam-

ics
:
/
:

succession, namely regions 2 (France), 3 (Germany) and 5 (Russia). The persistence changes

for all regions and cold and wet episodes are likely to be of longer duration in the future. In regions 2

and 3 (France and Germany) the recurrence time decreases. The consequences of these changes are505

that these regions will probably experience more and longer cold and wet events in winter. Further-

more, these are less predictable (increase of entropy). The situation is different for region 5 (Russia),

here the duration of cold and wet periods probably increases but the events will be fewer (decrease

::
as

::::
well,

::::
but

:::
the

::::::
number

:::
of

::::::
events

::::
stays

::::::::
constant.

:::::
Thus

:::
the

::::::
system

::::::
resides

:::
for

::::::
longer

:::::
times

:::
in

:::
the

::::::::::
non-extreme

:::::
states

::::::::
(increase in recurrence time)but more predictable (decrease of entropy).510

The change in number of compound hot and dry extreme days is depicted in Fig. ??
:
9. Here, the

number of compound extreme days varies with the region (although the number of univariate ex-

tremes are kept the same). Region 1 (Spain) shows a relatively low number of compound hot and dry

days (note: all extremes in this paper are relative), regions 5 and 6 (Russia and Bulgaria) have a high

number and also the highest decrease between the two time periods. Except for region 3 (Germany),515

which shows a slight increase, the number of compound extremes decreases in all regions. However,
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the change is generally small, < 10%. Thus, the observed changes of the descriptors can mostly be

attributed to the change in the dynamics and not to a change in the numbers of events, except maybe

for regions 4 and 5 (Russia and Bulgaria).

The change signal of the descriptors is pictured in Fig. ??
::
11. Two regions are

::::
most

:
probably520

susceptible to changes in the dynamics of the hot and dry state, namely regions 1 (Spain) and 6 (Bul-

garia). Region 1 shows a quite strong
::::
small increase in persistence and recurrence time

:
a
::::
quite

::::::
strong

:::::::
increase

:
in
:::::::::
recurrence

::::
time

:::
(in

:::
the

::::
order

::
of

:::::
20%)

:
of the hot and dry stateand a corresponding decrease

in entropy
:
,
:::
the

::::::
entropy

::::
does

:::
not

::::::
change. The hot and dry periods get longer and the system gets more

regular, as indicated by the entropy decrease
::
but

::::
less

:::::::
frequent.

:::::::::
Regarding

:::::
again

:::
the

:::::::::
sensitivity

:::::
study525

:::::
(Sect.

:::
3.2)

::
it

:::
can

::
be

::::
seen

:::
that

::
a
::::::
change

::
of

::::
20%

::
of

:::
the

:::::::::
recurrence

::::
time

::
in

:::::::
summer

::::
(JJA)

::
is

::
at

::::
least

:::::
twice

::
as

::::
large

::
as
::::

the
::::::::
variability

:::
of

:::
the

:::::::::
recurrence

::::
time

::::::
(about

:::::
10%)

::::
from

:::::
1900

::
to

:::::
2015

:::
and

:::::::::
constitutes

::
a

::::
fairly

:::::
large

::::
jump. The situation for region 6 is similar to that of region 1, with an increase in persis-

tence and recurrence time and
::::
only

:
a
::::
very

:::::
small

::::::
change

::
in

:::::::
entropy.

::
In

::::::::
addition,

::::::
Region

:
3
::::::::::
(Germany)

:::::
shows

::
an

::::::::
increase

::
in

:::::::::
persistence

::::
and a decrease in entropy.

::::
This

:::::
means

:::
the

::::::::
episodes

::::
will

::
be

::::::
longer530

:::
and

:::::
more

::::::
regular

:::::::
whereas

::
in

:::::
region

::
5
:::::::
(Russia)

:::
the

::::::::::
persistence

::::::
slightly

::::::::
decreases

::::
and

:::
the

:::::::::
recurrence

::::
time

::::::::
increases.

::::
This

::::::
implies

:::::::
changes

:::::::
towards

::::::
shorter

:::
and

::::
less

:::::::
frequent

::::::
events.

:

6 Conclusions and Outlook

The changing climate leads to a change in extreme weather, which comprises several aspects like

frequency, duration, intensity etc. On top of these rather linear changes, modifications of the com-535

plex succession of extremes can be expected. However, information on the succession or dynamical

behavior of climate extremes is rare. Therefore, to extract such information from climate time series

we applied a Markov chain analysis on compound extremes, namely cold and wet in winter and hot

and dry in summer. We have shown that our climate model ensemble is able to reproduce past dy-

namics of compound extremes fairly well within acceptable uncertainties. Thus, we have reasonable540

confidence in the future simulations of this model ensemble. We identified three regions in Europe,

which are probably susceptible to a future change in the succession and dynamical behavior of cold

and wet extremes in winter. In region 5 (Russia) we detected an increase of the persistence and recur-

rence time, which means that the probability of staying in the cold and wet state from one day to the

next will increase, but the system will take longer to approach this state again. In regions 2 (France)545

and 3 (Germany), cold and wet episodes become both longer and more frequent. The entropy in these

regions also decreases
:::::::
increases in the future, which is counterintuitive, because one would expect

that an increase in persistence is related to a decrease in entropy (cf. Eqs. 5 and 7). However, since

the entropy (Eqs. 7) does not only consider the compound extreme state but also transitions from this

state to the normal state and univariate extreme states, complex interactions can be extracted with550

the entropy. The impacts of these calculated changes are beyond the scope of this study, and it can
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only be speculated about possible effects. One could imagine that longer and less predictable cold

and wet periods could lead to larger snow chaos regarding traffic and other human life, especially in

regions which already experience extreme cold temperatures in winter. Again, these findings suggest

that a reordering of the succession of compound extremes could be happening on top of the observed555

linear changes, as e.g. the temperature increase.

For hot and dry states in summer, the Markov method identified two regions where changes are

probable, Spain and Bulgaria. The persistence and recurrence time in regions 1 and 6 (Spain and

Bulgaria) both increase in the future, which means that the system resides longer in the extreme

state. The entropy decreases, which is expected, because it is easier to predict that an extreme state560

will follow an extreme state. In this light, the systems are getting more regular. However, any
::::
does

:::
not

::::::
change

:::::::::::
significantly.

::::
Any reordering of the succession of extremes has an impact. For instance

such changes could be harmful for the local agriculture, because, as explained above, these dynamic

changes would occur on top of the known linear increase of e.g. temperatures. Interestingly, in region

6 (Bulgaria) the absolute number of compound hot and dry extremes (Fig.??
:
9) decreases in the565

future, but the extreme periods become longer. The changes for region 5
:
3
:
(Russia) are small for

persistence and entropy but larger for recurrence time, which increases. This is probably connected

with the decrease of the number of compound events in the future. Thus, it seems
::
but

:::::::
indicate

:
that

the region in Russia near Moscow will be less susceptible to dynamical changes of the succession of

compound extremes and will additionally experience less compound extremes in the near future.570

:
A
:::::::
number

::
of

::::::
studies

::::
have

::::::
shown

::
an

::::::::
influence

::
of

::::::::::
atmospheric

::::::
drivers

::::::
(mostly

:::::
NAO)

::::
and

::::::::::
atmospheric

:::::::
blocking

:::::::
patterns

::
on

:::::::
summer

:::
as

::::
well

::
as

:::::
winter

::::::::::
temperature

::::::::
extremes

::::
and

::::::::
generally

:::
the

::::::::::
temperature

::::::::
variability

::
in

::::::
Europe

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Photiadou et al., 2014; Sillmann and Croci-Maspoli, 2009).

::::::::
Although

:::
the

:::::::
extremes

::::::::
analyzed

::
in

::::
these

::::::
studies

:::::
were

::::::
mostly

::
of

:::::::
absolute

::::::
nature,

::
an

:::::::
analysis

::
of

:::
the

::::::::
influence

::
of

:::
the

::::
same

::::::
factors

::
on

:::
the

:::::::
relative

:::::::
extremes

:::::::
studied

::
in

:::
this

:::::
paper

:::::
would

:::
be

::::
very

:::::::::
interesting.

:::::
Using

::
a

::::::
similar575

:::::::::::
methodology

::
as

::::::::
described

:::
in

:::
this

:::::
paper

:::
to

::::::::
calculated

::::::::::
persistence,

::::::::::
recurrence

:::
and

:::::::
entropy

::
of

:::::
time

:::::
series

::
of

:::
e.g.

:::
the

:::::
NAO

:::::
index

::
in

:
a
::::::
certain

::::::
regime

:::::
could

:::
be

:::::
linked

::
to

:::
the

::::::::::
descriptors

::
of

:::
the

:::::::::
compound

::::::
extreme

::::::
events.

Areas to apply this method are manifold. Besides the analysis of different dynamical behavior

varying on the region and extreme considered, it can be used as a model validation tool. As ex-580

tremes and especially compound extremes are an important quantity that we want to assess with

climate model data, it is necessary for the models to capture the dynamical behavior of these ex-

treme events. As shown in this paper, the models can also project changes of the future dynamical

behavior which is are an interesting supplementary information to changes in mean and variability.

An example where this could be useful is the decision whether to apply simple or more sophisticated585

bias correction techniques.

Follow up studies using simulations of other regional climate models and regional climate ensem-

bles for time periods further in the future (e.g. ENSEMBLES, http://ensembles-eu.metoffice.com/,
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or CORDEX, http://www.euro-cordex.net/, data for the end of the century) would be interesting. For

one, this would allow an analysis of whether or not there are significant differences depending on590

the regional climate model used. In addition, data for the end of the 21st century is available where

changes in the descriptors could possibly be larger because the influence of the CO2
:::
CO2:

forcing

plays a more important role. In this sense, the Markov chain analysis could be useful to identify pos-

sible future regime shifts (Scheffer and Carpenter, 2003; Scheffer et al., 2009). Of further interest is

an analysis of the dynamical behavior of the driving GCMs as well as the ERA-40 reanalysis dataset595

since for parts the ERA-40 driven CCLM model runs performed worse in comparison to observations

than the CCLM ensemble. This leads to the question whether or not the CCLM model runs compen-

sate for errors in the driving GCMs and are right for the wrong reasons. Comparison of the E-OBS

dataset to other regionally defined datasets would also be helpful to evaluate the observational data.

Acknowledgements. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-600

eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).
:::::
Figs.1

:::
and

:
3
::::
were

:::::
made

::::
using

:::
the

::::
GMT

:::::::
(Generic

::::::::
Mapping

:::::
Tools)

::::::::::::
web-application

::::::::::::::::::
www.piece-of-earth.net. All

::::
other graphics were

made using R (R Development Core Team, 2008).
::
We

::::
also

::::
thank

:::::
P.Berg

:::
and

::::::
R.Sasse

:::
for

::::
their

::::::::::
contributions

::
to

::
the

::::::::::::::
CCLM-Ensemble. The authors thank members of the IMAGE and RCR sections at NCAR for the fruitful

discussions
::
and

:::
the

::::
three

:::::::::
anonymous

::::::
referees

::
for

::::
their

::::::
helpful

::::::::
comments

:::
and

::::::::
suggestions.605

19



References

Byun, H.-R. and Wilhite, D. A.: Objective quantification of drought severity and duration, J. Climate, 12,

2747–2756, 1999.

Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in

European climate by the end of this century, Clim. Change, 81, 7–30, 2007.610

Collins, W., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.,

Joshi, M., Liddicoat, S., et al.: Development and evaluation of an Earth-system model–HadGEM2, Geosc.

Model Devel. Disc., 4, 997–1062, 2011.

Daw, C. S., Finney, C. E. A., and Tracy, E. R.: A review of symbolic analysis of experimental data, Rev. Sci.

Instrum., 74, 916–930, 2003.615

Doms, G. and Schättler, U.: A description of the nonhydrostatic regional model LM, Part I: dynamics and

numerics, Tech. rep., Consortium for small-scale modelling, Deutscher Wetterdienst, Offenbach, Germany,

2002.

Durante, F. and Salvadori, G.: On the construction of multivariate extreme value models via copulas, Environ-

metrics, 21, 143–161, doi:10.1002/env.988, http://dx.doi.org/10.1002/env.988, 2010.620

Ebeling, W., Freund, J., and Schweitzer, F.: Komplexe Strukturen: Entropie und Information, B. G. Teubner,

1998.

Gallant, A. J., Karoly, D. J., and Gleason, K. L.: Consistent Trends in a Modified Climate Extremes Index in

the United States, Europe, and Australia, J. Climate, 27, 1379–1394, 2014.

Hagemann, S., Arpe, K., and Bengtsson, L.: Validation of the hydrological cycle of era 40, ERA-40 Project625

Rep. Series, 24, 42 pp, 2005.

Haylock, M. R., Hofstra, N., Tank, A. M. G. K., Klok, E. J., Jones, P. D., and New, M.: A European daily

high-resolution gridded data set of surface temperature and precipitation for 1950-2006, J. Geophys. Res.,

113, doi:10.1029/2008JD010201, 2008.

Hazeleger, W., Severijns, C., Semmler, T., Stefanescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano,630

J. M., Bintanja, R., et al.: EC-earth: a seamless earth-system prediction approach in action, Bull. Amer.

Meteor. Soc., 91, 1357–1363, 2010.

Hill, M., Witman, J., and Caswell, H.: Markov chain analysis of succession in a rocky subtidal community, Am.

Nat., 164, E46–E61, doi:10.1086/422340, 2004.

IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special635

Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University

Press,Cambridge, UK, and New York, NY, USA, 2012.

Keetch, J. J., Byram, G. M., et al.: A drought index for forest fire control, 1968.

Klein Tank, A., Wijngaard, J., Können, G., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S.,

Hejkrlik, L., Kern-Hansen, C., et al.: Daily dataset of 20th-century surface air temperature and precipitation640

series for the European Climate Assessment, International journal of climatology, 22, 1441–1453, 2002.

Klok, E. and Klein Tank, A.: Updated and extended European dataset of daily climate observations, Int. J.Clim.,

29, 1182–1191, 2009.

Lorenz, E. N.: Deterministic Nonperiodic Flow, J. Atmos. Sci., 20, 130–141, 1963.

20

http://dx.doi.org/10.1002/env.988
http://dx.doi.org/10.1002/env.988
http://dx.doi.org/{10.1029/2008JD010201}
http://dx.doi.org/{10.1086/422340}


Mieruch, S., Noel, S., Bovensmann, H., Burrows, J., and Freund, J.: Markov chain analysis of regional climates,645

Nonlin. Proc. Geoph., 17, 651–661, 2010.

Nakicenovic, N. and Swart, R.: Special report on emissions scenarios, Special Report on Emissions Scenarios,

Edited by Nebojsa Nakicenovic and Robert Swart, pp. 612. ISBN 0521804930. Cambridge, UK, Cambridge

University Press, July 2000., 1, 2000.

Neves, M. M.: Geostatistical Analysis in Extremes: An Overview, in: Mathematics of Energy and Climate650

Change, pp. 229–245, Springer, 2015.

Pachauri, R. K., Allen, M. R., Barros, V., Broome, J., Cramer, W., Christ, R., Church, J., Clarke, L., Dahe, Q.,

Dasgupta, P., et al.: Climate change 2014: synthesis Report. Contribution of working groups I, II and III to

the fifth assessment report of the intergovernmental panel on climate change, IPCC, 2014.

Photiadou, C., Jones, M. R., Keellings, D., Dewes, C. F., et al.: Modeling European hot spells using extreme655

value analysis, Climate research, 58, 193–207, 2014.

R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0, 2008.

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A Central European precipitation

climatology–Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteor.660

Z., 22, 235–256, 2013.

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.:

RCP 8.5 – A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109, 33–57, 2011.

Rockel, B., Will, A., and Hense, A.: The Regional Climate Model COSMO-CLM(CCLM), Meteor. Z., 17,

347–348, doi:10.1127/0941-2948/2008/0309, 2008.665

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I.,

Kornblueh, L., Manzini, E., et al.: The atmospheric general circulation model ECHAM 5. PART I: Model

description, Tech. rep., MPImet/MAD Germany, 2003.

Sasse, R. and Schädler, G.: Generation of regional climate ensembles using Atmospheric Forcing Shifting, Int.

J. Climatol., 34, 2205–2217, doi:10.1002/joc.3831, 2014.670

Scheffer, M. and Carpenter, S. R.: Catastrophic regime shifts in ecosystems: linkingtheory to observation,

Trends Ecol. Evol., 18, 648–656, 2003.

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes,

E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59,

doi:10.1038/nature08227, 2009.675

Schoelzel, C., Friederichs, P., et al.: Multivariate non-normally distributed random variables in climate research–

introduction to the copula approach, Nonlin. Proc. Geoph., 15, 761–772, 2008.

Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D: Nonlinear Phenomena, 142, 346–382, 2000.

Scinocca, J., McFarlane, N., Lazare, M., Li, J., Plummer, D., et al.: The CCCma third generation AGCM and

its extension into the middle atmosphere, Atmos. Chem. Phys. Discuss, 8, 7883–7930, 2008.680

Sedlmeier, K.: Near future changes of compound extreme events from an ensemble of regional climate simula-

tions, Ph.D. thesis, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2015, 2015.

Shannon, C. E.: A Mathematical Theory of Communication, Bell System Technical Journal, 27, 623–656, 1948.

21

http://www.R-project.org
http://dx.doi.org/{10.1127/0941-2948/2008/0309}
http://dx.doi.org/{10.1002/joc.3831}
http://dx.doi.org/10.1038/nature08227


Sillmann, J. and Croci-Maspoli, M.: Present and future atmospheric blocking and its impact on European mean

and extreme climate, Geophysical Research Letters, 36, 2009.685

Simmons, A., Jones, P., da Costa Bechtold, V., Beljaars, A., Kållberg, P., Saarinen, S., Uppala, S., Viterbo,

P., and Wedi, N.: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR

analyses of surface air temperature, Journal of Geophysical Research: Atmospheres, 109, 2004.

Steinhaeuser, K. and Tsonis, A. A.: A climate model intercomparison at the dynamics level, Climate Dyn., 42,

1665–1670, 2014.690

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader,

J., Block, K., et al.: Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model.

Earth Syst., 5, 146–172, 2013.

Tebaldi, C. and Sansó, B.: Joint projections of temperature and precipitation change from multiple climate

models: a hierarchical Bayesian approach, J. Roy. Stat. Soc., 172, 83–106, 2009.695

Uppala, S. M., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V., Fiorino, M., Gibson, J., Haseler, J., Her-

nandez, A., Kelly, G., et al.: The ERA-40 re-analysis, Quart. J. Roy. Meteor. Soc., 131, 2961–3012, 2005.

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T.,

Krey, V., Lamarque, J.-F., et al.: The representative concentration pathways: an overview, Clim. Change, 109,

5–31, 2011.700

Venema, V., Meyer, S., García, S. G., Kniffka, A., Simmer, C., Crewell, S., Löhnert, U., Trautmann, T., and

Macke, A.: Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm,

Tellus A, 58, 104–120, 2006.

Voldoire, A., Sanchez-Gomez, E., y Mélia, D. S., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I.,

Alias, A., Chevallier, M., et al.: The CNRM-CM5. 1 global climate model: description and basic evaluation,705

Climate Dyn., 40, 2091–2121, 2013.

von Storch, H. and Zwiers, F.: Testing ensembles of climate change scenarios for atistical significanceClim.

Change, 117, 1–9, 2013.

22



Figure 1.
:
E-

::::
OBS

:::::::::
descriptors

::
for

:::
the

::::::::
reference

:::::
period

::::::::::
(1971-2000).

::::
Left

::::
side:

:::::::::
Descriptors

::
for

::::
cold

:::
and

::::
wet

::::::
extremes

::
in
::::::

winter
::::
(DJF)

:::
(Ta

::
<

::::
10th

:::::::
percentile

:::
and

:::
Pa

:
>
::::
75th

:::::::::
percentile).

::::
Right

::::
side:

:::::::::
Descriptors

:::
for

:::
hot

:::
and

::
dry

:::::::
extremes

::
in
:::::::

Summer
::::
(JJA)

:::
(Ta

::
>
::::
90th

:::::::
percentile

:::
and

::::
EDI

:
<
::::

25th
:::::::::
percentile).

:::::::::
Descriptors

::::
were

::::::::
calculated

::
for

:
a
::::::
moving

:::::::
window

:::
over

::
9

:::::::
gridpoints

:::
and

:::::
values

:::::::
assigned

::
to

:::
the

:::::
center

:::
grid

::::
point

::::
(see

::::
text).

:::::
Boxes

::::
show

:::
the

:::::::
Prudence

::::::
Regions

::::::::::::::::::::::::::::::::::::::
(http://ensemblesrt3.dmi.dk/quicklook/regions.html)

:
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Figure 2.
:::::::::
Descriptors

::
for

::::::
ECA&

:
D
::::::

station
:::
data

:::
for

::::::
running

:::::::
windows

:::
over

:::::::
30-years

::::::
(values

::
are

:::::::
assigned

::
to

:::
the

:::
first

::::
year

::
of

::
the

:::::::
30-year

:::
time

:::::::
period.)

::::
from

:::::::::
1900-2015.

::::
Black

:::::
curve:

::::
cold

:::
and

::::
wet

:::::::
extremes

::
in

:::::
winter

:::::
(DJF)

::
(Ta

::
<
::::
10th

:::::::
percentile

:::
and

:::
Pa

:
>
::::
75th

::::::::
percentile).

:::::
Gray

::::
lines:

:::
hot

:::
and

:::
dry

:::::::
extremes

::
in

::::::
Summer

:::::
(JJA)

::
(Ta

::
>
::::
90th

:::::::
percentile

:::
and

::::
EDI

:
<
::::
25th

::::::::
percentile)
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Figure 3. Elevation of the CCLM 50km Model domain [m]. Boxes mark the six investigation areas, 1:Spain

(black), 2:France (red), 3:Germany (green), 4:Scandinavia (blue), 5:Russia (cyan) and 6:Bulgaria (magenta).

Figure 4. Descriptors for cold and wet extremes in winter (DJF) (Ta < 10th percentile and Pa > 75th percentile)

in the reference period 1971-2000 for the 6 investigation areas. Box plots of the CCLM ensemble: box =

ensemble median and interquartile range, whiskers = ensemble minimum/maximum, gray bars: ensemble mean,

triangles :reanalysis driven CCLM runs, crosses: E-OBS observations. The coloring corresponds to the regions

in Fig. 3.
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Figure 5. Descriptors for hot and dry extremes in Summer (JJA) (Ta > 95th
:::
90th percentile and EDI < 25th

percentile) in the reference period 1971-2000 for the 6 investigation areas. Box plots of the CCLM ensemble:

box = ensemble median and interquartile range, whiskers = ensemble minimum/maximum, gray bars: ensemble

mean, triangles :reanalysis driven CCLM runs, crosses: E-OBS observations. The coloring corresponds to the

regions in Fig. 3.

Figure 6. Change signal for of descriptors for E-OBS observations: Cold and wet extremes in winter (DJF) (Ta

< 10th percentile and Pa > 75th percentile),.
:::::::
Changes

::::::
between

:::
the

::::
time

:::::
periods

:
1951-1980 vs

:::
and 1981-2010.

Percentages denote the relative change. The coloring corresponds to the regions in Fig. 3.
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Figure 7. Change signal for of descriptors for E-OBS observations: Hot and dry extremes in Summer (JJA)

(Ta > 95th
:::
90th

:
percentile and EDI < 25th percentile),.

:::::::
Changes

:::::::
between

::
the

::::
time

::::::
periods

:
1951-1980 vs

:::
and

1981-2010. Percentages denote the relative change. The coloring corresponds to the regions in Fig. 3.

Figure 8. Number of compound cold and wet extremes in winter (DJF) (Ta < 10th percentile and Pa > 75th

percentile) , 1971-2000 (light colors) and 2021-2050 (dark colors), ensemble mean. The coloring corresponds

to the regions in Fig. 3.
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Figure 9. Number of compound hot and dry extremes in summer (JJA) (Ta > 95th
:::
90th percentile and EDI <

25th percentile), 1971-2000 (light colors) and 2021-2050 (dark colors), ensemble mean. The coloring corre-

sponds to the regions in Fig. 3.

Figure 10. Ensemble mean climate
::::::
Climate

:
change signal of descriptors for cold and wet extremes in winter

(DJF) (Ta < 10th percentile and Pa > 75th percentile),.
:::::::
Changes

:::::::
between

::
the

::::
time

::::::
periods

:
1971-2000 vs

:::
and

2021-2050. Points
:::
Bars show the ensemble mean

::
(of

::
the

::::::::
individual

::::::
change

::::::
signals), whiskers the 75th and 25th

quantile, respectively. Percentages above the bars denote the relative change of the ensemble mean, the numbers

below the p-value. The coloring corresponds to the regions in Fig. 3.
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Figure 11. Ensemble mean
:::::
Climate

:
change signal of descriptors for hot and dry extremes in Summer (JJA)

(Ta > 95th
:::
90th

:
percentile and EDI < 25th percentile),.

:::::::
Changes

:::::::
between

::
the

::::
time

::::::
periods

:
1971-2000 vs

:::
and

2021-2050.. Points
::::
Bars show the ensemble mean

::
(of

::
the

::::::::
individual

::::::
change

::::::
signals), whiskers the 75th and

25th quantile, respectively. . Percentages above the bars denote the relative change of the ensemble mean, the

numbers below the p-value. The coloring corresponds to the regions in Fig. 3.
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