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Toward A Practical Approach for Ergodicity Analysis 

Abstract: It is of importance to perform hydrological forecast using a finite hydrological 

time series. Most time series analysis approaches presume a data series to be ergodic without 

justifying this assumption. This paper presents a practical approach to analyze the mean 

ergodic property of hydrological processes by means of autocorrelation function evaluation 5 

and Augmented Dickey Fuller test, a radial basis function neural network, and the definition 

of mean ergodicity. The mean ergodicity of precipitation processes at the Lanzhou Rain 

Gauge Station in the Yellow River basin, the Ankang Rain Gauge Station in Han River, both 

in China, and at Newberry, MI, USA are analyzed using the proposed approach. The results 

indicate that the precipitations of March, July, and August in Lanzhou, and of May, June, and 10 

August in Ankang have mean ergodicity, whereas, the precipitation of any other calendar 

month in these two rain gauge stations do not have mean ergodicity. The precipitation of 

February, May, July, and December in Newberry show ergodic property, although the 

precipitation of each month shows a clear increasing or decreasing trend. 

Introduction 15 

A hydrological process can be usually regarded as a stochastic process and any 

observation is just a realization of a random variable representing the stochastic process. A 

realization of a stochastic process is defined as the outcome of an experiment in which the 

process is observed (Shahin et al., 1993). For example, a time series of observed precipitation 
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data at a gauge station is a realization of the precipitation process at the area the gauge station 20 

covers. A collection of all possible realizations of a stochastic process, i.e., the ensemble, are 

used to represent the process.  

Given that the variations of a hydrological variable representing certain hydrological 

process are usually very complicated and affected by random factors, statistical properties of 

the process, such as the phase mean function of a data series   ; 1,2,...,t t N  , 25 

    m t E t , and the correlation function       , ,R s t Cov s t  , etc., must be known in 

order to describe and thus analyze this stochastic process. In reality, however, only finite 

realizations, i.e. a finite set of records   ; 1,2,...,t t N   of the random series   t , in most 

time only one single realization, are available from observation. It will be significantly 

helpful and meaningful if the statistic properties of a process such as its mean and standard 30 

deviation variance can be estimated from the observation of a realization. In fact, it is 

common in practice for hydrologists to use the statistical properties of a single realization 

from a hydrologic process as the statistical properties of this process. For example, the mean 

value and the probability distribution of a certain number years of observation data at a flow 

rate gauge station are often used for further hydrological process analysis, e.g., the flood 35 

frequency analysis. By doing this, we actually assume that the statistic properties of the flow 

rate at this station can be estimated from the finite number of observations and their values 

are identical, or more strictly, close enough to the corresponding values of the statistic 

properties of the flow process. Is it possible to estimate the statistical properties of the 

population process using finite observations? How reliable is this estimate approach? These 40 
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questions arose and were described as the asymptotic convergence of the average over time 

(sample average) to the phase mean (population mean). This property is called the ergodic 

property or ergodicity (Chick et al., 1996). Ergodicity is the property by which each 

realization of a given process is a complete and independent representative of all possible 

realizations of the process (Shahin et al., 1993). Thus, the ergodic properties allow scientists 45 

and researchers to determine the statistical properties of a process from a single realization. In 

this sense, the current common practice actually assumes that hydrological processes have 

ergodicity. This then brings up a question: do the hydrological processes really have 

ergodicity, just as being assumed in practice? How can one justify a process having 

ergodicity? The desirability of doing this has been realized for a long time, but rigorous and 50 

practical approaches have yet been available.  

To date, only limited discussions about the application of time series ergodicity 

(Domowitz and El-Gamal, 2001; MORVAI and WEISS, 2005) have been reported. Most 

studies of time series applications, such as in the fields of hydrology, hydrodynamics, and 

noise (Jiang and Zheng, 2005; Oliveira et al., 2006; Veneziano and Tabaei, 2004), discuss 55 

statistic characteristics simply by assuming time series having ergodicity without justifying 

this assumption with a rigorous approach. There have been a few discussions concerning 

ergodicity in the field of hydrological research. (Liu, 1998) assumed that ergodicity exists 

between the spatial distribution and the temporal propagation of hydrological factors of a 

water exchange system, i.e., these processes are restricted by ergodicity. (Xia, 2005) used 60 

power-weighted Markov chains to predict “plum rain” intensity (an East Asian rainy season 
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usually lasting from June to July) and concluded that this process has ergodicity. In general, 

the ergodicity of time series refers to the ergodicity of stationary processes, which means that 

the process averaged over time behaves identical to the process averaged over space.  

Until recently, particular studies on ergodic property analysis for hydrological processes 65 

have not yet been performed. However, the study of the ergodicity itself is not only 

significant but also indispensable because it is a fundamental presumption for many time 

series problems (Ding and Deng, 1988; Fiori and Janković, 2005; Hsu, 2003; Liu, 1998; 

Mitosek, 2000; Wang et al., 2004). This study proposes a practical approach for mean ergodic 

property analysis using autocorrelation function (ACF) or Augmented Dickey Fuller (ADF) 70 

test and a radial basis function (RBF) neural network. The term ergodic and ergodic property 

or ergodicity are used mainly in mathematical physics, e.g., dynamics, and the theory of 

stationary stochastic processes. This study focuses on the ergodicity analysis for stationary 

stochastic processes which are commonly applied in hydrology. 

Definition of ergodicity 75 

A process is said to be ergodic if its statistical properties (such as its mean and variance) 

can be deduced from a single, sufficiently long sample (realization) of the process. A 

stochastic process shows ergodicity when its mean and covariance functions are ergodic, i.e., 

mean erogdicity and covariance ergodicity. Since the ergodicity of covariance function which 

usually relates to forth-order moments of the process is difficult to verify, only the mean 80 
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ergodic property of the process (or sequence) is discussed in this paper. For a given stochastic 

sequence   ; 1,2,...t t  , and its sample mean sequence  ,...2,1, TMT ,  

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T t
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ergodic and the process   t  is said to have mean ergodic property, where 
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  (1) 85 

where tM  is the mean of TM . 

It has been proved that only stationary processes could have ergodicity (Davis et al, 

1994). Stationarity implies that the statistical parameters of the series computed from 

different samples do not change except due to sampling variations. A time series is said to be 

strictly stationary if its statistical properties do not vary with changes of time origin. A less 90 

strict type of stationarity is called weak stationarity or second-order stationarity where the 

first- and second- order moments depend only on time differences (Chen and Rao, 2002). In 

nature, strictly stationary time series does not exist, and weakly stationary time series is 

practically considered as stationary time series. In addition to the stationarity, another 

necessary condition for ergodicity analysis is that the samples from the single realization 95 

should be taken from a large enough period of time. 

A practical approach to ergodic property analysis 

Currently there are no particular statistic tests designed for ergodic property analysis; we, 

therefore, perform the mean ergodicity analysis based on its definition and demonstrate a 
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practical approach with a series of case studies using monthly precipitation data series 100 

collected from two rain gauge stations located in China and one in the US respectively. 

Whereas the definition of mean ergodicity simples and straightforward, the practical analysis 

of mean ergodicity can be complicated. As discussed in the last section that a stochastic 

process is not ergodic unless stationary, a stationary test for the data series representing a 

stochastic process is then necessary as a prerequisite for further ergodicity analysis. Another 105 

challenge lies in the fact that the infinitely long data series required by the definition of mean 

ergodicity cannot be achieved in reality. This challenge can be overcome by extending the 

data series using approaches such as a reliable artificial intelligence approach. We propose to 

solve this challenge by predicting the  TMD  series using artificial intelligence approach, for 

example, Radius Basis Function (RBF) neural network, assuming that the predicted  TMD  110 

series represents the characteristics of the population data series.  

Stationarity test 

Given that the commonly used statistical inference is no longer valid for a non-stationary 

data series, it is necessary to examine the stationarity of a data series. The standard method 

for stationarity test is a unit root test, i.e., a time series is stationary if there exists a unit root. 115 

The stationarity of a stochastic process is determined by the roots of its characteristic 

function. If all the characteristic roots are located outside of the unit element, then the process 

is stationary, whereas, the process is non-stationary if one or more roots are on or within the 

unit element or circle with unit radius. If a characteristic root has a value of unit, it is called 

unit root. Dickey Fuller (DF) test and Augmented Dickey Fuller (ADF) test are two 120 

apple
在文本上注释
In the time series analysis, the sample size is large enough to be the most basic requirement. When the sample size is insufficient, it is not appropriate to identify the law by delaying time series length. The shorter time series, Chinese example, need be removed. American example should be retained and add more American station date as an example.
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commonly used unit root test. ADF test, actually an extension of DF test, eliminates the 

autocorrelation of residues by increasing the lags of the variable of a time series.  

Without loss of generality, DF test can be illustrated with a simple AR (1) process. 

Consider a stochastic process,  

 
1  t t tx x   (2) 125 

where 
t is the white noise. If 1  , the data series is stationary, while when 1  , the 

series is non-stationary. In practice, Equation (2) can be rewritten as  

 
1   t t tx x   (3) 

where   representing differential, and 1   . The DF test is to test the following null 

hypothesis,  130 

 0 1: 0 : 0  H H   (4) 

For a time series where the random disturbance might be destructed by its high-order time 

lag, e.g., a  AR p  process, ADF test is then to test the null hypothesis described by Equation 

(4) for the  AR p  process as follows, 

 1 1 1 2 2 1 1...                  t t t t p t p tx x x x x   (5) 135 

Besides DF or ADF test, the stationarity of a data series can also be determined by 

evaluating its autocorrelation. For a series variables   ; 1,2,  ... nt t  , its autocorrelation 

coefficient function (ACF) is defined as,  
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where   is the mean. If the ACF rapidly approaches 0 (i.e. falls into the stochastic domain), 140 

the time series is stationary; otherwise it is non-stationary (Cline and Pu, 1998, 1999). 

RBF neural network 

Since the ( )TD M series is nonlinear, we adopt the RBF neural network approach (See 

(Nørgaard, 2000) for detail) to extend the data series for predicting the trend of  TMD . The 

RBF neural network is a well-performing forward neural network model. It has high 145 

computational simplicity and extrapolation capacity, and can provide the network with strong 

nonlinear projecting capability (Alp and Cigizoglu, 2007). The calculation required by RBF 

neural network is relatively small; even with no more than a few cells, one can get a good 

approximation as long as the center is properly selected. On the other hand, because data with 

ergodic properties are unlikely to oscillate dramatically (Zhou et al., 2001), the RBF neural 150 

network is a good choice to predict the future changes of ergodic properties. 

The original data series   t  is first normalized by  * / max   , forming a new data 

series   * t . A 3-layer RBF network is then constructed following (Nørgaard, 2000), with 

the n1 neurons in the input layer and m neurons in the output layer. In this RBF neural 

network model, the first n1 data of   * t  from the observation series can then be used to 155 

predict the n1-th data; this process can be continued, predicting a longer series of *  data.  

A practical approach for ergodicity analysis 

The following procedure for ergodicity analysis is then proposed for a practical analysis 

of ergodicity of a data series: i) Perform the stationary analysis for the data series by 



 

9 

evaluating its autocorrelation function. A data series has no ergodicity unless it is stationary. 160 

ii) Calculate the sample mean value series  ,...2,1, TMT ,  



T

t
T t

T
M

1

1
 , and the variance 

series  TMD  of mean value TM ; iii) Simulate  TMD  using approach such as Radius 

Basis Function (RBF) neural network, predict the trend of  TMD  with time T  approaching

 , and iv) determine whether the original series   t  has mean ergodicity according to 

 lim T
T

D M


. It should be noted that using the proposed approach, we are trying to examine 165 

whether the assumption of mean ergodicity is consistent with the time series rather than 

mathematically prove the ergodicity of the time series.  

Ergodicity analysis of precipitation process 

Ergodicity analysis is performed for the monthly precipitation data series of three sites to 

demonstrate the proposed ergodicity analysis approach, including Lanzhou of Gansu 170 

Province and Ankang of Shan’xi Province, China, and Newberry Michigan, USA.  

Ergodicity analysis of precipitation series of Newberry, USA 

A mean ergodicity analysis is performed for each individual monthly precipitation data 

series of the 121-year precipitation data (1893-2013) collected from NOAA Newberry 

Correctional Facility, MI, USA (46.35°N 85.5°W, Elev. 240 m). The climatic region of 175 

Newberry is typified by large seasonal temperature differences, with warm to hot (and often 

humid) summers and cold (sometimes severely cold) winters. According to the Köppen 

Climate Classification system, it has a humid continental climate. Newberry has an average 

of 820.3 mm precipitation per year. Its driest weather is in February with an average of 40.1 

http://en.wikipedia.org/wiki/Climate
http://en.wikipedia.org/wiki/K%C3%B6ppen_Climate_Classification
http://en.wikipedia.org/wiki/K%C3%B6ppen_Climate_Classification
http://en.wikipedia.org/wiki/Humid_continental_climate
http://www.newberry-mi.climatemps.com/february.php
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mm of precipitation, and wettest weather is in August with an average of 94 mm precipitation. 180 

The statistics of each individual monthly precipitation series of Newberry are given in 

Table 1. The ACF plots, as shown in Table 2 System clustering of the precipitation series 

at Ankang, China 

Clusters Calendar months CV Stationarity Ergodicity 

Group 1 
,  ,  ,

 ,  

Jan Feb Mar

Nov Dec

 
 
 

 1.0384 No No 

Group 2 
,  ,  ,

,  

Apr May Jun

Jul Oct

 
 
 

 0.6554 Yes No 

Group 3  Aug  0.5938 Yes Yes 

Group 4  Sep  0.6357 Yes No 

  

http://www.newberry-mi.climatemps.com/august.php
apple
在文本上注释
the monthly data series of Ankang station are clustered into four classes based on the climatic characteristics. In my opinion, it is in order to increase the number of sample. But in time length of month (30 days) to analyze the precipitation characteristics, there are great differences in the meteorological formation background of each month. In China, for example, the rain is formed in front when monsoon move from south to north .However, the front is different on the formation process and position in each month. Similarly, for a fixed hydrological station, its meteorological background is not the same. Thus, it is recommended to ergodicity analyzed separately for each month (Jan, Feb, Mar ...... Dec). Meanwhile, if the author accepts the above comments, then this item will naturally be modified. 
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Figure 1, and the ADF test indicate that all the 12 individual monthly precipitation data 185 

series at Newberry are stationary. The TM  and  TMD  for each monthly precipitation data 

series are calculated and plotted as shown in Figure 2. Apparently, T  cannot be 

guaranteed due to the limited number of samples and thus the trend of  TMD  cannot 

consequently be determined directly from the data series if it is not long enough. The monthly 

mean precipitation data series of each data group is first normalized by  * / max   , and 190 

then extended by using RBF neural network. The mean series of the new data series, 

 
1

1
*

T

T

t

M t
T




  , and its variance series  TMD  can be calculated. The  TMD  for each 

extended monthly data series are plotted as shown in Figure 3, which shows that only the 

 TMD  of the monthly precipitation data series of February, May, July, and December, have 

a clear trend approaching zero, thus these four months’ precipitation being ergodic. 195 

Ergodicity analysis of precipitation series of Lanzhou, China 

Fifty years (1951-2000) of monthly precipitation data are collected from Lanzhou Rain 

Gauge Station (103.70° E, 35.90° N) in the Yellow River basin of China. The statistics of 

each individual monthly series are given in Table 1. The autocorrelation of each monthly 

precipitation data series indicates that all the series data of Lanzhou rain gauge station are 200 

stationary. The TM  and  TMD  of data series for Lanzhou rain gauge station are then 

calculated; and the  TMD  of the predicted data series for each monthly precipitation data 

series by RBF neural network shows that only the  TD M of precipitations of March, July 

and August, approach 0. Therefore, these monthly precipitation series has mean ergodicity. 

apple
在文本上注释
According to the data in terms of mathematics, there is ergodicity when MT and D (MT) converge to 0. This is a very demanding test conditions, the actual engineering problems is not suitable for using this method to test the cumulative value change after 30 years. In this paper, we only see whether the trend of MT and D (MT) is change in the graph. The trend analysis method is suggested to use to analysis the trend of cumulative value, such as Mann-Kendall test.
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Ergodicity analysis of precipitation series of Ankang, China 205 

Similarly, the ergodicity analysis is performed for the monthly mean precipitation data 

series of each calendar month for the Ankang rain gauge station. Seventy years (1929-1998) 

of precipitation data from Ankang Rain Gauge Station (109.03° E, 32.72° N) in the Han 

River basin of China are collected for the ergodic property analysis. The statistics of each 

individual monthly series are given in Table 1. The stationarity analysis by evaluating the 210 

autocorrelation of each monthly data series shows that the monthly precipitation data series 

of each month is stationary. The mean ergodicity analysis is then performed for each monthly 

data series with extending the data series with RBF neuronal network. The results indicate 

that the monthly precipitation of May, June, and August is ergodic.  

Results and Discussions 215 

The coefficient of variance (CV) has been widely used to measure dispersion of a data 

series. The more concentrated the distribution of a random variable is, the more obvious is its 

regularity, and vice versa. The coefficients of variance for each monthly precipitation data 

series of Lanzhou rain gauge station, Ankang rain gauge station, and Newberry are 

calculated, as shown in Table 1, respectively. As all the monthly data series are stationary in 220 

our study, we synthesize a combined stationary and nonstationary data series by clustering 

the monthly data series of Ankang station into four classes, as shown in Table 2, in order to 

investigate the non/stationarity and ergodicity simultaneously. The stationarity test and mean 

ergodicity analysis are then performed to the clustered data using the proposed methodology. 

http://en.wikipedia.org/wiki/Statistical_dispersion
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The stationarity analysis by evaluating the autocorrelation of each group of data series shows 225 

that the {Ankang: Jan, Feb, Mar, Nov, Dec} series is non-stationary; whereas all the other 

three groups of data series are stationary. It can be seen that the coefficient of variance for 

clustered monthly data series of Ankang that are stationary are smaller than that of non-

stationary monthly data series. This indicates that the monthly precipitation with small 

coefficients of variance has more tendency to be stationary, or more regular. 230 

Although a small coefficient of variance provides the representing data series with more 

tendency to be stationary, it does not give a clear indication to the ergodicity of the data 

series. The coefficient of variance of precipitation time series with ergodicity is not 

necessarily smaller than those without ergodicity. Among the monthly precipitation data 

series of Newberry, the data series of {Newberry: September} has the smallest coefficient of 235 

variance but it does not have an ergodic property. Moreover, although the coefficients of 

variance of {Newberry: September}, {Lanzhou: September}, and {Ankang: April}, are 

smaller than {Newberry, July}, {Lanzhou: August}, and {Ankang: June}, respectively, the 

latter ones have ergodicity while the former ones do not. Furthermore, an ergodic process is 

stationary while the converse may not be true. The stationarity of a data series is the 240 

prerequisite of its ergodicity, rather than a guarantee to ergodicity; there are stationary 

processes which are not ergodic. In other words, a process with ergodicity is necessarily 

stationary in the strict sense. Therefore, neither the coefficient of variance nor the stationarity 

test, which is commonly performed in time series analysis, can take over the ergodicity 

analysis in order to make sure the statistics of a reality, such as the mean, can be safely used 245 
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as those of its population. 

Comparison of the ergodicity of the monthly precipitation data series of May and June of 

Ankang analyzed by their monthly data series and the clustered data series indicates that the 

ergodic property could change when new data is introduced. The analysis of May 

precipitation in Ankang shows it has ergodicity; whereas, the analysis using the clustered data 250 

series  Ankang: May, Jun, Sep indicates that this data series does not have mean ergodic 

property. This difference can be explained that the  Ankang: May monthly precipitation may 

become non-ergodic when new data, for example  Ankang: Jun, Sep , is introduced, which 

actually can considered as new observations of  Ankang: May and the variation of  

 Ankang: May  and  Ankang: Jun, Sep could be owing to the change of natural or man-made 255 

factors that affect precipitation processes.  

A linear trend analysis is also performed following (Vamos and Craciun, 2012) for some 

of the ergodic monthly precipitation data series of the three rain gauge stations, as shown in 

Figure 4. The August precipitation at neither Lanzhou nor Ankang station shows obviously 

periodic. The August precipitation at Lanzhou rain gauge station shows an overall decreasing 260 

trend while the August precipitation at Ankang rain gauge station shows remains almost 

stable around its mean value. In Newberry, only the precipitation of May shows a relatively 

stable trend, the precipitation of February has a clear decreasing trend since 1970s, and the 

precipitation of both July and December has an increasing trend. However, according to the 

ergodicity analysis, the precipitation of those months having ergodicity in the three rain 265 
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gauge stations, in the long run will fluctuate around their mean value rather than keep varying 

as shown in Figure 4.  

In this study, the 50 years of monthly precipitation data series of Lanzhou rain gauge 

station, the 70 years of precipitation data series of Ankang rain gauge station are insufficient, 

and even the 121 years of monthly precipitation data from Newberry, MI, USA, is 270 

insufficient for direct analysis of ergodic. The BRF neural network is used to extend the data 

series for the practical analysis of ergodicity. The observation data on many other 

hydrological processes are expected not to be long enough for direct ergodicity analysis; we, 

therefore, suggest using some other reliable tools, such as the BRF neural network used in 

this study, to extend the data series and perform the ergodicity analysis based on the 275 

observation and prediction data series. Before a more rigorous method becomes available, 

such approach of using extended data series by a “black-box” type of method might be 

controversial, but, we still believe, helpful at least to give a sense whether the data series of 

analysis has erogdic property.  

Conclusions 280 

Ergodic property analysis for hydrological processes is difficult but worthy of 

discussion. One may argue that whether a data series representing a hydrological process is 

ergodic, it does not actually affect the practice of analysis of this hydrological process, 

therefore, the test of ergodicity can be completely neglected. Some researchers (Duan and 
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Goldys, 2001; Koutsoyiannis, 2005; Liu, 1998), however, have pointed out that hydrological 285 

processes may have ergodic properties although no particular ergodicity analysis was 

performed in these works. This study presents a practical approach to analyze the mean 

ergodicity of hydrological processes, which bridges the concept of ergodicity and its 

application in hydrological process analysis. This approach primarily includes the stationarity 

test of the data series through its ACF or ADF test, avoiding the difficulty in analyzing the 290 

stationarity of the data series directly from its definition, the extension of the length of the 

data series, via the RBF network in this study, and the ergodicity analysis based on the 

sample mean sequence and its variance series. Three case studies, the ergodicity analysis for 

the monthly precipitation of Lanzhou in the Yellow River Basin of Chin, Ankang in the Han 

River basin of China, and Newberry, MI, USA, are conducted using the proposed approach.  295 

Our research reveals that the precipitations of March, July, and August in Lanzhou, and 

May, June, and August in Ankang have ergodicity; therefore the stochastic and statistical 

analysis of the precipitation of these months based on the observations (sample) in these two 

stations are expected more reliable than the analysis for any other calendar months’ 

precipitation in the two stations. The ergodicity analysis of precipitation data series of each 300 

individual month in Newberry, MI, USA, which has a relatively long observation history 

indicates that the precipitation of February, May, July, and December show ergodic property, 

although not all of the precipitation of these months has a tendency converging to its mean 

value, respectively.  
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This study focuses mainly on the mean ergodicity analysis; approaches to the covariance 305 

ergodicity analysis of hydrological processes need to be developed in the future, which would 

provide us more useful information. In addition, as discussed, the application of ergodicity 

seems still controversial although its concept and properties have been applied commonly in 

hydrology by presuming hydrological processes automatically having ergodicity. More 

discussion and methodologies on ergodicity analysis would certainly bridge the gap between 310 

its concept and application.  
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Table 1. Statistics of monthly precipitation data of each case study site 
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

N
ew

b
er

r
y

, 
U

S
A

 Min. (mm) 0.0 0.0 0.0 0.0 0.0 0.0 17.8 3.8 19.3 6.4 2.5 0.0 

Max. (mm) 150.6 95.0 251.5 264.2 266.7 211.6 190.5 209.0 204.7 157.7 169.9 117.3 

Mean (mm) 48.7 33.9 45.7 49.2 68.5 77.7 73.5 77.4 87.4 75.0 62.5 50.2 

Std. (mm) 23.5 20.4 34.3 34.1 37.1 38.4 39.0 41.0 38.6 35.2 33.3 24.0 

CV 0.5 0.6 0.8 0.7 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 

Stationarity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Ergodicity No Yes No No Yes No Yes No No No No Yes 

              

L
a

n
zh

o
u

, 
C

h
in

a
 Min. (mm) 0 0.0 0.0 0.6 1.2 11.0 14.3 7.1 8.5 0.0 0.0 0.0 

Max. (mm) 8.2 9.2 23.3 68.3 124.7 109.0 142.1 236.2 100.1 60.0 20.8 8.8 

Mean (mm) 1.5 2.3 8.3 16.6 35.4 39.5 63.3 78.3 45.7 23.1 3.5 1.1 

Std. (mm) 1.9 2.5 6.1 13.2 25.2 23.0 31.3 44.0 24.9 17.0 4.9 1.9 

CV 1.3 1.1 0.7 0.8 0.7 0.6 0.5 0.6 0.5 0.7 1.4 1.7 

Stationarity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Ergodicity No No Yes No No No Yes Yes No No No No 

              

A
n

k
a

n
g

, 
C

h
in

a
 Min. (mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Max. (mm) 26.0 39.0 104.0 131.0 168.0 319.0 391.0 326.0 391.0 185.0 88.0 71.0 

Mean (mm) 5.5 11.5 32.4 62.9 81.5 109.3 118.1 116.1 129.8 71.3 29.3 7.6 

Std. (mm) 4.8 10.1 20.1 32.0 38.8 67.8 81.6 69.9 83.3 43.8 18.7 10.2 

CV 0.9 0.9 0.6 0.5 0.5 0.6 0.7 0.6 0.6 0.6 0.6 1.3 

Stationarity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Ergodicity No No No No Yes Yes No Yes No No No No 
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Table 2 System clustering of the precipitation series at Ankang, China 385 

Clusters Calendar months CV Stationarity Ergodicity 

Group 1 
,  ,  ,

 ,  

Jan Feb Mar

Nov Dec

 
 
 

 1.0384 No No 

Group 2 
,  ,  ,

,  

Apr May Jun

Jul Oct

 
 
 

 0.6554 Yes No 

Group 3  Aug  0.5938 Yes Yes 

Group 4  Sep  0.6357 Yes No 
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Figure 1. ACF of monthly precipitation data series of Newberry, MI, USA 

Figure 2. TM (mm) and  TD M  (mm) of precipitation data series of Newberry, MI, USA 

Figure 3. Extended  TD M  (mm) series of precipitation by RBF neural network at 

Newberry, MI, USA 390 

Figure 4. The precipitation data (dotted in figures) of ergodic months and their trend (straight 

lines) of Newberry 

 



 

23 

Figure 1. ACF of monthly precipitation data series of Newberry, MI, USA  
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Figure 2. TM (mm) and  TD M  (mm) of precipitation data series of Newberry, MI, USA 395 
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Figure 3. Extended  TD M  (mm) series of precipitation by RBF neural network at Newberry, MI, USA 
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Figure 4. The precipitation data (dotted in figures) of some ergodic months and their trend (straight lines) in Lanzhou, Ankang, and Newberry 
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