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Abstract. Due to the massive disparity between the largest and smallest eddies in the atmosphere

and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a compu-

tational grid. Instead the large scales are explicitly resolved, and the interactions between the unre-

solved subgrid turbulence and large resolved scales are parameterised. If these interactions are not

properly represented then an increase in resolution will not necessarily improve the accuracy of the5

large scales. This has been a significant and long standing problem since the earliest climate simu-

lations. Historically subgrid models for the atmosphere and ocean have been developed in isolation,

with the structure of each motivated by different physical phenomena. Here we solve the turbu-

lence closure problem by determining the parameterisationcoefficients (eddy viscosities) from the

subgrid statistics of high resolution quasi-geostrophic atmospheric and oceanic simulations. These10

subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made

within the enstrophy cascading inertial range. The ocean additionally has an inverse energy cascad-

ing range, within which the subgrid model coefficients have different scaling properties. Simulations

adopting these scaling laws are shown to reproduce the statistics of the reference benchmark sim-

ulations across resolved scales, with orders of magnitude improvement in computational efficiency.15

This reduction in both resolution dependence and computational effort will improve the efficiency

and accuracy of geophysical research and operational activities that require data generated by gen-

eral circulation models, including: weather, seasonal andclimate prediction; transport studies; and

understanding natural variability and extreme events.
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1 Introduction20

Eddies in the atmosphere and ocean range in size from thousands of kilometres down to the mil-

limetre scale, with energy and enstrophy transferred over these scales eddies via complex nonlin-

ear inter-eddy interactions (Kraichnan, 1976). For the numerical simulation of these flows, it is

clearly not possible to capture all of these interactions byexplicitly resolving the smallest eddies

on a computational grid whilst spanning the entire globe. One therefore resorts to large eddy sim-25

ulation (LES), where the large eddies are resolved on a computational grid, with the interactions

between the resolved eddies and the unresolved subgrid eddies represented by an appropriate sub-

grid turbulence model. If these inter-eddy interactions are not properly represented, then an increase

in grid resolution will not necessarily improve the accuracy, which leads to resolution dependent

results (Manabe et al., 1979). This has been a significant problem since the earliest simulations of30

weather and climate (Smagorinsky, 1963), and persists today in even the most sophisticated gen-

eral circulation models (GCMs) and research codes (Koshyk and Boer, 1995; Shutts, 2005, 2013;

Tennant et al., 2011; Morrison and Hogg, 2013). A reduction of the resolution dependence will im-

prove the efficiency and accuracy of research and operational activities that require data generated

by GCMs, including: weather, seasonal and climate prediction; transport studies; and understanding35

natural variability and extreme events.

The effect that the small unresolved subgrid scales have on the large resolved scales is typically

parameterised by defining a form of eddy viscosity. In most subgrid models, including the most

widely celebrated and adopted ones (Smagorinsky, 1963; Gent and McWilliams, 1990), physical

arguments are used to justify the form of an eddy viscosity, which is then tuned to achieve nu-40

merical stability and realistic results (Griffies et al., 2005). In practice, however, there is a signif-

icant range of small scales that are excessively damped (dissipation range) due to the application

of heuristic subgrid turbulence models, which in turn also affect the large scales (Frederiksen et al.,

2003). Ideally one would prefer not to have an artificial dissipation range, and develop a subgrid

model that renders all of the scales of motion accurate. The subgrid scales also contribute to pre-45

dictability limitations by injecting noise into the system. It has been been shown that weather and

climate models with deterministic subgrid models have insufficient ensemble spread, a situation

which is improved with the injection of stochastic backscatter (Leith, 1990; Frederiksen and Davies,

1997; O’Kane and Frederiksen, 2008; Shutts, 2005; Grooms etal., 2015; Franzke et al., 2007, 2015;

Shutts, 2015).50

As in general it is only possible to parameterise the statistical effects of the subgrid eddies

(McComb et al., 2001), statistical dynamical closure theory is the natural formulation for develop-

ing self-consistent subgrid models. In this approach one attempts to determine the statistical effect

that the unresolved scales of motion have on the resolved eddies. The foundation studies in this area

were the direct interaction approximation (DIA) closure and its variants for homogeneous turbulence55

(Kraichnan, 1959; McComb, 1974; Herring, 1965), and the quasi-diagonal DIA (QDIA) closure
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(Frederiksen, 1999, 2012a; O’Kane and Frederiksen, 2004, 2008) for inhomogeneous turbulence.

The general QDIA closure theory accounts for cross correlations between field variables (eg: fields

at different vertical levels; or velocity components) and between physical space fields, but has the

remarkable property that the eddy damping and stochastic backscatter terms are diagonal in spectral60

space. The QDIA subgrid closure terms were calculated for typical barotropic atmospheric flows in

O’Kane and Frederiksen (2008). Broadening the applicability of the QDIA closure, a stochastic sub-

grid modelling approach was developed to determine the eddyviscosities from the statistics of high

resolution benchmark simulations (Frederiksen and Kepert, 2006), which is the approach adopted

here.65

We use the method of Frederiksen and Kepert (2006) to developstochastic subgrid models for

global atmospheric and oceanic flows such that practically all of the resolved scales of motion can

be trusted. In contrast to the vast majority of subgrid modelling studies, the approach adopted here

makes no heuristic assumptions, with the subgrid model coefficients calculated self-consistently

from the statistics of high resolution benchmark simulations. This approach has been successfully70

applied to quasi-geostrophic (QG) atmospheric and oceanicsimulations with horizontal and verti-

cal shears (Zidikheri and Frederiksen, 2009, 2010a, b), three-dimensional wall bounded turbulence

(Kitsios et al., 2015), and global primitive equation simulations of the atmosphere (Frederiksen et al.,

2015). Subgrid models developed from far simpler barotropic QG models (Frederiksen and Davies,

1997), have previously been shown to improve the simulated dynamics in GCMs (Frederiksen et al.,75

2003). Here we adopt more complex baroclinic QG benchmark simulations of the atmosphere and

ocean, which capture the essential dynamics of barotropic (horizontal shear) and baroclinic (vertical

shear) instability.

Historically subgrid models for the atmosphere and ocean have been developed in isolation, with

the derivation of the functional forms of the subgrid modelsoften motivated by very different phys-80

ical phenomena. Here we provide evidence that the effects ofsubgrid turbulence in the atmosphere

and ocean actually have much in common. When nondimensionalised appropriately, subgrid co-

efficients calculated from atmospheric (Kitsios et al., 2012) and from oceanic (Kitsios et al., 2013)

simulations, show remarkably good agreement within the enstrophy cascading inertial range. The

justification of this approach stems from the phenomenological view of turbulence in the atmosphere85

and ocean. In both flows the Rossby radius (rR) is the dominant scale at which baroclinic instabil-

ity injects energy (velocity variance) and enstrophy (vorticity variance) into the system (Salmon,

1998), where the nondimensional Rossby wavenumber iskR ≡ a/rR, with a= 6371 km the radius

of the Earth. In the phenomenological view of QG turbulence,enstrophy is transferred at a con-

stant rate from wavenumberkR to larger wavenumbers (smaller eddies), whilst energy is transferred90

from wavenumberkR back up to the large-scale (low wavenumber) energy containing eddies of

wavenumbers less than or equal tokE (Kraichnan, 1976; Salmon, 1998). The wavenumbers,kR and

kE , divide the scales into three important wavenumber (n) regimes: the non-self-similar energy con-
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taining range (n≤ kE); the self-similar inverse energy cascade (kE < n≤ kR); and the self-similar

forward enstrophy cascade (kR < n). In the oceankE ≪ kR with all three regimes present. In the95

atmosphere, however,kE ≈ kR, which means that the inverse energy cascade is either very short

or non-existent, due to the large scale forcing. Both wavenumbers,kR andkE , are important for

the scaling of the subgrid coefficients. Here we will developunifying scaling laws governing how

subgrid turbulence behaves in the enstrophy cascading inertial range of the atmosphere and ocean.

Here we present a first systematic comparison of subgrid models of QG turbulence in the at-100

mosphere and ocean, and develop simple unifying scaling laws that represent both media within the

enstrophy cascading inertial range. A large set of simulations is analysed which covers a broad range

of flow parameters, including an order of magnitude change inthe Rossby radius of deformation and

the energy containing scale. By focussing on the enstrophy cascading inertial range in both media,

the large number of simulations and wide parameter range hasenabled the establishment of robust105

scaling laws. In section 2 we present the numerical details of the benchmark simulations used to

generate the atmospheric and oceanic flows, with these flows characterised in section 3. The process

by which subgrid models are calculated from the reference benchmark simulations is presented in

section 4, with the resulting subgrid coefficients illustrated in section 5. The coefficients calculated

from the atmospheric and oceanic simulations, are then characterised into a sets of unifying scal-110

ing laws representing both fluids in section 6. These unifying scaling laws govern how the subgrid

coefficients change with resolution and flow strength, thus removing the need to generate the coef-

ficients from benchmark simulations in the future.The scaling laws presented here are particularly

simple, and are suggestive of robust fundamental properties of QG turbulence.In section 7, large

eddy simulations adopting these scaling laws are shown to reproduce the statistics of the benchmark115

simulations across all scales, with drastic improvements in computational efficiency.

2 Numerical details of the benchmark simulations

The atmospheric and oceanic flows are generated by solving the two-level QG potential vorticity

equation (QGPVE). The numerical integration of the QGPVE isa computationally efficient means

of simulating geophysical flows. It captures the essential dynamics of baroclinic and barotropic120

instabilities, and the interaction of coherent structureswith inhomogeneous Rossby wave turbulence

(Frederiksen, 1998). In the present study the vorticity is represented on two discrete vertical levels

with j = 1 representing the upper level andj = 2 the lower level. In the atmospheric simulations

the upper level is at250hPa (≈ 10km), and the lower level at750hPa (≈ 2.5km). For the oceanic

simulations the upper level is at an approximate depth of200m, and the lower level at600m. The125

system is nondimensionalised by using the radius of the earth (a= 6371km) as a length scale, and the

inverse of the earth’s angular velocity (Ω= 7.292×10−5s-1) as a time scale. By default all variables

are assumed to be nondimensional unless units are specified.
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The two-level QG equations of motion in physical space are

∂qj

∂t
= −J(ψj ,qj)−B

∂ψj

∂λ
−αjζj −Dj

0q
j + κj(q̃

j − qj) . (1)130

The field variables are functions of time (t), longitude (λ), andµ= sin(φ), whereφ is the lati-

tude. The vorticity at levelj is ζj , andψj is the streamfunction. The reduced potential vorticity

qj ≡ ζj +(−1)jFL

(
ψ1 −ψ2

)
, whereFL is the layer coupling coefficient, which is inversely pro-

portional to the temperature difference between the two levels, and is related to the Rossby radius of

deformation byrR = 1/
√
2FL. In Eq. (1), the coefficientB represents the beta effect, andJ(ψj ,qj)135

is the Jacobian.Using standard fluid mechanical nomenclature,Dj
0 is the bare dissipation opera-

tor representing the unresolved eddy-eddy (or inter-eddy)interactions in the benchmark simulation

(McComb, 1990). The constantαj parameterises the drag by dampening the large scales of motion.

Simulations are nudged toward a climateq̃j by the constant relaxation parameterκj.

In our study we solve Eq. (1) by spectrally discretising the field variables in spherical harmonics140

(Frederiksen, 1998). This spectral discretisation allowsa clear separation of the resolved and subgrid

scales of motion for the development of the subgrid parameterisations. The system solves for the

spectral coefficients of the potential vorticity defined as

qjmn = ζjmn − (−1)jFL

(
ζ1mn − ζ2mn

)
/[n(n+1)] , (2)

for zonal (longitudinal) wavenumber,m, total wavenumber,n, with latitudinal (meridional) wavenum-145

bern−m. The spectral coefficients of the vorticity areζjmn =−n(n+1)ψj
mn, whereψj

mn are the

spectral streamfunction coefficients. The evolution ofqjmn is governed by

∂qjmn

∂t
= i

∑

pq

∑

rs

Kmpr
nqs ψ

j
−pqq

j
−rs− iωmnζ

j
mn −αj(n)ζjmn

−
2∑

l=1

Djl
0 (m,n)q

l
mn + κjn(q̃

j
mn − qjmn) , (3)

whereqj−mn is the complex conjugate ofqjmn, andKmpr
nqs are the interaction coefficients defined in150

Frederiksen and Kepert (2006). No topography is represented in the present simulations. The sum-

mations immediately after the equals sign in Eq. (3) are overthe triangular wavenumber set

T = [ p,q,r,s | −T ≤ p≤ T , |p| ≤ q ≤ T ,−T ≤ r ≤ T , |r| ≤ s≤ T ] , (4)

with T the benchmark truncation wavenumber, which is related to the angular grid spacing in de-

grees (Θ) by T = 120/Θ. The Rossby wave frequency isωmn =−Bm/[n(n+1)], whereB = 2155

under the chosen nondimensionalisation. In the atmospheric simulationsFL = 2.5× 10−12m-2, cor-

responding to a Rossby radius of deformation ofrR ≡ 1/
√
2FL = 447km, and a nondimensional

Rossby wavenumber ofkR ≡ rR/a≈ 14. In the oceanic casesFL ranges fromFL = 2.5×10−10m-2

(rR = 45km,kR = 142) toFL = 10−9m-2 (rR = 22km,kR = 284).

In Eq. (3),αj(n) is the drag applied at levelj. In the atmospheric simulationsαj(n) = αj
max for160

n≤ 15, and zero otherwise, withα1
max = 2.3× 10−6s-1 andα2

max = 5.8× 10−7s-1. For the simula-

tions of the oceanαj(n) = αj
max[1−erf(0.1(n−nc))]/2, where erf is the error function, andnc = 50
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is the point at whichαj(nc) = αj
max/2. This functional form allows us to control the location of the

energy containing wavenumber.We undertake additional oceanic simulations with alternate values

of nc to produce a series of flows with different background statesand with differing wavenumber165

ranges of the energy containing (non-self-similar) scales(kE).

All simulations are driven toward a mean stateq̃jmn that is purely zonal (̃qjmn are zero unless

m= 0). They are driven toward this state by a relaxation parameter of κjn = 10−6s-1 for m= 0 and

n≤ 15, and zero otherwise. For the simulations of the atmosphereq̃jmn corresponds to a large-scale

westerly jets centred at45◦S and45◦N, representing large scale jets in the northern and southern170

hemispheres. In the oceanic simulationsq̃jmn corresponds to a large-scale westerly current centred at

60◦S of the southern hemisphere, broadly representative of themean Antarctic Circumpolar Current.

By definition the bare dissipation,Djl
0 (m,n), represents the unresolved eddy-eddy interactions in

the benchmark simulation. It is written in general anisotropic matrix form (dependent on zonal,m,

and total,n, wavenumbers) but in our simulations it has the isotropic form (dependent only onn) of175

Djl
0 (m,n) = νjl0 (n) n(n+1), whereνjl0 (n) is the isotropic bare eddy viscosity given by

νjl0 (n) = δlj ν
jj
0 (T )

( n
T

)ρ
j
0
−2

, (5)

andδlj is the Kronecker delta function, which ensures the off-diagonal elements ofνjl0 (n) are zero.

Hereνjj0 (T ) is the value of the diagonal elements at truncation and the power ρj0 determines the

steepness ofνjj0 (n). This means that the corresponding bare viscosity and bare dissipation matrices180

are diagonal and isotropic. Note in Eq. (5), the wavenumber ratio n/T is raised to the power of

ρj0 − 2 to be consistent with the definition of the subgrid eddy viscosities throughout the document.

The slope and magnitude ofν0 is determined by the scaling laws presented in the manuscript. An

initial study was first undertaken determine the scaling laws with an estimate ofν0. The study was

then repeated withν0 defined by the scaling laws themselves. There was a negligible difference185

between the new subgrid coefficients and those obtained in the initial study.

3 Characterisation of the benchmark flows

In the benchmark atmospheric simulations, the Rossby radius of deformationrR = 447 km, with an

associated wavenumber ofkR = 14. This means14 eddies of this size could fit side by side along

one line of latitude. The climate state contains large scalewesterly winds in the mid-latitudes of190

the northern and southern hemispheres (Kitsios et al., 2012) - see Fig. 1(c). Large scale eddies are

produced in both hemispheres as illustrated by the instantaneous eddy streamfunction and wind field

in Fig. 1(a).

In the initial benchmark oceanic simulation the Rossby radius is45 km corresponding to a wavenum-

ber ofkR = 142. The Rossby radius is an order of magnitude smaller in the ocean compared with195

the atmosphere. This renders oceanic simulations computationally more expensive, as a finer grid

is required to explicitly resolve baroclinic instability.The climate state is illustrated in Fig. 1(d),
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and is broadly representative of the Antarctic CircumpolarCurrent (Kitsios et al., 2013). Figure 1(b)

illustrates that the oceanic flow has eddies in the mid-latitudes of the southern hemisphere that are

smaller in size than those in the atmospheric case, and is consistent with the former having a smaller200

Rossby radius.

The strength of the flow field on each level is quantified by the potential enstrophy flux, and is

required for scaling the magnitude of the eventual subgrid coefficients. The enstrophy flux,ηjk(n),

is the rate of potential enstrophy transfer from levelk into levelj at total wavenumbern. It is defined

as205

ηjk(n) =

T∑

l=n

N jk(l) , where (6)

N jk(n) = i
∑

m

∑

pq

∑

rs

Kmpr
nqs ψ

j
−pqq

j
−rsq

k
−mn , (7)

is the enstrophy transfer. The latter is calculated by post-multiplying the nonlinear term of the equa-

tions of motion in Eq. (3) byqk−mn, and then summing over zonal wavenumberm. The potential

enstrophy flux for the atmospheric and oceanic simulations are illustrated in Fig. 2(a) and Fig. 2(b).210

The wavenumber extent of the large energy containing scalesis required for scaling the spec-

tral slope of the subgrid coefficients. Within the inertial ranges the external forcing and dissipation

are negligible, and the transfer of energy is dominated by nonlinear triadic interactions (Salmon,

1998). With no additional damping or excitation within the self-similar wavenumber regimes, we

find that the energy transferred into the barotropic mode is in balance with that transferred out of the215

baroclinic mode. We definekE to be a wavenumber indicative of the non-self-similar energy con-

taining scales. It is quantified by the smallest wavenumber at which the energy transferred into the

barotropic mode is in balance with the energy transferred out of the baroclinic mode (Kitsios et al.,

2013). The kinetic energy transfers in level space are givenby T jk(n) =N jk(n)/[n(n+1)]. The

barotropic/baroclinic kinetic energy transfers are givenby T jk
B (n), where in matrix formT B =220

CT CT , with

C =
1

2


 1 1

1

cn
− 1

cn


 , (8)

with cn = 1+2FL/[n(n+1)], and the superscriptT denotes the transpose operation. The index

1 refers to the barotropic mode, and2 the baroclinic mode. For exampleT 12
B (n) refers to the ki-

netic energy transferred from the baroclinic mode into the barotropic mode. The energy transferred225

into the barotropic mode isT BT (n) = T 11
B (n)+ T 12

B (n), and likewise the energy transferred into

the baroclinic mode isT BC(n) = T 21
B (n)+ T 22

B (n). To be in balanceT BT (n) must be equal to

−T BC(n). For the atmospheric flow we findkE ≈ 11, and for the oceanic flowkE = 70, as illus-

trated in Fig. 2(c) and Fig. 2(d) respectively.
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4 Stochastic subgrid modelling approach230

Using a series of the above discussed simulations, we study the inter-eddy interactions by remov-

ing vortices smaller than a certain cut-off size, or equivalently larger than a specified truncation

wavenumber (TR). The subgrid tendency is the component of the rate of changeof the resolved large

scale vortices due to their interactions with the unresolved small scale vortices. The subgrid param-

eterisation problem in its most basic form is the representation of the subgrid tendency in terms of235

the resolved field. Here we use the stochastic subgrid modelling approach of Frederiksen and Kepert

(2006) to determine such a representation for the subgrid processes. This approach is outlined below.

The resolution of a large eddy simulation (LES) is lower thanthe associated DNS, and confined

to the resolved scale wavenumber set

R = [ p,q,r,s | −TR ≤ p≤ TR , |p| ≤ q ≤ TR ,−TR ≤ r ≤ TR , |r| ≤ s≤ TR ] ,240

whereTR is the LES truncation wavenumber such thatTR < T . The subgrid wavenumber set is

defined asS=T−R. We define the resolved potential vorticity field at a given wavenumber

pair (m,n) by the two-element column vectorq= (q1mn,q
2
mn)

T . In this vector notationqt(t) =

qR
t (t)+qS

t (t), whereqt is the tendency (time derivative) ofq. The tendency of the resolved scales

is qR
t , where all triadic interactions involve wavenumbers less thanTR. The remaining subgrid ten-245

dencyqS
t has at least one wavenumber greater thanTR which is involved in the triadic interactions.

One can further decomposeqS
t such thatqS

t (t) = f + q̂S
t (t), whereq̂S

t is the fluctuating component

representing the eddy-eddy interactions, andf ≡ 〈qS
t 〉 is the ensemble averaged subgrid tendency

representing the sum of the eddy-meanfield and meanfield-meanfield interactions.

Recall the QDIA closure provides the theoretical justification for modelling the subgrid tendency250

for a particular wavenumber pair as a function of the resolved fields at only that same wavenumber

pair (Frederiksen, 2012a). We can then model the fluctuatingsubgrid tendency at each wavenumber

pair, q̂S
t , by the stochastic equation

q̂S

t (t) = −Dd q̂(t)+ f̂(t) , (9)

whereDd is the subgrid drain dissipation matrix,q̂ is the fluctuating component ofq, and f̂ is a255

random forcing vector. As the present simulations have two vertical levels,Dd is a time indepen-

dent2× 2 matrix, and̂f is a time dependent2 element column vector. An estimate ofDd is then

found through the generalisation of the Gauss theorem (Frederiksen and Kepert, 2006). Both sides of

Eq. (9) are post-multiplied bŷq†(t0), integrated over the turbulent decorrelation periodτ , ensemble

averaged to minimise the contribution from̂f , and then rearranged to produce260

Dd = −
〈 t0+τ∫

t0

q̂S

t (σ)q̂
†(t0)dσ

〉〈 t0+τ∫

t0

q̂(σ)q̂†(t0)dσ

〉−1

, (10)

where† denotes the Hermitian conjugate for vectors and matrices. The angled brackets denote en-

semble averaging, with each ensemble member determined by shifting t0 forward by one time step.
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The decorrelation timeτ , is chosen sufficiently large to capture the memory effects of the turbulence

(Kitsios et al., 2012). The model for̂f is then determined by calculating the matrixFb = Fb+Fb
†,265

whereFb = 〈f̂ (t) q̂†(t)〉. Post-multiplying both sides of Eq. (9) bŷq†(t), and adding the conjugate

transpose of Eq. (9) pre-multiplied bŷq(t) yields the Lyapunov equation

〈
q̂S

t (t)q̂
†(t)

〉
+
〈
q̂(t)q̂S†

t (t)
〉

= −Dd

〈
q̂(t)q̂†(t)

〉
−
〈
q̂(t)q̂†(t)

〉
Dd

†+Fb . (11)

Given thatDd has been determined,Fb can now be calculated. There is a balancing act between the

linear (Dd) and stochastic (Fb) components of the subgrid model. AsDd is dependent uponτ , it is270

τ that defines this balance. For the implementation of parameterisation, it is sufficient to assume that

f̂ can be represented as the white noise process〈f̂ (t) f̂†(t′)〉=Fb δ(t− t′), with an eigenvalue de-

composition ofFb used to produce a stochastic model forf̂ , as detailed in Zidikheri and Frederiksen

(2009).

Backscatter is the physical process by which kinetic energyis transferred from small to large275

scales. The subgrid model in Eq. (9) represents this processin its fundamental stochastic form.

One can also, however, represent the subgrid interactions using the simplified deterministic form

q̂S
t (t) =−Dnet q̂(t), whereDnet is the net dissipation representing the net effect of the drain and

backscatter (Frederiksen and Kepert, 2006). The backscatter and net linear operators are defined by

Db = −Fb

〈
q̂(t) q̂†(t)

〉−1
, and (12)280

Dnet = Dd +Db =−
〈
q̂S

t (t)q̂
†(t)

〉 〈
q̂(t)q̂†(t)

〉−1
, (13)

respectively (Frederiksen and Kepert, 2006). In the present document the subgrid coefficients are

presented in eddy viscosity form, where the drain, backscatter and net eddy viscosities are related to

their respective dissipations byνd ≡Dd/[n(n+1)],νb ≡Db/[n(n+1)], andνnet ≡Dnet/[n(n+

1)]. Recalln(n+1) is the discrete form of the Laplacian.285

5 Structure of the eddy viscosities

For the atmosphere the subgrid model coefficients are presented at a truncation ofTR = 126, cap-

turing vortices down to a radius of50 km in the mid-latitudes. These eddies are significantly smaller

than the Rossby radius (447 km), which means the energy injected into the system via baroclinic

instability is explicitly resolved. In Fig. 3(a) the upper diagonal element of the drain eddy viscosity290

is divided by the kinematic viscosity of air (10−5 m2s-1), and represented by the height of the con-

tour surface. The coloured surface depicts the kinetic energy of the fluctuating scales at the upper

level. In this figure the eddy viscosity is1010 times greater than the molecular viscosity, indicat-

ing that the inter-eddy interactions are far more importantthan the inter-molecular ones. The drain

also increases strongly with the total wavenumber (n), has only a weak dependence upon the zonal295

wavenumber (m), at a givenn, and is hence approximately isotropic. The kinetic energy is also

largely isotropic, concentrated at the largest scales (lowest wavenumbers), and decreases rapidly as
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the structures get smaller (wavenumbers get larger). The form and magnitude of the lower diagonal

element of the drain eddy viscosity matrix are very similar to those of the upper diagonal element,

with the off-diagonal elements negligible in comparison. Since the drain eddy viscosity matrix is300

essentially diagonal, the positive coefficients illustrated in Fig. 3(a) indicate that energy is being

sent from the resolved to the subgrid eddies. The backscatter has a similar form to the drain, but is

negative and approximately half the magnitude.

We now consider the drain eddy viscosity in the ocean at the same resolution ofTR = 126, again

capturing vortices of radius50 km. Here, the energy injection via baroclinic instability is not explic-305

itly resolved as the Rossby radius is45 km. The upper diagonal drain eddy viscosity component is

divided by the kinematic viscosity of sea water (10−6 m2s-1) and plotted in Fig. 3(b). It again illus-

trates that the influence of the inter-eddy interactions is1010 times greater than the inter-molecular

ones. The eddy viscosity is strongly dependent upon both zonal (m) and total (n) wavenumbers,

and is hence anisotropic. For certain low wavenumbers (large scales) the drain is negative, which310

is required to further deterministically excite the flow as the injection of energy via barotropic

and baroclinic instabilities is not explicitly resolved. The coloured surface depicts the upper level

kinetic energy, illustrating that it is also highly anisotropic and distributed across all scales. The

lower diagonal matrix element has similar properties to theupper diagonal. The off-diagonal ele-

ments are proportionally larger in this case, indicating that the removal of the small scales modifies315

the interactions between the vertical levels - refer to Kitsios et al. (2013) for illustrations of the

off-diagonal elements.Jansen and Held (2014) developed heuristic general purposeoceanic subgrid

models for this regime that also have negative viscosity.For oceanic simulations at the higher res-

olution ofTR = 252, in which baroclinic instability is explicitly resolved, the eddy viscosities have

similar properties to the atmospheric case, with matrices diagonally dominant and largely isotropic320

(Kitsios et al., 2013).

The self similarity of the eddy viscosities is most clearly illustrated by the isotropised (averaged

over zonal wavenumberm) profiles. For various truncations levels (TR), the upper diagonal element

of the isotropised drain and backscatter eddy viscosities is illustrated in Fig. 3(c) for the atmospheric

flow, and in Fig. 3(d) for the ocean. We also show the net eddy viscosity, given by the sum of325

the drain and backscatter. As the resolution increases the magnitude of all of the eddy viscosities

decrease.This means that as more eddies are being explicitly resolved, the enstrophy (and energy)

is being transferred to fewer subgrid eddies.For cases that resolve baroclinic instability, the subgrid

parameterisation represents the energy flow to the resolvedscales as being completely stochastic

with only the backscatter eddy viscosity negative. The positive values of the net eddy viscosity330

indicate that the net effect of the drain and backscatter processes is such that energy is sent out of the

system. When baroclinic instability is not resolved the energy flow to the resolved scales is modelled

as having a deterministic component with the drain and net eddy viscosities negative for certain low

wavenumbers. The eddy viscosity coefficients with significant magnitude are concentrated within
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the last70 wavenumbers for the ocean and the last11 wavenumbers for the atmosphere. These335

wavenumber ranges coincide withkE - the wavenumber to which the large non-self-similar energy

containing scales extend.

6 Unifying scaling laws

We have calculated the subgrid parameterisation coefficients (eddy viscosities) for the atmosphere

and ocean at various resolutions (TR). We now develop scaling laws representing how these eddy340

viscosities change with resolution and flow strength, for truncations made within the enstrophy cas-

cading inertial range (kR < TR). For the diagonal element of the drain eddy viscosity associated with

level j, the maximum magnitude (νjjd (TR)) and spectral slope (ρjd) are quantified by least squares

fitting the isotropised eddy viscosity profiles (νjjd (n)) to the function

νjjd (n) = νjjd (TR)

(
n

TR

)ρ
j

d
−2

. (14)345

There is an analogous expression for the isotropised backscatter eddy viscosity (νjjb (n)) . The scaling

laws govern how the magnitudes and slopes change with truncation wavenumber and flow strength.

Oceanic benchmark simulations were also undertaken, with the Rossby wavenumber (kR) varying

from 142 to 284, and the energy containing wavenumber (kE) varying from40 to 70. This coupled

with the atmospheric results (kR = 14, kE = 11), means that we have results spanning almost an350

order of magnitude in both the Rossby and energy containing wavenumbers.

Firstly we present the power exponents of the drain eddy viscosities (ρjd), which represent how

steeply the drain of enstrophy out of the system increases with resolved wavenumber (or equiva-

lently as the size of the resolved eddies decrease). It is theextent of the energy containing scales

(kE) that defines how far nonlinear interactions can span in wavenumber space (Kraichnan, 1976),355

which effectively sets the size of the largest eddy that can interact with the subgrid scales. This

wavenumber distance is inversely proportional to the powerexponents, and is represented by the

span of wavenumbers over which the eddy viscosity profiles are non-zero in Fig. 3(c) and Fig. 3(d).

In Fig. 4(a), we therefore plot the drain power exponent against the truncation wavenumber (TR)

nondimensionalised bykE . A strong relationship exists for all of the atmospheric andoceanic flows,360

with the drain exponent increasing withTR. The spectral slope has to increase with resolution to

ensure that the range of significant subgrid interactions (quantified by the eddy viscosity) is confined

to the lastkE wavenumbers before truncation. The scaling law forρjd is determined by the illustrated

regression line. A similar relationship is observed for thepower exponents of the backscatter eddy

viscosities (ρjb) in Fig. 4(b), with the dashed line illustrating the scalinglaw for the drain to serve365

as a direct comparison. Note the backscatter power exponents are larger and also increase with res-

olution more quickly than the drain exponents. To put these results into context, a power exponent
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of 2 represents a Laplacian dissipation, or equivalently an eddy viscosity that does not depend on

wavenumber.

Scaling laws for the maximum values are again nondimensionalised using the energy containing370

wavenumber, and additionally a time scale based on the potential enstrophy flux (Leith, 1971). The

potential enstrophy flux is the rate at which potential enstrophy is transferred from one wavenumber

to the next (Salmon, 1998). We calculate the flux and find that for both flow cases it is constant

for eddies smaller than the energy containing scale, as illustrated in Fig. 2(c) and Fig. 2(d). The

constant flux value at levelj is denoted byηjjI . To span all cases of differentkR andkE , we find375

that the eddy viscosities need also to be scaled by
√
kR/kE . With this normalisation, the magnitude

of the drain and backscatter are plotted in Fig. 4(c) and Fig.4(d) respectively. The magnitude of all

eddy viscosities is inversely proportional toTR, which means that if the resolution doubles the eddy

viscosity halves.

These scaling laws allow us to determine the drain and backscatter terms at the desired resolution380

(TR), given that we have estimates of the Rossby wavenumber, energy containing wavenumber, and

enstrophy fluxes. These terms can then be used to model the subgrid interactions in simulations of

the climate. Whilst the scaling laws were developed from baroclinic QG simulations, they agree

with the subgrid coefficients determined from the truncation of barotropic (Frederiksen and Kepert,

2006) and more complex atmospheric multi-level primitive equations simulations (Frederiksen et al.,385

2015). This indicates that the scaling laws can be applied more broadly. Recall subgrid models

developed from simpler barotropic QG models (Frederiksen and Davies, 1997), have been shown

to improve the simulated dynamics in GCMs (Frederiksen et al., 2003). As most GCMs run with

deterministic subgrid models, in Table 1 we list the effective spectral slope of the net eddy viscosity

at various resolutions (TR) for typical atmospheric (kE = 11) and oceanic (kE = 70) flows. For a390

givenTR/kE, the drain profile (νd(n)) is calculated using Eq. (14) and the scaling laws in Fig. 4, and

likewise for the backscatter (νb(n)), with the net eddy viscosity given byνnet(n) = νd(n)+νb(n).

The spectral slope ofνnet(n) is then calculated, divided by2, and rounded to the nearest integer to

approximate the effective power of the Laplacian. For a given resolution, atmospheric simulations

are far more scale selective than oceanic ones, because the extent of the energy containing scales395

(kE) is significantly less in the atmosphere than in the ocean.

7 Large eddy simulation

We now determine if LES with subgrid models defined by the eddyviscosities presented above, can

replicate the statistics of the higher resolution benchmark simulations. The equation governing the

LES is equivalent to that of the benchmark simulation in Eq. (3), with the addition of the term400

(
qSt
)j
mn

= −n(n+1)
2∑

l=1

νjld (m,n)q̂lmn + f̂ j
mn+ f̄ j

mn , (15)
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added to the right-hand-side, and solved over the wavenumber setR instead ofT. A stochastic

model forf̂ is built from an eigenvalue decomposition ofFb (Zidikheri and Frederiksen, 2009). In

the deterministic form the stochastic forcef̂ is removed andνd is replaced withνnet. In the isotropic

cases the matricesνd, νnet andνb are averaged over the zonal wavenumbersm, so that they are405

only functions of the total wavenumbersn.

We compare the DNS results to LES comprising of both stochastic and deterministic subgrid mod-

els, with the model coefficients in their original anisotropic form (as in Fig. 3(a)), in their isotropised

form (as in Fig. 3(c)), and also defined by the associated scaling laws. Comparisons are made across

all scales of motion on the basis of the time-averaged zonal (m) wavenumber-summed kinetic energy410

spectra. The upper level spectra of the benchmark simulations (black dashed line) are compared to

that of the LES (red solid line) labelled by the associated subgrid parameterisation variant in Fig. 5.

The top pair of spectra represent the true energy level, withthe other pairs of spectra shifted down

for clarity. Findings pertaining to the upper level are consistent with those for the lower level.

The atmospheric benchmark simulation of maximum wavenumber T = 504 is compared to LES415

with TR = 63 in Fig. 5(a). The stochastic and deterministic variants with anisotropic, isotropic, and

scaling-law-defined coefficients all reproduce the kineticenergy of the benchmark simulation across

all scales of motion. As the resolution is reduced in both horizontal directions, the number of degrees

of freedom is reduced by(T 2−T 2
R)/T

2 = (5122− 632)/5122 = 98%. This reduced resolution also

also allows us to decrease the time step proportionally, which means the computational cost of the420

simulation is reduced by a factorT 3/T 3
R = 5123/633 = 537. The oceanic benchmark simulation

of T = 504 is compared to LES withTR = 252 in Fig. 5(b). Again all LES variants replicate the

statistics of the benchmark simulation. This represents a75% reduction in the degrees of freedom,

a decrease in computational cost by a factor of67. In summary for both the atmosphere and ocean,

the idealised scaling law form of the eddy viscosities is an excellent representation of the subgrid425

interactions within the enstrophy cascade. We have also developed scaling laws applicable to the

ocean within the inverse energy cascade (kE < n< kR), as discussed in Kitsios et al. (2013).

8 Conclusions

A general stochastic modelling approach (Frederiksen and Kepert, 2006) has been used to determine

eddy viscosity matrices that parameterise the interactions between fields at different vertical levels430

and horizontal scales in the atmosphere and ocean. Additionally when truncations are made within

the enstrophy cascading inertial range the subgrid parameterisation coefficients are represented by

a set of unifying scaling laws. The laws govern how the form and magnitude of both the atmo-

spheric and oceanic eddy viscosities change with flow strength and grid resolution. We have demon-

strated that simulations adopting these scaling laws produce resolution independent statistics across435

all scales of motion. This means no additional resolution need be wasted in order to account for the
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presence of an artificial dissipation range, which drastically improves the computational efficiency

of the simulations.

The scaling laws developed here can be implemented directlyinto spectral simulations, and are

expected to improve the efficiency and accuracy of numericalweather and climate simulations440

(Frederiksen et al., 2003, 2015). There are also two possible approaches to implement these scaling

laws into grid point codes. The simplest approach is to applythe subgrid model directly in grid-point

space via a Laplacian operator of the appropriate power, as outlined in Table 1. More generally it is

also possible to employ grid to spectral transforms, where the subgrid model is calculated in spectral

space, and then applied in physical space.445

Finally the stochastic modelling approach adopted here, isnot only confined to fluid mechanics,

but can be used to represent nonlinear interactions in any classical multi-scale dynamical system

(Frederiksen, 2012b).
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Table 1. Equivalent powers of the Laplacian for the subgrid net eddy viscosity of atmospheric and oceanic

simulations at various angular grid spacings (Θ). The equivalent truncation wavenumber isTR = 120/Θ.

The energy containing scale for the atmospheric and oceanicsimulations arekE = 11 andkE = 70 respectively.

The drain profiles (νd(n)) are calculated fromTR/kE using Eq. (14) and the scaling laws in Fig. 4, and

likewise for the backscatter (νb(n)), with the netνnet(n) = νd(n)+νb(n). The spectral slope ofνnet(n) is

determined, divided by2, and rounded to the nearest integer to approximate the effective power of the Laplacian

operator.

Θ 1◦ 1

2

◦ 1

4

◦ 1

6

◦ 1

8

◦

TR = 120/Θ 120 240 480 720 960

atmospherekE = 11

TR/kE 10.9 21.8 43.6 65.5 87.3

Power of Laplacian 13 22 38 52 65

oceankE = 70

TR/kE 1.7 3.4 6.9 10.3 13.7

Power of Laplacian 0 (constant) 1 (Laplacian) 2 (biharmonic) 3 4
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Figure 1. Instantaneous fields and climate states of the benchmark simulations. Contours of instantaneous

eddy (non-zonal) streamfunction, and vectors of instantaneous velocity (wind/current) on the upper level of the:

a atmosphere (northern and southern hemisphere); andb ocean (southern hemisphere). Climate state illustrated

by the time averaged:c atmospheric winds; andd oceanic currents.
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Figure 2. Spectral properties of the benchmark simulations. Potential enstrophy flux spectra on the upper

vertical level (level1) and lower level (level2) for the: a atmosphere; andb ocean. Energy transferred into

the barotropic mode (T BT ) and out of the baroclinic mode (−T
BC ) for the: c atmosphere, with legend also

applicable to (d); andd ocean. The energy containing scale wavenumberkE, Rossby wavenumberkR, and

benchmark simulation truncation wavenumberT labelled on then axis.
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Figure 3. Real component of the upper diagonal subgrid eddy viscosities.Anisotropic drain eddy viscos-

ity at TR = 126 for the: a atmosphere, divided by the kinematic viscosity of air (10−5 m2s-1); andb ocean,

divided by the kinematic viscosity of sea water (10−6 m2s-1). Coloured surfaces depict kinetic energy of the

fluctuations at the upper level, and the black lines are the isotropised (m averaged) drain coefficients. Isotropic

drain, backscatter, and net eddy viscosities labelled byTR for the: c atmosphere; andd ocean; with Rossby

wavenumber (kR) and energy containing wavenumber (kE) labelled on the horizontal axes.
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square,kR = 142, kE ∈ (40,50,60); magenta upward pointing triangle,kR ∈ (201,246), kE = 70; orange

downward pointing triangle,kR = 14, kE = 11 (atmosphere). Filled symbols representj = 1 and hollow sym-

bolsj = 2.
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Figure 5. Scale by scale comparison of the benchmark simulation (dashed line) to the LES variants (red

solid line). Kinetic energy spectra at the upper level of the:a atmosphere; andb ocean. The top pair of spectra

exhibit the true energy, with subsequent pairs shifted downfor clarity. Spectra are labelled with the associated

subgrid parameterisation of anisotropic stochastic (AS),anisotropic deterministic (AD), isotropic stochastic

(IS), isotropic deterministic (ID), scaling law stochastic (LS), or scaling law deterministic (LD). The truncation

(TR), Rossby (kR) and energy containing (kE) wavenumbers are labelled on the horizontal axis.
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