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Dear Referee,

Thank you for those questions and comments. Please find below, our answers and the
associated changes added to the manuscript.

Best regards,

Raphaël Legrand, Yann Michel and Thibaut Montmerle

(Reviewer comments are written in black, and authors answers are in blue)

Comments from Referee→(1) There is some confusion in the paper about the roles of
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linearity and Gaussianity in assimilation. The abstract reads Two common derivations
respectively lead to the Kalman filter and to variational approaches. They rely on
either assumptions of linearity or assumptions of Gaussianity of the probability density
functions of both observation and background errors . Maybe I am mistaken on the
authors’ intentions, but these sentences mean in effect that the hypotheses of linearity
(leading to Kalman filter) and Gaussianity (leading to variational assimilation) are
mutually exclusive. They are not. Both Kalman filter and variational assimilation are
based on the same linear assumptions (and both are empirically extended to weakly
non-linear situations). Under these linear assumptions, they are only two different
algorithms that solve the same problem. In addition, they both achieve Bayesian
estimation in the case when the errors affecting the data are Gaussian.

More precisely P. 1063, ll. 10-11. ..., up to now operational Numerical Weather Pre-
diction (NWP) has relied on assimilation schemes that are Gaussian .... The authors
do not say which assimilation schemes they have in mind, but I presume they mean
schemes of the general ‘Kalman’ form

xa = xb + K(y− Hxb) (1)

where xb and xa are respectively the background and the analysis, y is the observation,
H the corresponding (linear) observation operator, the difference d ≡ y − Hxb being
the innovation vector. K is the gain matrix which, in the context of least variance
estimation, is defined as K ≡ CzdC−1

dd , where Czd is the cross-covariance matrix of the
background error z ≡ x− xb with the innovation, and is Cdd is the covariance matrix of
the innovation itself. I stress there is nothing necessarily ‘Gaussian’ in Eq. (1) above.
That equation can be obtained as defining the Best Linear Unbiased Estimator (BLUE)
of x from xb and y, independently of any Gaussian hypothesis. It can also be obtained,
also independently of any Gaussian hypothesis, on a principle of maximum entropy.
Linearity, on the other hand, is always necessary. Gaussianity is only a ‘plus’ which, if
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it comes in addition to linearity, ensures Bayesianity of the estimation.

The authors write (p. 1065, ll. 2-3, efforts [to] be made to improve linear assumptions
... Well, if Gaussianity is obtained at the expense of linearity, this may result in a
degradation of the accuracy of the final estimate.

P. 1064, ll. 7-8. It [the 4D-Var algorithm] solves for the most probable state [...]
by minimizing a non-quadratic cost-function .... If there are non-linearities and the
cost-function is non-quadratic, it is very unlikely that minimizing it will lead to the most
probable state. Actually, that is guaranteed only in the linear and Gaussian case.

Please revise all parts of the paper relative to the basic principles of assimilation
and to the questions of linearity, Gaussianity and Bayesianity. It must be clear in
particular that, among the hypotheses to be made for Kalman filtering and variational
assimilation, linearity must come before Gaussianity.
Author’s response→ There are two common derivations of the assimilation problem in
the literature. The first one actually matches your derivation. It derives the Kalman gain
as the best linear unbiased estimate, in the sense of a minimum variance estimate.
Then it is possible to derive variational data assimilation as a minimization problem
solving for this Kalman gain. The Gaussian assumption then is not necessary but
ensure Bayesianity of the assimilation.

The second derivation takes maybe an other step: it starts from the derivation of a
maximum likelihood problem using Bayes rules. This is the approach presented in
(e.g.) Lorenc (1986), Bannister (2008), Bocquet et al. (2010), and Fisher et al. (2011).
The Gaussian hypothesis is done next, leading to a minimization problem of a non-
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linear cost function J that is given for instance for a 3D-Var as:

2J = (x− xb)T B−1 (x− xb) + (y−H(x))T R−1 (y−H(x)) (2)

with B and R the covariance matrix of background and observations errors. Non-
linearities arise from the observation operators H (in addition to the direct model
operator for the 4D-Var). As mentioned by Bocquet et al. (2010) about the mini-
mization of J , instead of using stochastic optimization methods which are intractable
for NWP applications, a remedy is to use a succession of quadratic optimization
problem with simplified and linearised operators. Fisher et al. (2011) explain the
several linearisation as a way to resolve the minimisation problem with "a range of
efficient methods". So, with this second derivation, the Gaussianity (or correction of
Gaussianity) is seen as the only tractable choice and appears very soon in the J
designing. Then, linearisation is seen as an additional technical assumption leading to
better efficiency in the minimization process.

The equivalence between those two possible derivations may be obtain using some
kind of EnKF approaches.
Author’s changes in manuscript→In the abstract: "In numerical weather prediction, the
problem of estimating initial conditions with a variational approach is usually based
on a Bayesian framework associated with a Gaussianity assumption of the probability
density functions of both observations and background errors. In practice, Gaussianity
of errors is tied to linearity, in the sense that a nonlinear model will yield non-Gaussian
probability density functions. In this context, standard methods relying on Gaussian
assumption may perform poorly.", and at the beginning of the introduction: "In data
assimilation, the analysis step may be seen as finding a maximum likelihood of the
probability density functions (PDF) of the state x given the available observations y
and a background state (usually a short range forecast). Usual Bayesian formulation
yields (Kalnay, 2003)".
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Comments from Referee→(2) The significance of the D’Agostino test, and the inter-
pretation to be given to the results it produces, must be clarified.

I mention first that formulæ (2) and (3) for the skewness G3 and the kurtosis G4 are not
exact. The denominator in the expression for the variance should be Ns -1, and similar
corrections are to be made in the expressions for the third- and fourth-order moments.
Author’s response→ We don’t think that there is a mistake here. According to (e.g.)
Thode (2002) p45-46, G3 and G4 are using sample moments given as

mk =
1
Ns

Ns∑

i=1

(xi − x̄)k (3)

Such definition of the second sample moment is used to compute G3 and G4, not the
sample (unbiased) variance.
Author’s changes in manuscript→We agree with this point.

Comments from Referee→More importantly, the fundamental purpose of the test is the
following. For a given ensemble size Ns and exact Gaussianity, by how much can one
expect G3 and G4 to deviate from their Gaussian values 0 and 3 ?
Author’s response→ According to Kendall and Stuart (1977) in case of exact normality
G3 is a zero mean random variable with a variance of

σ2(G3) =
6(Ns − 2)

(Ns + 1)(Ns + 3)
(4)

Asymptotically (Ns large enough), G3 tends to be normally distributed with a zero mean
and a variance of 6/Ns. In our case for Ns = 90, G3 is not exactly normally distributed
and, with a bilateral testing at level 95%, the normality hypothesis is accepted when
−0.494 < G3 < 0.494 (Table B5, Thode, 2002).
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As regards G4, in case of normality G4 is asymptotically (Ns large enough) normally
distributed with a mean of 3 and a variance of 24/Ns. For finite ensemble size, mean
and variance are given as

E[G4] =
3(Ns − 1)
(Ns + 1)

(5)

σ2(G4) =
24Ns(Ns − 2)(Ns − 3)

(Ns + 1)2(Ns + 3)(Ns + 5)
(6)

In our case for Ns = 90, G4 is not exactly normally distributed and, with a bilateral
testing at level 95%, the normality hypothesis is accepted when 2.24 < G4 < 4.09
(Table B6, Thode, 2002).

Those bounds are not mentioned in the text since, G3 and G4 are not used in this
study. As justified below, only f3(G3) and f4(G4) are shown and analysed.
Author’s changes in manuscript→None

Comments from Referee→The authors define transformed skewness and kurtosis
f3(G3) and f4(G4) through formulæ whose significance is obscure (and which would
be in my opinion more appropriately put in an appendix than in the main text of the
paper). The transformed f3(G3) and f4(G4) are said to be standard Gaussian (i.e. with
expectation 0 and variance 1) if the original variable is Gaussian. For which values of
Ns is that statement true (it cannot be for any Ns, in view for instance of a term Ns in
several of the formulæ leading to the definition of f4(G4))?
Author’s response→ If the original variable is Gaussian, the normality of the trans-
formed skewness and kurtosis is valid respectively for any values of Ns > 8 and
Ns > 20 (resp. p48 and p52, Thode, 2002). Thus, the Ns − 3 coefficient that we found
in P definition is actually coming from the variance of G4, which is used in Q as a
normalization coefficient.
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Author’s changes in manuscript→In section 2.1: "For a Gaussian PDF and Ns higher
than 20 (Thode, 2002), f3(G3) and f4(G4) could be both assumed to follow a Gaussian
law with a zero mean and a unity variance.". Fig.1 has been changed to be in
accordance with this threshold.

Comments from Referee→The next step is to test the Gaussianity of the transformed
f3(G3) and f4(G4). But what is then the interest of making the test on f3(G3) and
f4(G4) rather than on the raw G3 and G4 ? Is it that a possible non-Gaussianity will
show up more clearly on the former ? Is so, say it clearly. In any case, explain.
Author’s response→We see three main reasons of using f3(G3) and f4(G4) instead
of G3 and G4. The first reason is that for Ns = o(103), the asymptotic behaviour of G3

and G4 is not reached (D’Agostino, 1970; Anscombe and Glynn, 1983). So in order to
simplify hypothesis testing, a transformation is needed to transform them as normal
random variables. The second reason is that their values weakly depend on Ns. This
make possible to compare several studies using different ensemble sizes. The third
reason is that f3(G3) and f4(G4) are both normally distributed. So the role of each of
them in a possible deviation from Gaussianity could be compared, and they could be
used to build an omnibus test of normality as K2.
Author’s changes in manuscript→None

Comments from Referee→The authors then introduce the parameter K2 of which they
write (p. 1068, ll. 9-10) that it follows an approximate χ2 distribution with two degrees
of freedom. Well, if f3(G3) and f4(G4) are independent standard Gaussians, K2 will
follow an exact χ2 distribution with two degrees of freedom (with expectation 2 and
variance 4). Is it because G3 and G4 are not independent in the first place that the
distribution cannot be expected to be an exact χ2 ?
Author’s response→You are right, K2 is not distributed with an exact χ2 since G3 and
G4 are uncorrelated but not independent (p54, Thode, 2002). An other reason is
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that normality behaviour of G3 and G4 is only asymptotic. For those two reasons it is
possible to correct critical values of the K2 test (chapter Moment (

√
b1, b2) techniques,

D’Agostino and Stephens, 1986). For instance, with Ns = 100 the critical value is
K2 = 6.271 and not 5.991 as for an exact χ2 distribution.
Author’s changes in manuscript→None since it is already mentioned that K2 is only
"approximately" following a χ2 distribution.

Comments from Referee→It is not clear how the values obtained for f3(G3), f4(G4)
and K2 must be interpreted. The authors write (p. 1069, last sentence) describing the
values of K2 has the advantage to prevent the results from depending on the chosen
confidence level. Which confidence level are you referring to ? A level similar to the
one given (p. 1068, l. 11) for Ns = 100 ?
Author’s response→ When using hypothesis testing, conclusion of the test is always
associated with a confidence level α (usually 1 − α = 95%). Critical values Xc of the
test are defined according to this level as (for a right-unilateral testing)

P (X > Xc) = α (7)

Instead of K2, we could have shown binary result giving "this point is Gaussian or not".
But since the critical value is depending on the confidence level of the test, results
would have been different when using different confidence level. Moreover we want to
see where the NG is the largest, and see structures. That’s why we choose to show
raw values of K2.
Author’s changes in manuscript→None

Comments from Referee→But that does not say how to interpret the values obtained
for K2 . One could expect that a χ2 mean value of 2 for K2 , with a variance of 4,
could be interpreted as proof of Gaussianity. And you mention a value of 2.7 (p. 1072,
l. 11) as indicating Gaussianity. But Fig. 3a shows values, at all levels and for all
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variables except q, which are about 4, which seems to indicate significant deviation
from Gaussianity. Nevertheless, you write in the conclusion (p. 1076, l. 14) Deviation
from Gaussianity for U, V , and T only appears in the boundary layer . All that is
confusing.
Author’s response→ As it is stated in the text, with unilateral testing at level 95%,
the Gaussian hypothesis is rejected for K2 > 6.271, so K2 value around 4 are
small enough to accept the Gaussian hypothesis of the sample tested. Moreover,
discussion on K2 values allow us to compare quantitatively Gaussian behaviour
between variables.
Author’s changes in manuscript→None

Comments from Referee→A similar remark applies to the parameters f3(G3) and
f4(G4), of which it is not clearly said (except for the large values of f3(G3)) how they
must be interpreted. For instance, how the fact that the values of f4(G4) are positive
in Fig. 3c must be interpreted (f4(G4) clearly does not have the standard Gaussian
distribution to be expected if the basic variables are Gaussian)?
Author’s response→ Positive values of f4(G4) means that distribution tails are heavier
than Gaussian distribution, and also a bigger modal peak. Negative values of f4(G4)
show lighter tails and smaller modal peak.

Despite negative values appear in Fig.5, you are right noticing that f4(G4) are in
a large part positive. But it doesn’t mean that f4(G4) does not follow a standard
Gaussian distribution. Indeed this conclusion needs the spatial ergodicity assumption
which is not straightforward to us (since f3(G3) and f4(G4) distribution may depend
on meteorological situation i.e spatial inhomogeneity). In this study we would simply
test the normality of f4(G4) with an hypothesis testing (see if f4(G4) is larger than a
critical value). An other way to test the normality of f4(G4), would be to look at the
distribution of an ensemble of f4(G4) for each grid point. But this is costly since it
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needs an ensemble of ensembles.
Author’s changes in manuscript→Added in section 2.1: "While positive (negative)
values of f3(G3) point out distributions with a median smaller (higher) than the mean
and with a longer right (left) tail, positive (negative) values of f4(G4) mean that
distribution tails are heavier (lighter) than Gaussian distribution’s, with also a bigger
(smaller) modal peak."

Comments from Referee→All those aspects must be clarified. In particular, explain in
what it is better to use the parameters f3(G3) and f4(G4) (and K2 ) rather than the raw
diagnostics G3 and G4 . And explain better how the values found for f3(G3), f4(G4)
and K2 must be interpreted (see also comment 4 below).
Author’s response→ We hope that previous answers are clarifying the use and
interpretation of f3(G3), f4(G4), and K2.
Author’s changes in manuscript→None

Comments from Referee→(3) Subsection 4.2.1 and associated Fig. 9. You present
diagnostics for control variables, and particularly vorticity and divergence and for a
3-hour forecast. You have shown previously that, for other variables, the analysis
ensembles are more Gaussian than the forecast ensembles. I suggest you also
present diagnostics for the analysed control variables.
Author’s response→ To be consistent with the Fig.7, diagnostics of NG for vorticity ζ
and total divergence η have been computed before and after the assimilation step of
the 4th November 2011 at 03:00. Results are shown below in Fig.1 of this comment
(caption: "Vertical profiles of Vorticity ζ and total Divergence η before ("background")
and after ("analysis") the assimilation process. Results are computed from the
ensemble of 90 background and analysis states valid the 4th November 2011 at
03:00."). While NG for levels higher than 900hPa are almost unchanged, the averaged
K2 of ζ and η is systematically lower for the analysis than the background state in
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the boundary layer. However the order of magnitude of the decrease is much smaller
than for T and q, thus the dynamical variables ζ and η remain by far much more
non-Gaussian than T and q.(Those conclusions have been added in the text).
Author’s changes in manuscript→added in section 4.2.1: "As for Fig.7, diagnostics
of NG for vorticity ζ and total divergence η have been computed before and after
the assimilation step (not shown). While NG of levels higher than 900hPa are almost
unchanged, the averaged K2 of ζ and η is systematically lower for the analysis than
the background state in the boundary layer. However the order of magnitude of the
decrease is much smaller than for T and q, and the dynamical variables ζ and η remain
by far much more non-Gaussian.

Comments from Referee→(4) Subsection 4.2.1. You write on the basis if Fig.9 that
the vorticity, unlike the wind components, is strongly non-Gaussian. This is what
comparison of Figs 3 and 9 may suggest, but the vorticity is a linear function of the
wind components, and cannot be as such be less Gaussian than those components.
This requires clarification.
Author’s response→This remark is similar to that made by reviewer 1 (and 2) in his
second point. In order to study relative impact on NG of heteroscedasticity and spatial
derivatives, NG diagnostics have been computed for the temperature T , which is a
nearly Gaussian field (cf Fig. 3a), for the temperature normalized by its standard

deviation T
σT

, and for their respective first-order spatial derivatives (∂T∂x and
∂ T
σT
∂x ).

Results are shown and explained in the answer to reviewer 1. A comment has also
been added in the manuscript.
Author’s changes in manuscript→Same as for reviewer 1.

Comments from Referee→(5) Concerning also Fig. 9, you write that the unbalanced
divergence ηu , like vorticity, is strongly non-Gaussian, while the variables Tu and qu
display much more Gaussian profiles. Well, according to the caption of Fig. 9, it is
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Tu which, in addition to vorticity, shows large values of K2 , while ηu shows smaller
values. Is there an error in the caption, or what ?
Author’s response→There was indeed an error in the caption. T was inverted with ηu.
This has been corrected.
Author’s changes in manuscript→Caption of Fig.9 corrected.

Comments from Referee→And, speaking of vorticity, you use the Greek letter ξ
(pronounced xi) to denote it. The usual notation is ζ (pronounced zeta). I suggest you
follow the established practice.
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been corrected in the manuscript.

Comments from Referee→(6). P. 1073, ll. 9-11. For q, NG is mainly found in “cloudy”
areas, [...] with two peaks around 900 and 700 hPa. According to Fig. 6a, there is a
much more marked peak in the layer 100-300 hPa.
Author’s response→ As noted in section 3.2, largest NG for q in high troposphere
appear where q is almost non-existent. As it is stated in the text, those large values of
NG have then to be taken with caution.
Author’s changes in manuscript→None

Comments from Referee→(7) Abstract, ll. 18-19, The mass control variables used in
our data assimilation, namely vorticity and divergence. Well, vorticity and divergence
are not mass variables (check for other possible similar mistakes elsewhere in the
paper)
Author’s response→We agree with this point.
Author’s changes in manuscript→This has been corrected in the manuscript as
"dynamical control variables".
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Comments from Referee→(8) P. 1066, ll. 3-4, Positive (negative) values are associated
with a mode of the PDF smaller (larger) than its mean. This statement may not be
true of the mode of the distribution (which can be arbitrarily modified with infinitesimal
change to the distribution), but is true of its median.
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been corrected in the manuscript.

Comments from Referee→(9) And there are erroneous statements concerning the
relationship between skewness and tails pp. 1071, l. 13, and 1072, l. 1.
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been corrected in the manuscript.

Comments from Referee→(10) P. 1068, l. 11, what is unilateral testing ?
Author’s response→When testing an hypothesis (e.g.) H0 : "Xobserved is sampled from
a Gaussian random variable", with a confidence level α the test is right-tailed unilateral
if H0 is rejected when P (X > Xobserved) < α.
Author’s changes in manuscript→ The "right-tailed" adjective has been added in the
manuscript.

Comments from Referee→(11) P. 1073 and 1076, ll. 11 and 19, forecast terms ranges
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(12) P. 1064, l. 15, Laroche and Pierre, 1998. Do you mean
Laroche and Gauthier ?
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed
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Comments from Referee→(13) P. 1064, l. 20 (and elsewhere). The proper spelling is
Järvinen (with a diaeresis)
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(14) P. 1077, ll. 7-8, ... does not include model error,
neither in the analysis nor in the forecast steps (what you write is analogous to writing
in French Je n’ai pas vu personne)
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(15) P. 1076, l. 3, below the tropopause
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed
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Fig. 1. Vertical profiles of Vorticity and total Divergence before ("background") and after ("anal-
ysis") the assimilation process (see text).
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