

General Comments

The discussion paper "**Toward a practical approach for ergodicity analysis**" by Wang et al. published in NPGD investigates the possibility that some precipitation time series behave as ergodic processes. During an informal exchange of views on this possibility with the second author, Cheng Wang, I did some comments on an earlier version of the paper one year ago (sent by e-mail on 09.10.2014). My comments focused on three issues: the definition of ergodicity, the methodology used to investigate whether this property holds for the time series investigated in the paper, and the interpretation of the results. After reading the paper, as well as a couple of articles listed in the bibliography, I shall try to present in the following a more complete formulation of these issues and my own view on a possible interpretation of the results.

Since the time average $M_T = \sum X(t)/T, t=1,2,\dots,T$, of a stationary process $X(t)$ is an *unbiased estimator* of the mean, the estimator M_T is also *consistent* and the process is ergodic if and only if M_T tends, in the mean square sense to the constant ensemble average $m = \langle X(t) \rangle$, that is,

$$\langle (M_T - m)^2 \rangle \rightarrow 0 \text{ as } T \rightarrow \infty$$

[Yaglom, 1987, p. 214]. Instead of this rigorous definition, the authors use as an ergodicity criterion the limit $D(M_T) \rightarrow 0$ as $T \rightarrow \infty$. The "variance" $D(M_T)$, defined by their Eq. (1), is equivalent, after a rearrangement of terms, with

$$D(M_T) = \sum M_t^2 / T - M_T^2, \text{ where } t=1,2,\dots,T.$$

This definition is neither a stochastic average, nor an estimation by time a average (which would have been a moving average with averaging window equal to T). It seems that this unusual, and actually wrong, definition of ergodicity, as well as the approach for ergodicity analysis, have been borrowed from another paper of the first author, [Wang et al., 2009], which, however, is not cited in this discussion paper.

The ergodicity of a stationary process cannot be assessed in absence of some information about its probability distribution [Yaglom, 1987; Duan and Goldys, 2001; Oliveira et al., 2006; Suciu, 2014]. Without prior knowledge of this distribution one can at the best guess the next outcome of some stationary time series, provided that they are ergodic [e.g. Morvai and Weiss, 2005].

Nevertheless, some empirical investigations on ergodicity could help us to identify those time series which very likely are not ergodic. The present paper is an attempt in this direction. If a moving averaging is used instead of Eq. (1) to estimate the variance of the estimator M_T , using it to assess the ergodicity of the time series presumes the ergodicity of the variance. Then, the results indicating ergodicity only tell us that the time series behave consistently with the variance-ergodicity assumption. Following my comments on the earlier version of the paper, the authors propose this interpretation of the results at the end of Section 3.3.

But the results presented in Figs. 2-4 rather indicate that the time series, even those identified as "ergodic" (Fig. 4) are not stationary, because the estimated mean is not constant. In this case the notion of ergodicity, as a property of stationary processes, is useless. More general ergodic properties, which do not require statistical stationarity, can be formulated for *processes having time average mean value and correlation function* [Yaglom, 1987, Sect. 26.6]. That means, processes for which the time integrals of the (time dependent) stochastic mean value and correlation divided by T converge to some finite limit as $T \rightarrow \infty$. Such properties, again, cannot be proved without information about the statistics of the process [see Yaglom, 1987, the four examples at the end of Sect. 26.6]. Nevertheless, we can follow empirical approaches similar to that for stationary processes described above.

First approach: Consider a process possessing both mean and correlation time averages. Let m_0 be the time average of the variable stochastic average $m(t)$. Then, M_T (defined above and considered in the present paper) is a consistent estimator of m_0 if and only if the average spectral density of the centered process $Y(t) = X(t) - m(t)$ is continuous in the origin. An equivalent formulation of this condition using the time average correlation function, similar to Slutsky theorem [Yaglom, 1987, Eq. (3.15a)], can be

derived by using the equations (3.15a), (4.512) and (4.499) from [Yaglom, 1987]. The estimation of the time average correlation from a single realization of $Y(t)$, following [Yaglom, 1987, Eq. (4.505)], can be obtained by the autocorrelation function of the process $Y(t)$, which is precisely the "noise" extracted from $X(t)$ with the automatic de-trending algorithm of Vamoş and Crăciun [2012]. These results can be readily obtained by the same codes used to prepare Fig. 4 of the paper, available online at <http://www.ictp.acad.ro/vamos/trend/trendrcma.htm>.

Second approach: Assuming only the existence of the time average m_0 , the consistency of its estimator M_T is ensured if and only if the ergodic estimation of the mean of $Y(t)$ is zero, i.e. $M_T(Y(t)) \rightarrow 0$ as $T \rightarrow \infty$ [Yaglom, 1987, p. 486]. The centered process $Y(t)$ can be estimated by the noise determined with the same automatic de-trending algorithm.

The scheduled empirical approaches can be used to reject the ergodicity hypothesis for time series which do not fulfill the sufficient and necessary condition from above. I would recommend to use both approaches, because some time series could be consistent to both the hypothesis of existence of time average mean value and that of existence of time average correlation while other series could be consistent to only one of these hypotheses. It would be also desirable to extend the time series with the RBF neural network approach described in Section 3.2., before using the automatic de-trending algorithm. Finally, it should be stressed again that the "ergodicity hypothesis" in this general empirical approach is in fact the hypothesis that the non-stationary time series possess mean and correlation time averages which can be consistently estimated through time averages.

Specific Comments

Page 1428: " Most studies of time series applications, such as in the fields of hydrology, hydrodynamics, and noise (Jiang and Zheng, 2005; Oliveira et al., 2006; Veneziano and Tabaei, 2004), discuss statistic characteristics simply by assuming time series having ergodicity without justifying this assumption with a rigorous approach."

-Statement inaccurate. In (Oliveira et al., 2006, p. 379, Eq. (12)) there is a rigorous ergodicity condition fulfilled by the fast decaying correlation in homogeneous turbulence.

Page 1428: "... ergodicity ... is a fundamental presumption for many time series problems (Ding and Deng, 1988; Fiori and Janković, 2005; Hsu, 2003; Liu, 1998; Mitosek, 2000; Wang et al., 2004)."

-Statement generally incorrect in the case of subsurface stochastic hydrology. Only in special cases of small fluctuations of the hydraulic conductivity the problem of estimating transport coefficients can be formulated in terms of processes, i.e., time series [Suciu, 2014, Sect. 5.3]. For instance in [Fiori and Janković, 2005; Hsu, 2003] random fields are used to model the transport and ergodicity (for random space functions) is ensured by increasing the dimension of contaminant source. See [Suciu, 2014] and references [95] and [100] therein for different meanings of the term "ergodicity" in subsurface hydrology.

Page 1429: The definition of the second-order stationarity is not correct. The first moment cannot depend on time differences, it must be constant [see Yaglom, 1986, Chap. 1, Sect. 3].

page 1431: " If the ACF rapidly approaches 0 (i.e. falls into the stochastic domain), the time series is stationary; otherwise it is non-stationary (Cline and Pu, 1998, 1999)."

-False. The decay of ACF does not prove the stationarity. A counter-example: Even if the fractional Brownian motion has long tail, power-law correlations, which don't approach rapidly 0, it is stationary and variance-ergodic [Suciu, 2014, Sect. 5.3, p. 123].

-The reference to (Cline and Pu, 1998, 1999) for the ACF stationarity criterion is not correct. Neither stationarity nor ACF are mentioned in these papers.

-Instead, as seen for instance in (Chen and Rao, 2002), segmentation algorithms and autoregressive models are often used to construct stationarity tests.

Page 1433: "ADF test indicate that all the 20 individual monthly precipitation data series at Newberry are stationary."

-There are no results from ADF tests presented in the paper.

Page 1436: "A linear trend analysis is also performed following Vamos and Craciun (2012)"

-Wrong. The output of the automatic algorithm described in (Vamos and Craciun, 2012) is not a linear trend, as already shown in fig. 4.

Page 1437: "Some researchers (Duan and Goldys, 2001; Koutsoyiannis, 2005; Liu, 1998), however, have pointed out that hydrological processes may have ergodic properties although no particular ergodicity analysis was performed in these works."

-Inaccurate. Duan and Goldys (2001, Theorem 4.1C) give a rigorous proof of ergodicity.

Figure 2 and 3 are identical, even though the latter should have been obtained by using the RBF neural network.

Technical Corrections

Last row on page 1426: What is "the phase mean function"? An explanation is needed here.

First row on page 1427: the correlation function is the auto-covariance divided by the variance.

Last row on page 1427: Should "... approaches have yet been available." be "... approaches have NOT yet been available."?

Page 1428, end of the first paragraph: " process averaged over time behaves identical to the process averaged over space." It should be "... averaged over PHASE space.". Other suggestions: averages over the statistical ensemble, stochastic averages.

Third row from bottom on page 1428: "... used mainly in mathematical physics, e.g. dynamics,". What does it mean here "dynamics"?

Page 1429: The reference (Davis et al., 1994) cited here is not included at References.

Figs. 2 and 3: The unit for estimated mean values is given in mm. That for variances should be mm².

References

Wang HongRui, Feng QiLei, Lin Xin, and Zeng WenYi, Development and application of ergodicity model with FRCM and FLAR for hydrological process, Sci China Ser E-Tech Sci, 52 (2), 379-386, 2009, [doi: 10.1007/s11431-008-0191-9](https://doi.org/10.1007/s11431-008-0191-9).

Yaglom AM. Correlation theory of stationary and related random functions. Basic results, vol. I. New York: Springer; 1987

Suci N. Diffusion in random velocity fields with applications to contaminant transport in groundwater, AdvWater Resour 69, 114-133, 2014, <http://dx.doi.org/10.1016/j.advwatres.2014.04.002>.