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Abstract. Due to the massive disparity between the largest and srhallieles in the atmosphere
and ocean, it is not possible to simulate these flows by @ipliesolving all scales on a compu-
tational grid. Instead the large scales are explicitly kest) and the interactions between the unre-
solved subgrid turbulence and large resolved scales asengderised. If these interactions are not
properly represented then an increase in resolution wilhecessarily improve the accuracy of the
large scales. This has been a significant and long standaidgon since the earliest climate simu-
lations. Historically subgrid models for the atmospheré aoean have been developed in isolation,
with the structure of each motivated by different physicaépomena. Here we solve the turbu-
lence closure problem by determining the parameterisatefficients (eddy viscosities) from the
subgrid statistics of high resolution quasi-geostroplmeaspheric and oceanic simulations. These
subgrid coefficients are characterised into a set of simpifging scaling laws, for truncations made
within the enstrophy cascading inertial range. The oceditiadally has an inverse energy cascad-
ing range, within which the subgrid model coefficients hawierent scaling properties. Simulations
adopting these scaling laws are shown to reproduce thstgtatof the reference benchmark sim-
ulations across resolved scales, with orders of magnitugedvement in computational efficiency.
This reduction in both resolution dependence and comualieffort will improve the efficiency
and accuracy of geophysical research and operationaltadithat require data generated by gen-
eral circulation models, including: weather, seasonal@dimdate prediction; transport studies; and

understanding natural variability and extreme events.
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1 Introduction

Eddies in the atmosphere and ocean range in size from thdsisdirkilometres down to the mil-
limetre scale, with energy and enstrophy transferred dvwese scales eddies via complex nonlin-
ear inter-eddy interaction i_jbm). For the encal simulation of these flows, it is
clearly not possible to capture all of these interactiongkglicitly resolving the smallest eddies
on a computational grid whilst spanning the entire globee @erefore resorts to large eddy sim-
ulation (LES), where the large eddies are resolved on a ctatipnal grid, with the interactions
between the resolved eddies and the unresolved subgridsetgfiresented by an appropriate sub-
grid turbulence model. If these inter-eddy interactioresrawt properly represented, then an increase
in grid resolution will not necessarily improve the accyraehich leads to resolution dependent
results [(Mmib_e_ej_uﬂ;dm). This has been a significamigmosince the earliest simulations of

weather and climaté_(_imathlDlS 63), and persists/todaven the most sophisticated gen-

eral circulation models (GCMs) and research coh_e_s_ﬁlsgsh;dl@_elr |_19_d5|._5_hutli._2dd5._2 13;
Tennant et A | QM Morrison and HJ)LQO].B) A reductibiie resolution dependence will im-

prove the efficiency and accuracy of research and operdtatigities that require data generated

by GCMs, including: weather, seasonal and climate praatictransport studies; and understanding
natural variability and extreme events.

The effect that the small unresolved subgrid scales hava®iatge resolved scales is typically
parameterised by defining a form of eddy viscosity. In mosftgsid models, including the most

widely celebrated and adopted onla_s_(SmagQLIrlﬁk)LJ ﬂ%&mmmaml:hﬂo), physical

arguments are used to justify the form of an eddy viscosityictvis then tuned to achieve nu-

merical stability and realistic resulth (Griffies el M In practice, however, there is a signif-
icant range of small scales that are excessively dampesifdi®on range) due to the application

of heuristic subgrid turbulence models, which in turn alfed the large scale tal.,
). Ideally one would prefer not to have an artificial iaon range, and develop a subgrid
model that renders all of the scales of motion accurate. Tibgr&d scales also contribute to pre-
dictability limitations by injecting noise into the systeibhas been been shown that weather and
climate models with deterministic subgrid models have fiitient ensemble spread, a situation

which is improved with the injection of stochastic backmakLeitl{,ﬁi)_Q_b[ Frederiksen and Da:llies,
|L9_9_‘l’; 'Kane and Frederik eLn, be&ﬂlwwhﬂH Franzke et Lal.,zd 7,2015;
shut| 2015)

As in general it is only possible to parameterise the stegiseffects of the subgrid eddies
(]Mgggmb et aH Zle), statistical dynamical closure tlggsithe natural formulation for develop-

ing self-consistent subgrid models. In this approach otesrgits to determine the statistical effect

that the unresolved scales of motion have on the resolve@®dthe foundation studies in this area
were the direct interaction approximation (DIA) closurel @s variants for homogeneous turbulence

(Kraighnalm 1959; Mgggr_v|1k 1 7|4; ngrlr‘lg_leS), and thesgdagonal DIA (QDIA) closure
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dFrgdgrikgén{@é, 2Q1]2'a; O’Kane and FrgderikLs_eQJ ﬂ@)ﬁor inhomogeneous turbulence.

The general QDIA closure theory accounts for cross coioslatbetween field variables (eg: fields
at different vertical levels; or velocity components) aredvieen physical space fields, but has the
remarkable property that the eddy damping and stochastksbatter terms are diagonal in spectral
space. The QDIA subgrid closure terms were calculated faic#} barotropic atmospheric flows in

08). Broadening the applidsiuifithe QDIA closure, a stochastic sub-
grid modelling approach was developed to determine the edpsities from the statistics of high

resolution benchmark simulatiorls (Erederiksen and ﬂeh@g&) which is the approach adopted

here.
We use the method ‘J)_f_ELe_d_e_ti.kﬁ_e_D_a.D_d_KéFJ_e_l’_L(IZOOG) to dewsttmbastic subgrid models for

global atmospheric and oceanic flows such that practic#lllyfahe resolved scales of motion can

be trusted. In contrast to the vast majority of subgrid miitgktudies, the approach adopted here
makes no heuristic assumptions, with the subgrid modelficagfts calculated self-consistently
from the statistics of high resolution benchmark simulagioThis approach has been successfully
applied to quasi-geostrophic (QG) atmospheric and oceamialations with horizontal and verti-
cal shearsl (Zidikheriand Frederiksgﬂjdo_&_ZbEba, etdimensional wall bounded turbulence
({Kjlsigs_el_al.LZQJJS), and global primitive equation siatidns of the atmospheMt al.,
M). Subgrid models developed from far simpler barotrQb modeIsL(ELe_d_QL'Lks_e_n_a.n_d_DaJ/ies,
), have previously been shown to improve the simulayedihics in GCMS al.,
). Here we adopt more complex baroclinic QG benchmanlglsitions of the atmosphere and
ocean, which capture the essential dynamics of barotrbpiizontal shear) and baroclinic (vertical

shear) instability.

Historically subgrid models for the atmosphere and oce&e baen developed in isolation, with
the derivation of the functional forms of the subgrid modsten motivated by very different phys-
ical phenomena. Here we provide evidence that the effetalmfrid turbulence in the atmosphere
and ocean actually have much in common. When nondimengedahppropriately, subgrid co-
efficients calculated from atmospherli_o_(K_itslo_s_ét@ipand from oceani13)

simulations, show remarkably good agreement within thérepBy cascading inertial range. The

justification of this approach stems from the phenomenackdgiew of turbulence in the atmosphere
and ocean. In both flows the Rossby radiug)(is the dominant scale at which baroclinic instabil-
ity injects energy (velocity variance) and enstrophy (it variance) into the syste on,
), where the nondimensional Rossby wavenumbes is a/rr, with a = 6371 km the radius
of the Earth. In the phenomenological view of QG turbulerasgstrophy is transferred at a con-
stant rate from wavenumbgp, to larger wavenumbers (smaller eddies), whilst energyisstierred
from wavenumbek i back up to the large-scale (low wavenumber) energy comgiaddies of

wavenumbers less than or equakt@(KraighnaH 19 ZHJ_S_MHJ 1§98). The wavenumbegsand

kg, divide the scales into three important wavenumhbgrégimes: the non-self-similar energy con-
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taining range«{ < kg); the self-similar inverse energy cascaée K n < kg); and the self-similar
forward enstrophy cascadk{ < n). In the ocearky < ki with all three regimes present. In the
atmosphere, howevekg ~ kg, which means that the inverse energy cascade is either hiery s
or non-existent, due to the large scale forcing. Both wawdrers,kr and kg, are important for
the scaling of the subgrid coefficients. Here we will devalmyifying scaling laws governing how
subgrid turbulence behaves in the enstrophy cascadintigih@nge of the atmosphere and ocean.

Here we present a first systematic comparison of subgrid lmadeQG turbulence in the at-
mosphere and ocean, and develop simple unifying scaling that represent both media within the
enstrophy cascading inertial range. A large set of simufatis analysed which covers a broad range
of flow parameters, including an order of magnitude chandledrRossby radius of deformation and
the energy containing scale. By focussing on the enstrophyatdling inertial range in both media,
the large number of simulations and wide parameter rangemasled the establishment of robust
scaling laws. In sectio 2 we present the numerical details of the bencksiarulations used to
generate the atmospheric and oceanic flows, with these floaracterised in sectidh 3. The process
by which subgrid models are calculated from the referencetmmark simulations is presented in
sectior 4, with the resulting subgrid coefficients illuggchin sectiofib. The coefficients calculated
from the atmospheric and oceanic simulations, are theracteised into a sets of unifying scal-
ing laws representing both fluids in sect[dn 6. These unifiscaling laws govern how the subgrid
coefficients change with resolution and flow strength, tleumsaving the need to generate the coef-
ficients from benchmark simulations in the futufde scaling laws presented here are particularly
simple, and are suggestive of robust fundamental progesfi®G turbulence.In sectionl ¥, large
eddy simulations adopting these scaling laws are showrptodece the statistics of the benchmark
simulations across all scales, with drastic improvement®imputational efficiency.

2 Numerical details of the benchmark simulations

The atmospheric and oceanic flows are generated by solvengnibrlevel QG potential vorticity
equation (QGPVE). The numerical integration of the QGPVE &mputationally efficient means
of simulating geophysical flows. It captures the essentyalathics of baroclinic and barotropic
instabilities, and the interaction of coherent structuvith inhomogeneous Rossby wave turbulence

dFrgdgrikggr{@B). In the present study the vorticityejgresented on two discrete vertical levels
with j =1 representing the upper level apd-= 2 the lower level. In the atmospheric simulations
the upper level is a250hPa & 10km), and the lower level a@50hPa & 2.5km). For the oceanic
simulations the upper level is at an approximate depth06Mm, and the lower level &800m. The
system is nondimensionalised by using the radius of thé éart 6371km) as a length scale, and the
inverse of the earth’s angular veloci & 7.292 x 10~°s?) as a time scale. By default all variables
are assumed to be nondimensional unless units are specified.
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The two-level QG equations of motion in physical space are

¢’ o ol - P
8_qt — _J(¢‘77qj)—Ba—dj\—ajCj—Déqj‘ﬂij(qj—qj)- )

The field variables are functions of timé),(longitude @), and x = sin(¢), where¢ is the lati-
tude. The vorticity at levej is ¢/, and’ is the streamfunction. The reduced potential vorticity
¢ =7+ (—1)7F (¢! —4?), whereFy, is the layer coupling coefficient, which is inversely pro-
portional to the temperature difference between the twelgeand is related to the Rossbhy radius of
deformation by = 1/+/2F. In Eq. (1), the coefficienB represents the beta effect, and)’, ¢’)

is the JacobianUsing standard fluid mechanical nomenclatu%?,is the bare dissipation opera-
tor representing the unresolved eddy-eddy (or inter-eddgjactions in the benchmark simulation

0). The constant parameterises the drag by dampening the large scales afmoti
Simulations are nudged toward a climateby the constant relaxation parametér
In our study we solve Eq[1) by spectrally discretising tleddfivariables in spherical harmonics

8). This spectral discretisation allawkear separation of the resolved and subgrid
scales of motion for the development of the subgrid paramnseténs. The system solves for the
spectral coefficients of the potential vorticity defined as

for zonal (longitudinal) wavenumber,, total wavenumber;, with latitudinal (meridional) wavenum-
bern —m. The spectral coefficients of the vorticity ajg,, = —n(n + 1)1 ., wherey? — are the

spectral streamfunction coefficients. The evolutiog/f is governed by

dq . o . o
(én;n - ZZZKZ‘LI};T J—quJ—TS — WmnGn — & (M)
rqg rs
2
| -
— > DI m.n) gk, + 5 (@ — @) 3)

=1

whereq’ _ is the complex conjugate af ., andK L are the interaction coefficients defined in

06). No topography is repredentthe present simulations. The sum-
mations immediately after the equals sign in Ed. (3) are theetriangular wavenumber set

T = [pqgnrs|-T<p<T,|p|<q<T,-T<r<T,[r[<s<T], (4)

with T" the benchmark truncation wavenumber, which is related écatigular grid spacing in de-
grees @) by T'=120/0. The Rossby wave frequencyds,,, = —Bm/[n(n+ 1)], where B = 2
under the chosen nondimensionalisation. In the atmospsienulationsF;, = 2.5 x 10~ 2m?, cor-
responding to a Rossby radius of deformationgf=1//2F; = 447km, and a nondimensional
Rossby wavenumber éf; = 7 /a ~ 14. In the oceanic casdg, ranges fromFy, = 2.5x10~19m?
(rr = 45km, kg = 142) to F, = 107°m2 (rp = 22km, kr = 284).

In Eq. (3),a/ (n) is the drag applied at levgl In the atmospheric simulations (n) = o, . for
n < 15, and zero otherwise, with! =23 x 107%s! anda?

max ‘max

[1—erf(0.1(n—n.))]/2, where erfis the error function, amd = 50

=5.8 x 10~ 7s1. For the simula-

tions of the ocean’ (n) = o,

‘max
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is the point at whickv’ (n..) = o, .. /2. This functional form allows us to control the location of the
energy containing wavenumbé&¥e undertake additional oceanic simulations with altexnatues
of n. to produce a series of flows with different background stateswith differing wavenumber
ranges of the energy containing (non-self-similar) scétgs.

All simulations are driven toward a mean stafg,, that is purely zonal@,,, are zero unless
m = 0). They are driven toward this state by a relaxation paranwéte’/, = 10~ s for m = 0 and
n < 15, and zero otherwise. For the simulations of the atmospifefecorresponds to a large-scale
westerly jets centred alts°S and45°N, representing large scale jets in the northern and sauther
hemispheres. In the oceanic simulatigps, corresponds to a large-scale westerly current centred at
60°S of the southern hemisphere, broadly representative oh&an Antarctic Circumpolar Current.

By definition the bare dissipatiomgl (m,n), represents the unresolved eddy-eddy interactions in
the benchmark simulation. It is written in general anispitanatrix form (dependent on zonah,
and total,n, wavenumbers) but in our simulations it has the isotropimf@dependent only on) of
D}l (m,n) = vi'(n) n(n+ 1), wherev' (n) is the isotropic bare eddy viscosity given by
v(n) = &g (1) (%)”H : (5)
andJ;; is the Kronecker delta function, which ensures the off-dis elements Ozf/él (n) are zero.
Here v}’ (T') is the value of the diagonal elements at truncation and theepg), determines the
steepness ofgj (n). This means that the corresponding bare viscosity and bssgdtion matrices
are diagonal and isotropic. Note in Effl (5), the wavenumago /T is raised to the power of
pg — 2 to be consistent with the definition of the subgrid eddy vésiies throughout the document.
The slope and magnitude of, is determined by the scaling laws presented in the manuséiip
initial study was first undertaken determine the scalingslawth an estimate afy. The study was
then repeated witlvg defined by the scaling laws themselves. There was a negdlidifference
between the new subgrid coefficients and those obtaineimitial study.

3 Characterisation of the benchmark flows

In the benchmark atmospheric simulations, the Rossby saifideformation-p = 447 km, with an
associated wavenumber bf, = 14. This meand 4 eddies of this size could fit side by side along
one line of latitude. The climate state contains large seadsterly winds in the mid-latitudes of
the northern and southern hemispheke_s_(KjlsiQ_SJelLa.LJ)Z{)ﬂée Fig[L(c). Large scale eddies are
produced in both hemispheres as illustrated by the instaptss eddy streamfunction and wind field
in Fig.[d(a).

In the initial benchmark oceanic simulation the Rossbyus @45 km corresponding to a wavenum-

ber of kg = 142. The Rossby radius is an order of magnitude smaller in tharocempared with
the atmosphere. This renders oceanic simulations conimuodly more expensive, as a finer grid
is required to explicitly resolve baroclinic instabilitfhe climate state is illustrated in Figl 1(d),
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and is broadly representative of the Antarctic Circump@larrent (Kitsios et AIL;O_la). Figuré 1(b)
illustrates that the oceanic flow has eddies in the midddés of the southern hemisphere that are
smaller in size than those in the atmospheric case, and sstent with the former having a smaller
Rossby radius.

The strength of the flow field on each level is quantified by thteptial enstrophy flux, and is
required for scaling the magnitude of the eventual subgefficients. The enstrophy flux/* (n),
is the rate of potential enstrophy transfer from levetto level; at total wavenumber. It is defined

as
T

wHn) = > N*(),where (6)
l=n

NEm) = iy SN K0 (7)

m pq TS8
is the enstrophy transfer. The latter is calculated by pagtiplying the nonlinear term of the equa-

tions of motion in Eq.[(B) by/* and then summing over zonal wavenumberThe potential

mns
enstrophy flux for the atmospheric and oceanic simulatioadlastrated in Figl.2(a) and Figl 2(b).
The wavenumber extent of the large energy containing séalesquired for scaling the spec-
tral slope of the subgrid coefficients. Within the inertiahges the external forcing and dissipation
are negligible, and the transfer of energy is dominated hylinear triadic interaction@on,
). With no additional damping or excitation within thelfssimilar wavenumber regimes, we
find that the energy transferred into the barotropic mode isiance with that transferred out of the
baroclinic mode. We definkg to be a wavenumber indicative of the non-self-similar epean-
taining scales. It is quantified by the smallest wavenumbwerhich the energy transferred into the
barotropic mode is in balance with the energy transferréabthe baroclinic mod I,

). The kinetic energy transfers in level space are gwen’* (n) = N7*(n)/[n(n + 1)]. The

barotropic/baroclinic kinetic energy transfers are gi E{k(n), where in matrix form7 g =
CTCT, with

1 1 1
C =31 1 ] ’ (®)

with ¢, =1+ 2F.,/[n(n+ 1)], and the superscript denotes the transpose operation. The index
1 refers to the barotropic mode, agdhe baroclinic mode. For examplgl?(n) refers to the ki-
netic energy transferred from the baroclinic mode into tAambyopic mode. The energy transferred
into the barotropic mode i 27 (n) = TA'(n) + T4%(n), and likewise the energy transferred into
the baroclinic mode i§7 2% (n) = T2 (n) + T2%(n). To be in balancg 27 (n) must be equal to
—TB%(n). For the atmospheric flow we finkdz ~ 11, and for the oceanic flowg = 70, as illus-
trated in Fig[2(c) and Fidl 2(d) respectively.
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4 Stochastic subgrid modelling approach

Using a series of the above discussed simulations, we shadinter-eddy interactions by remov-
ing vortices smaller than a certain cut-off size, or equadly larger than a specified truncation
wavenumber{g). The subgrid tendency is the component of the rate of chafithe resolved large
scale vortices due to their interactions with the unresbbraall scale vortices. The subgrid param-
eterisation problem in its most basic form is the repres@mtaf the subgrid tendency in terms of

the resolved field. Here we use the stochastic subgrid mndelpproach af Frederiksen and Kgbert

) to determine such a representation for the subgoicgsses. This approach is outlined below.

The resolution of a large eddy simulation (LES) is lower tkt@@ associated DNS, and confined

to the resolved scale wavenumber set
R = [pqgnrs|—-Tr<p<Tr,|p|<q<Tr,-Tr<r<Tg,lr|<s<Tg],

whereTy is the LES truncation wavenumber such tfigt < 7. The subgrid wavenumber set is
defined asS =T — R. We define the resolved potential vorticity field at a giverversumber
pair (m,n) by the two-element column vecter= (¢}, ,q2,,)". In this vector notationy; () =
ql(t) +q>(t), whereq; is the tendency (time derivative) qf The tendency of the resolved scales
is git, where all triadic interactions involve wavenumbers léss ;. The remaining subgrid ten-
dencyq? has at least one wavenumber greater tHamwhich is involved in the triadic interactions.
One can further decompogg such thay? () = f + g% (¢), whereg? is the fluctuating component
representing the eddy-eddy interactions, &érd (qf) is the ensemble averaged subgrid tendency
representing the sum of the eddy-meanfield and meanfieldvi&hinteractions.

Recall the QDIA closure provides the theoretical justifmator modelling the subgrid tendency
for a particular wavenumber pair as a function of the resbfields at only that same wavenumber
pair lFrgdgrikggLL;O_llZa). We can then model the fluctuatibgrid tendency at each wavenumber
pair,q°, by the stochastic equation

@S(t) = -Dad(t)+E(1), 9)

whereDy is the subgrid drain dissipation matrig,is the fluctuating component @f, andf is a
random forcing vector. As the present simulations have temical levels, Dy is a time indepen-
dent2 x 2 matrix, andf is a time dependert element column vector. An estimate Bfy is then
found through the generalisation of the Gauss thedwm&p;im&. Both sides of
Eq. [@) are post-multiplied by (¢,), integrated over the turbulent decorrelation peripdnsemble

averaged to minimise the contribution frdnand then rearranged to produce

to+T to+T -1
Dy = —< / a§<a>a*<to>da>< / a(o>a*<to>da> , (10)

to to
wheret denotes the Hermitian conjugate for vectors and matricks.ahgled brackets denote en-
semble averaging, with each ensemble member determinddftipg ¢, forward by one time step.



The decorrelation time, is chosen sufficiently large to capture the memory effefctiseturbulence

265 ({Kjl.sigs_e_t_al.l_ZQJJZ). The model fdris then determined by calculating the mat# = Fy, + Fp,
whereFy, = @(t) q'(t)). Post-multiplying both sides of Eq.](9) kay (), and adding the conjugate
transpose of Eq[19) pre-multiplied k() yields the Lyapunov equation

<?1ts(t)§T(t)>+<§(t)§tsT(t)> = —Da(a()d' (1)) — @®)a’ (1)) Da' +Fs . (11)

Given thatD4 has been determinef;;, can now be calculated. There is a balancing act between the
270 linear (D4) and stochastick,) components of the subgrid model. Bg; is dependent upon, it is
7 that defines this balance. For the implementation of paransation, it is sufficient to assume that
T can be represented as the white noise pro(f'e{s};?*(t’)) = Fp 6(t —t'), with an eigenvalue de-
gﬁosition otF,, used to produce a stochastic modelffoas detailed ilﬂdﬂeimdﬂe_d_eﬂlsen
).

275 Backscatter is the physical process by which kinetic ené&gdyansferred from small to large

scales. The subgrid model in Ef] (9) represents this prdoeis fundamental stochastic form.
One can also, however, represent the subgrid interactising the simplified deterministic form
G5 (t) = —Dnpet q(t), WhereD . is the net dissipation representing the net effect of thandrad

backscatte i 006). The backseattl net linear operators are defined by
280 Dy, = -Fu(G@®)dl(t)  ,and (12)
—~ ~ PURUN —1
Duet = Da+Du=—(@’®)a'(t)) (@ta' () . (13)

respectively|(Frederiksen and Kg[l)ért, ﬁOOG). In the predeoument the subgrid coefficients are

presented in eddy viscosity form, where the drain, backsicand net eddy viscosities are related to
their respective dissipations byi = Dq/[n(n+1)], v = Dy /[n(n+1)], andvpet = Dnet/[n(n+
285 1)]. Recalln(n + 1) is the discrete form of the Laplacian.

5 Structure of the eddy viscosities

For the atmosphere the subgrid model coefficients are piegben a truncation df'z = 126, cap-
turing vortices down to a radius 60 km in the mid-latitudes. These eddies are significantly fmal
than the Rossby radiug47 km), which means the energy injected into the system viadbaio

290 instability is explicitly resolved. In Fid.13(a) the uppardonal element of the drain eddy viscosity
is divided by the kinematic viscosity of ait ° m?s?), and represented by the height of the con-
tour surface. The coloured surface depicts the kineticggnef the fluctuating scales at the upper
level. In this figure the eddy viscosity i©)'° times greater than the molecular viscosity, indicat-
ing that the inter-eddy interactions are far more importhah the inter-molecular ones. The drain

295 also increases strongly with the total wavenumgr las only a weak dependence upon the zonal
wavenumberi), at a givenn, and is hence approximately isotropic. The kinetic enesgglso
largely isotropic, concentrated at the largest scalesgébwavenumbers), and decreases rapidly as
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the structures get smaller (wavenumbers get larger). Time émd magnitude of the lower diagonal
element of the drain eddy viscosity matrix are very simitathtose of the upper diagonal element,
with the off-diagonal elements negligible in comparisomc® the drain eddy viscosity matrix is

essentially diagonal, the positive coefficients illusithin Fig.[3(a) indicate that energy is being
sent from the resolved to the subgrid eddies. The backsdtettea similar form to the drain, but is

negative and approximately half the magnitude.

We now consider the drain eddy viscosity in the ocean at thesasolution ofl s = 126, again
capturing vortices of radius) km. Here, the energy injection via baroclinic instabiligyriot explic-
itly resolved as the Rossby radiusdis km. The upper diagonal drain eddy viscosity component is
divided by the kinematic viscosity of sea watéd{® m?s?) and plotted in Figi13(b). It again illus-
trates that the influence of the inter-eddy interactioni$ times greater than the inter-molecular
ones. The eddy viscosity is strongly dependent upon botlalZe®n) and total {) wavenumbers,
and is hence anisotropic. For certain low wavenumbersélaogles) the drain is negative, which
is required to further deterministically excite the flow & tinjection of energy via barotropic
and baroclinic instabilities is not explicitly resolvedhd coloured surface depicts the upper level
kinetic energy, illustrating that it is also highly anismpic and distributed across all scales. The
lower diagonal matrix element has similar properties toupper diagonal. The off-diagonal ele-
ments are proportionally larger in this case, indicatireg the removal of the small scales modifies

the interactions between the vertical levels - refeL to iIKg®t al. (2Qﬂ3) for illustrations of the

off-diagonal elementwlh (2d14) developed heuristic general pugoesaic subgrid
models for this regime that also have negative viscoBiby.oceanic simulations at the higher res-

olution of Tz = 252, in which baroclinic instability is explicitly resolvedhé eddy viscosities have
similar properties to the atmospheric case, with matriéegahally dominant and largely isotropic
(]Kitsigg et a“ ZQﬂS).

The self similarity of the eddy viscosities is most cleallystrated by the isotropised (averaged

over zonal wavenumben) profiles. For various truncations levelBy), the upper diagonal element
of the isotropised drain and backscatter eddy viscosgidsistrated in Figl3(c) for the atmospheric
flow, and in Fig.[8(d) for the ocean. We also show the net eddgosity, given by the sum of
the drain and backscatter. As the resolution increases gmmitade of all of the eddy viscosities
decreaseThis means that as more eddies are being explicitly respthedenstrophy (and energy)
is being transferred to fewer subgrid eddiésr cases that resolve baroclinic instability, the subgrid
parameterisation represents the energy flow to the resslvalés as being completely stochastic
with only the backscatter eddy viscosity negative. The tphasivalues of the net eddy viscosity
indicate that the net effect of the drain and backscattergeses is such that energy is sent out of the
system. When baroclinic instability is not resolved therggéow to the resolved scales is modelled
as having a deterministic component with the drain and ney gibcosities negative for certain low
wavenumbers. The eddy viscosity coefficients with significaagnitude are concentrated within

10



335

340

345

350

355

360

365

the last70 wavenumbers for the ocean and the lastwavenumbers for the atmosphere. These
wavenumber ranges coincide with; - the wavenumber to which the large non-self-similar energy
containing scales extend.

6 Unifying scaling laws

We have calculated the subgrid parameterisation coeftiigudy viscosities) for the atmosphere
and ocean at various resolutiorigz). We now develop scaling laws representing how these eddy
viscosities change with resolution and flow strength, fontations made within the enstrophy cas-
cading inertial rangeiz < Tr). For the diagonal element of the drain eddy viscosity dased with
level j, the maximum magnitude/f (T'r)) and spectral slopep-g) are quantified by least squares
fitting the isotropised eddy viscosity profilesi((n)) to the function

Vi) = v(Th) (T%) . (14)

There is an analogous expression for the isotropised battkseddy viscosityL@j (n)) . The scaling
laws govern how the magnitudes and slopes change with tiionagavenumber and flow strength.
Oceanic benchmark simulations were also undertaken, WélRbssby wavenumbek £) varying
from 142 to 284, and the energy containing wavenumbieg) varying from40 to 70. This coupled
with the atmospheric result& £ = 14, kg = 11), means that we have results spanning almost an
order of magnitude in both the Rossby and energy containaxgnumbers.

Firstly we present the power exponents of the drain eddyosgites pﬁl), which represent how
steeply the drain of enstrophy out of the system increasts nesolved wavenumber (or equiva-
lently as the size of the resolved eddies decrease). It isxttent of the energy containing scales

(kg) that defines how far nonlinear interactions can span in wawveer space 76),
which effectively sets the size of the largest eddy that caeract with the subgrid scales. This
wavenumber distance is inversely proportional to the pasxg@onents, and is represented by the
span of wavenumbers over which the eddy viscosity profilesan-zero in Fid.]3(c) and Figl 3(d).
In Fig.[(a), we therefore plot the drain power exponentgaie truncation wavenumbery)
nondimensionalised by . A strong relationship exists for all of the atmospheric andanic flows,
with the drain exponent increasing wiify;. The spectral slope has to increase with resolution to
ensure that the range of significant subgrid interactionarftified by the eddy viscosity) is confined
to the lastc z wavenumbers before truncation. The scaling Iawofpis determined by the illustrated
regression line. A similar relationship is observed for plogver exponents of the backscatter eddy
viscosities pg) in Fig.[(b), with the dashed line illustrating the scaliagv for the drain to serve
as a direct comparison. Note the backscatter power exppaentarger and also increase with res-
olution more quickly than the drain exponents. To put theselts into context, a power exponent
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of 2 represents a Laplacian dissipation, or equivalently ary etktosity that does not depend on
wavenumber.

Scaling laws for the maximum values are again nondimenBs&thusing the energy containing
wavenumber, and additionally a time scale based on the ti@ttenstrophy fluxh?JL_Q_‘}l). The

potential enstrophy flux is the rate at which potential enty is transferred from one wavenumber
to the nextm

8). We calculate the flux and find tbabbth flow cases it is constant
for eddies smaller than the energy containing scale, astiilted in Fig[2(c) and Fif] 2(d). The
constant flux value at level is denoted byﬂj. To span all cases of differeki; andkg, we find
that the eddy viscosities need also to be scaleq¢/iy, /k . With this normalisation, the magnitude
of the drain and backscatter are plotted in Elg. 4(c) and4¥id) respectively. The magnitude of all
eddy viscosities is inversely proportionalft@, which means that if the resolution doubles the eddy
viscosity halves.

These scaling laws allow us to determine the drain and baties¢erms at the desired resolution
(T'r), given that we have estimates of the Rossby wavenumbagyoentaining wavenumber, and
enstrophy fluxes. These terms can then be used to model tgediiieractions in simulations of
the climate. Whilst the scaling laws were developed fronoblamic QG simulations, they agree

with the subgrid coefficients determined from the trungatbbarotropic ' ert,

) and more complex atmospheric multi-level primitigeations simulationm al.,
). This indicates that the scaling laws can be applieterbooadly. Recall subgrid models
developed from simpler barotropic QG modeLIs (Frederikm[&ﬂejslﬁd?), have been shown

to improve the simulated dynamics in GCMMGIQ@). As most GCMs run with

deterministic subgrid models, in Talile 1 we list the effextpectral slope of the net eddy viscosity

at various resolutionsI(z) for typical atmospherickz = 11) and oceanicKgr = 70) flows. For a
givenTr/kg, the drain profilegq4(n)) is calculated using Eq.{114) and the scaling laws in[Bignd, a
likewise for the backscatterf,(n)), with the net eddy viscosity given bypet (n) = va(n) +vn(n).
The spectral slope af,et (1) is then calculated, divided [8; and rounded to the nearest integer to
approximate the effective power of the Laplacian. For amgiresolution, atmospheric simulations
are far more scale selective than oceanic ones, becausgtém ef the energy containing scales
(kg) is significantly less in the atmosphere than in the ocean.

7 Large eddy simulation

We now determine if LES with subgrid models defined by the edsgosities presented above, can
replicate the statistics of the higher resolution benclisanulations. The equation governing the
LES is equivalent to that of the benchmark simulation in B, {ith the addition of the term

2

(@), = —nn+ 1) 8 )G, + Fon + Fn (15)
=1
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added to the right-hand-side, and solved over the wavenusdi® instead ofT. A stochastic

model forf is built from an eigenvalue decompositionf, dZidiKhe_LLa.nd_ELe_d_el:'Lks:Hl._ZdO9). In
the deterministic form the stochastic fortis removed andyg is replaced with/,¢¢. In the isotropic
cases the matricagi, vnet anduy, are averaged over the zonal wavenumberso that they are
only functions of the total wavenumbets

We compare the DNS results to LES comprising of both stoahast! deterministic subgrid mod-
els, with the model coefficients in their original anisofimjprm (as in Fig[B(a)), in their isotropised
form (as in Fig(B(c)), and also defined by the associatedhgrtaws. Comparisons are made across
all scales of motion on the basis of the time-averaged zemah@avenumber-summed kinetic energy
spectra. The upper level spectra of the benchmark simakfiolack dashed line) are compared to
that of the LES (red solid line) labelled by the associatdzysid parameterisation variant in Fig. 5.
The top pair of spectra represent the true energy level, thiétother pairs of spectra shifted down
for clarity. Findings pertaining to the upper level are detet with those for the lower level.

The atmospheric benchmark simulation of maximum wavenufbe 504 is compared to LES
with Tr = 63 in Fig.[H(a). The stochastic and deterministic variant$\aitisotropic, isotropic, and
scaling-law-defined coefficients all reproduce the kinetiergy of the benchmark simulation across
all scales of motion. As the resolution is reduced in botlizumtal directions, the number of degrees
of freedom is reduced bl — T3) /7% = (5122 — 63%) /5122 = 98%. This reduced resolution also
also allows us to decrease the time step proportionallyghvhieans the computational cost of the
simulation is reduced by a facta@® /T3 = 512%/63% = 537. The oceanic benchmark simulation
of T'= 504 is compared to LES witl'’r = 252 in Fig.[H(b). Again all LES variants replicate the
statistics of the benchmark simulation. This represems% reduction in the degrees of freedom,
a decrease in computational cost by a factod©fln summary for both the atmosphere and ocean,
the idealised scaling law form of the eddy viscosities is areient representation of the subgrid
interactions within the enstrophy cascade. We have alseldjged scaling laws applicable to the

ocean within the inverse energy cascalkdge € n < k), as discussed itsi 13).

8 Conclusions

A general stochastic modelling approaJQh_(ELe_dﬁt'Lks_en_autlH_ZQ_dG) has been used to determine

eddy viscosity matrices that parameterise the interasti@mtween fields at different vertical levels

and horizontal scales in the atmosphere and ocean. Addilyomhen truncations are made within
the enstrophy cascading inertial range the subgrid paeaisation coefficients are represented by
a set of unifying scaling laws. The laws govern how the fornd amgnitude of both the atmo-
spheric and oceanic eddy viscosities change with flow sthegngd grid resolution. We have demon-
strated that simulations adopting these scaling laws m@desolution independent statistics across
all scales of motion. This means no additional resolutiosdnee wasted in order to account for the
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presence of an artificial dissipation range, which drakyigaproves the computational efficiency
of the simulations.

The scaling laws developed here can be implemented direttyspectral simulations, and are
expected to improve the efficiency and accuracy of numeriegsther and climate simulations

dFrggjgrikggn et Jal., Zbe, 2615). There are also two pesajigproaches to implement these scaling

laws into grid point codes. The simplest approachis to agifgysubgrid model directly in grid-point

space via a Laplacian operator of the appropriate powenised in Tabldl. More generally it is
also possible to employ grid to spectral transforms, wheeestibgrid model is calculated in spectral
space, and then applied in physical space.

Finally the stochastic modelling approach adopted hemgti®nly confined to fluid mechanics,
but can be used to represent nonlinear interactions in asgiclal multi-scale dynamical system

(Erederiksen, 2012b).
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Table 1. Equivalent powers of the Laplacian for the subgrid ret eddy viscosity of atmospheric and oceanic
simulations at various angular grid spacings ©). The equivalent truncation wavenumberTig = 120/0.
The energy containing scale for the atmospheric and ocsanidations aré&r = 11 andkg = 70 respectively.
The drain profiles ¥4 (n)) are calculated fronf¥'r/kr using Eq. [I¥) and the scaling laws in Fig. 4, and
likewise for the backscatterf,(n)), with the netvnet (n) = va(n) + vw(n). The spectral slope @fnet(n) is

determined, divided bg, and rounded to the nearest integer to approximate theigégower of the Laplacian
operator.

S} 1°

NI
NS
o=

ool

Tr =120/© 120 240 480 720 960

atmospherér = 11

Tr/kE 10.9 21.8 43.6 65.5 87.3

Power of Laplacian 13 22 38 52 65

oceankg =70

Tr/kE 1.7 3.4 6.9 10.3 13.7

Power of Laplacian 0 (constant) 1 (Laplacian) 2 (biharmonic) 3 4
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Figure 1. Instantaneous fields and climate states of the behmark simulations. Contours of instantaneous

eddy (non-zonal) streamfunction, and vectors of instatas velocity (wind/current) on the upper level of the:

aatmosphere (northern and southern hemisphere)hangan (southern hemisphere). Climate state illustrated

by the time averaged:atmospheric winds; andl oceanic currents.

18



20

a b
N ¢~ 3 : :
) ) levell —— level2 -----
g g
o 15+ o
— i
X X
x x
=2 10+ =]
> >
= <
o 5t o
o o
7] 7]
c 0 X ) c
L L
1 10 100 1000
Total wavenumber n Total wavenumber r
c__ d
o™ —~~
NG 12
£ £
- o 08}
(@]
(ew] —
= X 04
) L
2 2 o
§ E
+— > -04¢ 1
>
<) = kEl lkR lT
o : : 2 .08 : :
S 1 10 100 1000 W 1 10 100 1000
Total wavenumber n Total wavenumber n

Figure 2. Spectral properties of the benchmark simulationsPotential enstrophy flux spectra on the upper
vertical level (levell) and lower level (leveR) for the: a atmosphere; antd ocean. Energy transferred into
the barotropic mode7(®”) and out of the baroclinic mode-(7 ) for the: ¢ atmosphere, with legend also

applicable to (d); andl ocean. The energy containing scale wavenunibgrRossby wavenumbetr, and
benchmark simulation truncation wavenumfélabelled on the: axis.
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’s1). Coloured surfaces depict kinetic energy of the
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viscosity —z/gj(TR). The dashed lines in figurds and d represent the drain scaling laws to serve as a
direct comparison to the backscatter scaling laws reptedeny the solid linesThe symbols correspond
to the various cases as follows: red diamokd,= 142, kg = 70; blue circle,kr = 284, kg = 70; green
square kr = 142, kg € (40,50,60); magenta upward pointing triangléz € (201,246), kg = 70; orange
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Figure 5. Scale by scale comparison of the benchmark simulian (dashed line) to the LES variants (red
solid line). Kinetic energy spectra at the upper level of ta@tmosphere; and ocean. The top pair of spectra
exhibit the true energy, with subsequent pairs shifted dmwiclarity. Spectra are labelled with the associated
subgrid parameterisation of anisotropic stochastic (&8)sotropic deterministic (AD), isotropic stochastic
(1S), isotropic deterministic (ID), scaling law stochad{i.S), or scaling law deterministic (LD). The truncation
(Tr), Rossby kr) and energy containinge¢z) wavenumbers are labelled on the horizontal axis.
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